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Abstract

The surface impedance characteristics of a wire grid composed of infinitely long parallel con-
ducting wires embedded in lossless and lossy frequency-dispersive chiral background media
have been investigated. Using wavefield decomposition approach for a chiral background
and with the application of impedance boundary conditions for a wire grid, an analytic
expression for the surface impedance of a wire grid with a chiral background has been derived.
It is shown that the surface impedance magnitude of a wire grid with chiral nihility back-
ground is close to zero and almost independent of incident polar angles. A strong chiral back-
ground significantly enhances the surface impedance magnitude of a wire grid for incident
polar angles closer to right angle as compared to the free space background. The same elec-
tromagnetic appearance of a wire grid with frequency-dispersive chiral and free space back-
ground media at some critical frequency has also been discussed which may find
applications in electromagnetic illusions. It is also shown that if the value of incident polar
angles are closer to right angle then the impedance magnitude of a wire grid embedded in
the realistic chiral background is smaller as compared to the same wire grid when placed
in the free space background.

Introduction

The impedance properties of a wire grid with different background media have been of an
interest to scientific community because of their important technical applications [1–21].
They have applications in impedance matching, filters, artificial dielectrics or lens, electromag-
netic shields, screens, antenna reflectors, and epsilon negative metamaterials. The electromag-
netic properties of a parallel wire grid composed of infinite length conducting wires have been
studied by Larsen [1]. According to Larsen, impedance properties of a wire grid can be used
for impedance matching, filters, and artificial dielectrics. The reflection and transmission
properties of a parallel wire grid composed of conducting or perfectly electric conducting
wires have been investigated by some authors [2–5]. Lewis and Casey [2] have investigated
the reflection and transmission properties of a resistive wire grid. They argued that the amp-
litude of reflection coefficient decreases with the increase of resistivity of wires. Wait [3] has
studied the reflection properties of a planar wire grid under arbitrary incidence having arbi-
trary polarization. He has derived a general reflection coefficient without placing any restric-
tions upon incidence angle, polarization, and conductivity of wires. The transmission
properties of a wire grid using parabolic equation method have been analyzed by Mias and
Constantinou [4]. They also studied a wire grid as an electromagnetic screen. Manabe and
Murk [5] have investigated the reflection and transmission characteristics of a wire grid
with slight irregularity in grid position and grid rotation. They have used the T-matrix
approach for their proposed solution and also incorporated mutual coupling effects.
Recently, Awan [6] has studied the reflection and transmission properties of a wire grid com-
posed of lossy and lossless wires embedded in single negative or single zero metamaterial
media. He concluded that a lossy wire grid becomes transparent to the incoming normal inci-
dent wave provided that if the background medium is Mu zero medium.

The scattering properties of a parallel wire grid has been studied analytically by Richmond
[7] and experimentally by Lewis and et al. [8]. A wire grid as an electromagnetic shield has
been investigated by authors [9–12]. Young and wait [9,10] have shown that an ensemble
of infinitely long thin parallel wires can be taken as an electromagnetic shield. These shielding
properties have been further explored in [11,12]. Samii and Lee [13] have studied a wire grid as
an antenna reflector which is composed of thin wires. Such type of antenna reflectors are light
weight and have reduced wind effects. A two-dimensional extension of a wire grid can be taken
as a wire medium or epsilon-negative metamaterial and have been studied by Belove et al. [14]
and by Awan [15]. The impedance characteristics of a parallel wire grid with the free space
background have been studied by many authors [16–21]. A study of impedance properties
of a parallel wire grid under oblique angles of incidence has been carried out by Macfarlane
[16] and Marcuvitz [17]. An effective or surface impedance of a wire grid with the free
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space background and placed parallel to earth’s surface has been
discussed by Wait [18]. He has shown that this surface impedance
decreases in value by raising the grid above the ground. The
impedance boundary conditions for a sparse parallel wire grid
with the free space background have been investigated in
[19,20]. Yatsenko et al. [20] concluded that if the spacing
among wires is equal to the free space wavelength then the wire
grid becomes transparent to the incoming wave. The effects of
positioning errors upon the impedance, reflection, and transmis-
sion properties of a parallel wire grid with the free space back-
ground have been investigated by Awan [21]. He found that by
increasing the positioning errors in the wires of the grid increases
the magnitude of surface impedance. In all the papers cited above,
a wire grid is assumed to place either in free space background or
metamaterial background media. According to the author, surface
impedance properties of a copper wire grid with lossless chiral or
frequency-dispersive lossy chiral [22] background media have not
been explored previously and is a topic of present study. The
impedance properties of a wire grid with free space or dielectric
background find potential applications in the designing of
microwave lenses, various forms of shielding, antenna reflec-
tors, impedance transformer networks used in the microwave
engineering, and recently in the designing of metasurface, see
for example [23]. When such type of wire grid is placed in
the chiral background then we have a greater control over the
impedance characteristics of this wire grid due to an additional
parameter of chirality. By varying the chirality parameter of the
background medium, the impedance magnitude can be
enhanced or diminished as compared to the free space or
dielectric background. Thus, this type of control over the
impedance properties due to an additional chirality signify
the novelty of the proposed work and have not been studied
previously.

In this paper, the effects of several background chiral media
upon the surface impedance of a wire grid have been investigated.
Using wavefield decomposition approach and with the application
of impedance boundary conditions for a wire grid, the surface
impedance of a wire grid embedded in a chiral background has
been derived. It is found that surface impedance of a wire grid
with the chiral background is frequency as well as spatially disper-
sive. The word spatial dispersion is used because its surface
impedance is a function of incident wave vector components.
Firstly, the effects of lossless chiral background media including
strong chiral and chiral nihility background media upon the sur-
face impedance of a copper wire grid have been investigated. It is
found that for a chiral nihility background, the surface impedance
magnitude is almost zero and is nearly independent of incident
polar angle. From here it can be concluded that the surface
impedance of a copper wire grid with chiral nihility background
has very weak spatial dispersion effects. Secondly, the effects of
lossy frequency-dispersive chiral background media upon the
surface impedance of a copper wire grid have been studied.
Finally, the effects of the realistic chiral background medium
upon the surface impedance magnitude have been investigated.
It is found that the magnitudes of surface impedances of copper
wire grid embedded in realistic chiral and free space back-
ground media are nearly same for smaller values of polar
angles. For polar angle closer to the right angle, the impedance
magnitude of a wire grid embedded in the realistic chiral back-
ground is smaller than if the same wire grid is placed in the free
space.

Surface impedance of a wire grid with chiral background

It is assumed that a wire grid consists of parallel cylindrical wires
which are aligned along z-axis. The length of each wire is taken to
be infinite and these wires are placed periodically along y-axis.
The consecutive spacing among wires along y-direction is dy.
The radius of each wire is taken to be a. The axial impedance
per unit length of each wire is assumed to be Zw and given by
[4,6],

Zw = hw

2pa
I0(gwa)
I1(gwa)

(1)

hw =
���������������������
jvmw/(sw + jvew)

√
gw =

��������������������
jvmw(sw + jvew)

√
(2)

where ϵw, μw, and σw are permittivity, permeability, and conduct-
ivity of wire material, respectively. The factors I0( · ) and I1( · )
represent the modified Bessel functions of order zero and one,
respectively. It is important to note that for perfectly conducting
wires, we have Zw = 0. The geometry of the wire grid is shown in
Fig. 1.

It is assumed that this wire grid is placed in the chiral back-
ground which is characterized by the relative permittivity ϵr, rela-
tive permeability μr, and relative chirality parameter of κr. It is
known that the chiral medium is bi-refringent and allows two
types of waves to exist in it. One of the waves is called right cir-
cularly polarized (RCP) wave and the other is known as a left cir-
cularly polarized (LCP) wave. The equivalent bulk wave numbers
associated with RCP and LCP waves are k+ and k−, respectively.
They are expressed in mathematical forms as below [22],

k+ = kon+ and k− = kon− (3)

n+ = �����
ermr

√ (1+ kr) and n− = �����
ermr

√ (1− kr) (4)

Fig. 1. A wire grid composed of periodic arrangements of cylindrical wires and placed
in a chiral background. Each wire is characterized by an axial impedance of Zw.
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where ko is free space wave number. The wave impedance of a
chiral background is taken to be η = ηo(μr/ϵr)

1/2 where ηo is intrin-
sic impedance of the free space. It is clear fromequations (3)–(4)
that both wave numbers are positive provided that k2r , 1 [22].
In this case, both refractive indices n+, n− are positive. In case if
k2r . 1 then one of the refractive index, i.e. n− become negative
whereas the refractive index n+ remains positive. This gives rise
to interesting phenomena that conventional negative index meta-
material does not exhibit, such as negative reflection for electro-
magnetic waves incident onto a mirror embedded in such a
medium. This type of chiral medium is known as a strong chiral
medium in the literature [24]. On the other hand, for a chiral
nihility medium, we have ϵr≈ 0, μr≈ 0, and κr≠ 0 [25].

It is known that right-handed and left-handed fields in a chiral
background medium are independent and do not couple [22].
Therefore, we can write these field components of an incident
plane wave as two independent plane waves. These incident
plane waves can be written as,

E+(r) = E+e−jk+·r (5)

with

k+ = k̂k+ = x̂k+x + ŷk+y + ẑk+z (6)

where k+ · E+ = 0 and k− · E− = 0. It should be noted that positive
sign (+) subscript or superscript has been used for quantities
related to right handed fields. On the other hand, negative sign
(−) subscript or superscript represent quantities related to
left-handed fields. These notations have been used throughout
the study. These incident waves induce currents inside the wires
of the grid. It is assumed that wires are taken to be infinitesimally
thin, i.e. |k±|a≪ 1 therefore no circumferential currents induce
inside the wires of a grid. Only axial currents are induced in
the wires. Using theory outlined in [6,19–21], the cell averaged
induced current densities are defined as J+ = I+/dy and J− = I−/
dy. In this case, J+, J− are induced current densities due to incident
RCP and LCP waves, respectively. They are found by applying the
boundary conditions at the surface of reference wire which is
located at y = 0 and given below,

Eloc
+,z + E0

+,z = ZwI+ (7)

E0
+,z = −h

4
I+e−jk+z z

(k+r )2
k+

1− j
2
p
(ln(k+r a/2) + C)

[ ]
(8)

Eloc
+,z = Ez

+e−jk+z z + Esc
+,z (9)

Esc
+,z = −h

4
I+e−jk+z z

(k+r )2
k+

∑i=+1

i=−1,i=0

e−jk+y yiH(2)
0 (k+r |yi|) (10)

with Ez
+ = ẑ · E+ and C=0.5772 is an Euler’s constant. Here

k+r = (k2+ − (k+z )2)1/2 and the factor H(2)
0 (·) represents the

Hankel function of second kind with order zero. Also yi = idy
which represents the location of an ith wire in the grid with
i=0, ±1, ±2,.........., ±∞. Using this notation, it is argued that the

reference wire is located at i = 0. The z-component of the total
scattered electric field Esc

+,z appearing in equation (10) represents
the contributions of the z-components of the scattered electric
fields from the rest of the wires in the grid at reference wire
due to an RCP incident wave. Similar definition exists for the
z-component of the total scattered electric field Esc

−,z due to an
LCP incident wave. After some manipulations and using the
theory outlined in [21] these induced current densities J± can
be written as,

J+ = (2/h)(|k+x |/k+)
(2/h)(|k+x |/k+)Zwdy + (k+ 2

r /k2+)(1+ jg+p (|k+x |/k+)) E
+
z

(11)

g+p = k+dy
2

ln
dy
2pa

( )
+ (1/2)S+

{ }
(12)

S+ =
∑m=+1

m=−1,m=0

2p�����������������������������
(k+y dy + 2pm)2 − (k+r dy)2

√ − 1
|m|

⎡
⎢⎣

⎤
⎥⎦ (13)

For surface impedance of a wire grid, it is required that |k±|dy < π.
This ensures that there exists no grating lobes and is an essential
condition for the homogenized description of a wire grid. In this
case, the whole wire grid can be replaced by average current sheets
carrying electric surface currents Js+. The characteristics of such a
grid can be described in terms of the grid impedances Z±, which
connects the averaged electric field magnitudes in the grid plane
to the averaged current density magnitudes J±. In this case, ET+

z
is the z–component of total cell averaged electric field in the
grid plane. This total field is the sum of the z-component of inci-
dent electric field and the z-component of the scattered plane
wave field created by an equivalent current sheet
Js+ = J+e−jk+y y−jk+z z . Similar definition exists for the cell averaged
electric field ET−

z . These total fields can be written as,

ET+
z = E+

z

J+
− h

2
(k+ 2

r /k2+) k+
|k+x |

( )
J+e−jk+y y−jk+z z

= Z+J+e−jk+y y−jk+z z

(14)

It is known from [22] that J± = J/2 with J = J+ + J−. Therefore, the
surface impedance of a wire grid embedded in the chiral back-
ground can be written as,

Zs = 1
2
(Z+ + Z−) = Zwdy + jh

4
g+p

k+ 2
r

k2+
+ g−p

k− 2
r

k2−

{ }
(15)

It is clear from equation (15) that the surface impedance Zs of a
wire grid embedded in the chiral background shows frequency
as well as spatial dispersion. This surface impedance is also
dependent upon the chirality of the background medium. It can
be seen from equations (12), (13), and (15) that if the background
medium is the free space then we have k+z = k−z = kz , k+ = k− =
ko, η = ηo, and g+p = g−p = gp. Using this information in equa-
tion (15), it is found that the surface impedance of a wire grid
Zs becomes same as given in [6,19–21] for the free space
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background. In usual spherical coordinate system, the compo-
nents of wave vector are defined as k+x = −k+ sin u cosf,
k+y = k+ sin u sinf, and k+z = −k+ cos u. It is important to
note that for the normal incidence, we have θ = π/2 and f = 0.

The electromagnetic parameters of chiral medium given by
equations (3)–(4) are based upon Kong constitutive relationships
and are often used when one is not interested in frequency disper-
sion. In this case, parameters of the medium are taken to be con-
stant. On the other hand, if someone is interested in the
frequency-dispersive nature of the chiral medium which takes
into account appropriate losses, it is desired to use frequency-
dispersive models for ϵr(ω), μr(ω), and κr(ω). It is known from
[22,26,27] that the permittivity and permeability of artificial chiral
medium follow a second-order Lorentz model. Likewise, the fre-
quency dependence of chirality parameter is based upon the
Condon model [22]. Using this information, the mathematical
expressions for ϵr(ω), μr(ω), and κr(ω) for frequency-dispersive
chiral medium can be written as,

er(v) = e1 + (e− e1)v2
0e

v2
0e − v2 + j2Gev0ev

(16)

mr(v) = m1 + (m− m1)v2
0m

v2
0m − v2 + j2Gmv0mv

(17)

kr(v) = k(v)������������
mr(v)er(v)

√ (18)

k(v) = tv2v

v2
0 − v2 + j2Gv0v

(19)

where ϵ and μ are low-frequency values of permittivity and per-
meability while ϵ∞ and μ∞ represent high-frequency values of
permittivity and permeability, respectively. The factor ω0e repre-
sents characteristic resonant frequency and Γe shows the asso-
ciated damping factor for the permittivity. Likewise, the factors
ω0m and Γm represent characteristic resonant frequency and asso-
ciated damping factor for the permeability, respectively. Here τ is

a time constant, ω0 is a characteristic resonant frequency whereas
Γ is a damping factor for the chirality parameter. It is known from
[26,27] that the resonance frequencies of ϵr(ω), μr(ω), and κr(ω)
are found to be very close in experiments, therefore, it can be
argued that ω0e = ω0m = ω0.

An artificial chiral medium whose electromagnetic parameters,
i.e. ϵr(ω), μr(ω), and κr(ω) are governed by the equations (16)–(19)
can be realized by four-folded rotated metallic Ω- resonators [28].
It is seen from [28] that the chirality parameter κ(ω) given ine-
quation (19) is dependent upon the volume of the unit cell, cross-
sectional area of loop, number of Ω- resonators in one unit cell,
and length of short wires comprising the resonator. Likewise, κ
(ω) is also dependent upon the resistance, inductance, and capaci-
tance of equivalent RLC circuit model of the Ω- resonator. By
proper selection of these parameters, one can control the chirality
parameter of an artificial chiral medium.

Numerical results

For numerical results, it is assumed that wires of the grid are
made of a copper material. The electromagnetic parameters of
copper wires for equations (1)–(2) are taken to be ϵw = ϵo, μw =
μo, and σw = 5.8 × 107 S/m and has been taken from Young and
Wait [29]. Here ϵo, μo are permittivity and permeability of the
free space, respectively. The spacing among wires are taken to
be dy = 10.2 mm at an operating free space wavelength λo of
50 mm for Figs 3–7 and Figs 9–10. In order to ensure that the
wires of the grid are thin, the radius of each wire is taken to be
a = dy/50. It is important to note that the proposed formulation
can also be applied to higher frequencies, e.g. THz frequencies.
For this one needs to use the Drude-like frequency response of
metals at these frequencies. In order to highlight the influences
of background chirality upon the surface impedance of a wire
grid, the relative permittivity and the relative permeability have
been assumed to be fixed, i.e. ϵr = 1.23 and μr = 1 for chiral and
strong chiral background media for Figs 3–8 except for chiral
nihility background where ϵr = 0.001 and μr = 0.001.

It is already mentioned in section “Surface impedance of a wire
grid with chiral background” that if we take κr = 0, ϵr = 1, and μr
= 1 for the background medium then the mathematical expression
of surface impedance Zs given by equation (15) becomes same as
that given in [6,19–21] for the free space background. Likewise, if

(a) (b)

Fig. 2. (a) The magnitude of surface impedance and (b) reflection and transmission coefficients of a wire grid composed of perfectly conducting wires with the free
space background, i.e. κr = 0, ϵr = μr = 1 as a function of dy/λo.
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we assume that wires of the grid are made of perfectly electric
conducting martial, i.e. Zw = 0 and placed in the free space back-
ground then we can find the reflection coefficient based upon this
surface impedance Zs. For the normal incidence, the reflection
coefficient R and transmission coefficient T can be computed
as, R = −1/(1 + (2/ηo)Zs) and T=1+R [6,19,20]. Using this infor-
mation, the surface impedance magnitude and their correspond-
ing reflection and transmission coefficients have been shown in
Fig. 2. It is found that the reflection and transmission coefficients
based upon this equivalent surface impedance Zs are in good
agreement with the previous work [19,20]. This validates the
accuracy of the proposed formulation.

The influences of incident angles upon the magnitude of surface
impedance of a wire grid with various background media have been
shown in Fig. 3–4. For Figs 3–4, one of the incidence azimuth angle
is fixed, i.e. f = π/4. In Fig. 3, the influences of various background
chiral media upon the magnitude of surface impedance as a func-
tion of angle θ have been shown. It is seen that for κr = 0.1, 0.5, and
0.99, the magnitudes of surface impedances are nearly same for
0.001°≤ θ≤ 30° as that of magnitude of surface impedance with
the free space background. Thus, it is concluded that if θ is small
then the magnitude of impedance nearly seems to be independent
of the background chirality. On the other hand, the magnitude of
impedance increases with the increase of background chirality for
30°≤ θ≤ 90°. It is found that significant increase in the magnitude
of surface impedance for chiral background having chirality param-
eter close to unity, i.e. κr = 0.99 is observed at θ = 90°. The effects of
strong chiral and chiral nihility background media upon surface
impedance magnitude have been given in Fig. 4. For strong chiral
background, the chirality is assumed to be 1.2 and the electromag-
netic parameters for chiral nihility background are taken to be ϵr =
0.001, μr = 0.001, and κr = 0.99. It is seen that strong chiral back-
ground significantly enhances the surface impedance magnitude
of a grid for incident polar angles θ closer to 90° as compared to
the free space background. An interesting result is found in case
of a wire grid embedded in a chiral nihility background, it is
seen that the magnitude of surface impedance is approximately
close to zero and independent of the considered range of incident
polar angle θ. Thus, it is concluded that impedance of wire grid
with chiral nihility background is almost independent of spatial
dispersion.

Figures 5–6 deal with the effects of various chiral background
media including strong chiral and chiral nihility upon impedance
magnitude for incident wave-vectors k+, k− lie in the yz-plane
which is a plane parallel to the plane of a wire grid. From
Fig. 5, it is studied that the value of surface impedance magnitude
increases with the increase of background chirality for polar
angles θ closer to π/2. The significant enhancement in impedance
magnitude is observed for θ = π/2 with chirality of background
closer to unity, i.e. κr = 0.99. In Fig. 6, the effects of strong chiral
and chiral nihility background upon the magnitude of surface
impedance have been shown. It is observed that for polar angles
lying in the range 0°≤ θ≤ 45°, the impedance magnitude of a
grid with the free space background is almost same as that of
the same grid embedded in the strong chiral background. For
angles 45°≤ θ≤ 90°, the value of surface impedance with the
strong chiral background increases significantly as compared to
the free space background with the highest value of 0.75 kΩ for
a polar angle of π/2. It is once again observed that for the chiral
nihility background the surface impedance magnitude is very
small and almost independent of the considered range of incident
polar angles.

Fig. 3. Effects of various chiral background media upon the magnitude of surface
impedance of a wire grid. In this case, f = 45° whereas θ is variable.

Fig. 4. A comparative study of the surface impedance magnitude for strong chiral,
chiral nihility, and free space background media. Here one of the incidence angle
is fixed, i.e. f = 45° and θ is variable.

Fig. 5. Influences of several chiral background media upon the magnitude of surface
impedance of a wire grid where f = 90°. In this case, θ is variable.
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The effects of chirality of backgroundmedia upon the magnitude
of surface impedance are given in Fig. 7. In this case, one of the angle
is taken to be fixed, i.e. θ = π/2 whereasf isa variable. In case off = 0
which corresponds to thenormal incidence, themagnitudeof imped-
ance increases as the value of κr increases from 0.01 to 1.2. It is found
that at κr = 1.2, the magnitude of impedance for f = 0 becomes
0.1745 kΩ. The anglesf = π/4, π/2 corresponds to oblique incidence.
For these angles, themagnitude of surface impedance increases as the
value of κr increases. It is clear from Fig. 7 that for κr = 1.2, the mag-
nitude of impedance becomes 0.2153 kΩ for f = π/4. On the other
hand, themagnitude of impedance for κr = 1.2 andf = π/2 enhances
significantly and becomes 0.742 kΩ. It is noticed that κr = 1.2 corre-
sponds to the strong chiral background.

The surface impedance magnitude as a function of d/λo for
various values of background chirality κr are given in Fig. 8
under normal incidence. It is found that for the free space back-
ground medium if d/λo = 1 then the grid parameter gp as given
byequation (12) becomes infinite and as a result no currents are
induced in wires of a grid. Thus, a wire grid becomes transparent
to the incoming wave with zero reflection. On the other hand, for

a chiral background with the chirality κr of 0.25, this phenomenon
of zero reflection occurs at relatively smaller value of d/λo as com-
pared to the free space background, i.e. d/λo = 0.7215. Likewise, if
the value of chiral background is taken to be very large and close
to unity, i.e. κr = 0.99 then this phenomenon is observed at two
specific values of d/λo, i.e. d/λo = 0.4530 and d/λo = 0.9060.
Thus, it is concluded that with chiral background, zero reflection
can be obtained at relatively smaller value of spacing among wires
as compared to spacing among wires with the free space
background.

It is known that frequency-dispersive nature of the chiral
medium is described by the one resonance Condon model [22].
This shows that the chiral medium has complex valued permittiv-
ity, permeability, and chirality at a given frequency of interest.
Therefore, in order to study the frequency-dispersive nature of sur-
face impedance of a wire grid embedded in the chiral background,
it is desired to use frequency-dispersive electromagnetic parameters
of the chiral background as given byequations (16)–(19). For Fig. 9,

Fig. 6. Influences of strong chiral and chiral nihility background media upon the mag-
nitude of surface impedance of a wire grid and their comparison with the free space
background. Here we have f = 90° and θ is variable.

Fig. 7. Influences of various incident angles f and chirality parameter upon the mag-
nitude of surface impedance with θ = 90°.

Fig. 8. The magnitude of surface impedance as a function of dy/λo for various chir-
ality parameters whereas the incident wave is assumed to be normal.

Fig. 9. The magnitude of surface impedance as a function of frequency for frequency-
dispersive chiral background media and their comparisons with the magnitude
of surface impedance of a wire grid with the free space background. In this case,
f = 45° and θ = 90°.
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it is assumed that the direction of incident wave is fixed, i.e. θ = π/2
and f = π/4. In this case, incident wave vectors k± lie in the
xy-plane. It is observed that with the increase in frequency, the
magnitude of surface impedance of a wire grid with the free
space background increases. For a frequency-dispersive chiral back-
ground, the various parameters appearing in equations (16)–(19)
are taken from [26,27]. They are ϵ = 6, ϵ∞ = 4, μ = 1.5, μ∞ = 1, τ
= 15 ps, ω0e = ω0m =ω0 = 6π GHz, and Γe = Γm = Γ = δ = 0.2. In
this case, it is seen that for frequency f lying in the range 1 GHz
≤ f < 3.3363 GHz, the impedance magnitude is greater than the
corresponding impedance magnitude of same wire grid placed in
the free space background. For frequency lying in the range
3.3363 GHz < f≤ 6 GHz, the impedance magnitude is smaller
than the impedance magnitude of wire grid with the free space
background. From this analysis, it is concluded that at some critical
frequency fc, i.e. fc = 3.3363 GHz, the impedance magnitude of a
wire grid embedded in a certain frequency-dispersive chiral back-
ground is equal to the impedance magnitude of the same wire
grid when embedded in the free space background. For a
frequency-dispersive chiral background having relatively larger
damping factor of δ = 0.9, this critical frequency fc becomes
3.6435 GHz. This is clear from Fig. 9. The frequency dispersion
characteristics of a wire grid with various chiral background
media have been shown in Fig. 10 for incident angles θ = π/2
and f = π/2. In this case, we have k+x = 0, k+y = k+, and
k+z = 0. All the chiral background media considered for Fig. 9
have also been considered for Fig. 10. The comparative study of
surface impedance magnitudes for frequency-dispersive chiral
and free space background media as considered in Figs 9 and 10
ata frequency of 6 GHz are given in Table 1.

In Fig. 11, a comparative study of the magnitude of surface
impedance for free space and realistic chiral background media

have been shown. For the realistic chiral background, the complex
valued electromagnetic parameters have been adopted from [30]
at an operating free space wavelength of 30.4 mm. They are
taken to be ϵr = 3.514− j 3.760, μr = 0.820 − j 0.359, and κr =
0.06568− j 0.04589. For this case, the operating frequency is rela-
tively high and in order to satisfy the requisite condition |k+|dy, |
k−|dy < π for homogenization, the spacing among wires are
assumed to be 6.5 mm. It is clear from Fig. 11 that for smaller
values of θ, the magnitudes of surface impedances of wire grid
embedded in realistic chiral and free space background media
are nearly same. As the value of θ increases and approaches 90°

where we have normal incidence, the magnitude of impedance
of a wire grid embedded in the realistic chiral background is smal-
ler than if the same wire grid is placed in the free space.

Conclusions

The surface impedance properties of a parallel wire grid with sev-
eral chiral background media including chiral nihility and strong
chiral have been investigated. During the analysis, it is found that
the surface impedance of a wire grid with the chiral background is
frequency as well as spatially dispersive. The spatial dispersion
nature of the surface impedance describes that it is dependent
upon the incidence angles. The proposed theory is general and
can be applied to any type of incident polarization, conductivity
of wires, and chiral background. It is shown that a wire grid
with chiral nihility background has nearly zero surface impedance
magnitude and independent of incident polar angles. A strong
chiral background significantly enhances the surface impedance
magnitude of a wire grid at right incident polar angle as compared
to the free space background. It is investigated that zero reflection
condition for the chiral background medium can be obtained at
relatively smaller value of spacing among wires as compared to
the free space background. From the analysis, it is also found
that at some critical frequency, the impedance magnitude of
wire grid embedded in the frequency-dispersive chiral back-
ground is equal to the impedance magnitude of the same wire
grid when embedded in the free space background. Thus, it is
argued that an electromagnetic appearance of a wire grid with
free space and specific frequency-dispersive chiral background is
same at critical frequency which may find applications in electro-
magnetic illusions. The impedance magnitude of a wire grid

Fig. 10. The magnitude of surface impedance as a function of frequency for various
lossy chiral background media. Here we have assumed f = 90° and θ = 90°.

Table 1. Comparative study of surface impedance magnitudes for dispersive
chiral and free space background media at an operating frequency of 6 GHz
for case 1 where θ = π/2, f = π/4 and case 2 where θ = π/2, f = π/2.

Background media Case 1, |Zs|(kΩ) Case 2, |Zs|(kΩ)

Free space 0.1638 0.1661

Chiral δ = 0.2 0.1478 0.1575

Chiral δ = 0.9 0.1665 0.1801

Fig. 11. A comparative study for the surface impedance magnitude of a wire grid
embedded in the free space and the realistic chiral background.
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embedded in the realistic chiral background is smaller as com-
pared to impedance magnitude of the same wire grid when placed
in the free space background for values of incident polar angles
closer to right angle.
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