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Abstract

The purpose of this paper is to give a complete description of the primitive ideal space of
the C*-algebra T[R] associated to the ring of integers R in a number field K in the recent
paper [5]. As explained in [5], T[R] can be realized as the Toeplitz C*-algebra of the affine
semigroup R � R× over R and as a full corner of a crossed product C0(�A f ) � K � K ∗,
where �A f is a certain adelic space. Therefore Prim(T[R]) is homeomorphic to the primitive
ideal space of this crossed product. Using a recent result of Sierakowski together with the
fact that every quasi-orbit for the action of K � K ∗ on �A f contains at least one point with
trivial stabilizer we show that Prim(T[R]) is homeomorphic to the quasi-orbit space for the
action of K � K ∗ on �A f , which in turn may be identified with the power set 2P of the set
of prime ideals P of R equipped with the power-cofinite topology.

1. Introduction

Let R be the ring of integers in a number field K . In the recent paper [5] Cuntz, Den-
inger and Laca introduce an algebra T[R] attached to R and they show that this algebra has
a very interesting KMS-structure relative to a certain natural one parameter group of auto-
morphisms. The algebra T[R] is an extension of the C*-algebra A[R] studied previously
in [2, 3, 4] and, in contrast to A[R], it is functorial under homomorphisms of rings. While
A[R] is always simple, the new algebra T[R] has a fairly rich ideal structure, and it is the
aim of this paper to give a detailed description of the primitive ideal space Prim(T[R]) as
a topological space. Since the closed ideals in a C*-algebra A correspond bijectively and
inclusion-preserving to the open subsets of Prim(A), we obtain a complete picture of the
ideal structure of T[R]. A related extension T (N � N×) of the C*-algebra QN from [2] had
been introduced in [12], and although strictly speaking it is not equal to T[Z], its structure
is similar enough for our methods to apply there as well.

It is shown in [5] that T[R] is a full corner in a crossed product C0(�A f )� K � K ∗, where
�A f is a certain quotient space of the product A f × A f of the finite adele space A f over K
by itself. Since Morita equivalent C*-algebras have homeomorphic primitive ideal spaces, it
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120 S. ECHTERHOFF AND M. LACA

therefore suffices to describe the primitive ideal space of this crossed product. The situation
is somewhat similar to the computation of the primitive ideal space of the original Bost–
Connes algebra as performed by Laca and Raeburn in [11]. Since the Bost–Connes algebra
is Morita equivalent to the crossed product C0(A f ) � Q∗

+ and since Q∗
+ is an abelian group

one can use a theorem of Williams based on the Mackey machine (e.g. see [11, theorem
1·1]) to compute the primitive ideal space of the crossed product as a certain quotient of
A f × Q̂∗+, where Q̂∗+ denotes the Pontrjagin dual of Q∗

+.
The situation becomes a bit more complicated in the present case since the ax + b-group

K � K ∗ is not abelian and the action of K � K ∗ on �A f has wildly varying stabilizer groups.
However, we shall see in Section 3 below that every quasi-orbit for the action of K � K ∗ on
�A f contains at least one orbit with trivial stabilizers. It turns out that this suffices to prove
that Prim(C0(�A f ) � K � K ∗) is homeomorphic to the quasi-orbit space �A f / ∼ via an
induction procedure (recall that if G is a group acting on a topological space X , then two
elements x, y ∈ X lie in the same quasi-orbit if Gx = Gy). We deduce this fact in §2 in
a much more general setting from a recent result of Sierakowski [14] which extends earlier
results of Renault [13] and of Archbold and Spielberg [1].

We give a precise description of the quasi-orbit space �A f /∼ in Section 3, showing that
it is homeomorphic to the power set 2P of the set of prime ideals P of R equipped with the
power-cofinite topology.

2. The primitive ideal space of crossed products by essentially free actions

Let G be a countable discrete group acting by automorphisms on a separable C*-algebra
A. We will give a detailed description of the primitive ideal space of the reduced crossed
product A �r G in the case where the action of G on A is exact and the associated action
of G on the space Â of equivalence classes of irreducible representations of A is essentially
free in the sense that every closed invariant subset C of Â contains a dense invariant subset
D such that G acts freely on D. Our method builds up on recent work of Sierakowski [14],
which relies on a central result of the paper [1] by Archbold and Spielberg and extends
earlier results by Renault (see [13, corollary 4·9]),

Recall that an action of the group G on A is exact, if for any G-invariant ideal I ⊆ A the
corresponding sequence of reduced crossed products

0 −−→I �r G −−→A �r G −−→(A/I ) �r G −−→0

is exact. The group G is called exact if every action of G on any C*-algebra A is exact.
The class of exact groups is quite large. It contains all amenable groups and all countable
groups which can be embedded (as abstract groups) in a linear group over some field K (in
particular all free groups, see [8]). We refer to the discussion in [14] for further details.

For a C*-algebra A we denote by I(A) the set of closed ideals in A equipped with the
Fell topology for which a sub-base of open sets is given by the sets of the form

UI := {J ∈ I(A) : I � J }, I ∈ I(A).

Restricted to Prim(A), this is the usual Jacobson topology. Note that if A and B are two
C*-algebras and ϕ : I(A) → I(B) is any map which preserves inclusion of ideals, then ϕ

is continuous. If (A, G, α) is a system, we denote by IG(A) ⊆ I(A) the set of G-invariant
closed ideals in A equipped with the topology restricted from I(A). We will need the fol-
lowing formulation of Sierakowski’s results.
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THEOREM 2·1 (Sierakowski). Suppose that (A, G, α) is a dynamical system with G dis-
crete such that the action of G on A is exact and the action of G on Â is essentially free.
Then the map

res : I(A �r G) −−→IG(A); J �−→ J � A

is a homeomorphism with inverse map given by

ind : IG(A) −−→I(A �r G); ind(I ) = I �r G.

Proof. This follows from combining [14, proposition 1·3] with [14, theorem 1·20] and ob-
serving that since both maps obviously preserve inclusion of ideals, they are homeomorph-
isms with respect to the Fell-topologies.

Remark 2·2. (1) The assumption that the action of G on Â is essentially free is certainly
weaker than the condition that the action of G on Prim(A) is essentially free. This follows
directly from the definitions of essential freeness and of the Jacobson topologies on Â and
Prim(A) (e.g. see [6, chapter 3]).

(2) It is shown in [14, section 2] that the assumption that the action of G on Â is essentially
free can be replaced by a somewhat weaker assumption which Sierakowski calls the residual
Rokhlin* property. Thus all results discussed below will remain true if the assumption that
the action of G on Â is essentially free is replaced by the assumption that the action satisfies
the residual Rokhlin* property.

Suppose that (A, G, α) is a C*-dynamical system. A G-invariant ideal I ⊆ A is called
G-prime if for any pair of closed G-invariant ideals J1, J2 ⊆ A with J1 � J2 ⊆ I we have
Ji ⊆ I for i = 1 or i = 2. We denote by PrimeG(A) the set of G-prime ideals in A and we
denote by Prime(A) the set of prime ideals in A (the case where G is the trivial group). The
Fell-topology on I(A) induces topologies on PrimeG(A) and Prime(A).

PROPOSITION 2·3. Suppose that (A, G, α) satisfies the assumptions of Theorem 2·1.
Then the map res : I(A �r G) → IG(A) restricts to a homeomorphism Prime(A �r G) �
PrimeG(A).

Proof. Suppose that I ∈ Prime(A�r G) and let J1, J2 ∈ IG(A) such that J1 � J2 ⊆ I � A.
It follows then from Theorem 2·1 that J1 �r G � J2 �r G ⊆ (I � A) �r G = I and hence
that Ji �r G ⊆ I for some i ∈ {1, 2}. But then we also have Ji = (Ji �r G) � A ⊆ I � A,
which proves that I � A is G-prime. A very similar argument shows that J �r G is prime if
J ∈ PrimeG(A). The result then follows from Theorem 2·1.

Recall that the primitive ideals in a C*-algebra are the kernels of the irreducible repres-
entations of A. If (A, G, α) is a system, then an ideal I ∈ IG(A) is called G-primitive if
I = PG := �g∈Gαg(P) for some primitive ideal P of A. We denote by PrimG(A) the set of
G-primitive ideals equipped with the Fell-topology.

Moreover, if a group G acts on a topological space X , then the quasi-orbit space O(X)

is defined as the quotient space X/ ∼ by the equivalence relation x ∼ y ⇔ Gx = Gy. In
what follows we denote by O(x) the quasi-orbit of x , i.e., the equivalence class of x under
this relation. The following lemma is [10, lemma on p. 221]:

LEMMA 2·4 (Green). Suppose that (A, G, α) is a system. Then O(Prim(A)) →
PrimG(A); O(P) �→ PG is a homeomorphism.
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The following lemma is also well known to the experts. For completeness we give a proof,
which is an adaptation of the proof of [10, corollary on p. 222].

LEMMA 2·5. Let (A, G, α) be a system with A separable. Then PrimeG(A) = PrimG(A).

Proof. We first remark that every primitive ideal is prime, since if P = ker π for some
irreducible representation π : A → B(H) and if J1, J2 ∈ I(A) such that J1 � J2 ⊆ P , then
Ji ⊆ P for some i ∈ {1, 2} because otherwise π would restrict to irreducible representations
on J1 and J2 and then {0} = π(J1 � J2)H = π(J1)π(J2)H = H.

Suppose now that I = PG is G-primitive. Then, if J1, J2 ∈ IG(A) such that J1 � J2 ⊆ I ,
we have J1 � J2 ⊆ P , and hence Ji ⊆ P for some i ∈ {1, 2}. But then Ji = J G

i ⊆ PG = I .
Hence I is also G-prime.

For the converse let I ∈ PrimeG(A). We need to show that there exists a P ∈ Prim(A)

with I = PG . For this let F ⊆ Prim(A) be the hull of I , i.e., F = {Q ∈ Prim(A) : I ⊆ Q}.
This is a closed G-invariant subset of Prim(A) and we need to show that F = G(P) for
some P ∈ Prim(A). This means that the image C := q(F) ⊆ O(Prim(A)) is the closure of a
single point O(P) ∈ O(Prim(A)), where q : Prim(A) → O(Prim(A)) denotes the quotient
map. It follows from the discussion preceding [10, lemma on p. 222] that O(Prim(A)) �
PrimG(A) is a totally Baire space, and it is second countable since A is separable. By [10,
lemma on p. 222], to conclude that F = G(P) it suffices to show that C is irreducible,
which means that it cannot be written as a union of two proper closed subsets C1, C2. So
assume that C1, C2 are closed subsets of O(Prim(A)) with C = C1 � C2. Let F1, F2 denote
their inverse images in Prim(A) and let Ji = ker Fi = �{Q : Q ∈ Fi } for i = 1, 2. Then
F = F1 � F2 which implies that J1 � J2 = I . Since I is G-prime we have Ji ⊆ I for some
i ∈ {1, 2} which implies that Fi = {Q ∈ Prim(A) : Ji ⊆ Q} contains F . This completes the
proof.

COROLLARY 2·6. Suppose that (A, G, α) is a system such that A is separable, G is
countable, the action of G on A is exact and the action of G on Â is essentially free. Then

ind : PrimG(A) −−→ Prim(A �r G); I �−→ I �r G

is a homeomorphism with inverse map given by

res : Prim(A �r G) −−→ PrimG(A); P �−→ P � A.

Proof. This follows as a direct combination of Proposition 2·3 together with Lemma 2·5
(which also implies that Prim(A �r G) = Prime(A �r G) since A �r G is separable).

Recall that if (A, G, α) is a system with G discrete, then every representation π : A →
B(H) gives rise to an induced representation ind π : A �r G → B(l2(G, H)) which is
the integrated form π̃ × λ of the covariant homomorphism (π̃, λ) of (A, G, α) on l2(G, H)

given by the formulas(
π̃(a)ξ

)
(g) = π(αg−1(a))ξ(g) and

(
λ(h)ξ

)
(g) = ξ(h−1g),

for all ξ ∈ l2(G, H), a ∈ A, and h, g ∈ G.
If J = ker π is G-invariant, then G acts on A/J and ker π̃ = J , hence ind π gives

a faithful representation of A/J �r G. When the action of G on A is exact, we see that
ker(ind π) = J �r G. It can be shown (e.g., see [10, proposition 9]) that in general ker(ind π)

depends only on ker π hence the definition of induced ideals given earlier for G-invariant
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ideals can be extended to all ideals of A by letting ind J = ker(ind π), where π is any
representation of A with ker π = J .

Moreover, it is easily checked that for a general representation π : A → B(H) the
induced representation ind π is unitarily equivalent to ind(π ◦ αg) for all g ∈ G (the equi-
valence being implemented by the unitary λ(g)). Thus we see that on the level of ideals we
get for all g ∈ G and for every ideal J ∈ I(A) that

ind J = ind(αg(J )) = ind(J G).

Combining this with Corollary 2·6 and Lemma 2·4 we get the following corollary.

COROLLARY 2·7. Suppose that (A, G, α) is a system such that A is separable, G is
countable, the action of G on A is exact and the action of G on Â is essentially free. Then

ind : O(Prim(A)) −−→ Prim(A �r G); O(P) �−→ ind P

is a homeomorphism.

3. Orbits, stabilizers and quasi-orbits of an adelic space

Let K be an algebraic number field with ring of algebraic integers R. The nonzero ele-
ments of R form a semigroup denoted R×, which contains the group R∗ of invertible ele-
ments or units of R. In this section we will study the primitive ideal space of the C*-algebra
T[R] which was introduced in [5] in terms of generators and relations and shown to be
isomorphic to the C*-algebra of the left regular representation of the semigroup R � R×

on �2(R � R×). Because of [5, propositions 5·1 and 5·2], there is an action of the group
K � K ∗ on a locally compact Hausdorff space �A f such that T[R] is isomorphic to a full
corner in the transformation group C*-algebra C0(�A f ) � K � K ∗, and thus its primitive
ideal space is naturally homeomorphic to that of C0(�A f )� K � K ∗. For a specific descrip-
tion of the homeomorphism see [11, lemma 2·7]. We want to use the results from Section 2
above, for which it becomes important to understand the orbits, the stability subgroups, and
the quasi-orbit space of the action of K � K ∗ on �A f .

We begin by recalling the definition of the space �A f and the action of K � K ∗ from [5,
section 5]. Denote by A f the locally compact, totally disconnected ring of finite adeles over
K . The finite adeles have a maximal compact subring R̂, the integral adeles, whose group
of units (i.e. invertible elements) is denoted R̂∗, the compact group of integral ideles. The
space �A f is the quotient of A f × A f by the equivalence

(r, a) ∼ (s, b) ⇐⇒ a R̂∗ = bR̂∗ and r − s ∈ a R̂.

If we denote the class of (r, a) ∈ A f × A f by ωr,a , then the group K � K ∗ acts on �A f in
the obvious way by (x, k) · ωr,a = ωx+kr,ka .

Denote by P the set of all prime ideals of R. Recall from [5, section 5] that each point
ωr,a ∈ �A f has a valuation vector {vP(a)}P∈P which depends only on (and in fact character-

izes) the second component. This valuation vector can be defined as follows: if a ∈ R̂ and
P ∈ P , let vP(a) be the smallest nonnegative integer n such that the canonical projection of
a in R/Pn+1 is nonzero, and put vP(a) = ∞ if a projects onto 0 ∈ R/Pn for every n. If a is
a finite adele, then there exists d ∈ R such that da ∈ R̂, and we let vP(a) = vP(da)−vP(d),
which does not depend on d.
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Thus, we may regard the second component of a point of �A f as a superideal for which,
in analogy to the supernatural numbers, we allow infinite powers and also finitely many
negative ones. Hence we write

A f /R̂∗ �
∏
P∈P

(PZ�{∞}; PN�{∞}), a �−→
∏
P

PeP (a)

where the restriction in the direct product is that the elements of A f /R̂∗ can have negative
exponents for at most finitely many prime ideals. The topology in each coordinate is from
the natural order in Z; as usual, the factor P∞ corresponds to 0 ∈ K P in the P coordinate.

LEMMA 3·1. For each a ∈ A f /R̂∗, let

Z(a) := {P ∈ P : aP = 0} = {P ∈ P : eP(a) = ∞}.
Then the closure of the orbit of ωr,a is the set {ωs,b ∈ �A f : Z(b) ⊃ Z(a)}.

Proof. It is easy to see that the set {ωs,b ∈ �A f : Z(b) ⊃ Z(a)} is closed and that every
point in the orbit of ωr,a has a second coordinate that vanishes on Z(a) (and possibly also at
other primes). Thus {ωs,b ∈ �A f : Z(b) ⊃ Z(a)} contains the closure of the orbit of ωr,a .

To prove the reverse inclusion, consider ωr,a ∈ �A f and let (s, b) be a point in A f ×
(A f /R̂∗) with Z(b) ⊃ Z(a). Let W2 be typical basic neighbourhood of b ∈ A f /R̂∗:

W2 := {c ∈ A f /R̂∗ : vPj (c) = vPj (b) for Pj � Z(b) and vPj (c) � n j for Pj ∈ Z(b)}
where {P1, P2, . . . , Pn} is a given finite set of prime ideals and n j � 0 is a given integer
for every j such that Pj ∈ Z(b). For each j such that Pj is not in Z(b) choose e j =
vPj (b) − vPj (a); for each j such that Pj ∈ Z(b) \ Z(a), let e j = n j + |vPj (a)|; finally let
e j = 0 for each j such that Pj ∈ Z(a) (this last choice is not essential, we just make it to be
thorough).

Now let Q be a prime ideal in the inverse class of the product
∏n

j=1 P
e j

j such that Q � Pj

for j = 1, 2, . . . , n and choose k to be a generator of the principal ideal Q
∏n

j=1 P
e j

j . Then
ka ∈ W2.

If W1 is any neighbourhood of s in A f , there exists x ∈ K such that x +kr ∈ W1, because
K is dense in A f . Since (the images of) neighbourhoods of the form V = W1 × W2 form a
neighbourhood basis for ωs,b in the quotient �A f , and since we have shown that every such
neighbourhood contains a point of the form ωx+kr,ka , we conclude that ωs,b is in the closure
of the orbit {ωx+kr,ka : x ∈ K , k ∈ K ∗} of ωr,a .

It is now easy to describe the quasi-orbit space. Following [11, section 2] we consider the
power set 2P of the set of prime ideals of R equipped with the power-cofinite topology, in
which the basic open sets are indexed by finite G ⊆ P and are given by UG = {T ∈ 2P :
T � G = �}.

LEMMA 3·2. The correspondence ωr,a �→ Z(a) induces a homeomorphism of the quasi-
orbit space to the power set of the prime ideals with the power-cofinite topology.

Proof. The preceding lemma shows that two points are in the same quasi-orbit if and only
if their second components vanish at exactly the same subset of prime ideals. This gives a
bijection from the quasi-orbit space to 2P . The topology on the quasi-orbit space is obtained
from the topology on �A f through the quasi-orbit map ωr,a �→ q(ωr,a) which is continuous
and open by Lemma 2·4.
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Since the first component is lost in passing from ωr,a to Z(a), an argument similar to that
in the proof of [11, proposition 2·4] shows that basic neighbourhoods in �A f are mapped
exactly onto the power-cofinite neighbourhoods of 2P .

Example 3·3. The action of K � K ∗ has many points with nontrivial stabilizer. Here we
give some examples of such points together with their stabilizers.

(i) Let (x, k) ∈ K � K ∗. Then the point (x, k)ω0,1 = ωx,k coincides with ω0,1 ∈ �A f iff

k ∈ R̂∗ � K = R∗ and x ∈ R̂ � K = R, so the stabilizer of ω0,1 ∈ �A f is R � R∗.
(ii) The points ωm,k in the orbit of ω0,1 have stabilizers {(m, k)(r, w)(−mk−1, k−1) : r ∈

R, w ∈ R∗} = {(m(1 − w) + kr, w) : r ∈ R, w ∈ R∗}.
(iii) The stabilizer of the point ω0,0 consists of elements (x, k) such that x = 0 ∈ (A f �

K )/0 = K . That is, {0} × K ∗.
(iv) The points ωx,0 in the orbit of ω0,0 have stabilizers (x, 1)({0}×K ∗)(−x, 1) = {(x(1−

k), k) : k ∈ K ∗}.
Despite the abundance of nontrivial stabilizers, we shall see next that there are sufficiently

many points with trivial stabilizer to generate all quasi-orbits.

LEMMA 3·4. For every subset A of prime ideals there exists a point ωr,a with trivial
stabilizer and Z(a) = A.

Proof. If P ∈ A the condition ωx+kr,ka = ωr,a implies x + (k − 1)rP = 0, that is, either
rP = −x/(k − 1) ∈ K , or else k = 1 and x = 0. When A � � the first case can be
eliminated by choosing ωr,a with rP � K .

For A = � choose any a with Z(a) = � such that Q := {P ∈ P : vP(a) > 0}
is infinite. Write Q = Q1 � Q2 with both Q1 and Q2 infinite and choose any r such that
vP(r) = vP(a) − 1 for P ∈ Q1 and vP(r) = vP(a) for P ∈ Q2.

The group element (x, k) fixes the point ωr,a if and only if ka R̂∗ = a R̂∗ (so that k ∈ R∗)
and x + (k − 1)r ∈ a R̂. If k � 1, this last condition gives r ∈ (1/(k − 1))(a R̂ − x). When
x = 0 this is clearly impossible because the factor 1/(k − 1) only reduces the valuation
at finitely many places. When x � 0 this is also impossible because subtracting x reduces
to zero the valuation at all primes in Q except possibly at the finitely many primes P that
satisfy vP(k)� 0.

As a direct corollary of the above result we get the following.

COROLLARY 3·5. The action of K � K ∗ on �A f is essentially free.

Proof. The points ωr,a considered in the last part of the proof of Lemma 3·4 (for the case
A = �) have trivial stabilizers and their orbits are dense by Lemma 3·1.

We are now ready for our main result, namely the characterization of the primitive ideal
space of the C*-algebra T[R] from [5]. Recall that T[R] can be realized as the full corner in
the crossed product C0(�A f ) � K � K ∗ corresponding to the full projection 1�R̂

associated
to the clopen subset �R̂ ⊂ �A f as in [5, proposition 5.1].

THEOREM 3·6. Let 2P denote the power set of the set of prime ideals of R with the
power-cofinite topology. For each subset A of P let IA be the kernel of the compression to
T[R] of the induced representation corresponding to a point ωr,a with Z(a) = A and trivial
stabilizer. Then the map A �→ IA is a homeomorphism of 2P to Prim T[R].
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Proof. The compression by a full projection respects unitary equivalence and gives a
homeomorphism of primitive ideals, see, e.g. [11, lemma 2·7]. Hence the result is a direct
consequence of Lemmas 3·2 and 3·4 and of Corollary 3·5 above.

Remark 3·7. Since the action of K � K ∗ on �A f is essentially free, Sierakowski’s the-
orem (Theorem 2·1) also gives a direct correspondence between the ideals of T[R] and the
invariant ideals in C0(�A f ), i.e., the invariant open sets in �A f , which are in bijection to the
open subsets of O(�A f )�2P , since every invariant open set is the union of the quasi-orbits
it contains.

Remark 3·8. In the situation of [11, theorem 2·8], where only the multiplicative action
of Q∗

+ on the finite (rational) adeles is considered, the nontrivial isotropy appears in the
primitive ideal space through the infinite torus Q̂∗+ sitting above the only point with nontrivial
isotropy. This had originally led us to believe that T[R] would have a complicated primitive
ideal structure. Thus Lemma 3·4 was a welcome surprise: the stability subgroups do not play
a role in the primitive ideal space of T[R], ultimately due to the additive action of R.

Remark 3·9. The description of the primitive ideal space shows that there is only one
maximal ideal in T[R], namely the primitive ideal IP corresponding to the set P viewed
as an element of 2P . Therefore, the quotient T[R]/IP is the only simple quotient of T[R],
which is isomorphic to the ring C*-algebra A[R] considered by Cuntz and Li in [4].
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