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A region tracking fault tolerant control approach based on backstepping technique is pro-
posed for Autonomous Underwater Vehicles (AUV). The proposed approach aims at
driving tracking error to reach into the desired region in presence of ocean current disturb-
ance, modelling uncertainty, unknown thruster faults and thruster amplitude and rate satur-
ation constraints. At first, a type of piecewise and differential Lyapunov function is
constructed to achieve region tracking control in the frame of backstepping technique.
Then, the paper analyses and acquires the bound structures of the lumped uncertainty (includ-
ing ocean current disturbance and model uncertainty) and the variation of thruster distribu-
tion matrix caused by unknown thruster faults, respectively. An adaptive technique is used to
estimate the unknown coefficients in the above bound structures. In addition, an adaptive ad-
justment scheme for the desired trajectory is developed to achieve region tracking control with
thruster amplitude and rate saturation constraints. The stability of the closed-loop system is
analysed based on Barbalat’s lemma. Finally, simulations and pool-experiments are presented
to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION. Autonomous Underwater Vehicles (AUVs) have been
used increasingly in a variety of applications, such as long range underwater survey,
exploitation of underwater resources and underwater pipeline tracking (Ataei and
Yousefi-Koma, 2015; Sun et al., 2016). A trajectory tracking controller with reliability
and robustness is of great importance to perform a successful mission in the unknown
and complicated ocean environment (Fossen et al., 2015; Lekkas and Fossen, 2014).
Therefore, it is crucial to develop a robust and reliable trajectory tracking controller
for AUVs.
The main challenges in trajectory tracking control arise from the inherent nonlinear-

ity, serious multivariate coupling and model parameter variation of an AUV subject to
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external disturbance (Koofigar, 2014). In order to deal with these problems, numerous
control methodologies have been proposed, including backstepping control (Bing
et al., 2014; Morishita and Souza, 2014), sliding mode control (Bessa et al., 2010;
Soylu et al., 2008), H infinity control (Slotine and Li, 1991; You et al., 2010) and arti-
ficial intelligence control (Chu et al., 2016; Seok Park, 2014). In the above cited refer-
ences, the controller’s goal is to acquire high tracking precision, which would result in
more energy consumption. However, in some special applications, such as underwater
pipeline tracking, underwater searching and plume tracking, the users pay more atten-
tion to energy consumption. In other words, they expect longer missions as long as the
tracking error is within the desired region. Since the energy carried by an AUV is
limited, any reductions in the energy consumption can prolong the time of AUVoper-
ation (Zhang and Chu, 2014). As for these special applications, an adaptive region
tracking methodwas proposed for AUV based on the concept of region potential func-
tion (Li et al., 2010). Ismail and Dunnigan (2011) applied the method in tracking
control of an underwater vehicle-manipulator system. On the basis of the concept of
region potential function, Zhang and Chu (2014) developed an adaptive region track-
ing control based on Radial Basis Function (RBF) neural network and sliding mode
control. Mukherjee et al. (2015) took input delay into consideration in the region
tracking control. The references do not involve fault tolerant control, so these
methods cannot be directly applied in cases where thruster faults occur.
During long missions in special applications, an AUV is liable to suffer from faults in

the unknown and complicated ocean environment. In fact thrusters are some of the
most important and common fault sources (Omerdic and Roberts, 2004). In order
to accomplish fault tolerant control for an AUV with a thruster fault, Ismail et al.
(2014) developed a region tracking fault tolerant control method based on weighted
pseudo-inverse. Thrust reallocation is a common technique to deal with thruster
faults using fault information provided by the Fault Detection and Diagnosis
(FDD) module in the process of mapping the given control demand into the individual
thruster forces (Johansen and Fossen; 2013, Soylu et al., 2008). The accuracy and time
taken for FDD should satisfy the requirement of fault tolerant control (Jiang and Yu,
2012). Due to the features of incipient thruster fault and the ocean current disturbance,
more time would be taken to acquire fault information in the FDDmodule, and some-
times false alarms, including missing faults, would occur. Therefore, an adaptive fault
tolerant control strategy may be more suitable for cases with an incipient thruster fault.
Hu et al. (2011) achieved adaptive fault tolerant control by assuming that the upper
and lower bounds of an actuator fault were known in advance. Wang et al. (2012)
investigated adaptive fault tolerant control based on an adaptive linear sliding mode
algorithm.
The region tracking concept leads to energy saving but does not provide a solution

to the problem of thruster amplitude and rate saturation constraints, especially in the
initial period, due to the inevitable initial errors of the AUV. Ismail et al. (2014)
adopted the joint limit concept to keep the thruster force within the saturation
limits. Thrust allocation can also be used to keep the thruster force within saturation
limits, such as infinity-norm based techniques (Soylu et al., 2008). These references
investigated thrust amplitude saturation constraints from the view of passive adjust-
ment and ignored thruster rate saturation constraints, but in practical applications,
the thruster rate constraint has a great effect on tracking performance. In other
fields, such as spacecraft, in order to tackle the actuator constraints, another strategy
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has been studied using the adjustment of the desired trajectory or reference trajectory
(Leonessa et al., 2009). A pseudo-control hedging scheme was proposed by modifying
the reference command to prevent the adaptive element from adapting to these actu-
ator saturations (Lombaerts et al., 2012; Simplício et al., 2013). A trajectory re-plan-
ning methodology was proposed based on differential flatness to protect the control
command from violating the systems constraints (Chamseddine et al., 2013; 2015).
A reference governor approach was proposed by computing a feasible reference
signal to guarantee the constraints are always satisfied (Aghaei et al., 2013;
Boussaid et al., 2014).
Motivated by the above considerations, region tracking fault tolerant control is

investigated for AUV subject to ocean current disturbance, modelling uncertainty,
unknown thruster fault and thruster amplitude and rate saturation constraints. The
main contributions and novelties of the present work are presented as follows.
Firstly, in the frame of backstepping technique, the paper constructs a novel types
of Lyapunov functions to deal with region tracking, which is different from the
concept of region potential function. In contrast to the previous results, the paper ana-
lyses the bound structures of the lumped uncertainty and the variation of the thruster
distribution matrix resulting from unknown thruster faults. In order to not require the
knowledge of the lumped uncertainty and thruster fault in advance, an adaptive tech-
nique is adopted to estimate the coefficients of the bounds. In addition, inspired by
Leonessa et al. (2009), the paper develops a desired trajectory adjustment method to
tackle thruster amplitude and rate saturation constraints by transforming these two
constraints into one. Barbalat’s lemma is applied to verify that the tracking errors
can be reached and maintained in the designed region based on the proposed
method. Finally, simulations and pool experiments are carried out to demonstrate
the effectiveness of the proposed methodology.
The paper is organised as follows. Section 2 briefly describes a general model of au-

tonomous underwater vehicles in ocean environments and formulates the control ob-
jective. Backstepping-based adaptive region tracking fault tolerant control for AUV is
proposed in Section 3. Then, Section 4 studies region tracking fault tolerant control
with thruster amplitude and rate saturation constraints. In Section 5, two examples
are presented to illustrate the effectiveness of the proposed controller. Finally, conclu-
sions are drawn in Section 6.

2. AUV DYNAMICMODEL. The nonlinear dynamic equations of AUV with six
degrees of freedom in an ocean environment can be expressed as (Fossen, 2011):

_η ¼ JðηÞv
M _vþ CRBðvÞvþ CAðvrÞvr þDðvrÞvr þ gðηÞ ¼ τ

ð1Þ

where J(η)∈R6×6 is a spatial transformation matrix from the body fixed frame to the
earth fixed frame. η∈R6×1 is the position and orientation vector of the vehicle with
respect to the earth fixed frame. v∈R6×1 is the linear and angular velocity of the
vehicle with respect to the body fixed frame. vr = v− vc. vc is the vector of ocean
current with respect to the body fixed frame. M∈R6×6 is the inertia matrix including
added mass. CRB (v)∈R6×6 is the rigid-body Coriolis and centripetal matrix. CA (vr)∈
R6×6 is the hydrodynamic Coriolis and centripetal matrix. D(vr)∈R6×6 is the drag
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matrix. g(η)∈R6×1 are the restoring forces and moments due to gravity and buoyancy.
τ∈R6×1 is the vector of forces and moments acting on the centroid of vehicle resulting
from thrusters. The detailed expressions of these above matrixes/vectors can be seen in
Podder and Sarkar (2001).
Equation (1) can be represented in the inertial fixed frame as

MηðηÞ€ηþ CRBηðv; ηÞ _ηþ CAηðvr; ηÞ _ηr þDηðvr; ηÞ _ηr þ gηðηÞ ¼ J�Tτ ð2Þ
where Mη(η)= J−TMJ−1, CRBη(v,η)= J−T(CRB-MJ−1 _J)J−1, CAη(vr,η) = J−TCAJ

−1,
Dη(vr,η)= J−TDAJ

−1, gη(η) = J−Tg, _ηr = Jvr.

The control objective is to design an adaptive region tracking fault tolerant control-
ler for AUV described as Equation (2) in order to guarantee that all the closed-loop
signals are bounded and the tracking error could reach and maintain into the
desired region despite being in the presence of the lumped uncertainty, unknown
thruster fault and thruster amplitude and rate saturation constraints.

3. BACKSTEPPING-BASED ADAPTIVE REGION TRACKING FAULT
TOLERANT CONTROL. This section sets out to design the region tracking fault
tolerant controller based on the backstepping technique. First, in order to manage
tracking error to reach into the desired region, a type of piecewise and continuous func-
tion is developed to construct the Lyapunov function. Then, the paper analyses the
bound structures of the lumped uncertainty and variation of thruster distribution
matrix caused by thruster fault, respectively. Finally, in the frame of backstepping tech-
nique, the control law and adaptive law are derived by the constructed Lyapunov
function.

3.1. Piecewise Lyapunov function. The aim of a controller based on the tradition-
al Lyapunov function is to force the tracking error to converge to zero. In order to
achieve region tracking control, Li et al. (2010) proposed the concept of region poten-
tial function. Unlike the previous work, this paper investigates a region tracking con-
troller from the view of piecewise Lyapunov function. Inspired by Wu et al. (2014),
who constructed a Cm-class switching function based on power function, to avoid dis-
continuity caused by the breaking point in the traditional piecewise function, a type of
piecewise, continuous and (n-1) order differentiable function is constructed by taking
advantage of the features of exponential function and power function. The detailed ex-
pression is given as Equation (3).

Pn;εðzÞ ¼ expðkð zj j � εÞÞ × ð zj j � εÞn
n!

; zj j � ε

0; zj j< ε

8<
: ð3Þ

where, z is variable, described in the latter; k and ε are positive constants; n is an integer
and larger than one, and the detailed selection will be given later; | z| denotes to take the
absolute value of variable z.
As can be seen from Equation (3), Pn,ɛ (z) is not less than zero. Meanwhile, accord-

ing to the derivative of the generalised function (Gel’fand and Shilov, 1964), it is easy
to prove the continuity and (n−1) order differentiable features of the constructed func-
tion. In the latter part of this paper, the piecewise Lyapunov function will be con-
structed based on the proposed function Pn,ɛ (z).
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3.2. Bound structure. In the process of deriving a control law based on the con-
structed piecewise Lyapunov function, we should take the lumped uncertainty and
unknown thruster faults into consideration. This paper deals with the effects of
lumped uncertainty and thruster fault from the view of bound structure.
The considered fault is the loss of effectiveness in a thruster, which can be modelled

as the variation of thruster distribution matrix B. Therefore, when thrusters are faulty,
the force/torque caused by thrusters is changed from τ to τf.

τf ¼ Bu� BKu ¼ ðBþ ~BÞu ð4Þ

where, u is the control input of thrusters. K is a diagonal matrix, and its diagonal
element kii ∈[0,1]; kii = 0 denotes the ith thruster is healthy; kii = 1 denotes the ith
thruster is failing; kii ∈(0,1) denotes the ith thruster has a partial loss fault.
Due to the property of K, namely Kk k< 1, it can be derived from
~BBþ�� ��< Kk k BBþk k. Hence, there exists an unknown constant L∈ (0, 1), so the fol-

lowing inequality holds

~BBþ�� ��< L ð5Þ

where, B+denotes the pseudo-inverse of matrix B, and kk denotes Euclidean norm.
Due to the inherent nonlinearity and serious multivariate coupling, an AUV

dynamic model based on the dynamic modelling technique has great uncertainty
(Zhang et al., 2015). In this paper, the modelling uncertainty is expressed as follows:

Mη ¼M̂η þ ~Mη; CRBη ¼ ĈRBη þ CRBη; CAη ¼ ĈAη þ ~CAη; Dη ¼ D̂η þ ~Dη;

gη ¼ĝη þ ~gη
ð6Þ

According to the analysis presented above, the model of an AUV with lumped uncer-
tainty and thruster fault can be described as

€η ¼ M̂�1
η J�T Bþ ~B

� �
u� ĈRBη _η� ĈAη _η� D̂η _η� ĝη

h i
�H ð7Þ

where, H ¼ M̂�1
η ð ~Mη€ηþ ~CRBη _ηþ ~CAη _ηr � CAηJvc þ ~Dη _ηr �DηJvc þ ~gηÞ.

In general, the amplitude of ocean current is bounded. From the structure of the
AUV dynamic model in Podder and Sarkar (2001), it has the following inequalities:

M̂�1
η

~Mη€η
��� ���< b0 þ b1 _ηk k þ b2 _ηk k2; M̂�1

η
~CRBη _η

��� ���< c0 _ηk k2;

M̂�1
η

~CAη _ηr

��� ��� ¼ M̂�1
η

~CAηð _η� JvcÞ
��� ���< c1 _ηk k2þc2 _ηk k;

M̂�1
η CAηJvc

��� ���< c3 _ηk k; M̂�1
η

~Dηð _η� JvcÞ
��� ���< d0 _ηk k2þd1 _ηk k;

M̂�1
η DηJvc

��� ���< d2 _ηk k; M̂�1
η ~gη

��� ���< d3

where bi, ci, di (i = 0,1,2,3) are all positive constants.
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Consequently, according to the structure of inequalities presented above, it can be
concluded that there exist unknown and constant vectors φi> 0, i = 0,1,2, so the fol-
lowing inequality holds

Hk k< φ0 þ φ1 _ηk k þ φ2 _ηk k2 ð8Þ
3.3. Control law formulation. According to the above-presented piecewise

Lyapunov function Equation (3), the bound structures of the variation of thruster dis-
tribution matrix caused by thruster fault Equation (5), and the bound structure of the
lumped uncertainty Equation (8), this paper derives the control law.
At first, the desired trajectory is transferred as a reference trajectory, so as to acquire

the position/orientation, velocity and acceleration of the reference trajectory which are
required to construct the controller. The following second-order system is adopted as
the trajectory reference model, given by

_ηR
€ηR

� �
¼ 06×6 I6×6

�ω2
nI6×6 �2ωnξI6×6

� �
ηR
_ηR

� �
þ 06×6

ω2
nI6×6

� �
ηd ð9Þ

where, ηd∈R6×1 is the desired trajectory, ηR∈R6×1 is the reference state vector. ωn and
ξ are positive constants.
Before designing the adaptive region tracking fault tolerant controller based on the

backstepping technique, we define the following variables z1 and z2

z1 ¼ η� ηR
z2 ¼ _η� α

ð10Þ

where, α is the virtual variable and will be designed later.
According to the above-presented piecewise function Equation (3), we define a

Lyapunov function in terms of tracking error z1

V1 ¼
X6
i¼1

P3;ε1ðiÞðz1ðiÞÞ ð11Þ

where, ε1 is the desired tracking error region; ε1(i) is the ith element of vector ε1; z1(i) is
the ith element of vector z1; V1≥ 0.
The time derivative of Equation (11) is presented as follows:

_V1 ¼
X6
i¼1

ðkP3;ε1ðiÞðz1ðiÞÞ þ P2;ε1ðiÞðz1ðiÞÞÞsignðz1ðiÞÞ _z1ðiÞ ð12Þ

Apparently, discontinuity may exist in the latter derivative due to the sign function in
Equation (12). However, after further analysing the property of function as Equation
(3), it can be found that sign(z1) could not affect the continuity of V1, since function
P3,ɛ1 (i) (z1 (i)) equals zero in the interval of [−ε1(i), ε1(i)], but it would affect the continuity
of the virtual variable α and control law. Based on the fact that the value of sign(z1) on
the interval of [−ε1(i), ε1(i)] does not change the value of _V1, another sign-like function
takes the place of sign(z1) in this paper, shown as Equation (13) so as to not introduce
the sign(z1) in the latter control law. Specifically, in the interval of [-ε1(i), ε1(i)], trigono-
metric functions are adopted to avoid the breaking point in the traditional sign
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function.

sgnε1ðiÞðz1ðiÞÞ ¼
signðz1ðiÞÞ; z1j j � ε1ðiÞ
sin

π

2
cos

π

2
z1ðiÞ � ε1ðiÞ

ε1ðiÞ
� �� �

; z1j j< ε1ðiÞ

8<
: ð13Þ

where, sgnε1 ið Þðz1 ið ÞÞ is continuous and the derivative can be calculated by treating it as
generalised function.
Using Equations (10) and (13), Equation (12) can be represented by vector form as

Equation (14)

_V1 ¼ ΣðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞsgnε1ðz1Þðz2 þ α� _ηRÞ ð14Þ

where, P3;ε1ðz1Þ ¼ ½P3;ε1ð1Þðz1ð1ÞÞ;P3;ε1ð2Þðz1ð2ÞÞ; � � � ;P3;ε1ð6Þðz1ð6ÞÞ�T ; vector sgnε1ðz1Þ
and P2;ε1ðz1Þ are similar as P3;ε1ðz1Þ. ΣX denotes to calculate the sum of all elements
in vector X. We note that the product of vectors with the same dimensions should
be operated as a product of the corresponding elements in the vectors. For example,
the product of [x1,x2,x3]

T and [y1,y2,y3]
T is [x1y1, x2y2, x3y3]

T.
We design the virtual variable α

α ¼ � g1 þ 1
4

� �
ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞsgnε1ðz1Þ þ _ηR � ðε2 þ σÞsgnε1ðz1Þ ð15Þ

where, g1 is positive constant; σ is positive vector. It can be simply verified that the
virtual variable α is continuous and differentiable based on the generalised function.
Next, according to the above-presented function, we define a Lyapunov function in

terms of the variable z2

V2 ¼ V1 þ ΣP2;ε2ðz2Þ ð16Þ

The time derivative of V2 is

_V2 ¼ _V1 þ ΣðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞsgnε2ðz2Þð€η� _αÞ ð17Þ

Substituting Equation (7) into Equation (17), yields

_V2 ¼ _V1 þ ΣðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞsgnε2ðz2Þ

M̂�1
η J�T Bþ ~B

� �
u� _η� ĈAη _η� D̂η _η� ĝη

h i
�H � _α

� � ð18Þ

The first main result of this paper is given in the following.
Theorem 1: Consider an AUV described as in Equation (7) subject to the lumped

uncertainty and unknown thruster faults, all the closed-loop signals are bounded
and the tracking error could reach into the desired region with the action of the
control law, expressed as Equations (19a)–(19c) and adaptive law, expressed as
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Equations (20a)–(20d).

u ¼ BþJT ½ðĈRBη _ηþ ĈAη _ηþ D̂η _ηþ ĝηÞ þ M̂η _α1

� ðg2 þ 1ÞM̂ηP1;ε2ðz2Þsgnε2ðz2Þ� þ u1 þ u2
ð19aÞ

u1 ¼ �BþJTM̂ηðρ̂0 þ ρ̂1 _ηk k þ ρ̂2 _ηk k2Þsgnε2ðz2Þ ð19bÞ
u2 ¼� BþJT ρ̂3k½ðĈRBη _ηþ ĈAη _ηþ D̂η _ηþ ĝηÞ þ M̂η _α1

� ðg2 þ 1ÞM̂ηP1;ε2ðz2Þsgnε2ðz2Þ�ksgnε2ðz2Þ ð19cÞ
_̂ρ0 ¼ Γ0ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞ ð20aÞ

_̂ρ1 ¼ Γ1ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞ _ηk k ð20bÞ
_̂ρ2 ¼ Γ2ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞ _ηk k2 ð20cÞ

_̂ρ3 ¼ Γ3M̂�1
η ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞ

½ðĈRBη _ηþ ĈAη _ηþ D̂η _ηþ ĝηÞ þ M̂η _α1 � ðg2 þ 1ÞM̂ηP1;ε2ðz2Þsgnε2ðz2Þ�
�� �� ð20dÞ

where, g2 is positive constant; ρi = φi/(1−L) i = 0,1,2.; ρ̂k is the estimation of ρk, k =
0,1,2,3. ρ3 = [L/(1− L), L/(1− L), L/(1− L)]T; Γj (j = 0,1,2,3) are diagonal and positive
definite matrix.
The proof of Theorem 1 is given in Appendix A.
From the derivation and analysis procedure presented above, the proposed region

tracking fault tolerant control algorithm is robust to ocean current disturbance and
model uncertainty due to its adaptive term. It could also compensate unknown thruster
faults, independent of the FDD.

4. REGION TRACKING FAULT TOLERANT CONTROLWITH THRUSTER
AMPLITUDE AND RATE SATURATION CONSTRAINTS. This section
extends the proposed region tracking fault tolerant controller described in Section 3
to region tracking fault tolerant control with thruster amplitude and rate saturation
constraints.
With respect to control input constraints, the strategies based on adjustment of the

desired trajectory have been investigated in recent years, including pseudo-control
hedging, trajectory re-planning and reference governors. In contrast to the technique
in Leonessa et al. (2009), which was accomplished in the respect of the derivative of
control law, we investigate thruster amplitude and rate saturation constraints based
on thruster constraints transfer and the relationship between the controller output
and the desired trajectory.

4.1. Constraints Transfer. At first, the thruster amplitude and rate saturation
constraints can be described as

umin � u � umax

γmin � _u � γmax

ð21Þ

where, umax and umin are the upper and lower limits of thruster amplitude. γmax and
γmin are the upper and lower limits of thruster rate.
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Thruster amplitude and rate saturation constraints can be transferred to a single
constraint, namely Equation (21) can be approximately transformed as

u � u � �u ð22Þ
where, u ¼ max umin uðt� TÞ þ Tγminf g; �u ¼ min umax uðt� TÞ þ Tγmaxf g;
Equation (22) can be derived based on the approximation relationship _u ≈
uðtÞ � uðt� TÞð Þ=T � u(t) and u(t− T) are the present and previous step of thruster
output, respectively. T is the control interval.

4.2. Desired trajectory adjustment. Recalling the control law in Equation (19a)
and Equation (15), the controller output u explicitly depends on the desired trajectory.
Using Equations (9), (15) and (19a)–(19c), the desired trajectory can be expressed as

ηd ¼ ðw2
nJ

TM̂ηÞ�1Bðu� BþJT ½ðĈRBη _ηþ ĈAη _ηþ D̂η _ηþ ĝηÞ

þ M̂η
df ðz1Þ
dt

� ω2
nηR � 2ωnξ _ηR

� �
� ðg2 þ 1ÞM̂ηP1;ε2ðz2Þsgnε2ðz2Þ� þ u1 þ u2Þ

ð23Þ
where, f ðz1Þ ¼ �ðg1 þ 1

4
ÞðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞsgnε1ðz1Þ � ðε2 þ σÞsgnε1ðz1Þ.

To deal with thruster amplitude and rate saturation constraints, the desired trajec-
tory should be shaped to guarantee the control output u in Equation (23) to satisfy
Equation (22).
Next, another important result is presented:
Theorem 2: Consider an AUV described as per Equation (1) with the lumped uncer-

tainty, unknown thruster fault and thruster amplitude and rate saturation constraints,
control laws designed as Equations (19a)–(19c) and adaptive laws expressed as
Equations (20a)–(20d). The desired trajectory is modified as follows

η0d ¼ ηd þ ðω2
nJ

TM̂ηÞ�1Bu�ðδðu�Þ � 1Þ ð24Þ

where, δðu�Þ ¼
�u
	
u� u� > �u
1 u � u� � �u

u
	
u� u� < u

8<
: ; u* is the control output without considering

thruster constraints in Section 3. Then, the following statements hold:

(i) The tracking error could be reached in the designed region ɛ1;
(ii) The control output would satisfy Equation (22).

The proof of Theorem 2 is given in Appendix B.
From the above design and analysis, it can be concluded that the proposed method

could deal with thruster amplitude and rate saturation constraints by locally modify-
ing the desired trajectory. Thus we have tracking fault tolerant control for an AUV
with lumped uncertainty, unknown thruster faults and thruster amplitude and rate sat-
uration constraints.

5. SIMULATIONS AND POOL EXPERIMENTS. In this section, simulation
and experiment results are presented to demonstrate the feasibility and effectiveness
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of the proposed method. For this purpose, two examples are considered. In the first
example, a series of simulations of an ODIN AUV are performed. In the second
example, the proposed region tracking fault tolerant controller is used to experiment
on Beaver 2 AUV, designed by the authors’ laboratory.

5.1. Simulations on ODIN AUV. In order to verify the effectiveness of the pro-
posed region tracking fault tolerant controller, a serial of simulations were conducted
on an ODIN AUV subject to ocean current disturbance, modelling uncertainty,
unknown thruster fault, and thruster amplitude and rate saturation constraints. The
parameters of the ODIN AUV can be seen in Podder and Sarkar (2001). The thruster
distribution matrix in the considered ODIN AUV is expressed as follows.

B ¼

s �s �s s 0 0 0 0
s s �s �s 0 0 0 0
0 0 0 0 �1 �1 �1 �1
0 0 0 0 Rs Rs �Rs �Rs
0 0 0 0 Rs �Rs �Rs Rs
Rz �Rz Rz �Rz 0 0 0 0

2
6666664

3
7777775

where s= sin(pi/4); R = 0·381; Rz= 0·508.
In this section, 30% model uncertainty is set for each of the parameters in the ODIN

AUV, which means the nominal system dynamics used in the controller is 70%. The
ocean current speed Vc is generated using a first-order Gauss-Markov process,
expressed as Equation (25) (Fossen, 2011).

_Vc þ μVc ¼ ω ð25Þ

where ω is Gaussian white noise with mean −1·5 and variance 1; μ= 3; two angles con-
cerning the direction of ocean current: βc (sideslip angle) and αc (angle of attack); βc is
generated by the sum of Gaussian noise with mean 0 and variance 50; and αc= βc /2.
There are two kinds of incipient thruster faults considered in this paper, shown as

Equations (26) and (27).

k11 ¼

0; t< 20
0�29
30

ðt� 20Þ þ 0�01 sin π

5
ðt� 20Þ

� �
; 20 � t< 50

0�29
30

þ 0�01 sin π

10
ðt� 50Þ

� �
; t � 50

8>>><
>>>:

ð26Þ

k11 ¼
0; t< 20

0�5
 
1� exp

�ðt� 20Þ
10

! !
; t � 50

8><
>: ð27Þ

The initial position of the ODIN AUV is η0 = [0·4; 0·4;−0·4; pi/18; pi/18; pi/9] and its
initial velocity is zero. Furthermore, it is assumed that the thruster amplitude limits are
±200N, and the thruster rate limits are ±100N/s, namely, umax = 200; umin =−200;
γmax = 100 and γmin =−100.
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The parameters in the proposed method in Section 3 are given as follows:

ε1 ¼ 0�3; 0�3; 0�3; 0�15; 0�15; 0�15½ �0; ε2 ¼ 0�5; 0�5; 0�5; 0�25; 0�25; 0�25½ �0;
g1 ¼ 2; g2 ¼ 5; k ¼ 1;wn ¼ 3; ξ ¼ 0�7; σ ¼ 0�1; 0�1; 0�1; 0�1; 0�1; 0�1½ �0;

Γ0 ¼ diag 0�5; 0�5; 0�5; 0�05; 0�05; 0�05ð Þ;
Γ1 ¼ diag 0�5; 0�5; 0�5; 0�05; 0�05; 0�05ð Þ;
Γ2 ¼ diag 0�5; 0�5; 0�5; 0�05; 0�05; 0�05ð Þ;
Γ3 ¼ diag 0�5; 0�5; 0�5; 0�05; 0�05; 0�05ð Þ;

Now, the proposed method is used to track two kinds of trajectories: an ellipse shape
and a figure of eight curve shape.

5.1.1. An ellipse shape trajectory. The ellipse shape desired trajectory is given by

xd ¼ 6 1� cos 0�15tð Þð Þ; yd ¼ 3sin 0�15tð Þ; zd ¼ �0�2xd ; ηd ¼ xd ; yd ; zd ; 0; 0; 0½ �
The following three cases are considered.
Case 1: No thruster fault occurs;
Case 2: The first thruster fault occurs as Equation (26); and the fifth thruster com-

pletely fails after the 20th second;
Case 3: The first thruster fault occurs as Equation (27); and the fifth thruster com-

pletely fails after the 20th second.
Figures 1 and 2 illustrate the simulation results about path, tracking error and

control output for Case 1, Case 2 and Case 3, respectively.
As can be seen from Figures 1 and 2, no matter whether thruster faults occur, the

tracking error could be reached and maintained into the desired region based on the
developed region tracking controller, while tracking the ellipse shape trajectory.
Moreover, in these cases, affected by the thruster rate saturation constraint, the
control outputs do not change abruptly in the initial period, although there exists
the initial error. The control outputs do not violate the thruster constraints in the
whole process.

5.1.2. Figure of eight curve shape trajectory. In a similar way, a different desired
trajectory is considered in the paper, given by

xd ¼ 4 1� cos 0�10tð Þð Þ; yd ¼ 2sin 0�20tð Þ; zd ¼ �0�2xd ; ηd ¼ xd ; yd ; zd ; 0; 0; 0½ �
In this subsection, simulation is carried out in the condition of Case 2. The simulation
result is shown in Figure 3.
As shown in Figure 3, although the tracking error is outside of the desired region in

the initial period, after about 10 seconds, the tracking error could be in the desired
region based on the proposed region tracking controller, even after thruster faults
have occurred.
In addition, in order to further demonstrate the effectiveness of the proposed

method, the simulations with another new desired region (ε1) are performed. The
new desired region is set as ε1 = [0·1,0·1,0·1,0·05,0·05,0·05]’, and the other parameters
are the same as those in Case 2.
Figure 4 shows the tracking errors for the two tracking cases. According to Figure 4,

the tracking errors could be reached and maintained in the new desired region after
about 5 seconds. The simulation results are tabulated in Tables 1 and 2.
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5.1.3. Comparative simulation studies. In order to demonstrate the efficacy of
the proposed region tracking method, comparative simulation studies were performed
based on the concept of region potential function. The comparative simulations are
divided into two parts, that is, one is the case without ocean current disturbance,
and the other is the case with ocean current disturbance after the 50th second
simulated as Equation (25). In the comparative simulations, the desired
region ε1 = [0·3,0·3,0·3,0·15,0·15,0·15]’. The initial position and orientation η0 =
[0·04;0·04;−0·04; pi/360;pi/360;pi/180]’. The controller parameters Kp= 500*diag
(5,5,5,3,3,3); Ld= 20I13×13; Kv= diag(500,500,500,30,30,30). The detailed controller
expression was given in Ismail et al. (2014).
Figure 5 shows the tracking errors for tracking the ellipse shape trajectory with/

without ocean current disturbance while Figure 6 shows the results of tracking
another trajectory.
From Figures 5 and 6, in the case of no ocean current disturbance, the tracking

errors could be maintained in the desired regions for the two desired trajectories.
This indicates that the concept of region potential function can be adopted to
achieve region tracking control without external disturbance. However, in the presence
of ocean current disturbance, the tracking errors obtained from the comparative
method are out of the desired region. Therefore, in comparison with the concept of

Figure 1. Simulation results for Case 1 of the ellipse shape trajectory.
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region potential function, the simulation results demonstrate the efficacy of the pro-
posed region tracking method.

5.2. Experiments on Beaver 2 AUV. Another example is considered in the paper
to verify the efficacy of the proposed method. In the example, experiments are per-
formed on the Beaver 2 AUV, designed by the authors’ laboratory in 2014 (thrusters
were changed in 2015), shown in Figure 7(a). The Beaver 2 AUV was 0·8 m × 0·5 m
× 0·4 m. Its dry weight was 50 kg and slightly positively buoyant. The left and right
thrusters were configured in Beaver 2, which can provide a maximum thrust of ap-
proximately 30N. Figure 7(b) describes the hardware architecture of Beaver 2.
It should be explained that in order to conduct experiments conveniently, the power

of Beaver 2 comes from outside by the umbilical cable, but the controller algorithm
runs in the PC104 working with Vxworks embedded control system inside Beaver 2.
The host computer is in charge of sending only Start/Stop commands and receiving
and saving experiment data. The sensor system was composed of HMR3000 digital
compass (measuring roll, pitch and yaw angles), and Mini-Avatar (measuring
angular velocities).
In this section, the yaw angle tracking is considered. The yawmodel of Beaver 2 used

to synthesize controller is described as follows (Zhang et al., 2015).

Mψ _rþDψ1rþDψ2r rj j þ gψ ¼ Tr ð28Þ

Figure 2. Simulation results for Case 2 and Case 3 of the ellipse shape trajectory.
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whereMψ = 22·0753;Dψ1 = 4·4458; Dψ2 = 15·4308; gψ = 0·5828; Tr is the torque gener-
ated by thrusters.
In the experiments, two desired yaw angles are considered, shown as follows.

ψd1 ¼ 0�75πð1� expð�0�1tÞÞ ð29Þ

ψd2 ¼
0�45πð1� expð�0�1tÞÞ 0 � t � 50
0�45π þ 0�3πð1� expð�0�1ðt� 50ÞÞÞ 50< t



ð30Þ

Figure 3. Simulation results of the figure of eight curve shape trajectory.

Figure 4. Simulation results for another desired region.
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Similar to Section 5.1, two kinds of thruster faults are taken into account in the experi-
ments. The expressions of thruster faults are the same as Equations (26) and (27). The
thruster distribution matrix is expressed as B = [−0·74,0·74].
The parameters in the controller are given in the following:

ε1 ¼ 0�1; ε2 ¼ 0�3; c1 ¼ 2; c2 ¼ 5; k ¼ 1;wn ¼ 3; ξ ¼ 0�7;
σ ¼ 0�1; Γ0 ¼ 0�001; Γ1 ¼ 0�001; Γ2 ¼ 0�001; Γ3 ¼ 0�005;

Figures 8 and 9 illustrate the tracking errors for the above desired yaw angles, when the
two kinds of faults occur in the first thruster, respectively. As can be seen from Figures

Table 2. Region tracking performance of the figure of eight curve shape trajectory after 10 seconds.

Position Error (m) Orientation Error (rad)

X Y Z Pitch Roll Yaw

Case 2 Desired Region 0·30 0·30 0·30 0·15 0·15 0·15
Maximum Error 0·17 0·17 0·14 0·001 0·00006 0·024

Case 2 Desired Region 0·10 0·10 0·10 0·05 0·05 0·05
Maximum Error 0·056 0·056 0·047 0·001 9·7E-05 0·027

Figure 5. Comparative simulation results for the ellipse shape trajectory.

Table 1. Region tracking performance of the ellipse shape trajectory after 10 seconds.

Position Error (m) Orientation Error (rad)

X Y Z Pitch Roll Yaw

Case 1 Desired Region 0·30 0·30 0·30 0·15 0·15 0·15
Maximum Error 0·17 0·16 0·14 0·0036 0·0047 1·5E-06

Case 2 Desired Region 0·30 0·30 0·30 0·15 0·15 0·15
Maximum Error 0·17 0·16 0·15 0·0010 0·0012 0·023

Case 3 Desired Region 0·30 0·30 0·30 0·15 0·15 0·15
Maximum Error 0·19 0·16 0·15 0·0010 0·0014 0·024

Case 2 Desired Region 0·10 0·10 0·10 0·05 0·05 0·05
Maximum Error 0·060 0·055 0·049 0·0009 0·0010 0·021
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Figure 6. Comparative simulation results for the figure of eight curve shape trajectory.

Figure 7. Beaver 2 AUV and its hardware architecture.

Figure 8. Experiments results for Yaw Angle 1.
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8 and 9, although the tracking errors are outside of the desired region in the initial
period, it reached the desired region after about 10 seconds based on the developed
region tracking controller.
In addition, similar to Section 5.1, another desired region is used when tracking the

first desired yaw angle, in the experiments with the above two kinds of different thruster
faults, respectively. The new desired region: ε1 = 0·05, and the other parameters are not
changed.
Figure 10 describes the experiments results for the two tracking cases. It can be seen

from Figure 10 that the tracking error could reach the new desired region, no matter
what kind of thruster fault occurs during the mission.

6. CONCLUSIONS. Adaptive region tracking fault tolerant control method is
proposed for AUV while taking modelling uncertainty, ocean current disturbance,
unknown thruster fault and thruster amplitude and rate saturation constraints into
account simultaneously. The developed method is based on the backstepping tech-
nique. Information about thruster fault and ocean current disturbance is not required.

Figure 9. Experiments results for Yaw Angle 2.

Figure 10. Experiments results for Yaw Angle 1 with another desired region.
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Region tracking is achieved by constructing a continuous and piecewise Lyapunov
function. Based on Barbalat’s lemma, it demonstrates that the tracking errors could
reach the designed region. Thruster amplitude and rate saturation constraints are
transformed to a single constraint, and it is dealt with by locally modifying the
desired trajectory. Simulation and pool experiments results illustrate the effectiveness
of the proposed method.
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APPENDIX A. PROOF OF THEOREM 1

Define estimation error

~ρi ¼ ρi � ρ̂i ðA1Þ

Choose the following Lyapunov function

V3 ¼ V2 þ 1� L
2

~ρ0
TΓ0~ρ0 þ

1� L
2

~ρT1 Γ1~ρ1 þ
1� L
2

~ρT2 Γ2~ρ2 þ
1� L
2

~ρT3 Γ3~ρ3 ðA2Þ
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The derivative of Equation (A2) is

_V3 ¼ _V2 � ð1� LÞ~ρT0 Γ0 _̂ρ0 � ð1� LÞ~ρT1 Γ1 _̂ρ1 � ð1� LÞ~ρT2 Γ2 _̂ρ2 � ð1� LÞ~ρT3 Γ3 _̂ρ3 ðA3Þ
Substituting Control law Equation (19) and adaptive law Equation (20) into
Equation (A3), yielding

_V3 � Σð�g1ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞ2 � g2ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞP1;ε2ðz2Þ þW

þ ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞð�ð1� LÞðρ̂0 þ ρ̂1 _ηk k þ ρ̂2 _ηk k2Þ þHÞ
� ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞðM̂�1

η ð1� LÞρ̂3 � ½L;L;L�T Þf
� ð1� LÞ~ρT0 ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞ � ð1� LÞ~ρT1 ðkP2;ε2ðz2Þ
þ P1;ε2ðz2ÞÞ _ηk k � ð1� LÞ~ρT2 ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞ _ηk k2

� ð1� LÞ~ρT3 M̂�1
η ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞfÞ

ðA4Þ

where, f ¼ ½ðĈRBη _ηþ ĈAη _ηþ D̂η _ηþ ĝηÞ þ M̂η _α1 � ðg2 þ 1ÞM̂ηP1;ε2ðz2Þsgnε2ðz2Þ�
�� ��;

W ¼ Σð� 1
4
ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞ2 þ ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞð z2j j � ðε2 þ σÞÞ

� ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞP1;ε2ðz2ÞÞ:
When |z2| < (ɛ2 + σ), it is straightforward thatW <0. And when |z2|≥ (ɛ2 + σ), integrat-
ing with Young’s Inequality, we can derive the following inequality

W � Σðð z2j j � ðε2 þ σÞÞ2 � ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞP1;ε2ðz2ÞÞ
� Σðð z2j j � ðε2 þ σÞÞ2 � Pε2;1ðz2Þ2 ¼ ð z2j j � ðε2 þ σÞÞ2

� expðkð z2j j � ε2ÞÞ × ð z2j j � ε2Þ2Þ
� Σð z2j j � ðε2 þ σÞÞ2 � Σð z2j j � ε2Þ2 < 0 ðA5Þ

Therefore, according to Equations (5) and (8), Inequality (A4) can be presented

_V3 � Σð�g1ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞ2 � g2ðkP2;ε2ðz2Þ þ P1;ε2ðz2ÞÞP1;ε2ðz2ÞÞ
� Σð�g1ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞ2Þ

ðA6Þ

Since Lyapunov functionV3 > 0 and _V3 � 0,V3 is bounded. So z1, z2 and ~ρi, i = 0,1,2,3
are bounded. And since the reference states ηr _ηr and €ηr are bounded, the virtual vari-
able α is bounded from Equation (15).
Let Δ ¼ Σðg1ðkP3;ε1ðz1Þ þ P2;ε1ðz1ÞÞ2Þ. Integrating Inequality Equation (A6) at the

interval of [0, t], we have ∫
t
0 ΔðϑÞdϑ � V3ð0Þ, which means ∫

t
0 ΔðϑÞdϑ has a finite

limit as t→∞. According to Equation (3), we can see that Δ is differentiable, and
the derivative of Δ is a function of _z1. From Equation (10), the boundedness of _z1
can be ensured. So we can prove that the derivative of Δ is bounded. Thus, we conclude
that Δ is uniformly continuous.
Consequently, according to the facts that ∫

t
0 ΔðϑÞdϑ has a finite limit as t→∞ and Δ

is uniformly continuous, it can be concluded that Δ equals to zero, as t→∞ based on
Barbalat’s lemma, which means z1≤ ɛ1 as t→∞. This completes the proof.
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APPENDIX B. PROOF OF THEOREM 2

Statement (i) can be directly proved according to Appendix A.
In order to prove statement (ii), substituting Equations (23) and (24) into

Equation (19), we can derive

u ¼ BþJT ½ðĈRBη _ηþ ĈAη _ηþ D̂η _ηþ ĝηÞ

þ M̂η

� df ðz1Þ
dt

� ω2
nηR � 2ωnξ _ηR

þ ω2
nðηd þ ðω2

nJ
TM̂ηÞ�1Bu�ðδðu�Þ � 1ÞÞ

�
� ðc2 þ 1ÞM̂ηPε2;1ðz2Þsgnε2ðz2Þ� þ u1 þ u2

¼ u� þ u�ðδðu�Þ � 1Þ
¼ u�δðu�Þ

ðB1Þ

From the property of δ(u*) and Equation (B1), it is implied that the control outputs
after modifying the desired trajectory as Equation (24) are guaranteed to satisfy the
thruster amplitude and rate saturation constraints as Equation (22). This completes
the proof.
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