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Stability of rotating non-smooth complex fluids
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We extend the classical energy criterion for stability, the Lagrange–Dirichlet theorem,
to rotating non-smooth complex fluids. The stability test so developed is very general
and may be applied to most rotating non-smooth systems where the spectral method
is inapplicable. In the process, we rigourously define an appropriate coordinate system
in which to investigate stability – this happens to be the well-known Tisserand mean
axis of the body – as well as systematically distinguish perturbations that introduce
angular momentum and/or jumps in the stress state from those that do not. With
a view to future application to planetary objects, we specialize the stability test
to freely rotating self-gravitating ellipsoids. This is then employed to investigate
the stability to homogeneous perturbations of rotating inviscid fluid ellipsoids. We
recover results consistent with earlier predictions, and, in the process, also reconcile
some contradictory conclusions about the stability of Maclaurin spheroids. Finally,
we consider the equilibrium and stability of freely rotating self-gravitating Bingham
fluid ellipsoids. We find that the equilibrium shapes of most such ellipsoids are
secularly stable to homogeneous perturbations that preserve angular momentum, but
not otherwise. We also touch upon the effect of shear thinning on stability.
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1. Introduction
Investigations into the shape of rotating self-gravitating homogeneous fluid ellipsoids

have been carried out continuously since the time of Newton who, in contradistinction
to Cassini posited that the Earth was flattened at the poles. Maclaurin later identified
a class of oblate fluid ellipsoids that now carry his name. For a long time non-
oblate shapes were thought to be impossible until Jacobi indicated that truly triaxial
fluid ellipsoids can persist in equilibrium; this set of equilibrated shapes are now
known as Jacobi ellipsoids that contain the Maclaurin spheroids as a special case.
Dedekind, employing Dirichlet’s equations describing homogeneously deforming self-
gravitating inviscid fluids, found that it is possible that a rotating ellipsoid’s shape
be unchanging, in spite of coaxial internal vortical motion; this defines the Dedekind
equilibrium sequence. Later, Riemann identified all possible scenarios when a rotating
fluid ellipsoid retains its shape; these are the Riemann ellipsoids that have the Jacobi
and Dedekind ellipsoids as particular instances. For a more detailed history of the
subject we direct the interested reader to Chandrasekhar (1969). Investigations into
non-ellipsoidal shapes and/or inhomogeneous fluid masses due to Lyapunov, Poincare,
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FIGURE 1. Examples of non-smooth rheological responses in one dimension. The fluid
remains rigid until the shears stress exceeds Y , beyond which it may flows as a fluid with
no, constant or changing viscosity. The non-smoothness is due to the discontinuity in slope at
the yield point.

Darwin, Jeans, Leichtenstein and others are documented in Jardetzky (1958) and
Hagihara (1970).

In contrast to the question relating to their equilibrium shapes, enquiries into the
stability of shapes did not commence until Riemann (1860). Riemann, employing
the Lagrange–Dirichlet theorem, a particular case of the energy criterion, cf. § 4,
and Dirichlet’s framework for homogeneously deforming ellipsoids, investigated the
stability of the Riemann ellipsoids. Riemann showed, for example, that the Maclaurin
spheroids were secularly stable for axes ratios β = a3/a1 greater than βR = 0.3033.
Here we recall that systems found stable by Lagrange–Dirichlet theorem are labelled
secularly stable. On its face Riemann’s result appears surprising, as it ignores the
bifurcation of the Jacobi ellipsoids from the Maclaurin sequence when β equals
βJ = 0.5827. In fact, later, Jeans (1961, p. 213) and Lyttleton (1953, p. 45)
demonstrated that the Lagrange–Dirichlet stability criterion applied directly to the
Navier–Stokes equations predicts that Maclaurin spheroids with axes ratio beyond βJ

are secularly stable. However, no comment is made about why these results are at
variance with Riemann’s. Chandrasekhar, along with Lebovitz in the 1960s, employed
moments of the Navier–Stokes equation, the so-called virial method, to investigate
rotating fluid ellipsoids in a unified manner; much of this work is collected together
in Chandrasekhar (1969). They followed a spectral method to identify exponentially
growing eigenmodes and thereby probe the stability of these ellipsoids. In particular,
they confirmed the results of Jeans and Lyttleton, but also showed that for axes ratios
between βR and βJ , inviscid Maclaurin ellipsoids were ordinarily stable. We note that
systems found stable by a spectral analysis are said to be ordinarily stable. Again, no
reason as to why Riemann predicts secular stability for β > βR was provided. Stability
to perturbations of higher modes were investigated by Poincare, Lyapunov, Jeans,
Darwin, Cartan, Chandrasekhar and others, by both energy and spectral methods,
and excellent accounts are available in the monographs by Lyttleton (1953) and
Chandrasekhar (1969). In spite of its antiquity, the equilibrium, stability and dynamics
of rotating fluid masses continues to be an active research field; see, e.g., Lebovitz
(1998).

We are interested in the stability of rotating complex fluid ellipsoids that follow
a non-smooth rheology. Several examples of non-smooth constitutive responses in
one dimension are shown in figure 1. Our investigation is motivated by the growing
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Stability of rotating non-smooth complex fluids 73

interest in the origins and dynamics of minor planets such as asteroids and small
moons. Several of the near-Earth asteroids and recently discovered small moons of
the giant planets are suspected to be granular aggregates held together by their own
gravity; see, e.g., Richardson et al. (2002). In fact, most smaller main belt asteroids
with diameters less than 50 km may also be rubble piles; see, e.g., Bottke et al. (2002).
Granular aggregates remain immobile at low stresses, but begin to flow at higher loads,
and are often approximated by non-smooth constitutive laws. Indeed, Jop, Forterre &
Pouliquen (2006) have suggested that Bingham fluids in which both the viscosity and
the yield stress depend on the local pressure are good models for granular aggregates
as they transition from a solid-like phase to begin flowing slowly.

A non-smooth rheology precludes stability analysis by the spectral method. We,
therefore, extend the classical energy criterion for stability, the Lagrange–Dirichlet
theorem, to rotating systems displaying a non-smooth constitutive response. Special
care is taken to account for the body’s rotation and its non-smoothness and this
leads us to define an appropriate coordinate system in which to investigate stability
– this turns out to be the familiar Tisserand’s mean axis of the body – as
well as to systematically differentiate perturbations that do not preserve angular
momentum and/or introduce jumps in the stress state from those that do. The
stability test so developed is sufficiently general to be applicable to any rotating
non-smooth continuous system perturbed by any kinematically permitted perturbation.
Here, for simplicity, we specialize our stability test to homogeneous perturbations,
i.e., perturbation modes wherein the body deforms homogeneously, and consider
first inviscid fluid ellipsoids. We recover results consistent with those of Jeans,
Lyttleton and Chandrasekhar, and, in the process, clarify the reasons behind Riemann’s
apparently incompatible predictions about the stability of Maclaurin spheroids. Finally,
we consider the stability of freely rotating self-gravitating Bingham fluid ellipsoids as
an example of our stability criterion’s ability to address non-smooth systems. As we
discuss in greater detail in § 3.2, Bingham fluids remain rigid until the stress state
violates a yield condition; see figure 2. This example also serves as a first step towards
analysing the stability of granular planetary objects; actual application to asteroids will
be pursued elsewhere.

We next develop equations that govern homogeneous deformations of ellipsoids.
These will be employed to first identify equilibrium regions for rotating self-gravitating
fluid ellipsoids and, then, to investigate their stability to homogeneous perturbations.

2. Homogeneous dynamics
Equations governing the dynamics of a homogeneously deforming uniform fluid

ellipsoid have been developed by Riemann, Lebovitz, Chandrasekhar and others; see
Chandrasekhar (1969). These were extended to granular aggregates by Sharma, Jenkins
& Burns (2009). We summarize the derivation for completeness, and more details may
be found in Sharma et al. (2009).

Consider a coordinate system O rotating at a possibly time-varying rate ω(t). With
ω we identify an antisymmetric angular velocity tensor Ω such that for any vector a,

ω × a=Ω · a; (2.1)

correspondingly ω is Ω ’s axial vector. The linear momentum balance in O is

∇ · σ + ρ (b− Ω̇ · x−Ω 2
· x− 2Ω ·v

)= ρv̇, (2.2)
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FIGURE 2. The yield surface of a Bingham fluid appears as a circle of radius |s| when
viewed along the pressure axis σ1 = σ2 = σ3 in principal stress/strain space. The point marked
σ E corresponds to the stress state at equilibrium. The strain rate DE compatible with σ E is
normal to the yield surface at E. In case the incompatible strain rate D0 shown by the grey
vector is superimposed by a perturbation, the equilibrium stress state immediately shifts to
a location σ 0 on the yield surface where the imposed strain rate would be compatible. This
leads to jump 1σ in the stress state. Also shown is an arbitrary stress state σ that may lie
within or on the yield surface.

where σ is the stress tensor, ρ is the density, b is the body force, x is a material
element’s location, v is the material element’s velocity relative to O , and all time
derivatives here and henceforth will be in the rotating frame O . Taking the tensor
product of the above equation with x and integrating over the body’s volume V , we
obtain after utilizing Green’s theorem that

− σV + MT − (Ω̇ +Ω 2
)
· I + 2Ω ·

∫
ρv⊗ x dV =

∫
ρv⊗ ẋ dV, (2.3)

where we recall that the tensor product between vectors a and b is denoted by a ⊗ b
with (a⊗ b)ij = aibj,

σ = 1
V

∫
σ dV (2.4)

is the average stress within the body,

I =
∫
ρx⊗ x dV (2.5)

is the inertia tensor,

M =
∫
ρx⊗ b dV (2.6)

is the body-force moment tensor, and we have set the terms involving surface traction
to zero preempting our application to bodies with free surface. Two comments are
in order. First, the inertia tensor I should be compared with the commonly employed
Euler’s moment of inertia tensor J in rigid body dynamics, cf. (4.4). Second, the
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Stability of rotating non-smooth complex fluids 75

torque, which is the cross-product of the force with its moment arm, is related to the
axial vector corresponding to M’s antisymmetric part.

We now restrict ourselves to homogeneous deformations, wherein the relative
velocity

v= L · x, (2.7)

in terms of the velocity gradient L(t) that depends only on time, but not x.
Furthermore, we will here focus on isolated ellipsoidal bodies with uniform density, so
that the only external force is due to the body’s self-gravity. The ellipsoid’s semi-major
axes are taken to be a1 > a2 > a3, while the axes ratios are α = a2/a1 and β = a3/a1.
The gravitational force per unit mass at a location x within such an ellipsoid is

b=−2πρGA · x, (2.8)

where G is the universal constant of gravitation, and A is a shape tensor that captures
the effect of the ellipsoidal shape on its internal gravitational field; see, e.g., Kellogg
(1953, p. 194). The tensor A is diagonalized in the ellipsoid’s principal axes system
with

A1 = A2 =− β2

1− β2
+ β

(1− β2)
3/2 sin−1

√
1− β2 (2.9)

for oblate ellipsoids. For prolate objects (1> α = β),

A2 = A3 = 1
1− β2

− β2

2 (1− β2)
3/2 ln

(
1+√1− β2

1−√1− β2

)
, (2.10)

and, finally, for truly triaxial ellipsoids (1> α > β)

A1 = 2αβ

(1− α2)
√

1− β2
(F[r, s] − E[r, s]) (2.11a)

and

A3 = 2αβ

(α2 − β2)
√

1− β2

(
α

β

√
1− β2 − E[r, s]

)
, (2.11b)

where F and E are, respectively, elliptic integrals of the first and second kinds with
argument r =√1− β2 and parameter s =√(1− α2)/(1− β2); see, e.g., Abramowitz
& Stegun (1965, p. 587). In each case, we provide only two of the Ai, with the third
component calculated from

A1 + A2 + A3 = 2; (2.12)

see Chandrasekhar (1969, p. 54, equation (108)). Employing b from (2.8) in (2.6) we
find that

M =−2πρGA · I. (2.13)

Utilizing this in (2.3) we find that

−σV − (2πρGA+ Ω̇ +Ω 2 + 2Ω · L
)
· I = (L̇+ L2

)
· I. (2.14)

In the above equation, the terms −Ω̇ · I,−Ω 2 · I and −2Ω ·L · I represent contributions
from, respectively, the rotational inertia, centrifugal and Coriolis forces. The rate of
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change of the inertia tensor İ may be obtained by differentiating (2.5) and employing
(2.7), to find

İ = L · I + I · LT. (2.15)

We emphasize that the development so far has been independent of material properties.
Given an appropriate rheology relating σ to deformation and/or its rate, the above
equations follow the dynamics of a homogeneously deforming self-gravitating uniform
ellipsoid.

3. Equilibrium shapes
A rotating ellipsoid’s equilibrium may be defined as one in which the ellipsoid’s

shape remains unchanging, i.e., externally the ellipsoid appears to rotate rigidly at
a constant rate. This, however, does not preclude the possibility that the material
within the ellipsoid may be rotating at a rate different from that of the ellipsoid’s
principal axes. In fact, in inviscid fluids wherein vortical motion may be sustained
indefinitely, this leads to a class of equilibrium solutions known collectively as
Riemann ellipsoids, see, e.g., Chandrasekhar (1969, p. 129). Because we ultimately
aim to address dissipative fluids wherein persistent vortical motion is impossible at
equilibrium, we henceforth ignore this alternative, assuming that, at equilibrium, an
observer rotating with the ellipsoid’s shape’s principal axes will find material points at
rest.

To identify equilibrium shapes, we align the coordinate frame O with the
equilibrated ellipsoid’s principal axes assuming them to rotate at a rate ωE = ωEê3

about the ellipsoid’s axis of maximum inertia. This latter choice is prompted by the
knowledge that in the presence of any dissipation, freely tumbling bodies ultimately
align into a state of pure rotation about their axis of maximum inertia; see, e.g.,
the general discussion in Greenwood (1988, p. 408) and quantitative formulations in
the context of planetary bodies by Burns & Safronov (1973) and Sharma, Burns &
Hui (2005). Given this choice of O and the preceding discussion, L = L̇ = 0 = Ω̇ at
equilibrium, and (2.14) reduces to

σ EV =− (A+Ω 2
E

)
· I, (3.1)

where time is scaled by 1/
√

2πρG and the subscript ‘E’ identifies quantities at
equilibrium. With an eye to the stability analysis to follow, we explicitly identify
only those quantities that change instantaneously following a velocity perturbation;
other quantities, such as volume V , will be assumed to take their equilibrated values.
Non-dimensionalizing stress by (3/20π)(2πρGm) (4π/3V)1/3, we find that

σ 11 =
(
ω2

E − A1

)
(αβ)−2/3, σ 22 = α2

(
ω2

E − A2

)
(αβ)−2/3, and

σ 33 =−β2A3(αβ)
−2/3

}
(3.2)

are the stress components in O . Note the absence of shear stresses.
Depending on the ellipsoid’s constituent material the average stress computed above

cannot assume all values; they will be constrained by yield conditions appropriate to
the material. We explore this in the context of two very different fluids.

3.1. Newtonian fluids
The stress tensor in inviscid incompressible fluids is simply σ = −p1, where the
pressure p=−tr(σ ) /3. Averaging over the volume provides σ =−p1. Thus, the stress
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FIGURE 3. Equilibrium regions for oblate Bingham fluid ellipsoids with α = 1. The critical
curves are identified by the corresponding Bingham yield stress Y .

components evaluated above are all equal, providing the relationships

ω2
E − A1 = α2

(
ω2

E − A2

)=−β2A3 =−pE(αβ)
2/3. (3.3)

Given Ai’s dependence on the axes ratios, the above balances help us relate the
equilibrated ellipsoid’s shape to its rotation rate at equilibrium.

Consider first the possibility of a spheroidal form wherein a1 = a2 > a3, i.e., α =
1 > β. Thus, A1 = A2, and we find that an inviscid fluid self-gravitating rotating
spheroid will be in equilibrium if

ωE =
(
A1 − β2A3

)1/2
. (3.4)

Because A1 and A3 are expressible in terms of β from (2.9), the above defines the
heavy grey curve in the shape–spin (β–ωE) space of figure 3; these are the Maclaurin
spheroids. Only those oblate fluid ellipsoids that lie on this curve will persist in
equilibrium.

Next, we explore the possibility of prolate ellipsoidal shapes at equilibrium. Setting
a1 > a2 = a3, i.e. 1 > α = β in (3.3) and utilizing (2.10) we find that proloidal shapes
are not possible for fluids. Finally, if a1 > a2 > a3, i.e., 1 > α > β, combining (3.3)
with the formulae for Ai in (2.11), we find that truly triaxial ellipsoidal shapes are
indeed possible for fluids provided that

ωE =
{

A1(α, βJ)− α2A2(α, βJ)

1− α2

}1/2

, (3.5)
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where βJ is the solution to the nonlinear equation

β = α√
1− α2

(
A2 − A1

A3

)1/2

. (3.6)

This defines a curve in the three-dimensional shape–spin (α, β, ωE) space on which lie
the Jacobi ellipsoids.

The analysis above thus recovers classically known results; see, e.g., Chandrasekhar
(1969). Note that given an ellipsoidal shape, a fluid body can sustain only a unique
rotation rate at equilibrium. This is because fluids cannot resist shear in the absence
of differential motion. We next consider a class of fluids that, even in the absence of
differential motion, have finite shear resistance.

3.2. Bingham fluids
Bingham fluids are characterized by their ability to support shear stresses until
some critical value is reached whereupon they yield and begin flowing as a fluid.
Oldroyd (1947) and Prager (1961, p. 136) put forward three-dimensional constitutive
relationships for Bingham fluids. The material is assumed rigid until it violates the
yield condition

|s|6 Y, (3.7)

where

s = σ + p1, (3.8)

is the deviatoric stress tensor, |s| = √sijsij is a measure of s’s magnitude, and Y is the
Bingham yield stress that is assumed constant. Post-yield, the deviatoric stress

s = Y
D

|D| , (3.9)

where D is the flow’s stretching rate after yielding and, without loss of generality,
we assume that viscosity is absent. Viscosity’s presence does not change either the
equilibrium’s location or its secular stability; see, e.g., Ziegler (1968, p. 91). The black
curve in figure 1 depicts this rheology in one dimension.

While the formal derivation is available in Oldroyd (1947) or Prager (1961), we
discuss the key idea underlying (3.9). The constitutive relation (3.9) is obtained by
assuming that strain rates after yielding are normal to the yield surface. For example,
the strain rate post-yield DE when the stress state coincides with σ E in figure 2 is
restricted to be along the normal at that location; such a strain rate is said to be
compatible. Taking the gradient of (3.7) now provides a flow rule

D = q̇s (3.10)

in terms of a proportionality constant q̇ that relates the strain rate after yielding in
terms of the deviatoric stress at yield. Combining (3.10) and (3.7) furnishes (3.9). The
normality assumed above is a consequence of the maximum dissipation postulate; see,
e.g., Lubliner (1990, p. 117). Referring again to figure 2, this postulate hypothesizes
that (σ − σ E) : DE > 0, where for two tensors B and C, B : C = BijCji. Taking σ
infinitesimally close to σ E and on the yield surface, we obtain the equivalent statement
that during yielding the incremental work dσ E : DE is always positive. Because dσ E

is tangent to the yield surface at the location E, we recover normality of the post-
yield strain rate DE at E. This postulate is often invoked when modelling materials
displaying distinct constitutive responses separated by a yield surface.
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Finally, we make two additional comments. First, we note that flowing Bingham
fluids dissipate energy. However, in contrast to viscous dissipation, the dissipative
terms D/|D| is rate independent and should be compared with dry friction. Second,
while it is impossible to find the stress tensor everywhere within a rigid body, say,
e.g., within the Bingham fluid prior to yielding, the volume-averaged stress is exactly
known from (3.1), and in the following we employ the constitutive relationships after
averaging.

A Bingham fluid ellipsoid will be in equilibrium as long as the yield condition (3.7)
is not violated. This inequality delineates a region in the three-dimensional α–β–ωE

space that is bound by an upper and a lower critical surface obtained by combining the
yield condition (3.7) at equality with the average stress obtained from (3.1):

ω2
E =

1
2(1− α2 + α4)

{
(2− α2)A1 − α2(1− 2α2)A2 − β2(1+ α2)A3 ±

√
3d
}
, (3.11)

where

d = 2(1− α2 + α4) (αβ)4/3 Y2 − {α2(A1 − A2)+ (1− α2)β2A3

}2
, (3.12)

and the Bingham yield stress Y has been scaled by (3/20π)(2πρGm) (4π/3V)1/3.
When Y is zero, we retrieve the case of inviscid fluids. Then, for d to be non-negative,
it is necessary that either α = 1 and we recover the Maclaurin spheroids, or β satisfies
(3.6) corresponding to the Jacobi ellipsoids.

To gain insight into this three-dimensional equilibrium landscape, we, once again,
consider oblate, prolate and triaxial shapes in turn; this corresponds to taking
appropriate two-dimensional slices. Setting α = 1 and A1 = A2 in (3.11), we find
that oblate Bingham fluid ellipsoids with yield stress Y may reside in equilibrium
within the region in ωE–β space bound by the two critical curves

ω2
E = A1 − β2A3 ±

√
3
2 β

2/3Y; (3.13)

note that the lower curve may not exist for all Y . Figure 3 displays the equilibrium
regions for several values of Y . At fixed β, crossing the upper critical curve leads
to yielding due to excessive centrifugal stresses, while the lower critical curve
corresponds to an inability to support equatorial gravitational stress at low rotation
rates.

Proloidal equilibrium shapes are obtained by taking α = β and A2 = A3 in (3.11).
The resulting equilibrium zones for various values of Y are shown in figure 4. Note
that while inviscid fluid ellipsoids could not exist, a non-vanishing yield stress allows
proloidal equilibrium shapes. Finally, figure 5 shows the equilibrium landscape for
‘average’ triaxial ellipsoids satisfying α = (1 + β)/2. As Y→ 0, the equilibrium zones
shrink to a point that represents the intersection of the inviscid Jacobi sequence of
ellipsoids with the plane α = (1+ β)/2.

The equilibrium analysis of this section mirrors closely work done in the context
of rubble pile asteroids by Holsapple (2001, 2007) and Sharma et al. (2009); see
also Harris, Fahnestock & Pravec (2009). Granular aggregates are often modelled via
pressure-dependent yield surfaces, e.g., the Drucker–Prager yield criterion, that lead
to post-yield stresses very similar to (3.9); see, e.g., Chen & Han (1988, p. 94).
The ensuing equilibrium landscape for oblate, prolate and average triaxial ellipsoids
is similar to figures 3–5; see figures 3 and 4 of Sharma et al. (2009) and figure 7
of Holsapple (2007). Complementary computational work employing hard- and soft-
particle discrete-element methods was done by, respectively, Richardson, Elankumaran
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FIGURE 4. Equilibrium regions for prolate Bingham fluid ellipsoids with α = β; cf. figure 3.
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FIGURE 5. Equilibrium regions for average triaxial Bingham fluid ellipsoids with
α = (1+ β)/2; cf. figure 3.
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& Sanderson (2005) and Sanchez & Scheeres (2012). Sharma et al. (2009) and
Sanchez & Scheeres (2012) show that results obtained via homogeneous dynamics
matched computational results well, and this engenders confidence in our predicting
failure on the basis of a volume-averaged stress field.

We now proceed to investigate the stability of these equilibrium regions.

4. Stability criterion
Lyapunov’s definition of local stability requires that small perturbations of a

system lead to small departures of the system’s coordinates from their equilibrium
values; see, e.g., LaSalle & Lefschetz (1961, p. 28). There are fundamentally two
methods of testing local stability: Lyapunov’s first method also referred to as the
linear stability/spectral analysis, and the energy criterion whose classical version is
the Lagrange–Dirichlet theorem. Depending on the approach employed, a system is
said to be spectrally/ordinarily or, respectively, energetically/secularly stable/unstable.
The former proceeds by linearizing the governing dynamical equations about the
equilibrium point and then finding the growth/decay rates of the linearized system’s
eigenmodes as determined by the associated eigenvalues. It is necessary, therefore, that
the system’s governing equations be amenable to linearization. Given this requirement,
it is not possible to investigate the stability of systems having non-smooth constitutive
behaviours via a spectral analysis.

The energy criterion’s classical version is the Lagrange–Dirichlet theorem:

(i) a conservative system’s equilibrium is stable if the system’s total potential energy
is minimized in that configuration.

For non-smooth dissipative systems an alternative incremental form is more useful:

(ii) a system’s equilibrium state is stable if during a kinematically permissible
infinitesimal displacement the work done on the system by external agencies is
less than the total energy stored and/or dissipated by the system.

Statement (i) may be obtained as a special case of (ii) by adopting a strain energy
function and appropriate force potentials as is possible for conservative systems;
cf. § 4.2. As stated, the energy criterion is applicable to systems that are stationary
at equilibrium. However, by a judicious application of D’Alembert’s principle it is
possible to reduce a system’s dynamical configuration to rest; we did so when writing
(2.2). In that case, inertial forces are considered as external forces.

In finite dimensions, under appropriate conditions, both local stability tests noted
above ensure the system’s local stability in the sense of Lyapunov; see, e.g., Ziegler
(1968). These tests may not, however, be directly ported to continuous systems; see,
e.g., Movchan (1959, 1960) or Knops & Wilkes (1966, 1973). We will not explore
this further as, ultimately, we will consider dynamical evolution only in the space
of homogeneous deformations that constitutes a finite-dimensional system. The reader
interested in conservative/dissipative continuous systems may refer to texts such as
Nguyen (2000) or Koiter (2008). Finally, note that in finite dimensions secularly stable
systems are also spectrally stable, but the converse may not always hold. In particular,
gyroscopic forces may stabilize systems in conditions wherein the energy test predicts
instability; see Ziegler (1968, p. 73).

Before formulating the energy criterion in the context of freely rotating deformable
bodies, it is necessary to discuss the coordinate system’s role in a stability analysis.
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4.1. Coordinate system
Lyapunov’s definition requires measuring the departure of the system’s coordinates
from equilibrium. Therefore, to avoid unphysical results in case of systems that are
perturbed from a dynamical configuration it is necessary that the system’s coordinates
be measured in an appropriately moving frame. For example, a rotating rigid body
viewed from a fixed coordinate system will always be reported as unstable, as the
body’s rotation will carry every material point far away from its initial location.
A coordinate system aligned with the body’s principal axes of inertia rectifies this
problem for rigid objects, but may not always be satisfactory for deformable bodies.
For example, the fluid Dedekind ellipsoids discussed in the Introduction will have
uniform relative vorticity in a coordinate system aligned with the ellipsoid’s principal
axes. This rotating coordinate system, thus, suffers from the same drawback as that of
a fixed frame.

Deformable rotating systems conserve angular momentum by modifying their spins
to compensate not only for the action of external torque, but also changes in
inertia. This was exemplified in the context of a freely rotating gaseous mass by
Schwarzschild in 1897; see the discussion in Jeans (1961, article 183, p. 199). Because
post-perturbation the freely rotating gaseous mass conserves angular momentum, any
change in its shape, and consequently its moment of inertia, is compensated for by
appropriately adapting the rotation rate. So, for example, if the rotating mass flattens
in a plane orthogonal to the spin axis, its rotation rate will decrease. Consequently,
if the stability analysis were carried out in a coordinate system whose rotation
rate remains fixed, at, say, the gaseous mass’ equilibrium rate, the latter’s mean
rotation may lag/lead the coordinate system’s. Material points will then appear to
diverge from their equilibrium locations that will be identified as instability, which,
although mathematically correct, is physically unreasonable. This may happen even
if the rotating frame moves with the body’s inertia ellipsoid’s principal axes; recall
the case of Dedekind ellipsoids. A body’s mean rotation is linked to the rigid
rotation embedded in its motion, which needs to be isolated, and then ignored, by
the coordinate system during a stability analysis.

One way to locate such an appropriate coordinate system O is to express in it the
body’s total angular momentum about its mass centre:

H =
∫

V
x× ρ (v+ ω × x) dV =H rel +

∫
V
x× (ω × x) ρ dV, (4.1)

where ω is O’s rotation rate, and we have introduced

H rel =
∫

V
x× ρv dV (4.2)

as the relative angular momentum observed in O . Expanding the triple product in H’s
expression, we find that

H =H rel + J ·ω. (4.3)

where

J =
∫

V

(|x|21− x⊗ x
)
ρ dV = tr I − I. (4.4)

is the Euler’s moment of inertia tensor. The body’s total angular momentum is thus a
sum of its relative angular momentum observed in a frame O rotating at ω and the
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angular momentum the body would have were it rigidly attached to O . It is always
possible to locate a coordinate system in which H rel vanishes; these are the Tisserand’s
mean axes of body (Munk & MacDonald 1960, p. 10). In fact, Tisserand’s mean
axes minimize the difference

∫
V |u− ω × x|2ρ dV between the actual velocity u of a

material point and the velocity that it would have were the body rigid and rotating
at ω. Thus, the Tisserand’s mean axes of body appear to best isolate the mean rigid
rotation within a body’s motion and they, therefore, define an appropriate frame O in
which to investigate stability of a freely rotating system. We now see how O’s rotation
rate changes.

We investigate the system’s stability by providing an initial velocity perturbation
vo and then following its subsequent growth/decay. Such perturbations may abruptly
change the system’s angular momentum H . Therefore, because the frame O maintains
H rel at zero, its rotation rate may change instantaneously from ωE just before
perturbation (t = 0−) to, say, ω0 immediately after (t = 0+). We anticipate future
application to the rotating ellipsoids of § 3, and identify O’s angular velocity at t = 0−

with their equilibrium rate ωE. We now relate ω0 and ωE.
The velocity field vo may be perceived in two different ways, namely, as vo in O at

t = 0−, and as v0 in O at t = 0+. Let

Hp =
∫

V
x× voρ dV (4.5)

be the angular momentum introduced by the velocity perturbation, so that H|t=0+ =
Hp + H|t=0− . Because H rel |t=0− = H rel |t=0+ = 0, (4.3) suggests that

J ·ω0 =Hp + J ·ωE, (4.6)

so that

ω0 = ωE + J−1
·Hp. (4.7)

Therefore, unless the velocity perturbations introduce no angular momentum, the frame
O’s rotation rate will jump, while if Hp = 0, ω0 = ωE. It will also be necessary to
relate v0 to ωE and vo. From the definitions of vo,v0,ωE and ω0 it follows that

v0(x, t)= vo(x, t)− (ω0 − ωE)× x= vo(x, t)− (J−1
·Hp

)× x. (4.8)

Again, if Hp vanishes, v0 equals vo.
Finally, post-perturbation H rel remains zero. The total angular momentum H of a

free body also remains constant. Thus, taking the time derivative of (4.3) with respect
to an observer in O , we must have

Ḣ =−ω ×H = d
dt
(J ·ω)= J̇ ·ω + J · ω̇, (4.9)

so that, after replacing for H from (4.3), we find

ω̇ =−J−1
·
{
ω × (J ·ω)+ J̇ ·ω

}
. (4.10)

This is the rate at which O’s ω must change during the perturbed motion so that
the body’s angular momentum relative to O is preserved. Specializing to bodies that
post-perturbation rotate about a principal axes of inertia, we obtain

ω̇ =−J−1
· J̇ ·ω. (4.11)
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For homogeneously deforming ellipsoids, J̇ is obtained by differentiating (4.4) and
employing (2.15):

J̇ = tr(L · I + I · LT) 1− (L · I + I · LT
)
. (4.12)

4.2. The energy criterion
In the past, Hill (1957), Chakrabarty (1969) and Storåkers (1977) have put forward
increasingly generalized versions of the energy criterion for non-smooth rigid-plastic
materials, with the last author also addressing systems that rotate, albeit at a constant
rate. We extend the energy criterion to freely rotating non-smooth systems. The
stability criterion so derived subsumes as special cases results of the works cited
above.

The equilibrated body is perturbed at time t = 0 by an initial velocity field
v(x, 0) = vo (x) field relative to the rotating frame O that rotated at ωE up until
t = 0−. As discussed in § 4.1, O’s rotation rate will change to ω0 at t = 0+ to keep
H rel zero; see (4.7). Thus, relative to O at t = 0+, the body’s material points will
appear to have an initial velocity v0(x); see (4.8). Subsequently, over the small time
δt, these material points will displace by

∫ δt
0 v dt. The work done by external agencies

during δt is

δW =
∫ δt

0

∫
V(t)
ρ bR ·v dV dt +

∫ δt

0

∫
S(t)

N ·v dS dt =
∫ δt

0

∫
V(t)
ρ bR ·v dV dt, (4.13)

as the surface forces N are absent in the current problem and bR = b− Ω̇ ·x−Ω 2 ·x−
2Ω ·v is the apparent body force experienced in the rotating frame O . Meanwhile, the
energy stored/dissipated over δt is

δE =
∫ δt

0

∫
V(t)
σ : L dV dt. (4.14)

Everywhere above, the integration is over the body’s possibly changing current
volume.

Stability is ensured by the energy criterion if δE > δW. This inequality may be
alternatively viewed by taking dot product of (2.2) with the velocity v and integrating
first over the volume and then in time from 0 to δt, to find that

δW − δE =
∫ δt

0

∫
V(t)
ρ

d
dt

(
v2

2

)
dV dt = δEk, (4.15)

the change in the relative kinetic energy observed in the frame O . The energy criterion
guarantees stability in O if the relative kinetic energy’s increment is negative, i.e.

δEk < 0. (4.16)

Employing earlier estimates for δE and δW, and replacing for bR provides

δEk =
∫ δt

0

∫
V(t)
ρ
(
b−Ω 2

· x− Ω̇ · x
)
·v dV dt −

∫ δt

0

∫
V(t)
σ : L dV dt, (4.17)

where the Coriolis’ force term has dropped out because (2Ω ·v) ·v= (2ω × v) ·v≡ 0.
The Coriolis’ force, which is gyroscopic in nature, does not do any work, and so is
overlooked by the energy criterion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

27
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.271


Stability of rotating non-smooth complex fluids 85

Examining (4.16) is not straightforward, as the integrals in δEk’s expression are not
easily resolved. Within the confines of a local stability analysis, the inequality (4.16)
needs to be tested only for small displacements following a velocity perturbation,
i.e. over small time δt. This prompts the expansion

δEk = δ(1)Ekδt + δ(2)Ek
1
2δt

2 + · · · . (4.18)

According to the energy criterion, the system is locally stable if the first non-zero term
in the above expansion is negative. Here we restrict ourselves to checking only the
first two terms. To facilitate a δEk’s series expansion, we interchange the orders of
temporal and spatial integration by converting the domain of spatial integration from
the time-dependent current volume to the fixed initial unperturbed volume V0:

δEk =
∫

V0

∫ δt

0
ρ0

(
b−Ω 2

· x− Ω̇ · x
)
·v dt dV0 −

∫
V0

∫ δt

0
σ : LJ−1 dt dV0 (4.19)

where ρ0 is the density at equilibrium and J = ρ/ρ0 = dV0/ dV is the Jacobian relating
the current and equilibrium volumes. Expressions for the ith-order estimate δ(i)Ek are
found by expanding various fields above in a Taylor series about t = 0+. We obtain

δ(1)Ek =−
∫

V0

[
σ 0 : L0 −

(
ρ0b0 −Ω 2

0 · x0 − Ω̇ 0 · x0

)
·v0

]
dV0 (4.20a)

and

δ(2)Ek =
∫

V0

[−σ̇ 0 : L0 − σ 0 : L̇0 + σ 0 : L0J̇0 + ρ0

{
ḃ0 −Ω 2

0 ·v0 . . .

· · · − (Ω̇ 0 ·Ω0 +Ω0 · Ω̇ 0 + Ω̈ 0

)
· x0

}
·v0 + ρ0

(
b0 −Ω 2

0 · x0 − Ω̇ 0 · x
)
· v̇0

]
dV0,

(4.20b)

where the subscript ‘0’ indicates evaluation at t = 0+, so that J0 = 1 and Ω̈ 0

is the antisymmetric tensor corresponding to ω̈0. A velocity perturbation cannot
instantaneously change a material point’s location x or fields that depend only on
x, so that accompanying subscripts are henceforth dropped. In contrast, O’s rotation
rate, see (4.7), and the stress field – see figure 2’s caption – may change suddenly, and
we introduce the jumps:

1ω = ω0 − ωE = J−1
·Hp and 1σ = σ 0 − σ E. (4.21)

For small δt, δEk’s sign is the same as δ(1)Ek’s, so that local stability is guaranteed if

δ(1)Ek < 0. (4.22)

Replacing from (4.21) and recognizing power balance at equilibrium, we find that

δ(1)Ek =−
∫

V

[
1σ : L0 + x ·

(
1Ω 2 +1Ω ·ΩE +ΩE ·1Ω − Ω̇ 0

)
·v0

]
dV, (4.23)

where 1Ω is the angular velocity tensor corresponding to the jump 1ω in ω.
The estimate δ(1)Ek vanishes identically if the perturbations are such that: (a) the
stress jump accompanying the applied perturbation do not input any power; (b) no
relative angular momentum Hp is introduced, so that 1Ω = 0; and (c) the contribution∫

V x · Ω̇ 0 ·v0 dV from the frame O’s post-perturbation angular acceleration ω̇0 vanishes.
For those v0 for which δ(1)Ek vanishes, the energy criterion requires that for stability

δ(2)Ek < 0. (4.24)
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With J̇
∣∣

t=0
= tr(L0) , and setting Ω0 =ΩE when Hp = 0, δ(2)Ek becomes

δ(2)Ek =
∫

V

[{σ 0tr(L0) − σ̇ 0} : L0 − σ 0 : L̇0 + ρ
{
ḃ0 −Ω 2

E ·v0 . . . (4.25)

· · · − (Ω̇ 0 ·ΩE +ΩE · Ω̇ 0 + Ω̈ 0

)
· x
}
·v0 + ρ

(
b0 −Ω 2

E · x− Ω̇ 0 · x
)
· v̇0

]
dV.

Once an appropriate constitute law is selected, satisfaction of the inequality (4.22) or
(4.24), as the case may be, with δ(1)Ek and δ(2)Ek given as above, for all kinematically
admissible velocity perturbations ensures local stability, and may be employed to
check the stability of any continuous system. It is practically impossible to check the
inequality (4.22) or (4.24) for all possible admissible fields. Thus, often, a stability
investigation is restricted to velocity perturbations belonging to a functional class,
e.g., the homogeneous deformations introduced previously. This we now do.

4.3. Homogeneous modes
We specialize the energy criterion to investigate the stability of self-gravitating
incompressible homogeneously deforming fluid and Bingham fluid ellipsoids freely
rotating about their axis of maximum inertia ê3. The equilibria of such ellipsoids
were explored earlier. We restrict ourselves to incompressible perturbations of the
kind

vo = Do · x (4.26)

with tr(Do) = 0; these perturbations when observed in the frame O at t = 0− do not
carry any material spin. Nevertheless, (4.5) suggests that these perturbations introduce
the angular momentum

Hp =−2ax sk(I ·Do) , (4.27)

where sk(B) returns a tensor B’s antisymmetric part, while ax sk(B) is the
corresponding axial vector. Thus, (4.7) suggests that O’s rotation rate ω changes
abruptly and from (4.8),

v0 =
(
Do − J−1

·Hp

)
· x=: L0 · x (4.28)

will be the observed velocity perturbation in O at t = 0+ and L0 the corresponding
velocity gradient. Now δEk’s first-order estimate δ(1)Ek developed earlier simplifies to

δ(1)Ek =−
{
1σ 0V + I ·

(
1Ω 2 +ΩE ·1Ω +1Ω ·ΩE − Ω̇ 0

)} : L0. (4.29)

We will have reason to investigate stability at second order only when δ(1)Ek vanishes,
the conditions for which were noted earlier. We probe them assuming homogeneous
dynamics.

Perturbations add angular momentum Hp given by (4.27) unless I and Do commute.
When Hp = 0, 1ω = 0, so that

ω0 = ωE, L0 = Do and v0 = vo = Do · x. (4.30)

Finally, from (4.11), we observe that immediately after the perturbation the frame O’s
angular acceleration ω̇0 does not in general vanish. Its contribution to δ(1)Ek is found
to be proportional to tr(Ω̇ · I · LT)

∣∣
0

after replacing (4.28) in δ(1)Ek’s expression above.
This contribution vanishes with Hp. Thus, when Hp is absent, not only does O’s
rotation rate not jump, its angular acceleration does not affect stability at O(δt).
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Similarly, stress may change suddenly across a perturbation; cf. the caption
to figure 2. In incompressible inviscid fluids this is due to a sudden jump in
pressure. Indeed, in incompressible self-gravitating Bingham fluid ellipsoids restricted
to homogeneous dynamics, the average non-dimensional pressure p may be obtained
by taking the trace of dynamical equations (2.14) and employing (2.12):

p= 1
V

2+ tr(L2 +Ω 2 + 2Ω · L)
3 tr(I−1)

+ Y
tr(D · I−1)

3 |D| tr(I−1)
. (4.31)

Note that we recover the case of inviscid fluids when Y = 0. Thus, the average
pressure in incompressible fluids changes from its equilibrium value pE to p0 instantly
following a velocity perturbation, and we define its jump by

1p= p0 − pE. (4.32)

In Bingham fluids, the stress state may also shift suddenly if incompatible
perturbations are imposed, see figure 2, and we discuss this in a later section.

Perturbations for which both Hp and 1σ ’s power input are zero, δ(1)Ek vanishes,
and δEk’s sign for small δt is regulated by δ(2)Ek. To simplify δ(2)Ek’s expression
given previously we need to evaluate ḃ and v̇0. Employing (2.8) for body force within
self-gravitating bodies, utilizing the second of (4.30), and scaling time by 1/

√
2πρG

as usual, we find

ḃ0 =−Ȧ0 · x− A ·v0 =−
(
Ȧ0 + A ·Do

)
· x. (4.33)

Differentiating (4.28) and employing the second of (4.30), we obtain

v̇0 =
(
L̇0 + D2

o

)
· x. (4.34)

Substituting the above formulae in δ(2)Ek, utilizing (4.30) and incompressibility yields

δ(2)Ek =−
(
Ȧ0 + 4ΩE · Ω̇ 0

)
· I : Do + σ E : D2

oV . . .

· · · − σ E ·1σ : I−1V2 − σ̇ 0 : DoV − σ 0 : L̇0V − Ω̇ 2
0 : I, (4.35)

where Ω̇ 0 is found from ω̇0 obtained by combining (4.11) and (4.12). Computing Ȧ0

is complicated and is done in appendix A. The stress post-perturbation σ 0 is obtained
from a constitutive law. In deriving the above form, we utilized (3.1) and the facts that,
because ωE is along ê3 and Hp = 0, I,Do and Ω 2

E commute, as also do Ω̈ 0, Ω̇ 0 and
ΩE.

For stability to homogeneous perturbations either (4.22) holds with δ(1)Ek given by
(4.29) or, when δ(1)Ek = 0, (4.24) with δ(2)Ek from (4.35) is true. We next consider two
applications.

5. Application
5.1. Inviscid incompressible fluids

In such fluids σ =−p1, so that 1σ =−1p1 and σ̇ 0 =−ṗ01. Stability at first order is
checked by evaluating δ(1)Ek. Replacing σ in (4.29) and recalling that because the fluid
is incompressible, velocity perturbations must be such that tr(L0) = 0, we obtain

δ(1)Ek =−I ·
(
1Ω 2 +ΩE ·1Ω +1Ω ·ΩE − Ω̇ 0

) : L0; (5.1)

note that pressure jump 1p, although present, does not play any role. When the
perturbations are such that δ(1)Ek equals zero, we evaluate δ(2)Ek. Replacing in (4.35)
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for σ 0 and setting tr(Do) = tr(L̇0) = 0, we find

δ(2)Ek =−
(
Ȧ0 + 4ΩE · Ω̇ 0

)
· I : Do − pEtr(D2

o)V −1ppEtr(I−1)V2 − Ω̇ 2
0 : I. (5.2)

We now consider the stability of the Maclaurin and Jacobi ellipsoids in turn.

5.1.1. Maclaurin spheroids
Maclaurin spheroids are identified by a1 = a2 > a3, so that I1 = I2 and only

perturbations with non-zero D23 and/or D31 introduce angular momentum Hp.
Investigating perturbations with D12 6= 0 is unnecessary, as the axial symmetry of
the Maclaurin spheroids always allows selecting a coordinate system that is aligned at
equilibrium to ensure that D12 is zero. If Hp 6= 0, it is possible to find perturbations
that will make δ(1)Ek > 0, so that Maclaurin spheroids are secularly unstable. Indeed,
selecting D11 =−D22 and all other strain rates except D23 to be zero, we find that

δ(1)Ek =− (I3 − I1)
2 I1

(I3 + I1)
2 D2

23D11, (5.3)

which may be made positive or negative by appropriately selecting D11.
Restricting to perturbations for which Hp = 0, because δ(1)Ek vanishes, we need to

consider δ(2)Ek. Replacing for A, Ȧ0,ΩE, Ω̇ 0 and pE from, respectively, (2.9), (A 10),
(3.11), (4.11) and (3.3), evaluating 1p from (4.32), (3.1) and (4.31) evaluated at
t = 0+, and setting a3 = a1β, we obtain

5
ma2

1

δ(2)Ek =
{

2
(
A1α − A2α

)+ (A1β − A2β

)
β − 4β2A3

}
D2

11 . . .

· · · +
{(

A1α − 3A2α + 2β2A3α

)− (A1β − β2A3β

)
β − 4β2A3

}
D11D33 . . .

· · · −
{(

A2α − β2A3α

)− (A2β − β2A3β

)
β + 2

(
A1 + β2A3

)}
D2

33, (5.4)

where Aiα and Aiβ are, respectively, ∂Ai/∂α and ∂Ai/∂β found for oblate ellipsoids
in (A 7a). The right-hand side above is a quadratic form in terms of the vector
d = {D11,D33} and may be expressed as dmqmndn. Thus, stability will be ensured if the
eigenvalues of the 2 × 2 matrix qmn are all negative. These we compute numerically.
We find that for β < βJ = 0.587, the eigenvalue corresponding to the perturbation
D11 = −D22 becomes positive. Chandrasekhar (1969) identified this mode as the
toroidal mode. Thus, the energy criteria assures us that all Maclaurin spheroids with
axes ratio β > βJ , i.e., beyond the point from which the Jacobi ellipsoids bifurcate, are
secularly stable.

Consider stability predictions for perturbations that preserve angular momentum.
Chandrasekhar (1969) found by his spectral method that the Maclaurin spheroid was
neutrally unstable at β = βJ , i.e., one eigenmode’s oscillation frequency vanished,
and ordinarily unstable for β < βR = 0.3033 where a Riemann sequence bifurcates
from the Maclaurin spheroids. For βR < β < βJ the Maclaurin spheroids were found
to be dynamically stable but secularly unstable; see Rosenkilde (1967). In contrast
to Chandrasekhar (1969), our application of the energy method predicts that for
β below βJ the Maclaurin ellipsoids are secularly unstable and nothing special
is observed at β = βR. At the same time, Riemann (1860) employing the energy
method in the classical sense of form (i), which is equivalent to the present
analysis for inviscid fluids, uncovered that Maclaurin spheroids are secularly stable
to homogeneous perturbations for all β > βR. On the other hand, Lyttleton (1953) and
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Jeans (1961) also applying the energy criterion in form (i) arrived at the same result
as us, i.e., secular stability for β > βJ . Now, our prediction and those of Jeans and
Lyttleton are consistent with Chandrasekhar’s spectral analysis; Maclaurin ellipsoids
with βR < β < βJ are stabilized by gyroscopic forces whose effects are missed by
an energy analysis. However, Riemann’s results appear contradictory and need to be
reconciled. The answer lies in the manner the system’s ‘kinetic energy’ was defined
when applying the energy criterion. While we, and earlier Jeans and Lyttleton, select
Ek defined by (4.24) as kinetic energy, Riemann defined the Maclaurin spheroid to
be stable as long as the change δ

∑
ȧ2

i was negative post-perturbation;
∑

ȧ2
i was

thus identified by Riemann as a measure of the system’s ‘kinetic energy’. This
choice was natural for Riemann who followed Dirichlet and phrased the dynamical
evolution of a homogeneously deforming ellipsoid in terms of its semi-major axes;
see Chandrasekhar (1969, p. 173, equations (236)–(238)). However, there is no reason
to believe that a negative change in Ek following a perturbation necessitates a drop
in
∑

ȧ2
i . Indeed, numerical integration of the associated dynamical equations (2.14)

confirm this fact. Following a perturbation,
∑

ȧ2
i only begins to grow for β < βR,

while Ek increases for all β less than βJ . This is illustrated in figure 6. Riemann
was thus checking for the stability of the ellipsoid’s shape and not its stability as a
material body. It is, therefore, crucial to clearly identify the system’s ‘kinetic energy’
in an energy analysis as different definitions may not be equivalent. In this context,
we also mention the recent work of Lai, Rasio & Shapiro (1993) who considered
the stability of compressible inviscid fluid ellipsoids. These authors tested stability by
minimizing an energy functional that was allowed to depend on parameters such
as the ellipsoid’s shape, density, mass, angular momentum, and internal vorticity.
Equilibriums solutions were distinguished by the presence/absence of internal vorticity.
The points of instability at βR and βJ corresponded to energy minima of these two
solution sets, respectively. This is reminiscent of different definitions of kinetic energy
that include/exclude vorticity.

5.1.2. Jacobi ellipsoids
We now investigate the stability of the truly triaxial Jacobi ellipsoids. Perturbations

with non-zero shear rates add angular momentum Hp and δ(1)Ek’s sign is to be
tested. As for Maclaurin spheroids, it is possible to find homogeneous perturbations
that render δ(1)Ek positive, so that Jacobi ellipsoids are also secularly unstable if all
homogeneous perturbations are permitted. If we restrict perturbations to those for
which Hp is zero, these involve only axial strain rates, then δ(1)Ek vanishes and we
consider δ(2)Ek’s sign.

As before, we replace for Ω , and for A and Ȧ0 in (5.2) to obtain δ(2)Ek as the
quadratic form dmqmndn. For stability we require qmn’s eigenvalues to be negative for
all axial Do. This is found to be true, so that the Jacobi ellipsoids are stable to all
homogeneous perturbations that do not add angular momentum. This is consistent
with Chandrasekhar’s (1969) spectral results and those of Lyttleton (1953) and Jeans
(1961).

When we frame the energy criterion in a coordinate system that rotates at a
fixed rate equalling the ellipsoid’s equilibrium rate ωE, we find that even for those
perturbations for which Hp is zero, δ(2)Ek is positive, i.e., the Jacobi ellipsoids are
secularly unstable. This has been noted by Jeans (1961) and Lyttleton (1953), and
reinforces the importance of appropriately selecting the coordinate system in which to
test secular stability.
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FIGURE 6. (Colour online) Variation of Ek and
∑

ȧ2
i with time immediately after

perturbation. The numbers next to each curve identify the corresponding axes ratio β at
equilibrium.

5.2. Bingham fluids
We now apply the energy criterion to investigate the stability of freely rotating self-
gravitating Bingham fluid ellipsoids. Owing to its non-smooth constitutive structure,
stability may not be tested by the spectral method. For obvious reasons, we will test
the stability of only the boundaries of equilibrium regions corresponding to various
choices of the yield stress Y . We will subsequently refer to ellipsoids lying on the
boundary of the equilibrium region corresponding to their yield stress as critically
equilibrated ellipsoids.

Consider first perturbations that impart angular momentum. Checking δ(1)Ek’s sign,
we find that, just as in the case of inviscid fluids, it may be positive for some
perturbations. Bingham fluid ellipsoids are thus also secularly unstable if we admit
homogeneous perturbations for which Hp 6= 0.

We now restrict ourselves to perturbations that do not add any angular momentum.
We still have to consider the possibility of the stress tensor’s jump 1σ that
accompanies an incompatible perturbation contributing to δ(1)Ek. This was not a
concern in the case of inviscid incompressible fluids where pressure did no work.
In Bingham fluids there is an additional term YDo/|Do| that may contribute non-zero
power. Indeed, when Hp = 0,

δ(1)Ek =−1σ 0V : L0 =− (σ 0 − σ E) : DoV. (5.5)

Appealing to figure 2 and the maximum dissipation postulate mentioned in § 3.2, we
have (σ 0 − σ E) : Do > 0, unless σ 0 − σ E = 1σ = −1p1. Thus, except for compatible
perturbations for which 1σ is hydrostatic, δ(1)Ek < 0, and the energy criterion predicts
stability at the first order itself for angular momentum preserving perturbations.

It remains, therefore, to only consider compatible perturbations for which Hp also
vanishes. For such perturbations, δ(1)Ek is identically zero, and we need to consider
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δ(2)Ek’s sign. To evaluate δ(2)Ek from (4.35), we first compute σ̇ 0 by differentiating
(3.8) and replacing s from (3.9):

σ̇ 0 =−ṗ01+ Y

{
Ḋ0

|Do| −
(
Ḋ0 : Do

)
Do

|Do |3
}
, (5.6)

so that σ̇ 0 : Do = 0 for incompressible materials. Employing Hp = 0 and σ 0 = σ E+1σ
in (2.14) yields

L̇0 =−1σ · I−1V − (D2
o + Ω̇ 0 + 2ΩE ·Do

)
. (5.7)

Substituting for L̇0 and σ 0 in δ(2)Ek’s formula, setting 1σ =−1p1 and tr(σ E ·ΩE ·Do)

= 0 for compatible perturbations that do not carry angular momentum, we find, finally

δ(2)Ek =−
(
Ȧ0 + 4ΩE · Ω̇ 0

)
· I : Do + 2σ E : D2

oV − Ω̇ 2
0 : I, (5.8)

with Ȧ0 available from appendix A, ΩE from (3.11), and Ω̇ 0 is ω̇0’s associated
antisymmetric tensor obtained in turn from (4.11). Now δ(2)Ek’s sign is to be tested
only for compatible perturbations for which Hp = 0. Compatible perturbations follow
(3.10), i.e.,

D11

σ11 + p
= D22

σ22 + p
= D33

σ33 + p
, (5.9)

with Dij = 0 if i 6= j, and σij and pE available from, respectively, (3.1) and (3.3).
There is, thus, only one compatible perturbation, and it automatically preserves angular
momentum. We need test δ(2)Ek’s sign for this perturbation only.

Consider first oblate ellipsoids. We set a1 = a2 in (5.8), and evaluate δ(2)Ek for
0 6 β 6 1 and various choices of yield stress Y . We find that except for critically
equilibrated ellipsoids that lie within a small region in shape-spin space comprising
of slowly rotating flattened ellipsoids, all other ellipsoids are stable to perturbations
of the type (5.9); see figure 7. We note that the stability boundary does not pass
through β = βJ when Y = 0, i.e., the point where inviscid fluid ellipsoids become
unstable. This is because stability of fluid ellipsoids was decided at second-order by
testing all perturbations that did not contribute any angular momentum Hp. In contrast,
Bingham fluids were found stable at first-order to these very perturbations excepting
the compatible perturbation (5.9). This latter perturbation, however, is not the toroidal
mode found to be most unstable for inviscid fluid ellipsoids.

Figure 8 shows that, again, except for a small region encompassing very slender
slowly rotating critically equilibrated ellipsoids, other prolate Bingham fluid ellipsoids
are stable. Finally, in triaxial ellipsoids with α = (1 + β)/2, we observe that the
unstable region expands as a narrow finger and approaches the Jacobi ellipsoid; see
figure 9.

We observe that the energy criterion indicates that for any yield stress Y , most
critically equilibrated Bingham fluid ellipsoids are stable to homogeneous perturbations
that preserve angular momentum. The maximum dissipation postulate guaranteed
stability at first order for all such perturbations except the one which is compatible
with the stress state at equilibrium. The compatible perturbation’s effect was tested
at second order, and led to small regions in the equilibrium landscape being found
unstable. Finally, we emphasize that the stability results are applicable to critically
equilibrated ellipsoids, i.e., those ellipsoids that lie on the boundary of the equilibrium
zone corresponding to their yield stress. It may be shown, by a straightforward
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FIGURE 7. (Colour online) Stability of oblate Bingham fluid ellipsoids with α = 1. Critically
equilibrated ellipsoids lying outside the shaded region are secularly stable for all angular
momentum preserving homogeneous perturbations; cf. figure 3.
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FIGURE 8. (Colour online) Stability of prolate Bingham fluid ellipsoids with α = β;
cf. figure 4. See also figure 7’s caption.
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FIGURE 9. (Colour online) Stability of average triaxial Bingham fluid ellipsoids with
α = (1+ β)/2; cf. figure 5. See also figure 7’s caption.

application of the maximum dissipation theorem, that ellipsoids that are situated in
the interior of their associated equilibrium region are stable at first order to all
angular momentum preserving perturbations. This is in marked contrast to inviscid
fluids.

The maximum dissipation postulate required that strain rates be normal to the yield
surface. This prescription is not always acceptable, as, e.g., in granular materials,
where this assumption leads to unrealistic predictions for dilatation. In such cases,
where strain rates need not be normal to the yield surface, the maximum dissipation
postulate cannot guarantee stability at first order and, indeed, there is a strong
contrapositive indication. Alternatively, shear-thinning Bingham fluids, while having
a yield surface, tend to flow post-yield akin to low-viscosity fluids. In the limit,
we may imagine a Bingham fluid that post-yield flows in the same way as an
inviscid fluid, and we may model this by having the cylinder representing the
yield surface (3.7) collapse onto its axis immediately after yielding. Such a limit
may be relevant for, say, a strongly dilating granular aggregate, as internal friction
will drastically reduce when the aggregate’s density reduces. Indeed, internal friction
in a granular material has both interfacial and geometric roots. The latter dictates
how closely packed is the material. As in the case of inviscid fluids, δEk’s sign
is now regulated by δ(2)Ek given by (5.2) with all perturbations that keep Hp

zero now being permitted. Thus, the toroidal mode D11 = −D22 = 1 is the most
unstable. Figures 10–12 display the results of the stability analysis. We observe
that the stability zones are greatly reduced. This is intuitively reasonable as shear
thinning should have a destabilizing effect. In figure 10, as expected, the stability
boundary now passes through the Jacobi point wherefrom the Jacobi ellipsoids
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FIGURE 10. (Colour online) Stability of oblate infinitely fast shear-thinning Bingham fluid
ellipsoids with α = 1 that post-yield flow as inviscid fluids. Critically equilibrated ellipsoids
lying outside the shaded region are secularly stable for all angular momentum preserving
homogeneous perturbations; cf. figures 3 and 7.

branch from the Maclaurin sequence. Similarly, in figure 12 the stability boundary
misses the point where the Jacobi sequence meets the plane α = (1 + β)/2, as it
must, given that § 5.1.2’s analysis predicted Jacobi ellipsoids to be stable in the
frame O .

6. Conclusion
In this work, we have developed a general test for the secular stability of rotating

non-smooth complex fluids. Bingham fluids offer a first example of such non-smooth
systems. Projecting the dynamics on to the finite-dimensional space of homogeneous
motions, the stability test was first applied to the classical problem of rotating self-
gravitating inviscid fluid ellipsoids. Inviscid fluids may be obtained from Bingham
fluids in the limit of the yield stress going to zero. In the process, we clarified
several issues that have not been made clear in previous applications of the energy
criterion to inviscid fluids. We gave a precise definition of the rotating coordinate
frame O in which to apply the energy criterion. We also differentiated between
perturbations that preserved relative angular momentum in O , and those that added
angular momentum. We saw that the energy criterion gave results in line with previous
energy and spectral analyses only in the former case. This fact has not previously
been highlighted, although Lebovitz (1966) and Hunter (1977) hint at this in passing.
Next, we explained why in contrast to Chandrasekhar’s (1969) spectral analysis, and
the present and earlier applications of the energy criterion, Riemann’s (1860) analysis
that was also predicated on energy methods, recovered the Riemann point βR, and
not the Jacobi point βJ , as the point where secular instability sets in. The reason lay
in Riemann’s choice of

∑
ȧ2

i , as opposed to Ek given by (4.17), as a measure of a
homogeneously deforming ellipsoid’s ‘kinetic energy’.
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FIGURE 11. (Colour online) Stability of prolate infinitely fast shear-thinning Bingham
ellipsoids with α = β; cf. figures 4 and 8. See also the caption to figure 10.

We then explored the equilibrium shapes and stability of freely rotating self-
gravitating Bingham fluid ellipsoids. We saw that the presence of a non-zero yield
stress greatly expanded the possible equilibrium shapes. However, the non-smooth
nature of the underlying constitutive law made spectral stability analysis inapplicable
and we had to extend the energy criterion to such systems. As before, the Bingham
fluid ellipsoids were secularly unstable for perturbations that added angular momentum
Hp. Restricting ourselves to perturbations for which Hp was zero, we still had to
distinguish between compatible and incompatible perturbations for materials with
a yield surface, with the maximum dissipation postulate assuring us of first-order
stability in the latter case. Consequently, most equilibrium shapes were stable to
angular momentum preserving perturbations; narrow secularly unstable regions were
identified by compatible perturbations. By way of contrast, and to also explore the
effects of shear thinning, we probed the stability of infinitely fast shear-thinning
Bingham fluids. As one may expect, the stability zones were greatly reduced for such
materials.

A motivation for investigating the stability of non-smooth materials such as
Bingham fluids was the increasing acceptance of the fact that several small planetary
bodies may be rubble piles held together by internal gravity. As mentioned in the
Introduction, pressure-dependent Bingham fluids are often employed as a first model
for granular aggregates. The general stability criterion developed here may, with
appropriate modifications, be applied to any rotating non-smooth complex fluid, and
is currently being extended to pressure-dependent materials in the context of the
structural stability of rubble asteroids.
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FIGURE 12. (Colour online) Stability of average triaxial infinitely fast shear-thinning
Bingham ellipsoids with α = (1+ β)/2; cf. figures 5 and 9. See also the caption to figure 10.
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Appendix A. Computing Ȧ

In the ellipsoid’s principal axes coordinate system îi,

I =
3∑

i=1

Ii îi ⊗ îi and A=
3∑

i=1

Ai îi ⊗ îi. (A 1)

Thus, taking the time derivative in the rotating frame O , we find

Ȧ=
3∑

i=1

(
Ȧi îi ⊗ îi + Ai

˙̂ii ⊗ êi + Ai îi ⊗ ˙̂ii
)
. (A 2)

Because îi are unit vectors identifying a Cartesian coordinate system, we write

˙̂ii = O · îi, (A 3)

where O is the angular velocity tensor associated with the ellipsoid’s principal axes’
rotation with respect to O that, recall, rotates at ω(t) to keep the relative angular
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momentum constant. To find O, we differentiate I given above, employ (A 3), equate
the expression to İ given by (2.15) and separate the diagonal and off-diagonal parts to
find

ȧi = aiDii (no sum) (A 4a)

Oij =−Wij −
a2

i + a2
j

a2
i − a2

j

Dij, (ai 6= aj). (A 4b)

The first of the above provide the rate of change of the ellipsoid’s semi-major axes in
terms of the strain rate gradient D. As expected, W , the spin part of L, has no effect
on ȧi. When ai = aj the corresponding component of O appears to have a singularity.
We resolve this by invoking in-plane symmetry that allows us to select îi and îj so
that Dij vanishes, allowing a limit to be taken. The limiting value may be found by
requiring that Ȯij be finite.

To compute Ȧi, we note from (2.11) that Ai are functions only of axes’ ratios, so
that

Ȧi = ∂Ai

∂α
α̇ + ∂Ai

∂β
β̇, (A 5)

and with some effort, utilizing formulae for Ai in (2.11), we evaluate

∂A1

∂α
= 2β

1− α2

{
αβ

α2 − β2
+
√

1− β2

1− α2

(
α2E[r, s]
α2 − β2

+ E[r, s] − (1+ α2)F[r, s]
1− β2

)}
,

(A 6a)

∂A3

∂α
= 2β

√
1− β2

(α2 − β2)
2

{
− 2αβ√

1− β2
+ α

2E[r, s]
1− α2

+ β
2E[r, s]
1− β2

− α
2(α2 − β2)F[r, s]
(1− α2)(1− β2)

}
(A 6b)

∂A1

∂β
= 2α

1− β2

{
−αβ
α2 − β2

+ 1√
1− β2

(
β2E[r, s]
α2 − β2

− E[r, s] − F[r, s]
1− α2

)}
, (A 6c)

and

∂A3

∂β
= 2α
α2 − β2

{(
β

1− β2
+ 2β
α2 − β2

)(
α − βE[r, s]√

1− β2

)
− E[r, s] − β2F[r, s]

(1− β2)
3/2

}
.

(A 6d)

In the above formulae, taking the limit α→ 1 we obtain

∂A1

∂α
= β

4

{
β(1+ 2β2)

(1− β2)
2 +

1− 4β2

(1− β2)
5/2 sin−1

√
1− β2

}
, (A 7a)

∂A2

∂α
= β

4

{
β(11− 2β2)

(1− β2)
2 −

5+ 4β2

(1− β2)
5/2 sin−1

√
1− β2

}
, (A 7b)

and

∂A1

∂β
= ∂A2

∂β
=− 3β

(1− β2)
2 +

1+ 2β2

(1− β2)
5/2 sin−1

√
1− β2 (A 7c)
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that are to be employed for oblate ellipsoids, while the limit α→ β yields results
appropriate for prolate objects:

∂A1

∂α
= ∂A1

∂β
=− 3β

(1− β2)
2 +

1+ 2β2

(1− β2)
5/2 tanh−1

√
1− β2 (A 8a)

and

∂A3

∂α
= ∂A2

∂β
= β

4

{
2+ β2

β (1− β2)
2 −

4− β2

(1− β2)
5/2 tanh−1

√
1− β2

}
. (A 8b)

In each case above, the missing partial derivatives may be obtained by differentiating
identity (2.12). Note that, from (A 4a) and their definitions, we easily show that

α̇ = α (D22 − D11) and β̇ = β (D33 − D11) . (A 9)

Thus, finally, employing rates Ȧi available from (A 5) along with one of (A 6), (A 7), or
(A 8), α̇ and β̇ from (A 9), and O’s components from (A 4b), respectively, we may
compute

Ȧ=
3∑

i=0

Ȧi îi ⊗ îi + O ·A− A ·O. (A 10)
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