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We elucidate the vortex dynamics of flows past a flapping plate using the vortex-surface
field (VSF) and develop models for estimating thrust from shedding vortex surfaces in
wakes. The VSF evolution is calculated from numerical simulation using the immersed
boundary method. The VSF visualization reveals that a spoon-like vortex surface
dominated by tip vortex lines is formed and periodically shed into the wake owing to the
alternating upstroke and downstroke of the flapping plate. We simplify the finite-domain
impulse theory based on a particular vortex surface. The simplified theory demonstrates
that the force on the plate is only dependent on the vortical impulse and Lamb-vector
integral of the vortex surface enclosing the plate. Then, we propose a time-averaged
thrust model from near-wake discrete vortex surfaces, where the incorporation of the
Lamb-vector integral significantly improves the model estimation from the impulse model.
Furthermore, we estimate the mean thrust based on two arbitrary vortex surfaces in
the far wake from the linear impulse decay of periodically shedding vortex surfaces,
which provides a possible approach to infer the state of the moving body in experimental
investigation and practical applications.
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1. Introduction

The wake of biological locomotion (Dabiri 2009; Shyy et al. 2010; Wu 2011; Phan &
Park 2019) and aerial/underwater vehicles (Jiménez, Hultmark & Smits 2010; Park er al.
2014; Bhat et al. 2020), similar to the footprint, can reveal rich physical information of
the moving body. In particular, the shedding vortical structures propagate downstream in
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the far wake with measurable velocity and vorticity fields, e.g. in the wake of a flying bird
(Hubel et al. 2010) or swimming fish (Lauder 2015; Mendelson & Techet 2015). These
structures can be utilized to infer the forces exerted on the moving body.

The experimental measurement of biological locomotion in the far wake is more feasible
than the near-wall measurement of forces owing to the complex boundary condition of the
moving body. Thus, the shedding vortical structures in the wake have been extensively
investigated in experiments and numerical simulations (e.g. Lauder & Drucker 2002;
Spedding, Rosén & Hedenstrom 2003; Dong, Mittal & Najjar 2006; King, Kumar &
Green 2018; Chen et al. 2020; Oh et al. 2020). To mimic the wing/fin motion of a flying
animal/swimming fish, the flapping plate is a useful model problem to study the vortex
dynamics in wake structures (e.g. Li & Lu 2012; Buchner, Honnery & Soria 2017; Wang,
He & Liu 2019).

The ring-like vortical structures have been widely observed in the wake of the flapping
plate or foil and used as a simple vortex model to estimate forces on the moving body
(see Blondeaux et al. 2005; Buchholz & Smits 2006, 2008; Li & Dong 2016). For a
flapping foil with a low aspect ratio, Dong et al. (2006) numerically investigated the wake
topology to understand the hydrodynamic performance of fish fins. They found that the
wake is dominated by two sets of ring-like vortical structures during periodical flapping
motion, and these structures evolve into vortex rings as they propagate downstream. Dabiri
(2009) explained the vortex formation process related to the propulsion in biological and
bio-inspired systems. For the flapping plate with a large aspect ratio, the wake topology
is represented by interconnected vortical structures (Wang, He & Zhang 2015), and the
geometry of the vortical structures can be very convoluted in biological locomotion such
as birds and bats (Hedenstrém, Rosén & Spedding 2006; Hedenstrom et al. 2007).

The wake information can be utilized to estimate forces owing to the momentum transfer
from the moving body to the fluid (see Drucker & Lauder 1999; Lauder & Drucker 2002;
Spedding et al. 2003; Lee et al. 2013; Park et al. 2016). If a wake can be represented
by distinct closed-loop and discrete vortices, forces were directly estimated through the
vortical impulse of a discrete vortex. Lauder & Drucker (2002) simplified wake structures
near the moving body as vortex rings and calculated the time-averaged thrust using
the vortical impulse during the flapping cycle. The vortical impulse of vortex rings is
calculated through the spanwise vorticity on the spanwise symmetry plane (Miieller et al.
1997; Gharib, Rambod & Shariff 1998), and has been used to estimate the thrust from
the wake (Li & Lu 2012). Dabiri (2005) incorporated the vortex-added-mass force into
the vortex-ring model to improve the force estimation. On the other hand, if the shape of
vortical structure is very different from a ring, the over-simplification of vortex rings can
introduce a large discrepancy into the force estimation (Lauder 2015).

Compared with the simple vortex-ring model under phenomenological assumptions,
a general theory of aerodynamic forces has been developed to reveal the relationship
between the forces on the moving body and local vortex dynamics (see Wu, Ma & Zhou
2015). From the structure level, Wu, Liu & Liu (2018) summarized the vortex-force
theory and impulse theory for calculating forces from local vortical structures with
derivative-moment transformations. Moreover, Chang (1992) developed the force-element
theory based on potential flows, which was applied to analyse the forces on an impulsively
started finite plate (Lee ef al. 2012) and a heaving plate (Lin et al. 2018).

In the classical vortex-force theory (Prandtl 1918) in inviscid incompressible flow, the
force can be solely determined by the Lamb vector, sometimes referred to as the vortex
force. Wu, Lu & Zhuang (2007) developed the unsteady vortex-force theory to indicate
that the force exerted on the moving body is dominated by the vortex force. Wang et al.
(2019) proposed the wake-sectional Kutta—Joukowski model to estimate lift based on the
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vortex-force theory from the wake velocity data on the Trefftz plane for complex wake
structures in flapping flight.

In the impulse theory (Wu 1981; Lighthill 1986), the force acting on the body is directly
related to the change of the fluid impulse (Burgers 1920), so the impulse theory can be used
to estimate forces from wake vortical structures. Birch & Dickinson (2003) investigated the
influence of wing—wake interactions on aerodynamic forces in flapping flight based on the
time derivative of the vortical impulse. Wang & Wu (2010) identified the role of vortex
rings and their mutual interactions in force production/reduction for a flapping flight using
the vorticity moment of wake structures.

The general impulse theory with an arbitrary integral domain was proposed by Noca,
Shiels & Jeon (1997, 1999) to evaluate time-dependent aerodynamic forces on the body.
Kang et al. (2018) developed the minimum-domain impulse theory to minimize the
integral domain to calculate unsteady aerodynamic forces, indicating that the force exerted
on the moving body is dominated by vortical structures connecting to the body (Li
& Lu 2012). The criterion for splitting the minimum domain, however, is very strict,
hindering the application of the minimum-domain impulse theory to three-dimensional
flows. Furthermore, the impulse was calculated from the vortical structure enclosing the
moving body in previous studies, so its practical value is limited compared with the direct
calculation of forces from the body boundary. Hence, it is necessary to extend the impulse
theory to estimate forces from shedding vortical structures in the far wake for applications.

For structure-based force estimation, the identification and segmentation of vortical
structures are crucial for the accuracy and applicability. Eulerian vortex identification
methods (e.g. Hunt, Wray & Moin 1988; Jeong & Hussain 1995) based on the local
velocity gradient were usually applied to identify vortical structures, but they cannot
ensure the time coherence in the tracking of a particular vortical structure and they have
no explicit link to the vorticity-based, vortex-force/impulse theories. Yang & Pullin (2010)
developed the vortex-surface field (VSF), a Lagrangian-based identification method, and
the VSF has been applied to various flows to elucidate the vortex dynamics (e.g. Zhao,
Yang & Chen 2016; Xiong & Yang 2019) and develop structure-based force models (Zheng
et al. 2019) from a Lagrangian-like view. In particular, Tong, Yang & Wang (2020) applied
the VSF to the flow past a stationary finite plate to characterize three-dimensional features
of vortex surfaces. Additionally, the modal decomposition can extract dominant modes
in the flow field (Taira er al. 2017), and proper orthogonal decomposition was applied
to analyse forces based on the dominant modes for a low-aspect-ratio plate (Li, Dong &
Liang 2016).

In the present study, we extend the VSF to flows past a flapping plate to elucidate vortex
generation and shedding mechanisms. Then, we simplify the finite-domain impulse theory
based on a particular vortex surface, and develop models to infer thrust from shedding
vortex surfaces in the far wake. The outline of this paper is as follows. In § 2, we describe
the numerical implementation for calculating the velocity field and the VSF for flows past
a flapping plate. In § 3, we elucidate the shedding mechanism of vortex surfaces. In § 4,
we develop near-wake and far-wake models to estimate the thrust from the shedding vortex
surfaces. Some conclusions are drawn in § 5.

2. Simulation overview
2.1. Immersed boundary method

We carry out the direct numerical simulation (DNS) of a three-dimensional uniform flow
past a flapping plate with the free-stream velocity U. The zero-thickness plate heaves
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Figure 1. Schematic diagrams of the coordinate system and local-refined mesh. (a) Flow past a flapping plate
with the coordinate system O-xyz. (b) Flow-field domain £2 and VSF domain £24 on the x—z plane at y = 0.
The white line denotes the plate, and the x-coordinate denotes the streamwise position non-dimensionalized by
the chord length.

vertically and pitches around the centre of the plate. The plate has the chord length ¢ and
fixed wing span b = Ryc, where Ry is the aspect ratio. Figure 1(a) sketches the flapping
plate and the Cartesian coordinate system with the x-axis along the streamwise direction,
the y-axis along the spanwise direction and the z-axis along the vertical direction. The
kinematics of the flapping plate is characterized by the angle of attack

a(t) = ap + oy cos(2mft), (2.1)
and the vertical position of the plate centre
ze(t) = zc0 + A sin(27tft), (2.2)

where o, and A respectively denote the pitching and heaving amplitudes, o« and
zc0 respectively denote the time-averaged o and z., f is the flapping frequency and
t is the physical time. All the variable and parameters in the present study are
non-dimensionalized by U and c.

Motivated by the numerical simulations (Dong ef al. 2006; Li & Lu 2012; Wang
et al. 2013; Li & Dong 2016) and experiments (Buchholz & Smits 2006, 2008) of
low-aspect-ratio flapping wings, we conduct a series of DNS cases with the varying
parameters listed in table 1. Here, Re = Uc/v is the Reynolds number with the kinematic
viscosity v, and St = 2Af /U is the Strouhal number. Case 1 with St = 0.6 is mainly used to
study of the VSF evolution and force modelling. This case has a discrete wake dominated
by two sets of isolated vortical structures, similar to the wake topology observed in Dong
et al. (2006), Li & Lu (2012), Li & Dong (2016) and Li et al. (2016). Furthermore, the
wake can be more convoluted with the increase of Re, St or R4 (Dong et al. 2006; Wang
et al. 2013; Liu, Dong & Li 2016).

The incompressible flow past a flapping plate is governed by the Navier—Stokes
equations

du

1
— Vu=-Vp+—V? , 2.3
o7 4+u-Vu p—i—Re u+f (2.3)

V.u=0, (2.4)

where u, p and f denote the non-dimensional velocity, pressure and body force,
respectively. We use the immersed boundary method with the discrete streamfunction
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Case Ry %) Uy f A Re St

30 0.6 0.5 200 0.6
30 0.6 0.5 200 0.6
30 0.5 0.5 200 0.5
. . 300 0.6
30 0.6 0.5 200 0.6
30 0.8 0.5 200 0.8
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Table 1. Parameters for the flapping plate in the DNS.

(Wang & Zhang 2011) to solve (2.3) and (2.4). The geometry and kinematics of the
plate are described by Lagrangian marker points uniformly distributed on the immersed
boundary. The interpolation and spreading of forces on Eulerian and Lagrangian points
are linked by the regularized delta function §;, (Peskin 2002) as

M *
> (Z 81 e — X))o (x — Xk><As>2<Ax>3) Fory = PEV_EE0 o)
=1 \'x
and
M
f@) =Y FX)six — X)(As), (2.6)

J=1

where x and X are Eulerian and Lagrangian points, respectively, f and F are the forces on
Eulerian and Lagrangian points, respectively, As and Ax are Lagrangian and Eulerian grid
spacings, respectively, U, and U* are specified and predicted velocities at kth Lagrangian
points, respectively, and M is the total number of Lagrangian points on the immersed
boundary. The details and validation of our implementation of the immersed boundary
method can be found in Wang & Zhang (2011) and Wang et al. (2013).

The thrust coefficient of the flapping plate is

Fr
Cr= T om0 2.7
bl P U RAC
where Fr is the thrust of the flapping plate. From the DNS data, it is calculated by
M
> Fu(Xp)(As)?
k=1
Cr=-— ; (2.8)
SpU2R4c?

where F, denotes the x-component of the force on Lagrangian points.

As shown in figure 1(b), the present simulation is performed in a rectangular domain
of 2 € [—14,22] x [—18, 18] x [—18, 18]. The uniform inflow velocity U is prescribed
at the inlet and the fixed pressure condition is specified at the outlet. The slip-wall
condition is used at the other four boundaries and the no-slip condition is specified on
the plate. The initial condition for the flow is u = (U, 0, 0). A locally refined mesh with
the minimum spacing Ax = 0.0125 is applied around the immersed boundary to achieve
the high spatial resolution near the plate, and the maximum spacing Ax = 0.4 is applied in
the far field to reduce the computational cost. The total number of grid points is 12 million.
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The effectiveness of the present mesh spacing and computational domain has been
validated by a convergence test via varying the grid size and computational domain in

Appendix A.

2.2. VSF method
The VSF is a smooth scalar field satisfying the constraint (see Yang & Pullin 2010)

w- Ve, =0, (2.9)

where @ = V x wu is the vorticity, so that the isosurface of ¢, is a vortex surface consisting
of vortex lines. Given a time series of the velocity—vorticity field obtained by solving (2.3)
and (2.4), the calculation of the VSF can be implemented as a postprocessing step.

The two-time method (Yang & Pullin 2011) with source terms exerted on the immersed
boundary (Tong et al. 2020) is used for calculating the temporal evolution of VSF. For
each physical time step, it involves prediction and correction substeps. In the prediction
substep, the temporary VSF solution is advanced in the physical time as

AP (x, t
%) +ulx, 1) - Vo, (x, 1) = qx), =0, (2.10)
where ¢ is a temporary VSF solution which can be deviated from the accurate VSF. In
the correction substep, ¢ is transported along the frozen vorticity as

A (x, 1; T)

5 +ox, 1) - Vo,(x, ;1) =q.(x), 0=<71 T, (2.11)
T

with
do(x, ;T =0) = @ (x, 1). (2.12)

In (2.10) and (2.11), the external VSF source terms g(x) and g (x) defined on Eulerian grid
points are used to satisfy ¢, = qbf at the immersed boundary, with constant qbf = 1 on the
plate. Finally, ¢, is updated by ¢, (x, t; T = T;) after the pseudo-time evolution, where T
is the maximum pseudo-time to ensure the convergence of ¢, in (2.11), and it is typically
less than 100 times of At in (2.10).

As shown in figure 1(b), the VSF calculation is implemented in a subdomain 24 €
[—1.0,7.5] x [—1.5,1,5] x [—3.5,3.5] around the plate and near wake with strong
vorticity. In £2, the high-resolution uniform mesh with Ax = 0.02 is set to ensure the
smoothness of numerical VSF solutions. The velocity and vorticity fields in £24 are
interpolated from §2 through the quadratic Shepard method (Franke 1982).

To solve (2.10) and (2.11), the marching of ¢ and 7 is approximated by the second-order
total-variation-diminishing Runge—Kutta method, and the convection term is calculated
by the fifth-order weighted essentially non-oscillatory (WENO) scheme. The numerical
diffusion in the WENO scheme serves as the numerical dissipation regularization for
smoothing VSFs.

An initial VSF ¢, needs to be specified to solve (2.10). The initial set-up implies that
®w =0 at t=0, and @ is generated at ¢t > 0. Since the vorticity is dominated on the
spanwise direction and || is close to an exact VSF at very early times (see Tong et al.
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2020), we use |w| att = t9 = 0.02 to set

vo(x, 10; T = 0) = M, (2.13)
|@(X) | max

and then the initial VSF

hvo = Pvo(x, 10; T = T7) (2.14)
at t = f¢ is obtained by solving (2.11), where |®(x)|;nqx denotes the maximum of |w(x)| in
4.

We remark that the numerical dissipation in the VSF convection can cause the artificial
decay of the numerical VSF solution, so we compensate the numerical VSF before each
physical time step in the two-time method based on the volume-averaged VSF (¢0)
and local |w|. Since ¢, decays along with x, we empirically augment the VSF solution
downstream as

¢v (x’ l) — (l;v (x’ t)y(Otz\w(x)l)/la)(x)lmux’ (215)

where ¢, denotes an intermediate VSF solution before the augmentation, y =
(dvo)/ (qBU(x, 1)) > 1 is an augmentation factor and o = /(I +x3) is an empirical
parameter with the streamwise length [, of §24. From numerical experiments, we find
that this augmentation can effectively reduce the VSF dissipation or the volume shrinking
of a particular VSF isosurface in the present simulation.

Starting from the constructed ¢,0, the numerical VSF solution is calculated by solving
(2.10) and (2.11) with (2.15). The deviation of the numerical VSF from the exact VSF is
monitored by the cosine of angle between the vorticity and VSF gradient as

w- Vo,
@[V
We find that the volumed-averaged VSF deviation (|A,|) over £24 is controlled to within

approximately 4 %, indicating that the VSF solution is sufficiently accurate for the further
characterization of vortex surfaces and modelling of forces.

Ao . (2.16)

3. Shedding of vortex surfaces

The discussion in this section is based on the typical Case 1, in which wake structures
are dominated by a series of vortex pairs, and each pair contains two discrete vortex
surfaces formed in a flapping period 7 = 1/f. We elucidate the shedding mechanism of
vortex surfaces from the flapping plate using a particular VSF isosurface of ¢, = 0.3. This
isocontour-level selection considers the balance between the largest volume enclosed by
VSF isosurfaces and the effective segmentation of discrete VSF isosurfaces in the wake.

From the morphology of vortex surfaces and lines, we divide the VSF evolution into
three stages: (i) formation of the ring-like vortex surfaces during the first quarter of
the flapping cycle; (ii) generation of spoon-like vortex surfaces during a half-cycle; (iii)
periodic generation and shedding of spoon-like vortex surfaces.

3.1. Formation of ring-like vortex surfaces

At the initial time, the plate is located at z. = 0 with the maximum angle of attack o« = 30°.
The plate heaves upwards to the highest point at t = 7'/4 by (2.2). In the meantime, the
positive o decreases to 0° during this quarter cycle by (2.1). As shown in figure 2(a),
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(0) z

Trailing-edge vortex line

Figure 2. Temporal evolution of VSF isosurfaces during the downstroke. Left column: the red solid line
denotes the plate at the present time and the red dashed line shows the previous location of the plate. Right
column: the VSF isosurfaces are colour coded by the vorticity magnitude, with vortex lines integrated from
points on the surface. Black and yellow lines represent the counterclockwise and clockwise vortex lines,
respectively. (a) t = 0.25T, ¢, = 0.3; (b) t = 0.35T, ¢, = 0.9 (dark inner surface) and ¢, = 0.3 (light outer
surface). The black line is integrated on the surface of ¢, = 0.3 and the yellow line is integrated on the surface
of ¢, =0.9; (¢) t = 0.5T, ¢, = 0.6 (dark inner surface) and ¢, = 0.3 (light outer surface). The tip vortex line
is integrated on the surface of ¢, = 0.3 and the other lines are integrated on the surface of ¢, = 0.6.

the bulge-like vortex surface V| with counterclockwise vortex lines from the top view
is generated around the tip and the trailing edge of the plate. The VSF isosurface is
color-coded by |@|, and in general ¢, is positively correlated to ||.

The plate begins to heave downwards at the end of the upstroke at t = 7//4. During the
downstroke, the vortex surface around the plate with negative @ generates a secondary
bulge V; consisting of clockwise vortex lines from the top view. As shown in figure 2(b),
the inner vortical structure V, with ¢, = 0.9 is wrapped by the outer structure V| with
¢, = 0.3 at the trailing edge, where the additional isocontour level ¢, = 0.9 is selected
to represent a vortex surface in the high vorticity region. At the junction of Vj and V; on
the upper surface of the plate, the cancellation of clockwise and counterclockwise vortex
lines significantly weakens the vorticity magnitude. Then, Vi moves downstream and is
gradually shed from the plate owing to the alternating sign of «. By contrast, in the flow

920 A10-8


https://doi.org/10.1017/jfm.2021.434

https://doi.org/10.1017/jfm.2021.434 Published online by Cambridge University Press

Estimating forces from shedding vortex surfaces

past a stationary plate with positive «, vortex surfaces with counterclockwise vortex lines
are persistently rolled up from the tip region (see Tong et al. 2020).

During the downstroke in figure 2(c), we distinguish two types of vortex lines according
to their original locations. The vortex lines generated at the trailing edge and the tip region
are referred to as the trailing-edge and tip vortex lines, respectively. We observe that V is
dominated by the ring-like trailing-edge vortex lines in figure 2(c). The junction of outer
V1 with ¢, = 0.3 and inner V; with an additional isocontour level ¢, = 0.6 is dominated
by the tip vortex lines with weak vorticity magnitude, and then V; is gradually shed off
with disappearing tip vortex lines.

3.2. Generation of spoon-like vortex surfaces

In the downstroke period from ¢ = 0.257 to 0.757, the plate heaves from its highest to its
lowest position, generating strong tip vortex lines on V». Subsequently, V, evolves into a
spoon-like structure, composed of a bowl-like structure and a spinous handle in figure 3.
Its geometry is very different from the ring-like V; generated in the first upstroke period
from ¢t = 0 to 0.257T.

When the plate retains a negative « in the downstroke, vortex surface V, continuously
deforms in the leading-edge and tip regions. We divide V5 into two parts by the isosurface
of wy =0 (Tong et al. 2020), where wy is the streamwise vorticity component. In
figure 3(a), the upstream part generated from the leading edge is referred to as the
leading-edge vortex (LEV), and the downstream part generated from the tip region is
referred to as the tip vortex (TIV). The TIV lines connecting the LEV and TIV constitute
the main structure in the later evolution. The trailing-edge vortex lines are wrapped up
by outer TIV lines. They gradually vanish owing to the vorticity cancellation under the
intensive swirling motion induced by TIV lines with strong entrainment (Taira & Colonius
2009; Lee et al. 2012).

At the end of downstroke, the plate heaves upwards, generating another
counterclockwise vortex bulge V3 in figure 3(b,c). In the meantime, V> is shed off from
the plate, which is similar to the shedding of Vi in § 3.1 owing to the cancellation of
opposite vorticities in the region between V, and V3. In the evolution of V5 in figure 3(a),
the ring-like TIV lines are lifted in the upstream (marked by the light grey arrow)
owing to the continuous rolling up of vortex surfaces at the leading edge during the
downstroke period. The TIV lines are stretched in the streamwise direction by the mean
shear, and are compressed in the spanwise direction by the induced velocity of two TIVs
downstream (marked by dark grey arrows). The TIVs then evolve into spoon-like structures
in figure 3(b) with the merging of two TIVs, which was not observed for the VSF evolution
of the flow past a stationary plate in Tong et al. (2020). Subsequently, V> is shed off as a
discrete spoon-like vortex surface in the wake in figure 3(c).

3.3. Periodic shedding of vortex surfaces

The shedding of spoon-like vortex surfaces from the flapping plate is periodic. In a time
period of 0.57, the counterclockwise or clockwise vortex surface is created during the
upstroke or downstroke, respectively. Then, the newly generated, discrete vortex surfaces
propagate downstream.

Figure 4 depicts the top and side views of the VSF isosurface of ¢, = 0.3 at r = 3T.
There are two sets of discrete vortex surfaces propagating towards the positive and negative
z-directions. Each set is composed of discrete vortex surfaces generated at the end of
upstroke or downstroke of the plate. From the top view in figure 4(a), a row of circular
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Figure 3. Temporal evolution of the VSF isosurface of ¢, = 0.3 during formation and shedding of
spoon-like structures. The notations are the same as in figure 2: (a) t = 0.75T; (b) t = T; (¢) t = 1.25T.

wake structures are compressed in the spanwise direction induced by TIVs. From the side
view in figure 4(b), almost all the spoon-like vortex surfaces consist of TIV lines, except
ring-like V1 dominated by trailing-edge vortex lines.

We extract and label the discrete vortex surfaces by an automatic searching and flooding
algorithm, and then track their evolution in the wake. At a particular time ¢, we count the
total number, N(¢), of discrete vortex surfaces, e.g. N(t = 3T) = 7 in figure 4(b). For the
N(1) vortex surfaces, the ith one is labelled as V; in an ascending sequence according to
its shedding time, i.e. i = 1 is for the first shedding surface, and i = N(¢) is for the surface
enclosing the plate.
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Figure 4. The VSF isosurface of ¢, = 0.3 at t = 37 in (a) top view and (b) side view, where D; (black solid
line) and D, (blue dashed line) are two types of integral domains enclosing the plate for calculating the total
force in (4.3). (¢) Contour of the spanwise vorticity on the spanwise symmetry plane at y = 0.
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The evolution of spoon-like vortex surfaces in the wake in figure 4(b) can be roughly
split into two phases. First, the vortex surface evolves with the local induction of adjacent
vortex surfaces. The upstream part of a vortex surface (e.g. V) is lifted to form a ‘nose’
by the induction of TIVs of its upstream spoon-like vortex surface (e.g. Vs), similar to the
vortex contrail structure observed in Dong et al. (2006). In the second phase, the vortex
surface evolves almost independently owing to the diminishing induction effect among
separating vortex surfaces. As the spoon-like vortex surface convects downstream, its
upstream nose-like structure and downstream handle-like structure are gradually smoothed
out, evolving into a ring-like vortex surface (e.g. V).

The discrete vortex surface in the wake was simplified as a vortex ring for further
theoretical analysis, which is detailed in Appendix B. As sketched in figure 4(c), the radius
a and the inclination angle B of the vortex ring are determined by the spanwise vorticity
wy on the spanwise symmetry plane.

4. Estimating forces from the wake
4.1. Impulse theory for a finite domain

From the wake information of a flapping plate, we estimate aerodynamic forces acting on
the plate using the impulse theory (see Wu 1981; Wu et al. 2015). In a three-dimensional
incompressible viscous flow, the total force on a moving body is

_ Y LA x pu)ds, 4.1)
dr 2 dr 9B
where
Lo =} / x % podV 42)
Vioo

is the vortical impulse in the entire fluid domain Vs, 9B is the body surface and n is the
unit surface normal.

From the impulse theory for a finite domain Vr bounded by surface X in flows with
discrete wake vortices (see Wu et al. 2007; Kang et al. 2018), the total force on the plate
becomes

dary
Here,
Iy=13 / x X pwdV, (4.4)
Vr

denotes the vortical impulse in the finite domain V,
L= [ poxuav. (45)
Vr
denotes the integral of the Lamb vector ® X u,

FaB:%/ xx(nxpa)dS—i—%/ x X puw, ds, (4.6)
dB oB

denotes the force contributed by the body motion and deformation with the acceleration a
of the body and the vorticity component w, normal to 9B,

Fo =% / X X puw, ds, 4.7
X
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denotes the force due to the normal vorticity on X with the vorticity component w, normal
to X and

F;;:%/(xx,oa—l—r)dS (4.8)
X

is the viscous force calculated on X' with the diffusive vorticity flux ¢ = vdw/dn and the
shear stress T = puw x n. We validate that the relative discrepancy between the total forces
calculated from (4.3) in the impulse theory and directly from the DNS data for the present
cases is only approximately 1 %.

Some terms in (4.3) can be neglected in the present cases. The thin plate with negligible
deformation implies Fyp = 0 owing to the vanishing w, on the body surface and opposite
n on the top and bottom plates. For high Re, F5; for the viscous effect is neglected. In
the present simulation with Re = 200, the contribution of Fx on the total force is only
approximately 0.1 %. Thus, the total force of the flapping plate is determined by the
vortical impulse, the Lamb-vector integral and the surface integral F,, over the boundary
of a finite fluid domain in (4.3).

4.2. Impulse theory based on vortex surfaces

In order to further simplify (4.3), it is crucial to choose an appropriate domain boundary
X to minimize F, in (4.7).

First, Kang et al. (2018) proposed a strict constraint, @ = O at and near X, to eliminate
F,, in the minimum-domain impulse theory, but this condition is hard to satisfy in
three-dimensional flows. Second, a simple domain facilitates the calculation of the surface
integral in F,,, e.g. a rectangular domain Vy enclosing the body (Wang et al. 2013).
However, F,, is non-vanishing in (4.3), e.g. the positive contribution of F,, to the
time-averaged thrust can be approximately 50 % in our Case 1 with Vs = Dy enclosed
by the black solid line in figure 4(b). Third, an integral domain cutting a small portion
of vorticity is another option to minimize F,. Li & Lu (2012) chose a domain enclosing
two discrete vortical structures near the plate, e.g. Vr = D; enclosed by the blue dashed
curve in figure 4(b), but D, should move with the vortical structure at different times and
its geometry varies with different flow parameters, so it has to be determined ad hoc for
different cases.

Compared with the existing options for X, the VSF isosurface is a more natural choice,
because it has F,,, = 0 with w, = 0 on X' and evolves with time. Based on the VSF, we
choose X as a particular vortex surface X, enclosing the plate in figure 5. In this way,
(4.3) is simplified to

dl
F=—-——"—1L, 4.9
” b (4.9)
where
I, = %/ x % podV (4.10)
Vi

denotes the vortical impulse in a finite fluid domain V), enclosed by X, and
L;,=/ pw X udV (4.11)
Vb

denotes the Lamb-vector integral over V). As sketched in figure 5, F is only determined
by the velocity—vorticity field within V. Then we obtain the thrust force
d7, box

F
=&

+ Ly x, (4.12)
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Near wake Far wake

Figure 5. Sketch of vortex surfaces in the near wake and far wake of a flapping plate.

where 1), and L, , are the streamwise components of I;, and Ly, respectively.
In the present cases, the time-averaged thrust can be determined by

Fr=—"=+4+1Lpx (4.13)

over a half-period Ty = T/2 within either one downstroke or upstroke owing to the
periodic flapping motion of the plate, where f denotes the time average of a function f over
Ty. Without loss of generality, we choose one downstroke period to estimate Fr. Figure 6
sketches the formation and shedding of the ith vortex surface V; from the plate with
i > 3. We define the beginning time 7, = T//4 4 (i — 2)T; of downstroke in figure 6(a),
the end time ¢ = T/4 + (i — 1)T; of downstroke in figure 6(b) and the shedding time
t; ~t] + Ty = T/4 + iTy of V; in figure 6(c) when V; is just shed from the plate.

During the downstroke from 7 = 7, to t = ¢/ for the generation of V;, the Lagrangian-like
evolution of X, is marked by the red dashed curves in figure 6(a,b). Since the shedding of
spoon-like vortex surfaces from the flapping plate is periodic, we estimate

dIb,x Ib,x(t;/) - Ib,x(t;) ~ Ii—l,x(t;/) ~ Ils_x

= : (4.14)
dr Tf Tf Tf
in (4.13), where If’ . denotes the streamwise component of the vortical impulse
Il = %/Vx x pwdV (4.15)

for V; at its shedding time ¢ = ¢}, and all the I, = I are the same for 3 < i < N. Then,
the time-averaged thrust

- IS -
Fr==+4Lpy (4.16)
Ty
acting on the plate can be estimated based on the velocity—vorticity field within V}
enclosed by the vortex surface.

For the further application, we can also estimate the force only from the shedding vortex
surfaces in the near wake and far wake in §§4.3 and 4.4, respectively. As sketched in
figure 5, the near-wake region has the discrete vortex surfaces close to the plate, and the
far-wake region is remote from the plate.
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Figure 6. Sketch of formation and shedding of vortex surface V; at different times: (a) t = 1, the beginning
time of downstroke; (b) t = tl/f , the end time of downstroke; (c) ¢ = #, the shedding time of V;. The vortex
surfaces with counterclockwise and clockwise vortex lines are coloured in blue and yellow, respectively. The
Lagrangian-like evolution of X, labelled at t = ¢] is marked by the red dashed curves.

4.3. Estimating thrust from the near wake

In order to estimate time-averaged forces on the plate from the wake, we extend Ly, in
(4.16) based on the vortex surface enclosing the plate to an expression based on discrete
vortex surfaces in the wake. Since the Lamb-vector integral

/ pw X udV =Ly ~+ Ly =0 4.17)
Vico

vanishes in Voo (Wu et al. 2015), which is also validated by our DNS, we obtain

Ly, = —Lyuke. (4.18)
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Considering the downstroke for generating V; from ¢ =, to = ¢/ in figures 6(a) and
6(b), we approximate

Luake = Z L (4.19)
as the sum of the Lamb-vector integral
L= / pw X udV, (4.20)
Vj

for the jth discrete vortex surface V; in the wake.
Since the spoon-like vortex surface with finite L; evolves towards a ring-like one with
L; ~ 0 in the far wake, L; decays quickly in the downstream. Hence, we estimate

Lwake ~ Li—2 (421)

from the near-wake vortex surface in the downstroke, as shown in figures 6(a) and 6(b),
and then have

Lb,x = _Zwake,x ~ _Li—Z,xa (4'22)

where I:wake, » and I:;_Q, x denote the time-averaged streamwise components of L,k and
L;_», respectively.

Identified by the VSF isosurface at a given time, there are N(#) vortex surfaces in an
instantaneous flow field, and surface Viy_; is shed into the wake in figure 5. Substituting
(4.22) into (4.16) and taking i = N — 1 yields

_ Lo
Fr=_—=—Ly 3, (4.23)
Ty
Then, we approximate
- 1 [N Lv—3.x(ty_y) + Ln-3x(ty_))
Iyose=— | Ly-scdi~e ——= )
Ty N1 2

where Ly_3, x(t;v_l) and Ly_3, X(t;(,_l) denote the streamwise components of the
Lamb-vector integral for Vy_3 at t =1, _, and r = t;,_,, respectively. Considering the
periodic shedding of vortex surfaces from the flapping plate in 7y (also see figure 6), we
have LN—3,x(t;v_1) ~ LN_LX(I‘ZYV_I) and LN—3JC(Z;\/I—1) ~ LN_Q,X(Z‘;\,_I). Finally, (4.23) is
re-expressed by
[ Y o e e £ (4.25)
Ty 2

where all the terms on the right-hand side are determined at 7 = 73,

The thrust model (4.25) from the near wake is validated by the DNS result calculated
from (2.7). From (4.25), the mean thrust coefficient Cr is estimated as

CY = Ch+ Ck. (4.26)
Here, the force contribution from the vortical impulse is
_ IR
ch=—>* 4.27)
T 1pUPRATyc?
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Case DNS Near-wake model Impulse model Far-wake model Vortex-ring model
1 0.765 0.738 0.850 0.724 1.056
2 0.601 0.632 0.748 0.673 1.008
3 0.347 0.370 0.448 0.384 0.588
4 0.866 0.811 0.921 0.790 1.468

Table 2. Comparison of Cr from DNS, @]}’ from the near-wake model, E'IT from the impulse model, 6"; from
the far-wake model and 6‘¥ from the vortex-ring model for estimating the thrust coefficient in the cases with
different parameters in table 1.

and the contribution from the Lamb vector is

CL _ _LNfl,x + LNfZ,x

T— 2R .02

pU*Ruc
Table 2 compares the mean thrust coefficients calculated from (2.8), (4.26) and (4.27)
in Cases 1-4 listed in table 1 with the varying angle of attack, flapping frequency and
Reynolds number. It is noted that the wake in the four cases consists of discrete vortex
surfaces, and the force estimation for the wakes with complex topology, Cases 5 and 6,
is discussed in Appendix C. We find that 6‘1}’ estimated from the near-wake model agrees

well with the DNS result C7 and the relative errors
|6r%wdel - 6T|

g= "t 4.29
& (4.29)

(4.28)

are approximately 5 %, where é’?”dﬁl denotes a model estimation of C7. Additionally, we
validate that the near-wake model works well with & & 8 % for the case of a heaving and
pitching plate around the leading edge with Re = 200, St = 0.6 and discrete wake topology
in Li & Lu (2012).

By contrast, CIT only considering the vortical-impulse contribution is obviously
overestimated. Hence, the negative C‘% contributed from the Lamb vector provides a

necessary correction to the impulse model, improving the prediction accuracy of Cr by
approximately 12 %.

In general, the VSF ¢, € [0, 1] is positively correlated with the vorticity magnitude. We
choose the particular ¢, = 0.3 to discretize the vortex wake. The region enclosed by the
isosurface of ¢, = 0.3 captures approximately 90 % of the vortical impulse of shedding
vortex surfaces in the entire domain. Thus, we find that the calculation of I3} in (4.26) for a
single vortex surface is slightly underestimated by 2 %, assuming the similar /3 distribution
of all the five vortex surfaces in the wake in figure 4.

For comparison, we also estimate Cr from the near-wake model (4.26) based on the
isosurface of Eulerian vortex criteria |@| and A3, and obtain relatively large ¢ = 17 % and
& = 32 %, respectively. The major reason is that the isosurface of || or A2 can have a
notable difference from the vortex surface (Yang & Pullin 2011), so the contribution from
the surface integral (4.7) cannot simply be neglected for these isosurfaces. We remark that
the choice of the isocontour level of |@| or A, is ad hoc for vortex identification, and we
have tuned |®| and A, to minimize their corresponding €.

In addition, the vortex-ring model (see Lauder & Drucker 2002; Nauen & Lauder 2002;
Li & Lu 2012) can estimate the mean thrust using the vortical impulse I, = pnl"a® of a
vortex ring, where I is the circulation of the vortex ring. In Appendix B, we simplify
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Figure 7. Temporal evolution of (a) streamwise vortex centre x. and (b) streamwise impulse /, of discrete
vortex surfaces in the wake.

the spoon-like vortex surface in figure 4 to the vortex ring, and determine the mean
thrust coefficient C¥ from the modelled vortex ring. In table 2, CI; is overestimated
and has larger discrepancies than other models for our cases, perhaps owing to the
over-simplification of the spoon-like vortex surfaces in figures 3 and 4 as vortex rings.
We find that the time-averaged streamwise vortical impulse of ring-like V| dominated
by circular trailing-edge vortex lines is approximately 40 %—50 % larger than that of the
spoon-like vortex surfaces with kinked tip vortex lines.

4.4. Estimating thrust from the far wake

From the practical viewpoint, estimating forces on the moving body from the far wake is
very useful in the experimental investigation of biological locomotion (Lauder & Drucker
2002; Spedding et al. 2003) and underwater vehicles (Jiménez et al. 2010). As indicated
in figure 4, a pair of discrete vortex surfaces are shed form the plate within 7', and the
wake is dominated by two rows of discrete vortex surfaces. The evolution of vortex pairs
in the wake is similar owing to their periodic formation and shedding process. Thus, it is
possible to estimate forces based on two arbitrary vortex surfaces in the far wake.
We define the geometrical centre of vortex surface V; as

/ xdV
Vi

Xej= ———.
[ av
V.

Figure 7(a) shows that the vortex centre moves downstream with a uniform velocity, and
the streamwise vortical impulse also linearly decays for all the discrete vortex surfaces.
These linear relations are utilized to infer /{ from the far wake.

We approximate the shedding location x. ; = 1.5 for all the discrete vortex surfaces,
corresponding to the position where I} is obtained. Given two arbitrary vortex surfaces V,
and V), with a, b = 3, ..., N — 1 in the wake, we estimate the initial streamwise vortical
impulse /3 as

(4.30)

I, — 1
I; ~ 15 =I5+ M(xc,a — Xe,5) (4.31)
Xe,b — Xe,a
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where x. , and x. ; respectively denote streamwise vortex centres of V, and Vj,, and I,
and /,,  respectively denote streamwise vortical impulses of V,, and V},. Then, we estimate
the mean thrust coefficient
FF ALIY
3 1Y U*R A TfC

from the far wake with small a and b, where A; = 0.85 is an attenuation factor for the
Lamb-vector correction. In this far-wake model, we estimate the thrust contributed from
the vortical impulse without explicitly considering the Lamb-vector integral, because it is
difficult to predict L at the shedding time from the far wake owing to the fast decay of L
downstream. In order to incorporate the negative contribution of L to Cr, we alternatively
apply the factor A7 = 0.85 in (4.32), which is estimated based on the overall ratio of C]}]

from the near-wake model and C [T from the impulse model listed in table 2.

The far-wake model predictions from (4.32) with a = 4 and b = 3 generally agree with
the DNS results in table 2, and the relative errors ¢ ~ 9 % are, reasonably, larger than
those in the near-wake model. The thrust predictions with different a and b are very similar
within 43 % variation. Furthermore, we can also calculate IZ and then estimate CJ from
the Lagrangian history of a single vortex surface at different locations at two times within
a small time interval.

The far-wake model (4.32) implies that the thrust of the flapping plate is determined by
the vortical impulse generated during the flapping motion, and the shedding vortex surface
with larger I¥ can generate larger thrust on the moving body (Spedding et al. 2003; Li &
Lu 2012), which can guide the optimization of the kinematics parameters of the flapping
plate in (2.1) and (2.2) to increase the thrust of the flapping plate by shedding the vortex
surface with larger I

Thus, we provide a possible approach to estimate thrust using only two vortex surfaces
in the wake, which can facilitate the estimation of the state of the moving body in
experimental investigation and practical applications. In the experimental implementation,
the particle image velocimetry (PIV) can be used to measure the three-dimensional flow
field in the wake (Buchholz & Smits 2008; Mendelson & Techet 2015). The PIV data
are usually subject to noise, so the time series of raw PIV data need to be corrected,
e.g. using the divergence-free smoothing method (Wang er al. 2016). Subsequently, the
boundary-constraint method (Xiong & Yang 2017) can be applied to construct VSFs, then
the thrust is estimated based on vortex surfaces in the wake. On the other hand, significant
challenges still exist in the implementation, e.g. the incompleteness of velocity/vorticity
measurement, accuracy of VSF calculation from under-revolved experimental data and the
uncertainty quantification of the force estimation.

5. Conclusions

We investigate the VSF evolution in flows past a flapping plate with a low aspect ratio
and estimate the time-averaged thrust from shedding vortex surfaces in the wake. The
immersed boundary method is used to obtain the velocity—vorticity field, and the two-time
method with source terms is applied to calculate the VSF solution.

The VSF evolution can be roughly split into three stages based on the morphology
of vortex surfaces and lines. During the first quarter of the flapping cycle, a vortex
bulge dominated by counterclockwise vortex lines is formed, and then it is shed from
the trailing edge due to the vorticity cancellation between two adjacent vortex surfaces
and evolves into a circular vortex ring in the wake. During the following half-flapping
cycle, a spoon-like vortex surface dominated by TIV lines is generated. In the late stage,
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the spoon-like vortex surfaces are periodically created and shed during the alternating
upstroke and downstroke. Two sets of vortex surfaces propagate downstream in the wake,
and the spoon-like vortex surface gradually evolves into ring-like vortex in the far wake.

We develop near-wake and far-wake models to estimate the time-averaged thrust from
the shedding vortex surfaces in the wake. First, we choose a particular vortex surface as
the integral domain in the finite-domain impulse theory, so that the force on the moving
body is determined by the vortical impulse and Lamb-vector integral of the vortex surface
enclosing the body. Then, the force estimation is extended to that from the discrete vortex
surfaces in the wake. Here, the vortical impulse is obtained at the vortex shedding time, and
the force contribution from the Lamb-vector integral enclosing the body is approximated
by the two discrete vortex surfaces close to the plate. Thus, the time-averaged thrust
coefficient can be estimated from the near wake, and our model estimation agrees well with
the DNS result in various cases with different angles of attack, flapping frequencies and
Reynolds numbers. The relative errors are approximately 5 %, and they are smaller than
those from predictions of the impulse model and the vortex-ring model, which implies
the importance of incorporating effects of the Lamb vector in the thrust model and the
over-simplification of the spoon-like vortex surfaces as vortex rings.

Furthermore, we estimate the time-averaged thrust from two arbitrary vortex surfaces
in the far wake based on the self-similar formation and evolution process of vortex
surfaces in the periodic flapping motion. The relative errors of the far-wake model are
approximately 9 %, which are larger than the near-wake errors owing to the uncertainty
of the force correction from the Lamb-vector integral. This model provides a possible
approach to inferring the state of the moving body in experimental investigation and
practical applications.

We remark that the thrust models developed in this study are restricted to a flapping
plate with discrete vortex surfaces in the wake. In future work, the VSF method should
be extended to characterize the evolution of vortex surfaces and estimate forces from
more complex vortex wakes for higher R4 and St, in which the vortical structures are
interconnected. With further improvement, the proposed thrust model is expected to be
applied to temporally resolved PIV data in experimental and practical applications.
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Appendix A. Mesh convergence test

The numerical implementation of the immersed boundary method in the present study
has been validated in previous studies, including the three-dimensional flow past a
three-dimensional stationary plate (Wang & Zhang 2011) and flapping plate (Wang et al.
2013, 2019). Additional validations for the effectiveness of the present mesh spacing and
computational domain are given below.

We simulated the flow past a flapping plate on four meshes M, M>, M3 and M4 with
the minimum spacings Ax = 0.02, 0.015, 0.0125 and 0.01, respectively. The detail of
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Mesh Computational domain Minimum Ax
M, [—11.84, 19.84] x [—16, 16] x [—16, 16] 0.02

M, [—13.2,21.6] x [—18, 18] x [—18, 18] 0.015

M3 [—14,22] x [—18, 18] x [—18, 18] 0.0125
My [—15.04,22.08] x [—18.88, 18.88] x [—18.88, 18.88] 0.01

Table 3. Mesh parameters in the convergence test.
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Figure 8. Comparison of the time-dependent thrust coefficient for the four meshes listed in table 3.

each mesh is listed on table 3. Figure 8 shows the time-dependent thrust coefficient
with four meshes for Case 1 in table 1, and we observe that the thrust coefficient is
converged with the decrease of minimum spacing. The time step is chosen to keep the
Courant—Friedrichs—Lewy number at 0.5.

The maximum discrepancy of the time-averaged Cr for M3 from that for My is within
2 %, and it is confirmed that the numerical result is independent of the mesh spacing and
computational domain. Thus, we simulate the present result on mesh M3 with minimum
spacing Ax = 0.0125 to balance the computational cost and spatial resolution.

Appendix B. Vortex-ring model

A spoon-like vortex surface can be simplified as a vortex ring with the circulation I, radius
a and inclination angle S to estimate forces, as shown in figure 4(c). The geometry of the
simplified vortex ring is determined by the spanwise vorticity on the spanwise symmetry
plane y = 0.

Considering a particular discrete vortex surface V; at its shedding time, the centres of
two projected regions of the ring on y = 0 are

/ wyx dS

N

/ wy dS
S

Xcl = for wy < 0, (B1)
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Case a B (deg.) r

1 0.530 62.84 1.093
2 0.514 73.09 1.738
3 0.531 69.76 0.961
4 0.591 57.05 1.027

Table 4. Parameters of the vortex-ring model.

and

/ wyx dS
JE

X2 = for wy, > 0. (B2)
/ wy dS
S
Then, a and B are obtained by x,.; and x.2, and
r= / w0y dS (B3)
S

is calculated in the region S with w, > 0. The parameters a, 8 and I" in the present DNS
cases are listed in table 4. The time-averaged thrust coefficient

eR _ I B 21a’ T cos B
T IpU2RsTyc2 — UPRATyC?

1s calculated and listed in table 2.

(B4)

Appendix C. Estimating thrust from the wake with complex vortex topology

The wake is composed of a series of discrete vortex surfaces in Cases 1-4 (see table 1),
whereas it becomes convoluted with an increase of the Reynolds number, Strouhal number
or plate aspect ratio. As shown in figure 9(a), vortex surfaces in the wake become partially
interconnected in Case 5 with Ry = 2.

The shedding mechanism of vortex surfaces in Case 5 is similar to that in Case 1, but
a long, chain-like structure is formed in the wake for R4 = 2 instead of the discrete wake
structures for R4 = 1, hindering the estimation of thrust based on a finite-sized vortex
surface. Moreover, we reduce the empirical parameter as o; = 1 in (2.15) in the VSF
calculation of Case 5, because the VSF numerical dissipation grows with the complexity
of wake structures.

In Case 5, adjacent vortex surfaces can be partially overlapping, and are not easy
to separate. Figure 9(b) shows the contour of spanwise vorticity and typical VSF
isocontour lines on the spanwise symmetry plane at y = 0. The extracted VSF isosurface is
interconnected for small ¢, e.g. ¢, = 0.2 in figure 9(b), and it gradually becomes discrete
with increasing ¢,, e.g. for ¢, = 0.8.

For an isolated vortex surface, we define the vortical impulse

I(Cy) =ex-%/ x x podV (C1)
V(gy=Cyp)

over the volume V (¢, > Cy) filled with VSF isosurfaces of ¢, > Cy, where 0 < Cy <
1 is a constant and e, denotes the unit vector in the x-direction. In general, I3(Cy) and
V(¢y < Cyp) increase with the decrease of Cyp.
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(b)
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Figure 9. (a) The side view of the VSF isosurface of ¢, = 0.8 at = 2.257 in Case 5. (b) The contour of the
spanwise vorticity on the spanwise symmetry plane at y = 0. Green and black lines represent parts of typical
VSF isocontour lines of ¢, = 0.2 (solid), ¢, = 0.5 (dashed) and ¢, = 0.8 (dotted) in V4 and Vs, respectively.

We estimate I = I3(Cy = 0) in (4.25) from I{(Cy) of isolated vortex surfaces, where
Cy should be large enough, e.g. Cy = 0.8. For Case 5, we find a linear relation of I3(Cy)
with Cy for Cy < 0.8 as

I(Cy) = I(Cy = 0.8) + (0.8 — Cy)ky, (C2)

where kg 2~ 1.02 is the decay rate of I{(Cy) with Cy. Thus, we approximate /3 via (C2)
with Cy = 0 at t = 2.25T. Then we estimate Cr from near wake, which has & ~ 20 %.
Therefore, we provide a possible method to estimate thrust from a wake consisting of
partially interconnected vortex surfaces.

For larger St or R4 with more convoluted vortex surfaces in the wake, we cannot simply
divide the VSF isosurface into discrete ones using the segmentation algorithm with any
choice of ¢,, e.g. in Case 6. Hence, it is difficult to estimate thrust from an isolated vortex
surface in the wake via the simplified thrust formula (4.25), and we have to consider all
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the interconnected vortex surfaces near the plate. We find that the thrust can be estimated
by (4.13) with an appropriate X}, and the relative error is approximately 12 % for Case 6.
Therefore, estimating forces based on vortex surfaces in complex wake flows remains an
open problem.
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