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This article introduces a new notion of optimal transport (OT) between tensor fields, which are

measures whose values are positive semidefinite (PSD) matrices. This “quantum” formulation

of optimal transport (Q-OT) corresponds to a relaxed version of the classical Kantorovich

transport problem, where the fidelity between the input PSD-valued measures is captured

using the geometry of the Von-Neumann quantum entropy. We propose a quantum-entropic

regularization of the resulting convex optimization problem, which can be solved efficiently

using an iterative scaling algorithm. This method is a generalization of the celebrated Sinkhorn

algorithm to the quantum setting of PSD matrices. We extend this formulation and the

quantum Sinkhorn algorithm to compute barycentres within a collection of input tensor

fields. We illustrate the usefulness of the proposed approach on applications to procedural

noise generation, anisotropic meshing, diffusion tensor imaging and spectral texture synthesis.
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1 Introduction

Optimal transport (OT) is an active field of research at the intersection of probability

theory, Partial Differential Equations (PDEs), convex optimization and numerical ana-

lysis. OT offers a canonical way to lift a ground distance on some metric space to a

metric between arbitrary probability measures defined over this base space. OT distances

offer many interesting features and in particular lead to a geometrically faithful way to

manipulate and interpolate probability distributions. This paper proposes a computation-

ally tractable way to extend OT to matrix-valued measures. Figure 1 showcase a typical

application of this method to the interpolation of tensor fields.
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G. Peyré et al.

t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2 t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 1. Given two input fields of positive semidefinite matrices (displayed at times t ∈ {0, 1}
using ellipses) on some domain (here, a 2-D planar square and a surface mesh), our Quantum

Optimal Transport (Q-OT) method defines a continuous interpolating path for t ∈ [0, 1]. Unlike

linear interpolation schemes, Q-OT transports the “mass” of the tensors (size of the ellipses) as well

as their anisotropy and orientation. This interpolation, and its extension to finding the barycentre

of several input fields, is computed using a fast extension of the well-known Sinkhorn algorithm.

1.1 Previous work

1.1.1 Scalar-valued optimal transport

Dating back to the eighteenth century, classical instances of the OT problem seek a

minimal-cost matching between two distributions defined over a geometric domain, e.g.

matching supply to demand while incurring minimal cost. Initially, formulated by Monge

in terms of an unknown map transporting mass [44], its reformulation by Kantorovich [36]

as a linear program (static formulation) enables the use of convex analysis to study its

structure and develop numerical solvers. The equivalence between these two formula-

tions was introduced by Brenier [13] and opened the door to a dynamical (geodesic)

reformulation [8]. We refer to [52] for a review of the theoretical foundations of OT.

The basic OT problem has been extended in various ways, a typical illustration of

which being the computation of a barycentre (Fréchet mean) of input measures, a convex

program studied by Agueh and Carlier [1]. OT also has found numerous applications, for

instance in computer vision (under the name “earth mover’s distance”) [51] and computer

graphics [10].

1.1.2 Unbalanced transport

While the initial formulations of OT are restricted to positive measures of equal mass

(normalized probability distributions), a recent wave of activity has proposed and studied

a family of “canonical” extensions to the unbalanced setting of arbitrary positive measures.

This covers both a dynamic formulation [21,37,42] and a static one [20,41] and has been

applied in machine learning [30]. Our work extends this static unbalanced formulation to

tensor-valued measures.

1.1.3 Entropic regularization

The current state-of-the-art OT approximation for arbitrary ground costs uses entropic

regularization of the transport plan. This leads to strictly convex programs that can
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X = [0, 1], d = 2
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Figure 2. Displays of various types of tensor-valued measures μ. The principal directions of an

ellipse at some xi ∈ X are the eigenvectors of μi ∈ Sd
+, while the principal widths are given by its

eigenvalues.

be solved using a simple class of highly parallelizable diagonal scaling algorithms. The

landmark paper of Cuturi [24] inspired detailed study of these solvers, leading to various

generalizations of Sinkhorn’s algorithm [55]. This includes for instance the use of fast

convolutional structures [56], extensions to barycentres [9] and application to unbalanced

OT [22, 30]. These entropic regularization techniques correspond to the use of projection

and proximal maps for the Kullback–Leibler Bregman divergence and are equivalent to

iterative projections [12] and Dykstra’s algorithm [6, 29]. An important contribution of

the present work is to extend these techniques to the matrix setting (i.e., using quantum

divergences). Note that quantum divergences have been recently used to solve some

machine learning problems [16, 27, 38].

1.1.4 Tensor field processing

Tensor-valued data are ubiquitous in various areas of imaging science, computer

graphics and vision. Figure 2 displays a few examples of matrix-valued tensor fields.

In medical imaging, diffusion tensor imaging (DTI) [59] directly maps observed data

to fields of tensors, and specific processing methods have been developed for this

class of data (see e.g. [26, 28]). Tensor fields are also at the heart of anisotropic dif-

fusion techniques in image processing [60], anisotropic meshing [4, 11, 25] and aniso-

tropic texture generation [40]; they also find application in line drawing [58] and data

visualization [34].

1.1.5 OT and Sinkhorn on pairs of tensors

Although this is not the topic of this paper, we note that several notions of OT have

been defined between two tensors without any spatial displacement. Gurvits introduced

in [33] a Sinkhorn-like algorithm to couple two tensors by an endomorphism that

preserves positivity. This algorithm, however, is only known to converge in the case where

the two involved tensors are the identity matrices; see [32] for a detailed analysis. In

contrast to this “static” formulation that seeks for a joint coupling between the tensors,

a geodesic dynamic formulation is proposed in [14]; see also [15, 17, 18, 43] for related

approaches.
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1.1.6 OT on tensor fields

The simplest way to define OT-like distances between arbitrary vector-valued measures

is to use dual norms [46], which correspond to generalizations of W1 OT for which trans-

port cost equals ground distance. The corresponding metrics, however, have degenerate

behaviour in interpolation and barycentre problems (much like the L1 norm on functions)

and only use the linear structure of matrices rather than their multiplicative structure.

More satisfying notions of OT have recently been proposed in a dynamical (geodesic)

way [18,35], see also [19] with applications to colour image processing. A static formula-

tion of a tensor-valued OT is proposed in [47], but it differs significantly from ours. It is

initially motivated using a lifting that squares the number of variables, but a particular

choice of cost reduces the computation to the optimization of a pair of couplings. In

contrast, the formulation we propose in the present article is a direct generalization of

unbalanced OT to matrices, which in turn enables the use of a Sinkhorn algorithm.

1.2 Contributions

We present a new static formulation of OT between tensor fields, which is the direct

generalization of unbalanced OT from the scalar to the matrix case. Our second contri-

bution is a fast entropic scaling algorithm generalizing the celebrated Sinkhorn iterative

scheme. This leads to a method to compute geometrically faithful interpolations between

two tensor fields. Our third contribution is the extension of this approach to compute

barycentres between several tensor fields. The Matlab code to reproduce the results of

this article is available online.1

1.3 Notation

In the following, we denote Sd ⊂ �d×d the space of symmetric matrices, Sd+ the closed

convex cone of positive semidefinite (PSD) matrices, and Sd++ the open cone of positive

definite matrices. We denote exp : Sd → Sd++ the matrix exponential, which is defined as

exp(P ) = U diags(e
σs )U�, where P = U diags(σs)U

� is an eigendecomposition of P . We

denote log : Sd++ → Sd the matrix logarithm log(P ) = U diags(log σs)U
�, which is the

inverse of exp on Sd++. We adopt some conventions in order to deal conveniently with

singular matrices. We extend (P ,Q) �→ P log(Q) by lower semicontinuity on (Sd+)2, i.e.,

writing Q = U diags(σs)U
� and P̃ = U�PU,

P logQ :=

⎧⎪⎪⎨
⎪⎪⎩
P logQ if kerQ = ∅,
U[P̃ diags(log σs)]U

� if kerQ ⊂ kerP ,

+∞ otherwise,

with the convention 0 log 0 = 0 when computing the matrix product in square brackets.

Moreover, for (P , (Qi)i∈I ) ∈ Sd× (Sd+)I , the matrix exp(P +
∑

i logQi) is by convention the

matrix in Sd+ which kernel is
∑

i kerQi (and is unambiguously defined on the orthogonal

of this space).

1 https://github.com/gpeyre/2017-EJAM-quantum-ot
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A tensor-valued measure μ defined on some space X is a vector-valued measure, where

the “mass” μ(A) ∈ Sd+ associated to a measurable set A ⊂ X is a PSD matrix. In this

article, in order to derive computational schemes, we focus on discrete measures. Such a

measure μ is a sum of Dirac masses μ =
∑

i∈I μiδxi , where (xi)i ⊂ X, and (μi)i ∈ Sd+ is

a collection of PSD matrices. In this case, μ(A) =
∑

xi∈A μi. Figure 2 shows graphically

some examples of tensor-valued measures; we use this type of visualization through the

article. In the following, since the sampling points (xi)i are assumed to be fixed and clear

from the context, to ease readability, we do not make the distinction between the measure

μ and the collection of matrices (μi)i. This is an abuse of notation, but it is always clear

from context whether we are referring to a measure or a collection of matrices.

The quantum entropy (also called von Neumann entropy) of a tensor-valued measure

is

H(μ)
def.
=

∑
i

H(μi) where (1.1)

∀P ∈ Sd, H(P )
def.
= − tr(P log(P ) − P ) − ιSd

+
(P ),

where ιC is the indicator function of a closed convex set C , i.e., ιC(P ) = 0 if P ∈ C and

ιC (P ) = +∞ otherwise. Note that H is a concave function. The quantum Kullback–Leibler

divergence (also called quantum relative entropy) is the Bregman divergence associated to

−H . For a collection of PSD matrices μ = (μi)i, ξ = (ξi)i in Sd+ corresponding to measures

defined on the same grid, it is defined as

KL(μ|ξ) def.
=

∑
i

KL(μi|ξi), (1.2)

where for all (P ,Q) ∈ Sd+ × Sd+, we denote

KL(P |Q)
def.
= tr(P log(P ) − P log(Q) − P + Q) + ιSd

++
(P )

which is convex with respect to both arguments. The inner product between collections

of matrices μ = (μi)i, ξ = (ξi)i is

〈μ, ξ〉 def.
=

∑
i

〈μi, ξi〉 def.
=

∑
i

tr(μiξ
�
i ).

Given a collection of matrices γ = (γi,j)i∈I,j∈J the marginalization operators read

γ1J
def.
=

( ∑
j

γi,j

)
i

and γ�1I
def.
=

( ∑
i

γi,j

)
j
.

2 Kantorovich problem for tensor-valued transport

We consider two measures that are sums of Dirac masses

μ =
∑
i∈I

μiδxi and ν =
∑
j∈J

νjδyj (2.1)
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where (xi)i ⊂ X and (yj)j ⊂ Y , and (μi)i ∈ Sd+ and (νj)j ∈ Sd+ are collections of PSD

matrices. Our goal is to propose a new definition of OT between μ and ν.

2.1 Tensor transportation

Following the initial static formulation of OT by Kantorovich [36], we define a coupling

γ =
∑

i,j γi,jδ(xi,yj ) as a measure over the product X × Y that encodes the transport of

mass between μ and ν. In the matrix case, γi,j ∈ Sd+ is now a PSD matrix, describing

how much mass is moved between μi and νj . Exact (balanced) transport would mean that

the marginals (γ1J , γ
�1I ) must be equal to the input measures (μ, ν). But as remarked

by Ning et al. [47], in contrast to the scalar case, in the matrix case (dimension d > 1),

this constraint is in general too strong, and there might exist no coupling satisfying these

marginal constraints. We advocate in this work that the natural workaround for the

matrix setting is the unbalanced case, and following [41], we propose to use a “relaxed”

formulation where the discrepancy between the marginals (γ1J , γ
�1I ) and the input

measures (μ, ν) is quantified according to some divergence between measures.

In the scalar case, the most natural divergence is the KulLback-Leibler divergence

(which in particular gives rise to a natural Riemannian structure on positive measures, as

defined in [21, 37, 42]). We propose to make use of its quantum counterpart (1.2) via the

following convex program

W (μ, ν) = min
γ

〈γ, c〉 + ρ1 KL(γ1J |μ) + ρ2 KL(γ�1I |ν) (2.2)

subject to the constraint ∀ (i, j), γi,j ∈ Sd+. Here, ρ1, ρ2 > 0 are constants balancing the

“transport” effect versus the local modification of the matrices.

The matrix ci,j ∈ �d×d measures the cost of displacing an amount of (matrix) mass γi,j
between xi and yj as tr(γi,jci,j). A typical cost, assuming X = Y is a metric space endowed

with a distance dX , is

ci,j = dX(xi, yj)
αIdd×d,

for some α > 0. In this case, one should interpret the trace as the global mass of a tensor,

and the total transportation cost is simply

〈γ, c〉 =
∑
i,j

dX(xi, yj)
α tr(γi,j).

Remark 1 (Classical OT). In the scalar case d = 1, (2.2) recovers exactly the log-entropic

definition [41] of unbalanced OT, which is studied numerically by Chizat et al. [22].

For isotropic tensors, i.e., all μi and νj are scalar multiples of the identity Idd×d, the

computation also collapses to the scalar case (the γi,j are also isotropic). More generally, if

all the (μi, νj)i,j commute, they diagonalize in the same orthogonal basis, and (2.2) reduces

to performing d independent unbalanced OT computations along each eigendirection.

Remark 2 (Cost between single Dirac masses). When μ = Pδx and ν = Qδx are two

Dirac masses at the same location x and associated tensors (P ,Q) ∈ (Sd+)2, one obtains
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the following “metric” between tensors (assuming ρ1 = ρ2 = 1 for simplicity)

√
W (Pδx, Qδx) = D(P ,Q)

def.
= tr (P + Q− 2M(P ,Q))

1
2 (2.3)

where M(P ,Q)
def.
= exp(log(P )/2 + log(Q)/2). When (P ,Q) commute, one has D(P ,Q) =

||
√
P −

√
Q||, which is a distance. In the general case, we do not know whether D is a

distance (basic numerical tests do not exclude this property).

Remark 3 (Quantum transport on curved geometries). If (μ, ν) are defined on a non-

Euclidean space Y = X, like a smooth manifold, then formulation (2.2) should be

handled with care, since it assumes all the tensors (μi, νj)i,j are defined in some common

basis. For smooth manifolds, the simplest workaround is to assume that these tensors

are defined with respect to carefully selected orthogonal bases of the tangent planes, so

that the field of bases is itself smooth. Unless the manifold is parallelizable, in particular

if it has a trivial topology, it is not possible to obtain a globally smooth orthonormal

basis; in general, any such field necessarily has a few singular points. In the following, we

compute smoothly-varying orthogonal bases of the tangent planes (away from singular

points) following the method of Crane et al. [23]. In this setting, the cost is usually chosen

to be ci,j = dX(xi, xj)
αIdd×d, where dX is the geodesic distance on X.

Remark 4 (Measure lifting). An alternative to compute OT between tensor fields would

be to rather lift the input measure μ to a measures μ̄
def.
=

∑
i∈I δ(μi,xi) defined over the space

X × Sd+ (and similarly for the lifting ν̄ of ν) and then use traditional scalar OT over this

lifted space (using a ground cost taking into account both space and tensor variations).

Such a naive approach would destroy the geometry of tensor-valued measures, and result

in very different interpolations. For example, a sum of two nearby Diracs on X = �

μ = Pδ0 + Qδs where P
def.
=

(
1 0

0 0

)
and Q

def.
=

(
0 0

0 1

)

is treated by our method as being very close to Id2×2δ0 (which is the correct behaviour

of a measure), whereas it would be lifted to μ̄ = δ(0,P ) + δ(s,Q) over � × S+
2 , which is in

contrast very far from δ(0,Id2×2).

2.2 Quantum transport interpolation

Given two input measures (μ, ν), we denote by γ a solution of (2.2) or, in practice,

its regularized version (see (3.1) below). The coupling γ defines a (fuzzy) correspondence

between the tensor fields. A typical use of this correspondence is to compute a continuous

interpolation between these fields. Section 3.4 shows some numerical illustrations of this

interpolation. Note also that Section 4 proposes a generalization of this idea to compute

an interpolation (barycentre) between more than two input fields.

Mimicking the definition of the OT interpolation (the so-called McCann displacement

interpolation; see for instance [52]), we propose to use γ to define a path t ∈ [0, 1] �→ μt
interpolating between (μ, ν). For simplicity, we assume the cost has the form ci,j =

dX(xi, yj)
αIdd×d for some ground metric dX on X = Y . We also suppose we can compute
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efficiently the interpolation between two points (xi, yj) ∈ X2 as

xti,j
def.
= argmin

x∈X
(1 − t)d2

X(xi, x) + td2
X(yj , x).

For instance, over Euclidean spaces, gt is simply a linear interpolation, and over more

general manifold, it is a geodesic segment. We also denote

μ̄i
def.
= μi

( ∑
j

γi,j

)−1

and ν̄j
def.
= νj

(∑
i

γi,j

)−1

the adjustment factors which account for the imperfect match of the marginal associated

to a solution of (3.1); the adjusted coupling is

γti,j
def.
= [(1 − t)μ̄i + tν̄j]γi,j .

Finally, the interpolating measure is then defined as

∀ t ∈ [0, 1], μt
def.
=

∑
i,j

γti,jδxti,j . (2.4)

One easily verifies that this measure indeed interpolates the two input measures, i.e.,

(μt=0, μt=1) = (μ, ν). This formula (2.4) generates the interpolation by creating a Dirac

tensor γti,jδxti,j for each coupling entry γi,j , and this tensor travels between μiδxi (at t = 0)

and νjδyj (at t = 1).

Remark 5 (Computational cost). We observed numerically that, similarly to the scalar

case, the optimal coupling γ is sparse, meaning that only of the order of O(|I|) non-zero

terms are involved in the interpolating measure (2.4). Note that the entropic regularization

algorithm detailed in Section 3 destroys this exact sparsity, but we found numerically that

thresholding to zero the small entries of γ generates accurate approximations.

3 Quantum Sinkhorn

The convex program (2.2) defining quantum OT is computationally challenging because

it can be very large scale (problem size is |I| × |J|) for imaging applications, and it

involves matrix exponential and logarithm. In this section, leveraging recent advances in

computational OT initiated by Cuturi [24], we propose to use a similar entropy regularized

strategy (see also Section 1), but this time with the quantum entropy (1.1).

3.1 Entropic regularization

We define an entropic regularized version of (2.2)

Wε(μ, ν)
def.
= min

γ
〈γ, c〉 + ρ1 KL(γ1J |μ) + ρ2 KL(γ�1I |ν) − εH(γ). (3.1)

Note that when ε = 0, one recovers the original problem (2.2). This is a strongly convex

program, with a unique solution. The crux of this approach, as already known in the
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scalar case (see [22]), is that its convex dual has a particularly simple structure, which is

amenable to a simple alternating maximization strategy.

Proposition 1. The dual problem associated to (3.1) reads

Wε(μ, ν) = max
u,v

−tr
[
ρ1

∑
i

(eui+log(μi) − μi) + ρ2

∑
j

(evj+log(νj ) − νj) + ε
∑
i,j

eK(u,v)i,j
]
, (3.2)

where u = (ui)i∈I , v = (vj)j∈J are collections of arbitrary symmetric (not necessarily in Sd+)

matrices ui, vj ∈ Sd, where we define

K(u, v)i,j
def.
= −ci,j + ρ1ui + ρ2vj

ε
. (3.3)

Furthermore, the following primal-dual relationships hold at optimality:

∀ (i, j), γi,j = exp
(
K(u, v)i,j

)
. (3.4)

Proof Applying the Fenchel–Rockafellar duality theorem [50] to (3.1) leads to the dual

program

max
u,v

− εKL∗(K0(u, v)|ξ) − ρ1 KL∗(u|μ) − ρ2 KL∗(v|ν) − ε tr(ξ),

where KL∗(·|μ) corresponds to the Legendre transform with respect to the first argument

of the KL divergence, K0(u, v)i,j
def.
= − ρ1ui+ρ2vj

ε
and ξi,j

def.
= exp(−ci,j/ε) for all i, j. The

following Legendre–Fenchel transform formula leads to the desired result:

KL∗(u|μ) =
∑

i tr(exp(ui + log(μi)) − μi).

�

3.2 Quantum Sinkhorn algorithm

It is possible to use Dykstra’s algorithm [29] (see [6] for its extension to Bregman

divergences) to solve (3.2). This corresponds to alternatively maximizing (3.2) with respect

to u and v. The following proposition states that the maximization with respect to either u

or v leads to two fixed-point equations. These fixed points are conveniently written using

the log-sum-exp operator,

LSEj(K)
def.
=

(
log

∑
j

exp(Ki,j)
)
i
, (3.5)

where the sum on j is replaced by a sum on i for LSEi.

Proposition 2. For v fixed (resp. u fixed), the minimizer u (resp. v) of (3.2) satisfies

∀ i, ui = LSEj(K(u, v))i − log(μi), (3.6)

∀ j, vj = LSEi(K(u, v))j − log(νj), (3.7)

where K(u, v) is defined in (3.3).
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Proof Writing the first order condition of (3.2) with respect to each ui leads to

ρ1e
ui+log(μi) − ρ1

∑
j

eK(u,v)i,j = 0

which gives the desired expression. A similar expression holds for the first order conditions

with respect to vj . �

A simple fixed point algorithm is then obtained by replacing the explicit alternating

minimization with respect to u and v in Dykstra’s with just one step of fixed point

iteration (3.6) and (3.7). To make the resulting fixed point contractant and ensure linear

convergence, one introduces relaxation parameters (τ1, τ2).

The quantum Sinkhorn algorithm is detailed in Algorithm 1. It alternates between the

updates of u and v, using relaxed fixed point iterations associated to (3.6) and (3.7). We

use the following τ-relaxed assignment notation

a
τ← b means that a← (1 − τ)a+ τb. (3.8)

The algorithm outputs the scaled kernel γi,j = exp(Ki,j).

Remark 6 (Choice of τk). In the scalar case, i.e., d = 1 (and also for isotropic input

tensors), when using τk = ε
ρk+ε

for k = 1, 2, one retrieves exactly Sinkhorn iterations for

unbalanced transport as described in [22], and each update of u (resp. v) exactly solves

the fixed point (3.6) (resp. (3.7)). Moreover, it is simple to check that these iterates are

contractant whenever

τk ∈]0, 2ε
ε+ρk

[ for k = 1, 2.

and this property has been observed experimentally for higher dimensions d = 2, 3. Using

higher values for τk actually often improves the (linear) convergence rate. Figure 3 displays

a typical example of convergence, and exemplifies the usefulness of using large values of

τk , which leads to a speed-up of a factor 6 with respect to the usual Sinkhorn’s choice

τk = ε
ε+ρk

.

Remark 7 (Heavy ball and acceleration). The extrapolation steps with weights (τ1, τ2) are

reminiscent of the heavy ball method [49] to accelerate the convergence of first order

optimization methods. Non-linear acceleration methods would also be applicable, and

would lift the need to manually tune the parameters (τ1, τ2), see for instance [5]. Similar

acceleration technics can also be derived by using accelerated first order schemes (such

as Nesterov’s algorithm [45] or FISTA [7]) directly on the dual problem (3.2). Using

second order information through quasi-Newton (L-BFGS) or conjugate-gradient is an-

other option. We leave for future work the exploration of these variants of our basic

iterates.

Remark 8 (Stability). In contrast to the usual implementation of Sinkhorn’s algorithm,

which is numerically unstable for small ε because it requires to compute eu/ε and ev/ε, the

proposed iterations using the LSE operator are stable. The algorithm can thus be run for

arbitrary small ε, although the linear speed of convergence is of course impacted.
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Figure 3. Display of convergence of Sinkhorn Algorithm 1 for the example displayed on the first

row of Figure 1. Denoting v(t) the value of the variable v at iteration t, the left plot shows the

fixed point residual error for increasing values of τ1 = τ2 = αε
ε+ρ

with α ∈ [0.5, 2] (blue to red). The

algorithm exhibits a linear convergence rate, log10 ||v(t+1) − v(t)||∞ ∼ −κt for some κ > 0, and the

right plot displays κ as a function of α.

function Quantum-Sinkhorn(μ, ν, c, ε, ρ1, ρ2)

∀ k = 1, 2, τk ∈]0, 2ε
ε+ρk

[,

∀ (i, j) ∈ I × J, (ui, vj) ← (0d×d, 0d×d)

for s = 1, 2, 3, . . .

K ← K(u, v)

∀ i ∈ I, ui
τ1← LSEj(Ki,j) − log(μi)

K ← K(u, v)

∀ j ∈ J, vj
τ2← LSEi(Ki,j) − log(νj)

return (γi,j = exp(Ki,j))i,j

Algorithm 1: Quantum-Sinkhorn iterations to compute the optimal coupling γ of the

regularized transportation problem (3.1). The operator K is defined in (3.3).

Remark 9 (log and exp computations). A major computational workload of the Q-

Sinkhorn Algorithm 1 is the repetitive computation of matrix exp and log. For d ∈ {2, 3}
it is possible to use closed-form expressions to diagonalize the tensors, so that the overall

complexity is comparable with the usual scalar case d = 1. While the applications in

Section 5 only require these low-dimensional settings, high dimensional problems are of

interest, typically for machine learning applications. In these cases, one has to resort to

iterative procedures, such as rapidly converging squaring schemes [2, 3].

Remark 10 (Computational complexity). For low-dimensional problems (typically for

those considered in Section 5), the Q-Sinkhorn Algorithm 1 scales to grid sizes of roughly

5k points (with machine-precision solutions computed in a few minutes on a standard

laptop). For large scale grids, even storing the full coupling γ becomes prohibitive. We

however observed numerically that, similarly to the usual scalar case, the optimal γ solv-
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ing (3.1) is highly sparse (up to machine precision for small enough ε). We thus found

that the use of the multi-scale refinement strategy introduced in [53] is able to make the

Q-Sinkhorn scale to high resolution grids. It is not used to produce the figures of this

article, but it is available in the companion computational toolbox.

Remark 11 (Gurvits’ non-commutative Sinkhorn). Let us insist on the fact that the pro-

posed Q-Sinkhorn Algorithm 1 is unrelated to Gurvits’ Sinkhorn algorithm [33]. While

Gurvits’ iterations compute a coupling between a pair of input tensors, our method rather

couples two fields of tensors (viewed as tensor-valued measures). Our usage of the wording

“quantum” refers to the notion of quantum entropy (1.1) and is not inspired by quantum

physics.

3.3 Trace-constrained extension

The quantum OT problem (2.2) does not impose that the marginals of the coupling γ

match exactly the inputs (μ, ν). It is only in the limit (ρ1, ρ2) → (+∞,+∞) that an exact

match is obtained, but as explained in Section 2.1, this might leads to an empty constraint

set.

To address this potential issue, we propose to rather only impose the trace of the

marginals to match the trace of the input measures, in order to guarantee conservation

of mass (as measured by the trace of the tensors). We thus propose to solve the entropy

regularized problem (3.1) with the extra constraint

∀ i ∈ I,
∑
j

tr(γi,j) = tr(μi) and ∀ j ∈ J,
∑
i

tr(γi,j) = tr(νj).

These two extra constraints introduce two dual Lagrange multipliers (α, β) ∈ �I × �J

and the optimal coupling relation (3.4) is replaced by

∀ (i, j), γi,j = exp
(
K(u, v, α, β)i,j

)
,

where K(u, v, α, β)i,j
def.
= −ci,j + ρ1ui + ρ2vj + αi + βj

ε
.

Q-Sinkhorn algorithm 1 is extended to handle these two extra variables (α, β) by simply

adding two steps to update these variables

∀ i ∈ I, αi ← αi + εLSTEj(K)i where K
def.
= K(u, v, α, β),

∀ j ∈ J, βj ← βj + εLSTEi(K)j where K
def.
= K(u, v, α, β).

where we introduced the log-sum-trace-exp operator

LSTEj(K)
def.
=

(
log

∑
j

tr(exp(Ki,j))
)
i

(and similarly for LSTEi). Note that in this expression, the exp is matrix-valued, whereas

the log is real-valued.
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Linear interpolation Quantum OT

Figure 4. Comparison of linear and quantum-OT interpolation (using formula (2.4)). Each row

shows a tensor field μt (top d = 2, bottom d = 3) along a linear segment from t = 0 to t = 1 (t axis

is vertical).

3.4 Numerical illustrations

Figures 1, 4 and 5 illustrate on synthetic examples of input tensor fields (μ, ν) the Q-OT

interpolation method. We recall that it is obtained in two steps:

(1) One first computes the optimal γ solving (3.1) using Sinkhorn iterations (Algorithm 1).

(2) Then, for any t ∈ [0, 1], one computes μt using this optimal γ with formula

(2.4).

Figure 4 shows examples of interpolations on a 1-D domain X = Y = [0, 1] with

tensors of dimension d = 2 and d = 3, and a ground cost ci,j = |xi − yj |2Idd×d. It

compares the OT interpolation, which achieves a “mass displacement”, to the usual

linear interpolation (1 − t)μ + tν, which only performs a pointwise interpolation of the

tensors.

Figure 5 shows the effect of taking into account the anisotropy of tensors into the

definition of OT. In the case of isotropic tensors (see Remark 1), the method reduces

to the usual scalar OT, and in 1-D it corresponds to the monotone re-arrangement [52].

In contrast, the Q-OT of anisotropic tensors is forced to reverse the ordering of the

transport map in order for tensors with similar orientations to be matched together.

This example illustrates that the behaviour of our tensor interpolation is radically dif-

ferent from only applying classical scalar-valued OT to the trace of the tensor (which

would result in the same coupling as the one obtained with isotropic tensors, Figure 5,

left).

Figure 1 shows larger scale examples. The first row corresponds to X = Y = [0, 1]2 and

d = 2, with cost ci,j = ||xi − yj ||2Id2×2, which is a typical setup for image processing. The

second row corresponds to X = Y being a triangulated mesh of a surface, and the cost

is proportional to the squared geodesic distance ci,j = dX(xi, yj)
2Id2×2.
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Classical OT Quantum OT

Figure 5. Comparison of classical OT (i.e., between isotropic tensors) and quantum-OT (between

anisotropic tensors) interpolation (using formula (2.4)), using the same display as Figure 4.

4 Quantum barycentres

Following Agueh and Carlier [1] (see also [9,56] for numerical methods using entropic

regularization), we now propose a generalization of the OT problem (2.2), where, instead

of coupling only two input measures, one tries to couple an arbitrary set of inputs, and

compute their Fréchet means.

4.1 Barycentre optimization problem

Given some input measures (μ�)�, the quantum barycentre problem reads

min
ν

∑
�

w�Wε(μ
�, ν), (4.1)

where (w�)� is a set of positive weights normalized so that
∑

� w� = 1. In the following,

for simplicity, we set

ρ1 = ρ and ρ2 = +∞,

in the definition (2.2) of Wε. Note that the choice ρ2 = +∞ corresponds to imposing the

exact hard marginal constraint γ�1J = ν.

Remark 12 (Barycentres between single Dirac masses). If all the input measures are con-

centrated on single Diracs μ� = P�δx� , then the single Dirac barycentre (unregularized,

i.e., ε = 0) for a cost dX(x, y)αIdd×d is Pδ�x where x� ∈ X is the usual barycentre for the

distance dX , solving

x� ∈ argminx E(x) =
∑
�

w�d
α
X(x�, x),

and the barycentric matrix is

P = e−
E(x�)
ρ exp

(∑
�

w� log(P�)
)
. (4.2)

Figure 6 illustrates the effect of a pointwise interpolation (i.e., at the same location x� for

all �) between tensors.

Problem (4.1) is convex, and similarly to (3.2), it can be rewritten in dual form.
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Figure 6. Two examples of pointwise (without transportation) interpolations, using formula (4.2).

Here P1 and P2 are represented using the blue/red ellipses on the left/right, and weights are

(w1, w2) = (1 − t, t) for t ∈ [0, 1] from left to right.

Proposition 3. The optimal ν solving (4.1) is the solution of

max
(u�,v�)

min
ν

−
∑
�

w� tr
[
ρ

∑
i

eu
�
i +log(μ�i ) +

∑
j

νjv
�
j + ε

∑
i,j

eK(u�,v�)i,j
]
, (4.3)

where here we define K as

K(u, v)i,j
def.
= −ci,j + ρui + vj

ε
. (4.4)

4.2 Quantum barycentre Sinkhorn

Similarly to Proposition 2, the dual solutions of (4.3) satisfy a set of coupled fixed point

equations:

Proposition 4. Optimal (u�, v�)� for (4.3) satisfy

∀ (i, �), LSEj(K(u�, v�)i,j) − log(μ�i ), = u�i (4.5)

∀ (j, �), LSEi(K(u�, v�)i,j) = log(νj) (4.6)∑
� w�v

� = 0. (4.7)

Proof The proof of (4.5) and (4.6) is the same as the one of Proposition 2. Minimization

of (4.3) on ν leads to (4.7). �

The extension of the quantum Sinkhorn algorithm to solve the barycentre problem (2)

is detailed in Algorithm 2. It alternates between the updates of u, ν and v, using the

relaxed version of the fixed point equations (4.5), (4.6) and (4.7). The notation
τ← refers

to a relaxed assignment as defined in (3.8).

Remark 13 (Choice of τ). Remark 6 also applies for this Sinkhorn-like scheme, and set-

ting (τ1, τ2) = ( ε
ρ+ε
, 1) leads, in the scalar case d = 1, to the algorithm in [22]. We

found experimentally that this choice leads to contracting (and hence linearly con-

verging) iterations, and that higher values of τ usually accelerate the convergence

rate.

Remark 14 (Scalar and isotropic cases). Note that in the scalar case d = 1 and for iso-

tropic input tensors (multiples of the identity), one retrieves the provably convergent

unbalanced barycentre algorithm in [22].
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function Quantum-Barycentre((μ�)
L
�=1, c, ε, ρ)

Choose τ1 ∈]0, 2ε
ε+ρ

[, τ2 ∈]0, 2[.

∀ (i, j) ∈ I × J, (ui, vj) ← (0d×d, 0d×d)

for s = 1, 2, 3, . . ..

for � = 1, . . . , L

K� ← K(u�, v�),

∀ i ∈ I, u�i
τ1← LSEj(K

�
i,j) − log(μ�i ),

K� ← K(u�, v�).

∀ j ∈ J, log(νj) ←
∑

� w�(LSEi(K
�
i,j) + v�j /ε).

for � = 1, . . . , L

∀ j ∈ J, v�j
τ2← εLSEi(K

�
i,j) + v�j − ε log(νj).

return ν

Algorithm 2: Quantum-Barycentre iterations to compute the optimal barycentre measure

ν solving (4.1). The operator K is defined in (4.4).

Figure 7. 5 × 5 barycentres of four input measures (displayed in the four corners). The weights

w ∈ �4 correspond to bilinear interpolation weights (4.8) inside the square.

4.3 Numerical illustrations

Figure 7 shows examples of barycentres ν solving (4.1) between four input measures

(μ�)4�=1. The horizontal/vertical axes of the figures are indexed by (t1, t2) ∈ [0, 1]2 (on a

5 × 5 grid) and parameterize the weights (w�)
4
�=1 appearing in (4.1) as

(w1, w2, w3, w4)
def.
= ((1 − t1)(1 − t2), (1 − t1)t2, t1(1 − t2), t1, t2). (4.8)

The left part of Figure 7 corresponds to measures on X = Y = [0, 1]2 with d = 2 and

ground cost ci,j = ||xi − xj ||2Id2×2. The right part of Figure 7 corresponds to measures on
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Figure 8. Example of interpolation between two input procedural anisotropic noise functions. The

PSD tensor field parameterizing the texture are displayed on Figure 1. The colourmap used to

render the anisotropic texture is displayed on the last column.

X = Y being a surface mesh with d = 2 (the tensors are defined on the tangent planes)

and a ground cost is ci,j = dX(xi, xj)
2Id2×2 where dX is the geodesic distance on the

mesh.

5 Applications

This section showcases four different applications of Q-OT to register and interpolate

tensor fields. Unless otherwise stated, the data is normalized to the unit cube [0, 1]d (here

d = 2 for images) and discretized on grids of |I| = |J| = 50d points. The regularization

parameter is set to ε = 0.082, the fidelity penalty to ρ = 1, and the relaxation parameter

for Sinkhorn to τk = 1.8ε
ε+ρk

.

5.1 Anisotropic space-varying procedural noise

Texture synthesis using procedural noise functions is widely used in rendering pipelines

and video games because of both its low storage cost and the fact that it is typically para-

meterized by a few meaningful parameters [39]. Following Lagae et al. [40] we consider

here a spatially-varying Gabor noise function (i.e., non-stationary Gaussian noise), whose

covariance function is parameterized using a PSD-valued field μ. Q-OT allows to interpol-

ate and navigate between these noise functions by transporting the corresponding tensor

fields. The initial Gabor noise method makes use of sparse Gabor splattering [39] (which

enables synthesis at arbitrary resolution and zooming). For simplicity, we rather consider

here a more straightforward method, where the texture ft0 is obtained by stopping at time

t = t0 an anisotropic diffusion guided by the tensor field μ of a high frequency noise N
(numerically a white noise on a grid)

∂tft
∂t

= div(μ∇ft), where ft=0 ∼ N ,
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where (μ∇ft)(x) def.
= μ(x)(∇ft(x)) is the vector field obtained by applying the tensor

μ(x) ∈ S+
2 to the gradient vector ∇ft(x) ∈ �2. Locally around x, the texture is stretched

in the direction of the main eigenvector of μ(x), highly anisotropic tensor giving rise to

elongated “stripes” as opposed to isotropic tensor generating “spots”.

Numerically, f is discretized on a 2-D grid, and μ is represented on this grid as a sum

of Dirac masses (2.1). On Euclidean domains X, ∇ and div are computed using finite

differences, while on triangulated mesh, they are implemented using standard piecewise-

linear finite element primitives. Figure 8 shows two illustrations of this method. The top

row generates an animated colour texture by indexing a non-linear black-red colourmap

(displayed on the right) using ft. The bottom row generates an animated bump-mapped

surface using ft to offset the mesh surface in the normal direction.

5.2 Anisotropic meshing

Approximation with anisotropic piecewise linear finite elements on a triangulated mesh

is a fundamental tool to address tasks such as discretizing partial differential equations,

performing surface remeshing [4] and image compression [25]. A common practice is to

generate triangulations complying with a PSD tensor sizing field μ, i.e., such that a triangle

centered at x ∈ X should be inscribed in the ellipsoid
{
u ∈ X ; (u− x)�μ(x)(u− x) � δ

}
for some δ controlling the triangulation density. A well-known result is that, to locally

approximate a smooth convex C2 function f, the optimal shapes of triangles is dictated by

the Hessian Hf of the function (see [54]). In practice, people use μ(x) = |Hf(x)|α for some

exponent α > 0 (which is related to the quality measure of the approximation), where | · |α
indicates the spectral application of the exponentiation (as for matrix exp or log).

Figure 9 shows that Q-OT can be used (using formula (2.4)) to interpolate between

two sizing fields (μ, ν), which are computed from the Hessians (with here α = 1) of two

initial input images (f, g). The resulting anisotropic triangulations are computed using the

method detailed in [11]. They corresponds to geodesic Delaunay triangulations for the

Riemannian metric defined by the tensor field. This interpolation could typically be used

to track the evolution of the solution of some PDE.

5.3 Diffusion tensor imaging

Diffusion tensor magnetic resonance imaging (DTI) is a popular technique to image

the white matter of the brain (see [59] for a recent overview). DTI measures the diffusion

of water molecules, which can be compactly encoded using a PSD tensor field μ(x) ∈ S3
+,

whose anisotropy and size matches the local diffusivity. A typical goal of this imaging

technique is to map the brain anatomical connectivity, and in particular track the white

matter fibres. This requires a careful handling of the tensor’s energy (its trace) and

anisotropy, so using Q-OT is a perfect fit for such data.

Figure 10 shows an application of Q-OT for the interpolation (using 2.4) between 2-D

slices from DTI tensor fields (μ, ν) acquired on two different subjects. This data is extracted

from the studies [48, 57]. These two patients exhibit different anatomical connectivity

geometries, and Q-OT is able to track the variation in both orientation and magnitude

of the diffusion tensors. This figure also compares the different data fidelity parameters
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

f and gμ and ν

Figure 9. Two examples of interpolation between two input sizing fields (μt=0, μt=1) = (μ, ν). First

row: triangulation evolution for the sizing fields displayed on Figure 1. Second row: the input sizing

fields (μt=0, μt=1) = (μ, ν) are displayed on the third row, and are defined using the absolute value

(α = 1) of the Hessian of the underlying images (f, g).

ρ ∈ {0.05, 1}. Selecting ρ = 1 enforces an overly-strong conservation constraint and leads

to interpolation artifacts (in particular some structure are split during the interpolation).

In contrast, selecting ρ = 0.05 introduces enough mass creation/destruction during the

interpolation to be able to cope with strong inter-subject variability.

5.4 Spectral colour texture synthesis

As advocated initially in [31], a specific class of textured images (so-called micro-

textures) is well-modelled using stationary Gaussian fields. In the following, we denote p

the pixel positions and x the Fourier frequency indices. For colour images, these fields are

fully characterized by their mean m ∈ �3 and their Fourier power spectrum, which is a

tensor valued field μ(x) where, for each frequency x (defined on a 2-D grid) μ(x) ∈ �3×3

is a complex PSD hermitian matrix.

In practice, μ(x) is estimated from an exemplar colour image f(p) ∈ �3 using an

empirical spectrogram

μ(x)
def.
=

1

K

K∑
k=1

f̂k(x)f̂k(x)
∗ ∈ �3×3, (5.1)

where f̂k is the Fourier transform of fk(p)
def.
= f(p)wk(p) (computed using the FFT), wk

are windowing functions centered around K locations in the image plane, and v∗ ∈ �1×3

denotes the transpose-conjugate of a vector v ∈ �3×1. Increasing the number K of
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Subject A Subject B Subject C

Figure 10. Interpolation between two 2-D slices of 3-D DTI tensor fields (μ, ν) = (μt=0, μt=1).

For readability, only the X/Y components of the tensors are displayed. First row: interpolation

between subjects (A, B) obtained using ρ = 1. Second row: interpolation between subjects (A, B)

obtained using ρ = 0.05. Third row: interpolation between subjects (C, B) obtained using ρ = 0.05.

Fourth row: anatomical MRI images of subjects (A, B, C) indicating the region of interest where the

computations are performed.

windowed estimations helps to avoid having rank-deficient covariances (K = 1 leads to a

field μ of rank-1 tensors).

Randomized new textures are then created by generating random samples F(p) ∈ �3

from the Gaussian field, which is achieved by defining the Fourier transform F̂(x)
def.
=

m+ N̂(x)
√
μ(x)13, where N(p) is the realization of a Gaussian white noise, and

√· is the

matrix square root (see [31] for more details).

Figure 11 shows an application where two input power spectra (μ, ν) (computed us-

ing (5.1) from two input textures exemplars (f, g)) are interpolated using (2.4), and for

each interpolation parameter t ∈ [0, 1] a new texture F is synthesized and displayed. Note

that while the Q-Sinkhorn Algorithm 1 is provided for real PSD matrices, it extends

verbatim to complex positive Hermitian matrices (the matrix logarithm and exponential

being defined the same way as for real matrices).
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

f g f g

Figure 11. Row 1 and 3: display tr(μt(x)) where μt are the interpolated power spectra. Rows 2 and

4: realizations of the Gaussian field parameterized by the power spectra μt. Row 5: input texture

exemplars from which (μt=0, μt=1) = (μ, ν) are computed.

6 Conclusion

In this work, we have proposed a new static formulation for OT between tensor-

valued measures. This formulation is an extension of the recently proposed unbalanced

formulation of OT. A chief advantage of this formulation is that, once coupled with

quantum entropic regularization, it leads to an effective numerical scheme, which is easily

extended to the computation of barycentres.

The proposed formulation is quite versatile, and can be extended to other convex cones

beyond PSD matrices, which is a promising direction for future work and applications.

Other possible research directions also include investigating relationships between this

static formulation of tensor-valued OT and dynamic formulations.

1099

https://doi.org/10.1017/S0956792517000274 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000274


G. Peyré et al.
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