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SUMMARY
This paper presents the dynamic modeling of a 3-RPR planar parallel manipulator with three flexible
intermediate links in order to investigate the effects of the intermediate links flexibility on the
undesired vibrations of the end-effector. For this purpose, the intermediate links are modeled as
Euler–Bernoulli beams with two types of fixed-pinned and fixed-free boundary conditions based
on the assumed mode method (AMM). The equations of motion of the 3-RPR manipulator are
formulated using the augmented Lagrange multipliers method in the form of differential algebraic
equations (DAEs) by incorporating the elastic and rigid coordinates in the set of generalized
coordinates. After defining the initial conditions and imposing external forces to the manipulator,
the equations are then solved numerically using the Modified Extended Backward-Differentiation
Formula Implicit (MEBDFI) approach. Comparison of the simulation results for two different
boundary conditions shows clearly the effects of flexibility of the intermediate links on the vibration
of the end-effector trajectory. Results of this work can be used for the dynamic modeling of other
manipulators or to design a controller for reducing the undesired vibrations.

KEYWORDS: Flexible manipulators; Parallel manipulators; Assumed mode method; Euler–
Bernoulli beam.

1. Introduction
Now-a-days, parallel manipulators constitute an important part of industry, and their applications
are increasing due to their speed and accuracy compared with serial manipulators. Therefore, many
researches are devoted to this topic and seek to identify causes of deviation of the end-effector from
its desired trajectory, reducing the amount of deviation, and optimizing and controlling manipulators.
In industrial manipulators, the link and joint flexibility are two important sources of deviation from a
desired trajectory. To verify and increase the accuracy of these manipulators, the structural flexibility
of their links has to be considered and modeled in an effective and natural way. This is an important
issue because transverse vibrations of the links as a result of the flexibility lead to deviation from
a desired trajectory of the end-effector. Compared with serial manipulators, limited studies report
the dynamic modeling of parallel manipulators with structural flexibility. These manipulators have
closed loop geometry and consequently, their system equations of motion include the kinematic
constraint equations. A detailed survey of the literature related to the dynamic analysis of flexible
robotic manipulators has been carried out in ref. [1] including both link and joint flexibility.

Parallel manipulators typically consist of several closed chains and a moving platform. According
to the arrangement of their joints in a chain, these mechanisms are classified as PRR, RPR, RRR, PRP,
PRS, etc., where P denotes a prismatic joint, R denotes a revolute joint, and S denotes a spherical joint.
The preliminary studies on this subject were dealing with the kinematic and dynamic analysis of rigid
parallel manipulators. Due to the increasing demand of constructing parallel manipulators with high
level of precision, the dynamic modeling of manipulators with flexible intermediate links has become
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an interesting topic. In this context, mainly two approaches are used: finite element method (FEM)
and assumed mode method (AMM). Theodore and Ghosal2 compared FEM and AMM for modeling
the link flexibility of manipulators. They showed that mathematical operations required for the inertia
matrix computation in the FEM are fewer compared to the AMM formulation. However, due to the
higher number of state space equations in FEM, the numerical simulation may be computationally
more expensive.

Among the earliest works for considering the flexibility of parallel manipulators, the work of
Lee and Geng3 can be mentioned in which they developed the dynamic modeling of a flexible
Stewart manipulator. With the consideration of link flexibility, Giovagnoni4 presented a general
approach for the dynamic analysis of flexible closed-chain manipulators using the principle of virtual
work. Fattah5 used FEM for discretization of the flexible links of a 3-DOF (degree of freedom)
parallel manipulator. The equations of motion of the uncoupled links were derived based on the
Euler–Lagrange formulation. Kang and Mills6 presented a procedure for flexibility modeling in a
flexible parallel manipulator, which thereafter became the basis for several researches. Using the
Lagrange multipliers method, they developed the fully coupled equations of motion of a 3-PRR
planar parallel manipulator by considering structural flexibility of the intermediate links. These links
were modeled as Euler–Bernoulli beams with pinned-free boundary conditions based on the AMM.
Wang and Mills7 performed an experimental modal analysis of flexible links of a 3-PRR manipulator.
They studied the boundary conditions which verify the experimental results. A dynamic model for a
3-PRR planar parallel manipulator with flexible links was developed based on the FEM in refs. [8] and
[9]. Zhou et al. derived equations of motion of a 3-PRS manipulator with flexible links and joints for
vibration analysis using the FEM.10 They combined the finite element models of the link and the joint
virtual spring models. All the links were modeled by finite elements in which triangular membranes
were combined with bending plates for the moving platform and spatial beams for the legs. Using the
same procedure, Zhang et al.11,12 developed the equations of motion of a 3-PRR parallel manipulator
by modeling the intermediate links with pinned-pinned boundary conditions based on the Lagrange
multiplier method. They studied the effect of elastic deformations on rigid body motions and coupling
effect between flexible links. In ref. [12] the effect of concentrated rotational inertia at both ends
of the intermediate links was included in this model. Experimental modal tests were performed to
validate the theoretical model through comparison and analysis of modal characteristics of the flexible
manipulator system. They also improved that procedure by considering longitudinal flexibility of the
manipulator links to derive equations.13 Open-loop simulation without joint motion controls and
closed-loop simulation with joint motion were performed to investigate the effect of elastic motions
on rigid body motions and coupling effect between flexible links. In addition, dynamic behavior of the
same manipulator including the effect of axial forces on the lateral deformations was investigated.14

Finally, they presented multi-mode vibration control and analysis of moving platform position errors
of that manipulator using piezoelectric transducers (PZTs).15

Dynamic modeling and vibration control of a 3-PRR planar parallel manipulator with flexible
linkages were considered in ref. [16]. The AMM is adopted with the pinned-pinned boundary
conditions to include the structural flexibility. Therein, an active damping approach using piezoelectric
material actuators was presented to damp out oscillation of the linkages. Zhang et al.17 performed
dynamic modeling and eigenvalue evaluation of a 3-RPS flexible manipulator. With combination
of the substructure synthesis and FEM, an analytical approach was proposed to formulate the
governing equations of motion using compatibility conditions at the interface between the limbs
and the platform. Based on a sensitivity analysis, they concluded that the dimensional parameters
of the 3-RPS manipulator have a slight effect on system lower natural frequencies while the joint
compliances affect the distributions of lower natural frequencies significantly. The work presented
by Liu et al.18 concerned the dynamic modeling and solution of a 3-RRS spatial parallel manipulator
with flexible links. For this purpose, they proposed a new model of spatial flexible beam elements
in their FEM analysis, and derived the dynamic equations of motion using the Lagrange multiplier
method.

The above review reveals that the majority of the publications, which deal with the dynamic
modeling of parallel flexible manipulators, were devoted to the manipulators with 3-PRR and 3-PRS
structures. To the best of our knowledge, the parallel flexible manipulators with 3-RPR structure have
not been considered for dynamic analysis. Only limited studies include kinematic analysis of this
type of manipulators. The kinematic study of a 3-RPR planar parallel robot whose moving platform
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Fig. 1. Coordinates system of the proposed 3-RPR manipulator.

is connected to a fixed base by three links was presented in refs. [19] and [20]. The authors in ref. [21]
described the design, construction, and control of a planar 3-RPR parallel manipulator by including
forward pose kinematics but did not concern dynamic modeling strategy. Bonev et al.22 described
several types of singular configurations by studying the direct kinematics model of a 3-RPR planar
parallel robot with actuated base joints. Recursive matrix relations for the kinematic analysis of
this robot with pneumatic or hydraulic actuators were established in ref. [23]. In another study,24 the
kinematic geometry of the general 3-RPR planar parallel robots with actuated base joints was studied.

In this paper, the dynamic modeling of a 3-RPR planar parallel manipulator considering structural
flexibility of its three intermediate links is studied. For flexibility modeling and derivation of equations
of motion, the same procedure as used in refs. [6] and [13] for 3-PRR parallel manipulator is adopted
here for the 3-RPR manipulator. These two types of manipulators are different in joint positions and
in components.

The rest of the paper is as follows. The necessary steps for introducing link flexibilities and
boundary conditions, imposing kinematic constraints, deriving equations of motion and solution
strategies are explained. The final results will provide a new and valuable insight to the effect of
different boundary conditions and link flexibility for design and control of the parallel manipulators
with flexible intermediate links.

2. Coordinates System of the 3-RPR Parallel Manipulator
The planar parallel manipulator presented in this work is categorized as a 3-RPR type, as shown
in Fig. 1. This manipulator, which is placed on the ground plane, is composed of three symmetric
closed-loop chains, each of which consists of a revolute joint (R), then a prismatic joint (P), and again
a revolute joint (R), respectively.

The moving platform consists of an equilateral triangle C1C2C3 with three revolute joints. Note that
in this manipulator both the moving platform C1C2C3 and the fixed platform A1A2A3 are equilateral
triangles. Gravity is perpendicular to the X–Y plane of the manipulator. The end-effector is installed
in the center of the moving platform. Each prismatic joint at point Bi (i = 1, 2, 3) is connected to the
platform through a flexible link with length l. As can be perceived from the figure, two sets of local
coordinates are defined for each flexible link. Coordinate xi is assumed to be in the direction of the
undeformed link i, and coordinate wi(x) is defined as the bending deflection of link i from its rigid
configuration. The positive direction of wi(x) is chosen in the same direction of its corresponding
θi . For example, w1(l) and w3(l) are shown in their negative directions, while w2(l) is shown in its
positive direction. The origin O of the fixed coordinate frame is located at the center point of the
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triangle A1A2A3. The rotation angle of each rigid link AiBi is specified with θi . The variable distance
due to the actuation of prismatic joint between points Bi and Ai is defined as ρi .

3. Structural Flexibility Modeling of the Intermediate Links
The structural flexibility of the intermediate links is introduced based on the Euler–Bernoulli beam
model and the AMM. The flexible links of this manipulator satisfy the necessary conditions for
which the Euler–Bernoulli beam model can be considered. Therefore, the deflections are assumed to
be small compared to the beam cross section.25 Study on the flexibility of the joints is not discussed
in this work and therefore, they are assumed rigid. Also, the platform C1C2C3 and links AiBi are
assumed rigid, because they are designed and built to be much stiffer than the intermediate links
BiCi . Based on the AMM, the transverse deflections of links are modeled by an infinite number of
separable harmonic modes. Since only the first few modes dominate the dynamics, the modes are
truncated to a finite number of modal series. According to the formulation of the AMM, bending
deformation of the flexible link i can be expressed as

wi(x, t) =
r∑

j=1

ηij (t)ψj (x), i = 1, 2, 3, (1)

where wi(x, t) is the bending deflection of beam that varies along the beam with time. ψj (x) is the
mode shape function and ηij (t) is the time-varying mode amplitude. Index i is the link number, j

is the mode shape number, and r is the number of selected assumed modes for modeling of link
flexibility. Vector of generalized flexible coordinates η̄ with dimension 3r × 1 is defined as

η̄ = [η11, . . . , η1r , η21, . . . , η2r , η31, . . . , η3r ]T , (2)

where ηij with i = 1, 2, 3 and j = 1, . . . , r denote the jth mode coordinate of the ith flexible link.
The flexible intermediate links are treated as rigid in the longitudinal direction since the axial stiffness
of intermediate links is much higher than the lateral stiffness. We consider both types of the fixed-
pinned and fixed-free boundary conditions at each time. Due to the rigidity of the prismatic joints,
the slope and deflection of the flexible links at point Bi are zero. The boundary condition at the end
point Ci of the flexible links is chosen differently to investigate its effects on the vibration of the end-
effector. For the fixed-pinned boundary conditions, the mode shape function ψj (ξ ) that is presented in
ref. [25] can be easily developed in dimensionless form as

ψj (ξ ) =
[(

cos αjξ − cosh αjξ
) − cos αj − cosh αj

sin αj − sinh αj

(
sin αjξ − sinh αjξ

)]
, j = 1, 2, . . . , r.

(3)
Here, ξ = x

l
,0 ≤ ξ ≤ 1, where x is the distance from Bi to an arbitrary point on the ith flexible

link, and l is the link length. The parameter αi can be obtained by solving the following frequency
equation:

tan αi = tanh αi, (4)

which can be written as αj ≈ (j + 0.25)π .
On the other, for the fixed-free boundary conditions, the mode shape function ψj (ξ ) is written

from ref. [25] as

ψj (ξ ) =
[(

cos αjξ − cosh αjξ
) − cos αj + cosh αj

sin αj + sinh αj

(
sin αjξ − sinh αjξ

)]
. (5)

For this case, αj is obtained from the solution of the following frequency equation:

cos αj cosh αj + 1 = 0, (6)
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Fig. 2. Amplitude of the first four mode shapes for fixed-pinned boundary conditions.

Fig. 3. Amplitude of first four mode shapes for fixed-free boundary conditions.

where, for example, α1 to α4 are

α1 = 1.875104069, α2 = 4.694091133, α3 = 7.854757438, α4 = 10.99554073. (7)

Figures 2 and 3 show the first four mode shapes of the flexible link for both fixed-pinned and
fixed-free boundary conditions, respectively.

4. Equations of Motion of the 3-RPR Parallel Manipulator
In this section, the fully coupled equations of motion of the 3-RPR flexible parallel manipulator using
Lagrange multipliers method are presented. The fixed-pinned and fixed-free boundary conditions are
considered for the flexible intermediate links. For deriving the equations, the rigid body and elastic
motions are incorporated as a set of generalized coordinates using the procedure outlined in refs. [13]
and [14].

4.1. Kinetic energy
The total kinetic energy of the manipulator includes the kinetic energies of the cylinders (rigid links),
the flexible intermediate links, and the moving platform. The kinetic energy of three rigid links AiBi

is given as

TC =
3∑

i=1

1

2
Icθ̇

2
i , (8)
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where Ic is the mass moment of inertia of the ith rigid link about its rotating axis at point Ai , and θ̇i is
the angular velocity of this link. The kinetic energy of the flexible intermediate links is expressed as

TL =
3∑

i=1

1

2

∫ l

0
ρA

[
ρ̇2

i + ((x + ρi)θ̇i + ẇi(x))2
]
dx, (9)

where ρA is mass per unit length of each flexible link with mass m,ẇi(x) is the time derivative of
bending deformation, and ρ̇i is the linear velocity of flexible link i in the direction of its undeformed
configuration. Finally, the kinetic energy of the platform is expressed as

TP = 1

2
mp

(
ẋ2

p + ẏ2
p

) + 1

2
Ipφ̇2

p, (10)

where IP is the mass moment of inertia of the platform around the center point P, mp is the platform
mass, ẋp and ẏp are the linear velocities along the X and Y axes, respectively, and φ̇p is the angular
velocity of the platform. The total kinetic energy can be obtained by summing the kinetic energy of
all components as

T =
3∑

i=1

1

2
Icθ̇

2
i +

3∑
i=1

1

2

∫ l

0
ρA

[
ρ̇2

i + ((x + ρi)θ̇i + ẇi(x))2] dx + 1

2
mp(ẋ2

p + ẏ2
p) + 1

2
Ipφ̇2

p. (11)

4.2. Potential energy
The potential energy of the flexible manipulator system arises generally from two sources: the elastic
deformation of flexible links and gravity. Gravitational force is perpendicular to the manipulator plane
and therefore, the potential energy due to gravity is not included here. The potential energy of the
system due to the bending deflection of flexible links is given as

V = 1

2

3∑
i=1

∫ l

0
EI

(
∂2wi(x)

∂x2

)2

dx = 1

2

3∑
i=1

EI

l3

∫ 1

0

r∑
j=1

η2
ij (t)(ψ ′′

j (ξ ))2dξ , (12)

where E and I are the elastic modulus and the second moment of area of each flexible link,
respectively.

4.3. Lagrange equations
The generalized coordinates of the manipulator include rigid and flexible coordinates. Rigid body
motion is expressed by ρ̄ = [ρ1, ρ2, ρ3]T ,θ̄ = [θ1, θ2, θ3]T , and X̄p = [Xp, Yp, φp]T . Therefore, the
set of generalized coordinates is written as X = [ρ̄,θ̄ , X̄p, η̄]T ∈ R(9 + 3r) × 1. Three sets of rigid body
coordinates are dependent due to the kinematic constraints. Since the manipulator has 3 DOFs
regarding rigid body motions (without considering flexibilities), the components of ρ̄, θ̄ , and X̄P

must satisfy six constraint equations. From the geometry of three closed-loop chains as shown in
Fig. 1, following constraint equations can be written:

rOAi
+ rAiBi

+ rBiCi
= rOP + rPCi

, i = 1, 2, 3, (13)

which upon projection along X and Y axes, six constraint equations are obtained. For the case of
fixed-pinned boundary conditions, the constraint equations are expanded as

�2i−1 ≡ XAi + (ρi + l) cos θi − Xp − rPCi
cos(φi + φp) = 0, i = 1, 2, 3, (14)

�2i ≡ YAi + (ρi + l) sin θi − Yp − rPCi
sin(φi + φp) = 0 , i = 1, 2, 3, (15)

where rPCi
cos(ϕi + ϕp) and r sin(ϕi + ϕp) = y0

ci specify the global X and Y coordinates of Ci

relative to point P (Fig. 4), respectively. Furthermore, φi is the angle between rPCi
and x-axis of
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Fig. 4. Coordinate system of the moving platform.

local coordinate which according to Fig. 4, can be written as φ1 = −π/6, φ2 = π/2, and φ3 = 7π/6.
Parameters XAi and YAi are the global X and Y coordinates of Ai in Fig. 1, respectively. Note that the
variables rPCi

, φi , XAi , and YAi are constant.
In general, the constraint equations involve elastic deformations. However, for the fixed-pinned

boundary conditions, the distanceBiCi is constant. Therefore, constraints (14) and (15) do not include
the elastic coordinates. For the fixed-free boundary conditions, the corresponding constraint equations
in the expanded form are written as

�2i−1 ≡ XAi + (ρi + l) cos θi − wi(l) sin θi − Xp − rPCi
cos(φi + φp) = 0, i = 1, 2, 3, (16)

�2i ≡ YAi + (ρi + l) sin θi + wi(l) cos θi − Yp − rPCi
sin(φi + φp) = 0, i = 1, 2, 3. (17)

Using the Lagrange multiplier method, the dynamic equations of the manipulator are given as

d

dt

(
∂(T − V )

∂Ẋj

)
− ∂(T − V )

∂Xj

= Qj +
6∑

k=1

λk

∂�k

∂Xj

, j = 1, . . . , (9 + 3r), (18)

where Qj is the generalized force associated with the generalized coordinate Xi , and λk is
the Lagrange multiplier associated with the kth constraint equation. Substituting the relations of
kinetic and potential energies together with constraint equations in Eq. (18) results the manipulator
differential-algebraic equations which can be rearranged in the following matrix form as

⎡
⎢⎢⎣

Mρρ 0 0 0
0 Mθθ 0 MT

ηθ

0 0 MXP XP
0

0 Mηθ 0 Mηη

⎤
⎥⎥⎦

⎡
⎢⎢⎣

¨̄ρ
¨̄θ
¨̄XP
¨̄η

⎤
⎥⎥⎦ +

⎡
⎢⎣

Kρρ 0 0 0
Kθρ 0 0 0

0 0 0 0
0 0 0 Kηη

⎤
⎥⎦

⎡
⎢⎢⎣

ρ̄

θ̄

X̄P

η̄

⎤
⎥⎥⎦ =

⎡
⎢⎣

Fcρ

Fcθ

0
Fcη

⎤
⎥⎦

+

⎡
⎢⎣

Feρ

Feθ

FeXP

Feη

⎤
⎥⎦ +

⎡
⎢⎢⎣

JT
�ρ

JT
�θ

JT
�XP

JT
�η

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤
⎥⎥⎥⎥⎥⎦ , (19)

where vectors Fci , (i = ρ, θ, XP , η), include Coriolis and centrifugal forces, vectors Fei contain
externally applied forces, and J�i are the constraint Jacobian matrices corresponding to the
generalized coordinates. Matrices M and K are the mass and stiffness matrices, respectively. The
detailed derivation of the above parameters is given in the Appendix. It is maybe important to notice
that some of the parameters appeared in Eq. (19) are different for two types of the already considered

https://doi.org/10.1017/S0263574714001118 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001118


1916 Dynamic characteristics of a 3-RPR planar parallel flexible manipulator

Table I. Planar 3-RPR manipulator’s parameters.

Moving platform Side length (CiCi+1 = b) 100 mm
Mass 0.2 kg

Flexible links Length (BiCi = l) 200 mm
Cross section diameter 10 mm
Density 2270kg/m3

Young’s modulus 73 GPa
Cylinders (rigid links) Motion course amplitude (AiBi) 200 mm

Inner diameter 14 mm
Outer diameter 16 mm
Density 2270kg/m3

Fixed platform Side length (AiAi+1) 660 mm

Fig. 5. Variations of ρi(t)for Feρ = [5, 0, 0]T .

boundary conditions. The dimension of Eq. (19) is (9 + 3r) × (9 + 3r) where r is number of the
assumed modes.

5. Numerical Simulation
In this section, some numerical simulations for the 3-RPR parallel manipulator with three flexible
intermediate links are presented. In these simulations, the first three mode shapes are selected to
model the structural flexibility of the intermediate links, i.e., r = 3. Consequently, Eq. (19) would
consist of 18 equations in terms of 24 unknowns, which should be considered together with six
constraint equations. Table I reports the necessary parameters of the manipulator.

The initial conditions for all simulations are considered to be zero. The center of moving platform
at the beginning is coinciding with the origin O of the fixed frame. For this configuration, the initial
generalized coordinates ρ̄0 and θ̄0 can be calculated from the constraint equations based on an inverse
kinematics approach as

ρ̄0 =
(

560

√
3

3
− 200

) [
1 1 1

]T
, θ̄0 = π

6

[
5 9 1

]T
. (20)

In the following, three different simulations are carried out to validate the equations of motion.
Additionally, the effect of considering each type of boundary conditions is investigated. The approach
that is used for numerical solving of Eq. (19) is the Modified Extended Backward-Differentiation
Formula Implicit (MEBDFI) of the Maple software.

Simulation 1: A constant external force
In this example, only a constant external force of 5 N corresponding to the generalized coordinate
ρ1 is applied to the manipulator with fixed-pinned boundary conditions by the piston at B1, while
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Fig. 6. End-effector trajectory for Feρ = [5, 0, 0]T .

Fig. 7. Variations of ρi(t), for FeXp = [0, 0, 5]T .

other generalized forces are kept zero. Figures 5 and 6 display the variations of ρi(t), (i = 1, 2, 3),
with respect to time and the end-effector trajectory, respectively. According to the applied force and
manipulator geometry, parameter ρ1 is increased, while ρ2 and ρ3 are reduced with the same rate.
This result can also be realized by direct inspection of the manipulator due to the symmetry. The
coordinates ρ2 and ρ3 begin to increase when side C2C3 of the moving platform reaches to side A2A3

of the fixed platform. In Fig. 6, the end-effector trajectory is on a straight line in the direction of the
applied force with an angle of 30◦ with respect to side A2A3. These results verify the overall behavior
of the manipulator in a simple simulation.

Simulation 2: A constant external torque
In the second example, only a constant torque of 5 Nm is applied to the moving platform of the
manipulator with fixed-pinned boundary conditions while other generalized forces are kept zero.
The torque rotates the platform around its center and consequently, the pistons at points Bi follow
a reciprocal motion along the cylinders AiBi , as shown in Fig. 7. Variation of the rotation angle of
three cylinders AiBi is illustrated in Fig. 8. The pistons reciprocal velocity and the angular velocity
of three cylinders are increasing, due to the result of applied torque. This important fact can simply
be realized from Figs. 7 and 8.
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Fig. 8. Variations of θi(t) for FeXp = [0, 0, 5]T .

Fig. 9. Variations of ρi(t) for the case of harmonic forces.

Simulation 3: Harmonic forces
In this section, some typical harmonic forces are applied to the manipulator with both types of
fixed-pinned and fixed-free boundary conditions. The harmonic forces are considered as

Feρ = (50 cos(40π t) − 50) [1 1 1]T (N), Feθ = 5 cos(400π t) [1, 1, 1]T (Nm)

FeXp = [100 cos(40π t)(N), 0, 0]T , Feη = 09×1.

These external forces have been selected in such a way that the structural flexibility of the
intermediate links would be excited. For this purpose, the system of Eqs. (19) is first generated
for two types of boundary conditions, and then, is solved using the MEBDFI approach. The fixed-
pinned boundary conditions are used for illustrating the rigid body motion. On other hand, the
fixed-free boundary conditions are used for investigating the effect of link flexibility on the end-
effector trajectory. The results are depicted in Figs. 9–11. In this paper, we have not imposed any
constraint to restrict the increase of the cylinders length from their maximum length. This important
fact has been remedied by proper selection of applied forces.

Figure 9 illustrates the variation of three coordinates, ρi(i = 1, 2, 3). It is observed that for two
types of boundary conditions, variations of ρicoincide with each other. This fact is the direct result of

https://doi.org/10.1017/S0263574714001118 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001118


Dynamic characteristics of a 3-RPR planar parallel flexible manipulator 1919

Fig. 10. Bending deformation of point Ci (i = 1, 2, 3) for the case of fixed-free boundary conditions.

Fig. 11. The trajectory of the end-effector for both types of the boundary conditions.

neglecting longitudinal flexibility of the flexible links. Figure 10 shows the bending deformations of
the flexible links tip at Ci for the fixed-free boundary conditions. Vibrations of Ci for the fixed-pinned
conditions would not be significant and therefore, have not been considered here.

Figure 11 compares the end-effector trajectory for both types of the boundary conditions. For this
case, the global Xand Y coordinates of point P on the end-effector are obtained from simulation of the
manipulator with both boundary conditions. As can clearly be seen, when the fixed-pinned boundary
conditions are assumed, flexibility of the intermediate links does not affect the trajectory significantly.
This means that the trajectory is almost close to the case of rigid manipulator. However, for the fixed-
free boundary conditions, the end-effector experiences significant periodic vibrations during passing
through the trajectory. This important issue is due to the effect of imposing different boundary
conditions at points Ci(i = 1, 2, 3) on the vibrations of the platform. It means that considering the
fixed-pinned boundary conditions would not show any considerable effect of the structural bending
flexibilities on the end-effector vibration. In this case, the flexible manipulator behaves almost rigid.
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Fig. 12. Error of X position.

Fig. 13. Error of Y position.

On the other hand, the fixed-free boundary conditions transfer correctly the induced vibrations of the
flexible links to the moving platform.

For investigating more exactly the effects of two boundary conditions on the end-effector trajectory,
the difference between the trajectories of Fig. 11 are obtained for the global Xand Y coordinates,
separately. Figures 12 and 13 show these two cases with respect to time, respectively.

It can clearly be seen that for both coordinates, the difference grows gradually with an oscillating
behavior. This issue can affect the required level of precision when modeling a flexible manipulator.
In addition, to assess further the effect of considering different boundary conditions, Figs. 14 and 15
illustrate the velocity of the end-effector in the Xand Y directions, respectively. Also, Fig. 16 shows
the angular position of the end-effector with respect to time. For all plots, the fixed-free boundary
conditions impose higher oscillation of the manipulator end-effector.

6. Conclusion
In this paper, the equations of motion of a planar parallel manipulator 3-RPR with three flexible
intermediate links were derived. The intermediate links are modeled as Euler–Bernoulli beams with
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Fig. 14. Velocity along the X-axis for the end-effector.

Fig. 15. Velocity along the Y-axis for the end-effector.

the fixed-pinned and the fixed-free boundary conditions based on the AMM. The equations of motion
of the 3-RPR manipulator are formulated using the augmented Lagrange multipliers method in the
form of differential algebraic equations (DAEs) by incorporating the elastic and rigid coordinates in
the set of generalized coordinates. Six kinematic constraints were defined to establish the necessary
relations between generalized coordinates. Three different simulations were performed. In the first
and the second simulations, a constant external force and a constant external torque was applied,
respectively. The fixed-pinned boundary conditions were considered for this case. The results verified
the overall dynamic response of the manipulator. In the last simulation, some typical harmonic
forces were applied to the manipulator with both types of the fixed-pinned and fixed-free boundary
conditions. It was realized that considering the fixed-pinned boundary conditions would not show
any considerable effect of structural bending flexibilities on the end-effector vibration. In this case,
the flexible manipulator behaves almost rigid. On the other hand, the fixed-free boundary conditions
transfer correctly the induced vibrations of the flexible links to the moving platform, which in turn
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Fig. 16. Angular position of the end-effector.

caused the end-effector to experience significant periodic vibrations during passing through the
trajectory.

Appendix

Mass matrix:

Mρρ = m

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦, Mθθ =

(
Ic + ml2

3

)⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ + m

⎡
⎣ lρ1 + ρ2

1 0 0
0 lρ2 + ρ2

2 0
0 0 lρ3 + ρ2

3

⎤
⎦,

MXP XP
=

⎡
⎣mp 0 0

0 mp 0
0 0 Ip

⎤
⎦ , Mηη = m

⎡
⎣ M̂ 0 0

0 M̂ 0
0 0 M̂

⎤
⎦ ∈ R3r×3r ,

M̂ =

⎡
⎢⎣

∫ 1
0 ψ2

1 dξ · · · 0
...

. . .
...

0 . . .
∫ 1

0 ψ2
r dξ

⎤
⎥⎦ ∈ Rr×r ,

Mηθ = ml

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 0 0
...

...
...

Mr1 0 0
0 M12 0
...

...
...

0 Mr2 0
0 0 M13
...

...
...

0 0 Mr3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Mij =
∫ 1

0
ψiξdξ + ρj

∫ 1
0 ψidξ

l
.
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Stiffness matrix:

Kρρ = −m

⎡
⎣ θ̇2

1 0 0
0 θ̇2

2 0
0 0 θ̇2

3

⎤
⎦, Kθρ = 2m

⎡
⎣ ρ̇1θ̇1 0 0

0 ρ̇2θ̇2 0
0 0 ρ̇3θ̇3

⎤
⎦, Kηη = EI

l3

⎡
⎣ K̂ 0 0

0 K̂ 0
0 0 K̂

⎤
⎦ ∈ R3r×3r ,

K̂ =

⎡
⎢⎣

∫ 1
0 ψ ′′2

1 dξ · · · 0
...

. . .
...

0 · · · ∫ 1
0 ψ ′′2

r dξ

⎤
⎥⎦ ∈ Rr×r .

Coriolis and centrifugal forces:

Fcρ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(0.5ml)θ̇2
1 +

r∑
j=1

mη̇1j θ̇1
∫ 1

0 ψjdξ

(0.5ml)θ̇2
2 +

r∑
j=1

mη̇2j θ̇2
∫ 1

0 ψjdξ

(0.5ml)θ̇2
3 +

r∑
j=1

mη̇3j θ̇3
∫ 1

0 ψjdξ

⎤
⎥⎥⎥⎥⎥⎥⎦

, Fcθ = −m

⎡
⎢⎢⎢⎢⎢⎢⎣

lρ̇1θ̇1 +
r∑

j=1
ρ̇1η̇1j

∫ 1
0 ψjdξ

lρ̇2θ̇2 +
r∑

j=1
ρ̇2η̇2j

∫ 1
0 ψjdξ

lρ̇3θ̇3 +
r∑

j=1
ρ̇3η̇3j

∫ 1
0 ψjdξ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Fcη = [
ρ̇1θ̇1

∫ 1
0 ψ1dξ . . . ρ̇1θ̇1

∫ 1
0 ψrdξ ρ̇2θ̇2

∫ 1
0 ψ1dξ . . . ρ̇2θ̇2

∫ 1
0 ψrdξ ρ̇3θ̇3

∫ 1
0 ψ1dξ . . . ρ̇3θ̇3

∫ 1
0 ψrdξ

]T

Jacobian matrix:

JT
�1 =

⎡
⎣ cos θ1 sin θ1 0 0 0 0

0 0 cos θ2 sin θ2 0 0
0 0 0 0 cos θ3 sin θ3

⎤
⎦ ,

JT
�2 =

⎡
⎣−s21 c21 0 0 0 0

0 0 −s22 c22 0 0
0 0 0 0 −s23 c23

⎤
⎦ ,

where for the fixed-pinned boundary conditions, s2i = (ρi + l) sin θi and c2i = (ρi + l) cos θi . Also,
for the fixed-free boundary conditions, s2i = (ρi + l) sin θi + cos θi

∑r
j=1 ηijψj (1) and c2i = (ρi +

l) cos θi − sin θi

∑r
j=1 ηijψj (1).

JT
�3 =

⎡
⎣ −1 0 −1 0 −1 0

0 −1 0 −1 0 −1
s31 −c31 s32 −c32 s33 −c33

⎤
⎦ , s3i = r sin(φi + φp), c3i = r cos(φi + φp).
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For the fixed-pinned boundary conditions J�4 = 0, and for the fixed-free boundary conditions,

JT
�4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−s411 c411 0 0 0 0
−s412 c412 0 0 0 0
−s413 c413 0 0 0 0

0 0 −s421 c421 0 0
0 0 −s422 c422 0 0
0 0 −s423 c423 0 0
0 0 0 0 −s431 c431

0 0 0 0 −s432 c432

0 0 0 0 −s433 c433

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, s4ij = sin θi · ψj (1), c4ij = cos θi · ψj (1).
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