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String diagrams are a powerful tool for reasoning about physical processes, logic circuits,

tensor networks and many other compositional structures. The distinguishing feature of

these diagrams is that edges need not be connected to vertices at both ends, and these

unconnected ends can be interpreted as the inputs and outputs of a diagram. In this paper,

we give a concrete construction for string diagrams using a special kind of typed graph

called an open-graph. While the category of open-graphs is not itself adhesive, we introduce

the notion of a selective adhesive functor, and show that such a functor embeds the category

of open-graphs into the ambient adhesive category of typed graphs. Using this functor, the

category of open-graphs inherits ‘enough adhesivity’ from the category of typed graphs to

perform double-pushout (DPO) graph rewriting. A salient feature of our theory is that it

ensures rewrite systems are ‘type safe’ in the sense that rewriting respects the inputs and

outputs. This formalism lets us safely encode the interesting structure of a computational

model, such as evaluation dynamics, with succinct, explicit rewrite rules, while the graphical

representation absorbs many of the tedious details. Although topological formalisms exist

for string diagrams, our construction is discrete and finitary, and enjoys decidable algorithms

for composition and rewriting. We also show how open-graphs can be parameterised by

graphical signatures, which are similar to the monoidal signatures of Joyal and Street, and

define types for vertices in the diagrammatic language and constraints on how they can be

connected. Using typed open-graphs, we can construct free symmetric monoidal categories,

PROPs and more general monoidal theories. Thus, open-graphs give us a tool for

mechanised reasoning in monoidal categories.

1. Introduction

Graphs are often used for specification and reasoning, both formally and informally. They

have both an appealing visual nature as well as the ability to abstract structure naturally. In

this paper we will focus on ‘string diagrams’, which are the graphical structures that arise in

monoidal theories. Well-known examples include proof-nets in linear logic (Girard 1996),

Penrose’s tensor notation (Penrose 1971), Feynman diagrams, diagrammatic notations
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for logic circuits and high-level languages for quantum information processing (Coecke

and Duncan 2008). A common feature of these graphical languages is that they can be

understood as describing a computational process, and that they support reasoning by

manipulating the graphical presentation. However, such manipulation is both tedious and

error prone to do by hand. In this paper, we address this difficulty by providing a generic,

but also concrete and computable, account of graphical reasoning in monoidal-theories.

Our long-term goal is to support automation for graphical reasoning about computational

structures.

The main concept we introduce is a formal theory of open-graphs. Like graph-based

drawings of circuits, the visual presentation of open-graphs consists of vertices connected

by edges. Crucially, edges in an open-graph need not be attached to vertices. They

may be unconnected at one or both ends, or even connected to themselves to form a

‘circle’. In terms of a computational process, the unconnected ends of edges represent

the inputs and outputs of a process. A diagram in this graphical language is interpreted

as a compound computation with vertices as the atomic operations and wires defining

the flow of information. For example, an electronic circuit that defines the compound

logical operation of an or-gate using not-gates around an and-gate can be drawn

as

∧

¬

¬
¬

Open-graphs have a rich compositional structure and a convenient algebraic language.

We introduce methods for plugging graphs together, merging over common subgraphs

and cutting out pieces of a graph. Using these tools, we develop rewriting for open-graphs.

In this regard, our formalism functions analogously to a type-system in a programming

language: we ensure that the interface of a process is maintained by rewriting. In particular,

we show that rewriting also has a compositional nature: the decomposition of graphs

by cutting their edges enables rewriting to be performed in parallel on the separated

components, with a guarantee that the separate rewritten parts can be recomposed

appropriately. Moreover, the compositional properties of open-graphs allow rewrite rules

themselves to be rewritten using the same machinery.

To formalise the process of rewriting, we use a well-behaved embedding of the category

of open-graphs into its ambient category of typed graphs. This embedding is an instance

of a more general notion, which we introduce as selective adhesive functors. In particular,

these functors reflect pushouts, so many results about pushouts in an adhesive category

are true of so-called adhesive pushouts, which are the pushouts reflected by a selective

adhesive functor.

We also parameterise the category of open-graphs by a graphical signature. This defines

a collection of vertex and edge types and assigns to each vertex type its input and output

types. We construct a typegraph from such a signature and form the category of typed

open-graphs by slicing over this typegraph. Combined with a collection of graphical rules,
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these typed open-graphs provide a formal way to reason with a graphical theory of

some algebraic or dynamical system. We demonstrate the generality of our construction

by showing that typed open-graphs can be used to construct free symmetric monoidal

categories, PROPs and a wide range of more general monoidal theories. Unlike many

other (topological) constructions for diagrammatic accounts of monoidal categories, our

construction involves finite data. Thus our construction enables the development of

software tools that work with graphical theories. In particular, it provides the basis

for employing techniques from automated reasoning, such as completion-based methods

(Knuth and Bendix 1970; Baader and Nipkow 1998), to mechanise working with string

diagrams.

1.1. Structure of the paper

In Section 2, we introduce and motivate graphical theories using boolean circuits and

tensor networks. We also note key challenges in working with these systems using

traditional graph-based methods. After reviewing some of these methods in Section 3, we

define selective adhesive functors in Section 4. These give an abstract characterisation for

categories that sit inside an ambient adhesive category, and inherit enough properties to

support rewriting. We define open-graphs in Section 5 and show that they have a selective

adhesive functor into a slice category over Graph. In Section 6, we demonstrate how

open-graphs can be composed and decomposed, and use these operations for rewriting

open-graphs in Section 7. Section 8 defines graphical signatures and shows how they can

be used to construct typed open-graphs. Section 9 uses typed open-graphs to construct

a monoidal category of cospans and shows how such categories correspond to the free

constructions of monoidal categories over a graphical signature. We also show how PROPs

can be defined in this language. Finally, we give our conclusions and discuss future work

in Section 10.

2. Motivating examples

We begin by introducing two examples to motivate the use of open-graphs for computa-

tion. The first is the familiar language of boolean circuits. Boolean circuits are formed by

taking basic logic gates and plugging them together. For instance, we can represent the

logical expression ‘a ∧ (b ∧ ¬c)’ as the graph

a

∧
b

∧
c ¬

Notice that the output wire of this graph does not end at a vertex. We call this a

half-edge. We can also represent inputs to a circuit as half-edges. In the above example,

https://doi.org/10.1017/S0960129512000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000138


Open-graphs and monoidal theories 311

this removes the need to introduce the variables a, b, and c as inputs to the circuit. Instead,

we represent the inputs as half-edges:

∧
∧

¬

Now suppose we wanted to introduce an expression like ‘a ∧ (¬a ∧ b)’. We can do this

without introducing explicitly named variables by introducing a ‘copy’

operation:

∧
∧¬

We can also introduce an explicit ‘ignore’ operation that takes one input and produces

no output. To sum up, our language has the following generators, where b is a boolean

value:

∧ ¬

And Not Copy

b

Boolean value Ignore

Copies of these components can then be connected together by joining outputs to

inputs to form compound circuits. While this is a simple language, it includes satisfiability

questions, which are formed by asking whether a given graph can be rewritten to the

single boolean value for True. To answer such questions, and more generally to describe

the dynamics of boolean circuits, some axioms need to be introduced. For copying and

ignoring values, these are

b =
b

b

b =
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The axioms for conjunction (and-gates: ∧) and negation (not-gates: ¬) are

∧
F = F

∧
T =

b ¬ = ¬b

where the boolean values are written as T for True and F for False. These rules characterise

the computational aspects of boolean circuits. The output of a circuit can be evaluated by

applying the axioms from left to right. The equations can also be used to simplify circuits.

Although the above rules are sufficient for evaluation (when a circuit has all inputs

given), they cannot prove all true equations about boolean circuits. To get a complete set

of equations, some additional graphical rules are needed. For instance, the following rule,

for double negation elimination, is not directly derivable from those presented earlier:

¬ ¬ =

However, such circuits can be verified by exhaustive analysis directly in the graphical

language: we can evaluate every combination of input values to a graphical equation to

see if the left- and right-hand sides always evaluate to the same result. This corresponds

to a proof by exhaustive case analysis, much like verification by truth-tables.

Once there are sufficient equations, new rules can also be derived directly, without

examining all cases. For example, using the double-negation equation above with the

evaluation axioms allows the following derivation:

∧

¬

¬F

¬ = ∧

¬

T

¬ = ¬ ¬ =

This proves that giving F to the compound or-gate is the same as the identity on the other

input. This example illustrates how rewriting helps us find identities without resorting to

(exponential) case analysis. Moreover, rules in a derivation can be applied simultaneously

to separate parts of a graph to parallelise a computation or derivation.

Another salient feature of graph-based representations is that certain aspects of sharing

and binding can be described using graphical structure. For example, consider the

following rule:

¬
∧ = F

With a formula-based notation, this could be described by an equation between lambda-

terms: ‘λx. ((¬x)∧x) = λx. F ’. Graphical notation can treat certain forms of binding by the
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structure of edges, with function application of a formula corresponding to composition

along half-edges. For example consider applying the left-hand side of the equation to the

term F , giving the lambda-term ‘λx. ((¬x) ∧ x) F ’. In this situation, beta-reduction, which

reduces the formula to ‘(¬F) ∧ F ’, corresponds to an application of the copying rule. In

the graphical language, the beta-reduction step is

F

¬
∧ =

¬F

F

∧

Notice that the graphical representation controls copying carefully: by explicit applica-

tion of equational rules. This is an essential feature when one moves from classical circuits

to quantum circuits, where copying can only happen in restricted situations (Coecke and

Duncan 2008).

We move now from the familiar case of logic circuit rewriting to an example from linear

algebra. In (multi-)linear algebra, differential geometry and physics, many computations

can be performed using networks of tensors. A tensor is a set of real or complex numbers,

indexed by one or more integers. For example, the following is an (n1 · n2 · n3)-dimensional

tensor indexed by 3 integers:

{χkij : i = 1..n1; j = 1..n2; k = 1..n3}

Tensors are written with both subscript indices, which serve the purpose of inputs, and

superscript indices, which are outputs. Familiar examples of tensors are vectors vi and

matrices Mi
j . We can compose tensors by contraction, that is, by ‘summing together’ a

lower index and an upper index of the same dimension:

ξij =
∑
kl

χiklβ
k
j ρ

l .

We can simplify such expressions by using the Einstein summation convention, where

any repeated indices are assumed to be summed over. However, even with this convention,

contraction expressions can get quite complex. Consider this expression, involving six

tensors:

αdeabcβ
bfg
f γidhρ

h
i φ

jk
egδ

l
l . (1)

In order to understand this expression, we have to keep track of 11 indices, which makes

computations time-consuming and error-prone. We can instead represent this expression

using a graphical language introduced by Penrose (Penrose 1971). Tensors are drawn

as boxes, and summations over pairs of indices as wires. The ‘identity’ tensor (that is,

the Dirac delta δ
j
i ) is also drawn as a wire. The un-summed, or ‘free’, indices are left

as dangling wires, and sums
∑

δii are represented as circles. In the graphical notion,

expression (1) becomes the following diagram:
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α β

γ φ

ρ

These diagrams are called tensor networks. We can then work directly with these graphs,

expressing equations of tensor expressions as graph rewrite rules:

k

ξ

α ⇒ χ

More generally, circuit diagrams, tensor networks, and many other graphical formal-

isms, can be expressed as arrows in some symmetric monoidal category. The diagrams

above can then be interpreted as examples of a diagrammatic language common to all

symmetric monoidal categories. These kinds of graphical language introduce a particular

challenge to formalising rewriting. For instance, consider a simple graph containing a self

loop:

G :

and a rewrite rule that rewrites the box to a line:

L: ⇒ R :

Then, the graph resulting from rewriting the box with a self loop should be a circular

edge with no vertices

Graphs with this shape go beyond the normal notion of what one might consider to

be a ‘graph’, yet in many contexts they have a well-behaved interpretation. For instance,

in tensor networks, this is the trace of the identity matrix, that is, the dimension of the

underlying vector space.

Suppose we tried naively to formalise this situation by representing half-edges as edges

connected to ‘dummy’ points at the boundary:

L: ⇒ R :
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This means the left-hand side of the rewrite does not occur as a subgraph of G. So

maybe we could make an exception and not require that L be a subgraph of G, but

just have some mapping on to G. If we do this, the box and both dummy points could

be mapped on to the box in G. However, the result of removing the image of L and

replacing it with R is a line, not a circle. A graph that previously had no inputs or

outputs is rewritten to a graph with one input and one output, which contradicts the

interpretation of rewrite rules as representing some kind of ‘local’ identity on a diagram.

We could make an exception here, but one quickly becomes overwhelmed by the number

of special cases that need consideration. We will address this problem uniformly, in

Section 5, by allowing edge-points. These are extra ‘dummy’ points that can be introduced

not only at the boundaries of graphs, but along edges as well. This allows rewrites to be

performed in a localised manner, without compromising the validity of the graph as a

whole.

3. Related work

There is a significant strand of work related to graph transformations (Ehrig et al.

2006; Baldan et al. 2008) and rewriting with graph-based presentations of computational

processes (Lafont 2010; Lafont and Rannou 2008; Lafont 2003; Lafont 1990). An

extension of these formalisms, known as bigraphs, provides another general formalism

for graphical rewriting (Milner 2006). Bigraphs are more complex in that they use hyper-

graphs and introduce a rich hierarchical structure. Another formalism for graphs, called

site-graphs, is used in systems biology (Danos and Laneve 2004). These give each vertex

a set of ‘sites’ to which edges can be be connected. The distinction between these forms

of graphical rewriting and our formalism is that we have an extended notion of a

‘graph’ that allows for edges to be dangling at one or both ends, or to be connected

to themselves. We also consider these graphs as having a fixed interface, drawn as a

collection of input and output wires, and only consider graph rewrite rules that preserve

this interface. In this regard, we provide a kind of static checking for well-behaved graph

transformation systems, much like types do for functional programs. This property is

crucial to the graphical formalisms of many of the systems we wish to model. Where our

constructions and those of traditional graph transformation share significant similarity

is in their reliance on adhesive categories (Lack and Sobocinski 2005) and the double-

pushout construction for graph rewriting (Ehrig et al. 1973). The main difference is that

we are working within a different category, namely, that of open-graphs, which enjoy a

representation for half-edges. In addition, our construction uses the presentation of typed

graphs as a slice over the (adhesive) category of graphs, as presented in Prange et al.

(2008). In this way, our theory can be viewed as a concrete realisation of the theory

of adhesive categories and DPO rewriting, as well as a bridge from this work to the

(computational) study of monoidal categories. Part of our contribution can thus be viewed

as an elucidation of the conditions for graph rewriting to connect processes along half-

edges.

https://doi.org/10.1017/S0960129512000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000138


L. Dixon and A. Kissinger 316

Maps in many monoidal categories admit rich graphical languages (Selinger 2009).

These languages become particularly interesting in the study of algebraic structures

within monoidal categories. There is a developing field in category theory that investigates

these algebras, and how they interact. Lack (2004) showed that a certain class of these

monoidal algebras, called PROPs, can be composed in much the same way as Beck

showed we can compose monads (Appelgate et al. 1969). Even richer notions of interacting

graphical structures have found applications in the study of non-commuting observables

(Coecke and Duncan 2008) and entanglement (Coecke and Kissinger 2010) in quantum

mechanics.

In earlier work, we presented a formalism for reasoning about categorical models of

quantum information (Dixon and Duncan 2009). In Dixon et al. (2010), we proposed

several improvements on this early work and suggested that matching and composition

became dual notions. In the current paper, we have fleshed out the formalism in the

context of adhesive categories, proved the key properties and shown how to construct

models of monoidal theories.

4. Selective adhesive functors and rewriting

Adhesive categories provide a useful and quite general setting for performing rewrites

on graph-like structures. The distinguishing characteristic of adhesive categories is that

pushouts along monomorphisms behave particularly well with respect to pullbacks.

The categories we introduce for open-graphs are not exactly adhesive categories, but

they live inside adhesive categories and inherit ‘enough adhesivity’ to permit graph

rewriting.

In particular, we introduce categories for open-graphs that are subcategories of slices

over the category Graph of directed graphs and graph homomorphisms. Since a slice

over an adhesive category is adhesive (Lack and Sobocinski 2005) and Graph is an

adhesive category, our categories of open-graphs have inclusions into adhesive categories.

To make use of ambient adhesive categories, we define a suitably well-behaved inclusion

functor, called a selective adhesive functor. This is well behaved in the sense that essential

adhesivity properties for rewriting can be passed back to the subcategory. To define these

functors, we first recall the notion of a van Kampen square.

Definition 4.1. A van Kampen square is a pushout

A B

C D
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such that for any commutative cube

G H

E F

A B

C D

where the back and left faces (ABEF and ACEG) are pullbacks, the following are

equivalent:

— the front and right faces (CDGH and BDFH) are pullbacks;

— the top face (EFGH) is a pushout.

Definition 4.2. A category A is said to be adhesive if:

(1)A has pushouts along monomorphisms;

(2)A has pullbacks; and

(3) pushouts along monomorphisms in A are van Kampen squares.

A crucial property of adhesive categories is that certain kinds of pushout complements

are well defined. These allow us to ‘subtract’ certain subobjects from an object in a

coherent way.

Definition 4.3. A pushout complement for a pair of arrows (m : A → B, g : B → D) is

another pair of arrows (f, n) such that

A B

C D

m

n

f g

is a pushout.

We first need a few basic lemmas before showing that pushout complements in an

adhesive category are unique.

Lemma 4.4 (Lack and Sobocinski 2005). In an adhesive category:

— monomorphisms are stable under pushout; and

— pushouts along monomorphisms are also pullbacks.
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Proof. Let m be a monomorphism, and let the following diagram be a pushout:

A B

C D

m

n

f g

We need to show that n is mono and the above square is also a pullback. We first

construct a commutative cube, containing two copies of the given pushout square: one

on the bottom face and one on the right face. We then place a copy of f in the upper-left

corner, and fill in the rest with identities:

C C

A A

A B

C D

1

f f

1

mf g

n

1 1 m n

All of the faces of this cube commute trivially. It follows from this construction that the

top face is a pushout, the left face is a pullback and the back face is a pullback if and

only if m is a monomorphism. Since m is defined to be a monomorphism and the pushout

we started with is a VK-square, adhesivity shows that the front and right faces must be

pullbacks. Since the front face is a pullback, n is a monomorphism, so monomorphisms

are stable under pushout. Furthermore, since the right face is the pushout we started with,

we have also shown that pushouts along monomorphisms are pullbacks.

We now provide a few lemmas about pullbacks and pushouts that hold in any

category.

Lemma 4.5. In the following commutative diagram, if the right square is a pullback, the

outer square is a pullback if and only if the left square is a pullback:

A B C

D E F

f g

h i j

k l
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Proof. The ‘if ’ direction is trivial. For the other direction, we assume the outer square

is a pullback. For an object A′, let f′ : A′ → B and h′ : A′ → D be arrows such that

if′ = kh′:

A B C

D E F

A′

f

g

h i j

k l

f′

h′

Then gf′ and h′ form a cone under the outer pullback, so there exists a unique

u : A′ → A such that gf′ = gfu and h′ = hu. From the universal property of the right

pullback, it follows that f′ = fu, so the left square is a pullback.

Lemma 4.6. For a commutative cube, where the front, right and back faces are pullbacks,

the left face is also a pullback:

E F

G H

A B

C D

.

Proof. As the back and right faces are both pullback squares, we can apply Lemma 4.5

to show that the back and right faces taken together form a larger pullback square. Then,

by commutativity of the cube, the square formed by the left and front faces taken together

is also a pullback square. Applying Lemma 4.5 from right to left shows that the left face

is a pullback.

Lemma 4.7. Isomorphisms are stable under pushout. That is, for the pushout

A B

C D

φ

q

f p

if φ is an isomorphism, so too is q.
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Proof. Let fφ−1 and 1C form a cocone to C over the pushout. It follows straightfor-

wardly that the induced map q′ : D → C is the inverse of q.

We are now ready to prove the uniqueness theorem for pushout complements.

Theorem 4.8 (Lack and Sobocinski 2005). If a pair of arrows (m, g), where m is mono,

has a pushout complement, it is unique up to isomorphism. That is, for any two pushout

complements, (f, n) and (f′, n′), there exists an isomorphism φ making the following

diagram commute:

A C

C ′ D

f

n′

f′ n
φ

(2)

Proof. Suppose both of the following are pushout squares:

A B

C D

m

n

f g

A B

C ′ D

m

n′

f′ g

Following a similar strategy to Lemma 4.4, we use these squares to build a commutative

cube

C ′′ C ′

A A

A B

C D

k

h f′

1

mf g

n

l 1 m n′

where the first pushout square forms the bottom face, and the second pushout square

forms the right face. The front face is the pullback of n and n′, and the back face is the

pullback of m with itself. This pullback consists of identities because m is mono. Now, f

and f′ form a cone under the pullback of n and n′, so we let h be the induced map.

By Lemma 4.4, the right face is a pullback. We can therefore conclude from Lemma 4.6

that the left face is also a pullback. From the VK-square property, we can then conclude

that the top face is a pushout. By Lemma 4.7, k is an isomorphism.
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We can also form a similar cube, but with the positions of the two pushouts

interchanged:

C ′′ C

A A

A B

C ′ D

l

h f

1

mf′ g

n′

k 1 m n

We can then conclude similarly that l is an isomorphism. By construction, all faces

commute, so by letting φ := kl−1, we can read off the statement of the theorem from the

commutative cube (with the relevant arrows shown in bold).

In order to define subcategories of adhesive categories, where a selected class of pushout

squares has unique pushout complements, we define a selective adhesive functor.

Definition 4.9 (selective adhesive functor). Let C be a category and A be an adhesive

category. A functor S : C →A is said to be a selective adhesive functor if it:

(1) is faithful;

(2) preserves monomorphisms;

(3) creates isomorphisms; and

(4) reflects pushouts.

Recall that a functor S : C → A creates isomorphisms in the sense of Adamek et al.

(2009) if, for any isomorphism φ : X → SY in A, there exists a unique object X ′ and

arrow φ′ : X ′ → Y such that S(X ′) = X and S(φ′) = φ, and, furthermore, φ′ is an

isomorphism in C.

For our purposes, the most important example of a selective adhesive functor is

the embedding of the category of open-graphs (respectively, T -open-graphs) into the

adhesive category of G2-typed graphs (respectively, GT -typed graphs). The definition of

this category and concrete examples of many of the remaining constructions in this

section can be found in Section 5. These two embeddings are shown to be selective

adhesive functors in Theorems 5.10 and 8.12.

We now continue with a presentation of the general properties of selective adhesive

functors for rewriting.

Definition 4.10 (S-adhesive spans and pushouts). Let S : C → A be a selective adhesive

functor. A span A
f
←− B

g
−→ C in C is said to be an S-adhesive span if it has

a pushout, and that pushout is preserved by S . Such pushouts are called S-adhesive

pushouts.
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Since S reflects all pushouts, we could also define S-adhesive spans as spans that have

a pushout reflected by S .

Definition 4.11 (S-adhesive pushout complement). An S-adhesive pushout complement for

a pair of arrows (b, f) is a pushout complement where the following diagram is an

S-adhesive pushout:

B K

G′ G

b

g

c f

The map b is called the boundary of K and c is called the coboundary of K in G.

Informally, G′ should be thought of as G with K cut out from it, where b identifies the

boundary of K , and the coboundary c identifies the boundary of where K was cut out

from G.

When it is convenient, we shall use the subtraction notation G−b,f K := G′ to denote

the pushout complement defined above. In later sections, the boundary map b will be

uniquely defined by K , so we shall then simply write G −f K . Since the categories we

are concerned with come with a canonical notion of boundary, we typically only require

that the boundary of K be mono; unlike Prange et al. (2008), which requires the induced

pushout to satisfy an initiality condition.

Lemma 4.12. If a pair of arrows (b, f), where b is mono, have an S-adhesive pushout

complement, it is unique up to isomorphism.

Proof. Let (c, g) and (c′, g′) be S-adhesive pushout complements. Then the following

diagrams are pushouts in the adhesive category A:

SB SK

SG′ SG

Sb

Sg

Sc Sf

SB SK

SG′′ SG

Sb

Sg′

Sc′ Sf

Since S preserves monos, these are both pushout complements of (Sb, Sf) for Sb mono.

So this diagram commutes in A, for φ′ an isomorphism:

SB SG′

SG′′ SG

Sc

Sg′

Sc′ Sg
φ′
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Since S creates isomorphisms, there exists an iso φ : G′ → G′′ such that Sφ = φ′.

Substituting this map into the previous diagram, we get

SB SG′

SG′′ SG

Sc

Sg′

Sc′ Sg
Sφ

Diagram (2) commutes by the faithfulness of S .

Definition 4.13 (rewrite rule). A rewrite rule L b1 ,b2
R is a span of monomorphisms:

L
b1←− B

b2−→ R.

For brevity, we will often denote a rewrite rule simply as L R, leaving the boundary

maps implicit. However, when we do this, each time we write L R, it will denote the

same rewrite rule, and, in particular, it will have the same boundary maps.

Definition 4.14 (S-matching). For a rewrite rule L b1 ,b2
R, a monomorphism m : L→ G

is called an S-matching if B
b1−→ L

m−→ G has an S-adhesive pushout complement.

Definition 4.15 (S-adhesive rewrite). Let L b1 ,b2
R be a rewrite rule and m : L→ G be an

S-adhesive matching. Then for G′ the S-adhesive pushout complement of B
b1−→ L

m−→ G,

the following diagram is called an S-adhesive rewrite if the right-hand pushout is S-

adhesive:

L B R

G G′ H

b1

c

b2

m

In such a case, we write H as G[L b1 ,b2
R]m.

Note that the left-hand pushout above is also S-adhesive by the definition of S-matching.

We often do not care about the particular rewrite rule and matching used to rewrite one

graph into another, but merely that there exists such a rewrite involving a rule in some

fixed set. For this, we introduce rewrite systems and a ‘rewrites-to’ relation.

Definition 4.16 (rewrite system). A set of rewrite rules � is called a rewrite system. We

define the relation G � H to mean there exists a rule L R ∈ � and an S-adhesive

matching m : L→ G such that H ∼= G[L R]m. The reflexive, transitive closure of �

is denoted *
�, and the reflexive, symmetric, transitive closure as *

�.
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Theorem 4.17. S-adhesive pushout complements commute with S-adhesive pushouts.

Consider the following commuting diagram, where b is mono, (b, m) has an S-adhesive

pushout complement, and (p, q) and (p′, q) are both S-adhesive spans:

B G−b,m K

P H

K G

c

b s

m

p′

p

q

Then, for the pushout injections

i : G ↪→ G +p,q H

i′ : G−b,m K ↪→ (G−b,m K) +p′ ,q H,

there is an open-graph isomorphism commuting with the coboundaries c and c′ of K in

G and G +p,q H , respectively:

B (G +p,q H)−b,im K

G−b,m K (G−b,m K) +p′ ,q H

c′

i′

c ∼= (3)

Proof. The proof follows from the associativity of pushouts and the uniqueness of

pushout complements. First note that in the following diagram, [1] commutes and is a

pushout because sp′ = p:

[1]

P H

B G−b,m K

K G G +p,q H

q

p′

c

b

m

s

i
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By the associativity of pushouts, the following diagram also commutes, and the marked

squares are pushouts:

[2]

P H

B G−b,m K (G−b,m K) +p′ ,q H

K G G +p,q H

q

p′

c

b

m i

Now compare [2] with the subtraction of im : K → G +p,q H:

B (G +p,q H)−b,im K

K G +p,q H
im

b

The result then follows from the uniqueness of pushout complements.

Theorem 4.18. S-adhesive rewrites commute with S-adhesive pushouts. Let m : L→ G be

an S-matching of L b1 ,b2
R. The rewrite is computed as the double pushout:

L B R

G G−b,m L G[L R]m

b1 b2

s s′

m c m′

Let (p, q), (p′, q) and (p̂, q) be three adhesive spans such that

G

G−b1 ,m L P H

G[L R]m

p

p′

p̂

s

s′

q
(4)

https://doi.org/10.1017/S0960129512000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000138


L. Dixon and A. Kissinger 326

Then, for the pushout injection i : G → G +p,q H , if im is mono, the following is an

isomorphism:

(G[L R]m) +p̂,q H ∼= (G +p,q H)[L R]im.

Proof. Since pushout complements are unique up to isomorphism, we can choose

(G −b1 ,m L) to be equal to ((G[L R]m) −b2 ,m′ R), for the same coboundary c. Then, by

two applications of Theorem 4.17, we can choose

(G−b1 ,m L) +p′ ,q H = ((G[L R]m)−b2 ,m′ R) +p′ ,q H

as the pushout complement of both of the following squares:

L B R

G +p,q H (G−b1 ,m L) +p′ ,q H G[L R] +p̂,q H

im c′

Note that c′ becomes the coboundary for both squares because diagram (3) commutes.

This is then exactly the computation of the rewrite (G +p,q H)[L R]im.

We shall use these two theorems throughout the paper to show that rewriting is

compatible with several notions of composing graphs.

5. Open-graphs

In this section we provide a formal definition for the notion of graphs that can contain

edges with unconnected ends, called open-graphs. We do this by introducing a special kind

of graph with two distinct types of points. It has points that should be considered as

‘real’ vertices, and other intermediate points, called edge-points, that occur along edges.

In this construction, the ‘logical’ edges of an open-graph, which we also call wires, can be

presented as chains of edge-points, which need not have a vertex at either end. Thus we

can define the boundary of an open-graph as the unconnected ends of these wires. This

provides the interface through which we connect open-graphs together.

We define the category OGraph as a full subcategory of the (adhesive) category of

G2-typed graphs, Graph/G2. We then show that the inclusion S : OGraph ↪→ Graph/G2

is a selective adhesive functor.

We begin with the standard definition of the category Graph of directed graphs in order

to fix some notation.

Definition 5.1. Let Graph be the category of graphs. It is defined as the functor category

[�, Set] for � defined as

E P .
s

t
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E identifies the edges of the graph, and P the points. s and t are functions taking an edge

to its source and target respectively. If t(e) = p, then e is called an in-edge of p, and if

s(e) = p, then e is called an out-edge of p.

Note that our language for graphs differs slightly from the convention in that we use the

term ‘point’ rather than ‘vertex’. The reason for this will become clear once we introduce

a typing on points. The typegraph G2 will be used to distinguish points that should be

interpreted as ‘logical’ vertices from the ‘dummy’-points that occur along an edge:

G2 := V ε

A graph G is said to be typed by G2 when there is a typing morphism τ : G → G2.

When a point p ∈ G is mapped to V , that is, τ(p) = V , we refer to it as a vertex. The

other points in G, those with τ(p) = ε, are called edge-points.

Definition 5.2 (OGraph). The category OGraph of open-graphs is the full subcategory of

the slice category Graph/G2. Objects are those of Graph/G2 where each edge-point has

at most one in-edge and one out-edge.

This slice construction allows open-graphs to be represented as graphs with a typing

morphism to G2. The slice construction also plays two further roles: it distinguishes ‘real’

vertices from edge-points, and the lack of a self-loop on V ensures that every path between

two vertices must have at least one edge-point.

Example 5.3. The following is a diagrammatic presentation of an open-graph:

p1 p2

v1
p3

v2
p4 p5

This diagram abbreviates an open-graph with its morphism to G2, which can otherwise

be drawn more verbosely as

p1 p2 v1 p3 v2 p4 p5

V ε

where the dotted arrows indicate the type-morphism for points, and the edge mapping is

inferred trivially.

We now show some basic properties of OGraph. In particular, we develop the properties

needed to show that the inclusion of OGraph into Graph/G2 is a selective adhesive functor.

Lemma 5.4. Any subgraph of an open-graph is also an open-graph.

Proof. Suppose G is an open-graph and H is a subgraph of G. Then every edge-point

in H must have at most one in-edge and at most one out-edge.
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Lemma 5.5. A map in OGraph is a monomorphism if and only if it is injective.

Proof. The fact that injective maps are monomorphism follows from morphisms in

Graph/G2 being monos and the faithfulness of the inclusion functor from OGraph into

Graph/G2.

We now prove that if a morphism in OGraph is not injective, it is not a monomorphism.

A non-injective morphism f : G→ H either maps two or more edges ei to a single edge, or

two or more points pi to a single point. The smallest sub-open-graph K of H containing

f(ei) or f(pi) is either a single point or an edge with its end points. We can map the

open-graph K onto its pre-image in G using a distinct map gi for each ei or pi in such a

way that f ◦ gi = f ◦ gj for all i, j. Thus, there are two or more open-graph morphisms gi
such that the f ◦ gi are equal, and hence f is not mono.

We will now prove a similar result for surjections. However, since OGraph restricts which

typed graphs are allowed, not all epimorphisms are surjective. For example, consider

px py pz

p′x p′y

The map indicated by the dotted arrows suffices to distinguish maps from the bottom

open-graph under post-composition because fixing the image of py uniquely fixes the

image of pz and the edge from py to pz . So it is an epimorphism, but it is clearly not

surjective. However, all strong epimorphisms are surjective. To show this, we first recall

the notion of a strong epimorphism, and prove a simple fact about surjections.

Definition 5.6. A strong epimorphism in C is an epimorphism e that is left-orthogonal to

all monomorphisms in C. That is, for any commutative square of the form

A B

C D

e

m

f g
d

with m as a monomorphism, there exists a unique diagonal map d making the diagram

commute.

Lemma 5.7. A map in OGraph is a strong epimorphism if and only if it is surjective.

Proof. The fact that surjections in OGraph are strong epimorphisms follows from

surjections being strong epimorphisms in Graph/G2 and the faithfulness of the inclusion

functor.

For the other direction, assume e : A → B is a strong epimorphism. Let e′ : A → e[A]

be the restriction of e to its image (which is also an open-graph by Lemma 5.4), and let
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i : e[A]→ B be the inclusion of the image of e in B. Hence, i is a mono, so there exists a

map d making the following diagram commute:

A B

e[A] B

e

i

e′ 1B
d

The inclusion i splits (i ◦ d = 1B), so it must be surjective, and thus e is also surjective.

Lemma 5.8. The embedding functor S : OGraph ↪→ Graph/G2 preserves and reflects

monomorphisms and strong epimorphisms.

Proof. This follows from S being an inclusion functor and Lemmas 5.5 and 5.7, and by

recalling that in Graph/G2, epimorphisms are exactly the surjections and monomorphisms

are exactly the injections.

Lemma 5.9. OGraph has unique strong epi-mono factorisations.

Proof. Any map f factors through its image, which is an open-graph by Lemma 5.4:

A
fe
� f[A]

fm
↪→ B

We now show that this factorisation is unique. Lemmas 5.5 and 5.7 (and the fullness of

S) let us conclude that if the factorisation is unique in Graph/G2, where epimorphisms are

surjections and monomorphisms are injections, then it is unique in OGraph. Graph/G2 is

a regular category, and all regular categories have unique regular epi-mono factorisations,

so OGraph must have unique strong epi-mono factorisations.

Theorem 5.10. The embedding functor S : OGraph ↪→ Graph/G2 is a selective adhesive

functor.

Proof. S is faithful by definition and preserves monomorphisms by Lemma 5.8. It reflects

pushouts because full and faithful functors reflect all colimits. S creates isomorphisms

because S is full, faithful and closed under isomorphisms, and every such functor creates

isomorphisms.

Corollary 5.11. The category OGraph has coproducts given by the disjoint union of the

underlying typed graphs.

Proof. The disjoint union does not affect the incidence of individual edge-points, so the

disjoint union of two open-graphs is again an open-graph. Since this is the coproduct in

Graph/G2 and the embedding functor S reflects colimits, it is a coproduct in OGraph.
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5.1. Boundaries of open-graphs

The main goal of defining open-graphs is to have a notion of edges that are not connected

to vertices on one or both ends. These serve as inputs and outputs along which open-

graphs can be composed. Before we consider the composition of open-graphs, we shall

make several convenient definitions relating the boundary of open-graphs, as defined by

their inputs and outputs.

Definition 5.12 (OGraph notation). If an edge-point has no in-edges, it is called an input.

We write the set of inputs of an open-graph G as In(G). Similarly, an edge-point with no

out-edges is called an output, and the set of outputs is written Out(G). The inputs and

outputs define an open-graph’s boundary. If a boundary point has no in-edges and no

out-edges (it is both and input and output), it is called an isolated point. An open-graph

consisting only of isolated points is called a point-graph.

Note that when there is no ambiguity, we shall use In(G) and Out(G) to also refer to the

point-graph containing only the inputs or outputs of G. Considered as open-graphs, these

have natural inclusions into G. We will now define the boundary graph of an open-graph,

which plays a particularly important role for both the composition and decomposition of

open-graphs.

Definition 5.13 (boundary graph and boundary map). Given an open-graph G, its boundary

graph is the point-graph formed from the coproduct of its inputs and outputs: B :=

In(G) + Out(G). The boundary map of G is the induced map b : B → G of the inclusions

of In(G) and Out(G):

In(G) In(G) + Out(G) ∼= B Out(G)

G

bi bo

b

Note that for a boundary map b, we refer to the associated coproduct injections as bi and

bo.

Example 5.14. The folowing diagram shows an open-graph with its boundary graph

drawn above it and a boundary map indicated by dotted arrows:

bx

vK
by bz

bix boy biz boz

A boundary map identifies all the inputs and outputs of G, and is injective except

on isolated points in G, where it is 2-to-1. Because each isolated-point is both an input

and an output, a boundary graph has two points for each isolated point in the image
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of the boundary map. Note that a boundary map is mono if and only if its codomain

open-graph has no isolated points.

Definition 5.15 (sharing the same boundary). Two open-graphs L and R are said to

share the same boundary graph B by boundary maps b1 and b2 when L
b1←− B

b2−→ R,

In(L) ∼= In(R), Out(L) ∼= Out(R) and the following diagram commutes:

In(L) In(R)

L B R

Out(L) Out(R)

l r

li

lo

ri

ro

∼

∼

Note that when L and R have no isolated points, this condition means that the boundary

graphs are in bijection. Furthermore, this bijection sends inputs to inputs and outputs to

outputs.

6. Matching, composition and decomposition for open-graphs

In this section we introduce the notion of matching, which defines how one open-graph

can be meaningfully identified within another. We then show how open-graphs can be

composed and decomposed using the embedding functor S : OGraph → Graph/G2. The

fact that S is a selective adhesive functor then lets us introduce definitions for subtracting

one open-graph from another (by pushout complements), and for connecting open-graphs

along their boundary.

To define matching, we first introduce the notion of the edge neighbourhood of a vertex,

and of a morphism being a local isomorphism.

Definition 6.1. The edge neighbourhood of a vertex v is the set of all edges that are

connected to v:

N(v) := {e : s(e) = v or t(e) = v}.

Definition 6.2. An open-graph morphism f : G → H is said to be a local isomorphism

when, for every vertex v ∈ G, the edge function of f restricts to a bijection on the edge

neighbourhood of v:

fv : N(v)
∼→ N(f(v)).

Note that local isomorphism only applies to vertices and not to edge-points.

Definition 6.3 (matching). A monomorphism m : G → H of open-graphs is said to be a

matching when it is a local isomorphism. In this case, G is said to match H at m.
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Matching characterises how one open-graph can be identified as part of a larger one.

In particular, the image of a matching has the same ‘type’ as the matching open-graph in

the sense that it has the same number of inputs and outputs. We will refine this notion

of typing further in Section 9. The key feature of matching is that it supports meaningful

ways to compose and decompose open-graphs. Before defining these operations, we will

first define the spans that preserve open-graphs under pushout. The crucial features of

such pushouts are:

— If two edges are identified, the full path of edge-points of at least one wire is identified

with (part of) the other wire: identification of edges never results in wires that branch.

— The output of one edge is never connected to the output of another edge, and likewise

with inputs.

This idea is formalised by the notion of boundary-coherent spans.

Definition 6.4 (boundary coherent spans). A span H1

f
←− G

g
−→ H2 is said to be boundary

coherent when f and g are matchings and:

(1) For all p ∈ In(G), at least one of f(p) and g(p) is an input.

(2) For all p ∈ Out(G), at least one of f(p) and g(p) is an output.

A parallel pair of arrows f, g : G → H is said to be a boundary coherent pair when the

span H
f
←− G

g
−→ H is boundary coherent.

Theorem 6.5. Boundary-coherent spans are S-adhesive spans.

Proof. Let A
f
←− B

g
−→ C be a boundary coherent span. Then the following diagram

is a pushout in Graph/G2:

SA SB

SC D

Sf

i2

Sg i1

Since S reflects pushouts, it suffices to show that D, i1 and i2 are in the image of S .

Since S preserves monos, Sf and Sg are mono. A pushout of monos in Graph/G2 is (up

to isomorphism) just a union. So, without loss of generality, we can let SA = SB ∩ SC

and D = SB ∪ SC , and the two inclusions of the intersection form a boundary-coherent

span. Thus we can rewrite the above pushout as follows:

SB ∩ SC SB

SC SB ∪ SC

Sf

i2

Sg i1
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We will now show that SB ∪ SC is an open-graph, namely, each edge-point has at most

one in-edge and one out-edge. The proof is by contradiction. Suppose an edge-point p in

SB ∪ SC has two out-edges. Then one must be in SB and the other in SC , so neither are

in the intersection, and thus p is an output in SB ∩ SC . But it is not an output in SB

or SC , thus contradicting the boundary coherence assumption. A contradiction follows

similarly when p has two in-edges, so SB ∪ SC is an open-graph.

This provides boundary-coherent spans with nice properties for pushouts as reflected

by the selective adhesive functor S . These pushouts, which we call mergings, will play a

central role in our rewriting construction.

Definition 6.6 (merging). Given a boundary-coherent span G1
m1←− K

m2−→ G2, we use the

notation M := G1 +m1 ,m2
G2 for the pushout of the span, which we call the merging of G1

and G2 on K by m1 and m2:

K

G1 G2

M

m1 m2

m′1 m′2

This makes M the smallest open-graph containing G1 and G2 with a single copy of the

shared subgraph K , as identified by m1 and m2.

Example 6.7. The following diagram is an illustration of the merging of open-graphs:

bx

vK

by

bz

by

vK
bx

v1

p1 bz

bx

vK by

v2

p2bz
vK

bx by
v1 v2

p1 p2
bz

m1 m2

m′1 m′2

The grey boxes are drawn around the open-graphs involved to distinguish between edges

in the open-graphs and the maps of the pushout diagram. The image of the maps are

indicated by the naming of edge-points and vertices.
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A particularly important special case of merging is composition along half-edges, which

we call plugging.

Definition 6.8 (plugging). An open-graph merging G1 +b1 ,b2
G2 is called a plugging and

written G1 +∗b1 ,b2
G2 when the open-graph being merged on is a point-graph: that is, in the

span G1
b1←− P

b2−→ G2, the open-graph P is a point-graph.

Example 6.9. The following diagram is an illustration of plugging using pushouts:

px

py
px

v1

py

px
v2

py

v1 v2

px

py

b b′

m m′

Note that the special case of plugging formed by pushouts on the empty open-graph is

the disjoint union of open-graphs, written simply as G + H; visually this corresponds to

placing open-graphs side-by-side.

Merging and plugging can be understood as special cases of pushouts of graphs. The

key additional characteristic being that these pushouts ensure that the ‘logical’-edges do

not branch. We will use these pushouts in the following section to define rewriting for

open-graphs, essentially following a double pushout approach to graph rewriting (Ehrig

et al. 2006). But we first introduce a dual notion to merging, called subtraction, which is

formed by S-adhesive pushout complements of matches. Intuitively, subtraction removes

part of an open-graph identified by a matching. We will first give a concrete definition for

subtraction, and then show that this definition does indeed produce S-adhesive pushout

complements.

Definition 6.10 (subtraction). We define the subtraction of G from M at a match m : G→
M, written M −m G, as the open-graph H defined by

PH = (PM\m[PG]) + PB

EH = (EM\m[EG])

sH (e) =

{
bo(p) if p ∈ Out(G) and m(p) = sM(e)

sM(e) otherwise

tH (e) =

{
bi(p) if p ∈ In(G) and m(p) = tM(e)

tM(e) otherwise

where B := POut(G) + PIn(G) is the boundary of G and b : B → G is the corresponding

boundary map. Recall from Definition 5.13 that bo : Out(G) → B is the coproduct
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injection of the outputs of G into the boundary, and, likewise, bi : In(G) → B is the

coproduct injection of inputs.

This definition removes all of G from M and reconnects edges that entered G with the

corresponding point from the boundary of G.

We call the induced embedding c : B ↪→ H the coboundary of b with respect to m.

When m : G→M is implicitly defined by the context, we omit the m from our subtraction

notation and simply write M − G.

For this definition to be valid, we need to show that H is an open-graph; specifically, that

the maps sH and tH are total, well defined and have at most one in-edge and one out-edge.

Proof. The source map sH is total because the source of an edge e ∈ EH is in the

image of m if and only if it is an output of G. Because m is mono, sH is well defined, and

similarly for tH . The result is an open-graph because it has at most one in-edge and one

out-edge for every edge-point: all edges in the image of m are removed, and at most one

edge (in the same direction as a removed edge) is introduced.

Theorem 6.11. Subtractions by open-graphs without isolated points are S-adhesive

pushout complements: given H := M −m G, the diagram

B G

H M

b

f

c m (5)

is an S-adhesive pushout, where b is the boundary map of G and c is the coboundary of m.

Proof. First we show that b, c is boundary coherent. Since G contains no isolated points,

the maps b and c are mono. By the definition of subtraction, for p ∈ B, if b(p) is an input,

then c(p) is an output. Similarly, if b(p) is an output, c(p) is an input. So b, c satisfies the

boundary coherence condition.

The pushout of b and c is the result of identifying the boundary of G with its coboundary

in H . By case analysis, for an arbitrary point or edge in the open-graph that results from

the subtraction M ′, we get that M ′ is isomorphic to M, and for the induced embedding

m′ of G into M ′, the following diagram commutes:

G M

M ′

m

m′ ∼=

So diagram (5) is also a pushout square for some (uniquely defined) f.

Note that because B in the above theorem is a point-graph, (b, c) defines a plugging,

and H := M −m G is the uniquely determined open-graph such that G +∗b,c H
∼= M.
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In terms of graph transformations (Ehrig et al. 2006), subtraction can be understood

as a definition for constructing the context graph, while also ensuring that the result is a

well-formed open-graph.

7. Rewriting with open-graphs

We will now introduce rewrite rules for open-graphs, and show how they can be applied

and under what conditions they can commute with merging and plugging, and how

rewrites can themselves be composed. Finally, we present a rewrite system called edge-

homeomorphism that lets us ignore intermediate edge-points.

Definition 7.1 (rewrite rule and rewriting). A span L
b1←− B

b2−→ R in which L and R

share the same boundary B by monos b1 and b2 is called a rewrite rule and is written

L b1 ,b2
R. The rewrite rule is said to rewrite G to G′ at a matching m : L→ G when G′

is defined according to the following double pushout:

L B R

G G−m L G′

b1 b2

m

The left pushout serves to compute the subtraction G−mL, and the right pushout computes

the rewritten open-graph G′, which we shall also write as G[L b1 ,b2
R]m.

Note that because we require a rule to be a span of monos, there can be no isolated

points in L or R; the boundary map is 2–1 on isolated points.

Example 7.2 (circles). We now return to the challenging example introduced at the end

of Section 2. We will rewrite the open-graph

by

to get
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The pushout construction for this rewrite is

s t s t s t

s t s t s t

b1 b2

m

Note that the above rewrite contains additional intermediate edge-points. Informally,

these are intended to be treated as part of the edge. We will formalise this idea in

Section 7.3 by introducing rewrite rules that can insert or remove these intermediate

edge-points.

7.1. Compatibility

It may initially be surprising to realise that certain pushouts can prohibit certain rewrites.

For example consider the following.

Example 7.3. Let

G :=

H := v .

For

K :=

we can find maps

f : K → G

g : K → H

such that the S-adhesive pushout

G +f,g H := v

While the left-hand side of the rewrite

v

matches H , it does not match G +f,g H .

Note that the pushout of the above example is not a plugging since f and g are not

matchings (they are not mono). We will be primarily concerned with pluggings, which, as

we shall prove, are better behaved. We will first provide a precise definition of what it

means for a plugging and a rewrite to be compatible.
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Definition 7.4 (compatibility). A plugging G +∗p,q H and a rewrite G[L R]m are said to

be compatible when there exists a map p̂ and a matching m̂ such that (p̂, q) is a plugging

and

G[L R]m +∗p̂,q H
∼= (G +∗p,q H)[L R]m̂.

We can actually show that all pluggings and rewrites are compatible, but before we

prove this important theorem, we will first show that the boundary of an open-graph is

invariant under rewriting.

Theorem 7.5. Rewriting preserves the boundary of an open-graph. Specifically, let the top

two squares of the following diagram define the rewrite G[L R]m:

L B R

G G−m L G[L R]m

B′

b1 b2

s s′

m c m′

b′1
k

b′2

Then there exists a map k and a span of boundary maps b′1, b
′
2 making the bottom two

triangles commute.

Proof. Let B′ be the boundary of G and b′1 be its inclusion into G. We first show that

the boundary of G is in the image of s by considering the definition of subtraction. If an

arbitrary point x in B′ is not in the image of m, then it is still in G −m L. If it is in the

image of m, then it must be in the boundary of L in G. Since a copy of this boundary is

in G−m L, we know x must be in the image of s. Thus, for all x in B′, there exists x′ in

G−m L such that s(x′) = x. Since s is mono (and hence injective), x′ is unique, so let k be

defined as s−1: the map sending x to x′. Finally, let b′2 = s′kb′1.

It now suffices to show that b′2 is a boundary map. If x is an input of G, then there are

two cases for k(x): it is either still an input or it is an isolated point. In the latter case,

it must come from an input of L, and hence an input of R. Thus s′(k(x)) is an input in

G[L R]m. The same result follows similarly for outputs. By case analysis, s′k covers the

boundary of G[L R]m, so b′2 is also a boundary map.

We can now use this theorem and Theorem 4.18 to show not only that pluggings and

rewrites are compatible, but explicitly define the maps m̂ and p̂ used in Definition 7.4.

Theorem 7.6 (rewriting and plugging are compatible). Given a plugging

(p : K → G, q : K → H)
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and a matching m : L → G of a rewrite rule L R, let i be the embedding of G into

G +∗p,q H . Then there exists p̂ such that (p̂, q) is a plugging, m̂ := im is a matching and

G[L R]m +∗p̂,q H
∼= (G +∗p,q H)[L R]im.

Proof. Since i and m are matchings, so is im. Since p, q is a plugging, the map p factors

through the boundary map b′1 : B′ → G. Let r be a map such that p = b′1r. For k and b′2
defined as in Theorem 7.5, let p′ = kr and p̂ = b′2r. We know that the following diagram

commutes:

G

G−m L P H

G[L R]m

p

p′

p̂

s

s′

q

If p(x) is an input, then p′(x) and p̂(x) are both inputs, and similarly for outputs.

Therefore, (p, q), (p′, q) and (p̂, q) are all boundary-coherent spans, and thus S-adhesive

spans. The result then follows from Theorem 4.18.

7.2. Composition of rewrites

Definition 7.7 (extension). Given an open-graph G and a rewrite rule r := L R, when r

rewrites G to G[L R]m, the rewrite rule G b1 ,b2
G[L R]m is said to be the extension

of r by m, and written r↑m.

Note that this is a well-defined rewrite rule because the boundary span b1, b2 is uniquely

defined by Theorem 7.5.

Example 7.8. Returning to Example 7.2, the extension of this rewrite is the span

s t ←�→ s t

where the shared boundary is the empty open-graph, denoted by �.

Extension provides a construction of the rewrite relation � for open-graphs. That

is, G � H precisely when there exists a rule in � that can be extended to G H .

We now show how rules can be directly combined using the underlying operations

on open-graphs. We first note that any rewrite rule L b1 ,b2
R has an opposite rewrite

R b2 ,b1
L given by flipping the span around. Also, for two rewrite rules L b1 ,b2

R and

R b2 ,b3
R′, we can, by abuse of notation, assume they are both spans over the same

boundary graph, and write L R R′ for the rule L b1 ,b3
R′.
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Definition 7.9 (sequential composition). Given rewrite rules

r1 := L1 R1

r2 := L2 R2

and a merged open-graph M := R1 +k1 ,k2
L2, the sequential composition of r1 and r2 at

k1, k2 is the rewrite rule defined by

(r1 ;k1 ,k2
r2) := (M[R1 L1]m1

) b1 ,b2
(M[L2 R2]m2

),

where m1 is the embedding of R1 into M, m2 is the embedding of L2 into M and (b1, b2)

is the following boundary span induced by two applications of Theorem 7.5:

M[R1 L1]m1
· M · M[L2 R2]m2

B

b1 b2

Sequential composition, unlike extension, is a direct operation on two rewrites to

produce a new rewrite. This provides an algorithm for deriving new graphical equations,

as we did in Section 2. Sequential composition is correct in the sense that it does nothing

more than the reflexive, transitive closure of the rewrite relation *
�.

Theorem 7.10 (soundness). If (r1 ;k1 ,k2
r2) := G G′ is a rewrite, there exists an open-graph

M and matchings m1 and m2 such that G
r1
↑m1

M
r2
↑m2

G′.

Proof. Let r1 := L1 R1 and r2 := L2 R2. Let M be exactly R1 +k1 ,k2
L2. The

embedding of L2 into M defines m2. We now have to prove that there is an m1 such that

M[R1 L1]m′1 [L1 R1]m1
∼= M,

where m′1 is the embedding of R1 into M. This follows directly from expanding the

equation into subtractions and mergings, and then recalling that subtractions are pushout

complements.

Sequential composition of rewrites is also complete in the sense that a number of

rewrites under different extensions, which are composed by their spans, can always be

sequentially composed under a single extension.

Theorem 7.11 (completeness). If M1
r1
↑m1

M2
r2
↑m2

M3, there exists an m′ and k1, k2 such

that

(r1 ;k1 ,k2
r2)
↑m′ : M1 M3.

Proof. Let r1 := L1 R1 and r2 := L2 R2. There is a matching of both R1 and L2

in M2. The overlap of these matchings forms an open-graph K that defines the boundary

coherent pair k1, k2 of K into R1 and L2, respectively. We then have

M2
∼= (R1 +∗p1 ,p2

L′2) +∗q1 ,q2
M ′

2,
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where

L′2 := L2 −K

M ′
2 := (M2 − R1)− L′2.

Thus

M1
∼= (L1 +∗p1 ,p2

L′2) +∗q1 ,q2
M ′

2,

and m′ is simply the embedding of L1 +∗p1 ,p2
L′2 into M1.

7.3. Edge-homeomorphism

Although we have defined everything discretely so far, open-graphs admit a topological

interpretation. Edges can be thought of as copies of the unit interval [0, 1] ⊂ � considered

as an oriented manifold. Vertices are distinguished points, to which we ascribe semantic

meaning, and edges represent ‘gluing’ intervals end-to-end, or gluing a vertex on to one

edge of an interval. We now briefly elaborate on this idea before introducing a rewrite

rule to act in a way analogously to homeomorphism.

Definition 7.12. For an open-graph G, a wire W in G is a set of connected edge-points,

which contains at least one edge and may also include vertices at its start and end. If a

vertex is connected to either end of W in G, it is called an endpoint of W .

As open-graphs, wires can be chains or circles. For any wire W , we can define an

(oriented) manifold M(W ) as a quotient over the disjoint union of real unit intervals∐
[0, 1]e indexed by the edges e in W . Whenever there are two edges e1 and e2 in W with

t(e1) = s(e2), we identify 1 ∈ [0, 1]e1
with 0 ∈ [0, 1]e2

. The unit intervals [0, 1]e then form

a collection of charts for M(W ) and give an orientation, so M(W ) forms an oriented

manifold.

Definition 7.13. Two open-graphs G and G′ are said to be edge-homeomorphic if G′ can

be obtained from G by replacing any wire W with a new wire W ′ where there exists a

homeomorphism of oriented manifolds M(W ) ∼= M(W ′).

This topological intuition is encoded discretely in open-graphs as a rewrite system called

edge-homeomorphism.
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Definition 7.14 (edge-homeomorphism). The following rewrite system � is called edge-

homeomorphism:

HL := H
n,m
S :=

n︷︸︸︷
. . .

. . .︸︷︷︸
m

n︷︸︸︷
. . .

. . .︸︷︷︸
m

HC := H
n,m
T :=

n︷︸︸︷
. . .

. . .︸︷︷︸
m

n︷︸︸︷
. . .

. . .︸︷︷︸
m

Applying edge-homeomorphism rewrites to an open-graph, from left to right, is called

contracting. If G rewrites to H using zero or more edge-homeomorphism rewrites, we

say H is an edge contraction of G. Applying them from right to left is called expanding.

Edge-homeomorphism allows arbitrarily many edge-points to be inserted and removed

from paths of connected edge-points.

Lemma 7.15. The rewrite system � is confluent (up to graph isomorphism) and termin-

ating.

Proof. Termination comes from observing that each contraction of a morphism de-

creases the number of edge-points. To show confluence, we suppose we apply a rewrite

that contracts away an edge e1 in G to get a graph G′. Then, if we apply a different

rewrite that contracts away a different edge e2 in G to get a graph G′′, we need to

show there exist rewrites to make G′ and G′′ isomorphic. If e1 and e2 are both part of

the same circle, consisting of k edges, then G′ G′′ will be the same open-graph as G,

but with that circle now containing k − 1 edges. Thus G′ ∼= G′′. Otherwise, there will

always exist rewrites to contract away e2 in G′ and e1 in G′′, making the two open-graphs

isomorphic.

Considering open-graphs modulo edge-homeomorphism corresponds to ignoring the

intermediate edge-points. Returning to Example 7.2, the resulting circle with two edge-

points can now be contracted to a circle with a single edge-point.
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8. Typed open-graphs

We now generalise our definition of open-graphs by showing how they can be parametrised

by a ‘graphical signature’ to form typed open-graphs. The graphical signature defines the

types and arities of vertices, as well as the types of edges that can be used. This generalised

construction makes use of more sophisticated type-graphs, which can themselves be

embedded into the basic case of open-graphs. This lets us build a selective adhesive

functor through which typed open-graphs inherit properties for rewriting.

Definition 8.1 (graphical signature). For a fixed set O, let O∗ be the set of finite lists of O.

For another set A, a function T : A → O∗ × O∗ is called a graphical signature. T should

be thought of as a function assigning input and output types to each element in A.

Example 8.2. For instance, a function T defined as

T ::

{
f �→ ( [ A, B, C ], [ D, E ] )

g �→ ( [ E, E ], [ B ] )

can be visualised as a set of ‘boxes’:

A B C E E

T :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f g

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭,

D E B

(6)

Remark 8.3. Graphical signatures are essentially what Selinger calls monoidal signatures

(Selinger 2009) and Joyal and Street call tensor schemes (Joyal and Street 1991). We shall

see the relationship between graphical signatures and the construction of free monoidal

categories in Section 9.

Definition 8.4 (the typegraph of a graphical signature). For a graphical signature T , we

form a typegraph GT , much like the typegraph G2 used to define open-graphs (Section 5).

The typegraph has points O + A. Analagously to ε from G2, each point from O has

a self-loop. These points identify the different types of edges and their corresponding

edge-points. The points from A correspond to the different types of vertices. For each

point a from A, T (a) is a pair of words D,C defining the domain and codomain of a.

These define the types of the inputs and outputs of a, respectively: for each input type d

in D, GT has an edge from d to a and for each output type c in C , GT has an edge from

a to c.

https://doi.org/10.1017/S0960129512000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000138


L. Dixon and A. Kissinger 344

Example 8.5. The graphical signature T in Example 6 defines the typegraph GT :

f g

A B C D E

Definition 8.6 (typegraph notation). Let (G, τ) be a GT -typed graph in Graph/GT . Then

points p ∈ τ−1(O) in G are called edge-points; all other points, those from A, are called

vertices.

The notion of local isomorphism lifts naturally to this set of typed graphs.

Definition 8.7. A GT -graph morphism f : G → H is called a local isomorphism when

for every vertex v ∈ G, the edge function of f restricts to a bijection on the edge

neighbourhood of v:

fv : N(v)
∼→ N(f(v)).

Example 8.8. Let τ be the (typed) graph on the left of the following diagram, and observe

that its typing is identified by τ, depicted on vertices by the dotted arcs:

A B C A B C

f f
f g

E E τ
g

A B C D E

D B D

Note that, in addition to being an arrow in Graph, τ is a (terminal) arrow in Graph/GT ,

τ : (G, τ)→ (GT , 1GT
):

G GT

GT

τ

τ
1

So we can ask that τ be a local isomorphism as in Definition 8.7.

We now consider a category (Graph/GT )∼= that is the full subcategory of Graph/GT

whose objects are pairs (G, τ : G → GT ), where τ, considered as an arrow in Graph/GT ,

is a local isomorphism. We now prove that this restriction on objects implies that arrows

in (Graph/GT )∼= are themselves local isomorphisms.
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Lemma 8.9. Every arrow in (Graph/GT )∼= is a local isomorphism.

Proof. Let (G, τG), (H, τH ) be GT -graphs. By definition, τG and τH are both local

isomorphisms. For any f : (G, τG) → (H, τH ) in Graph/GT , the following diagram

commutes:

G GT

H

τG

f
τH

Thus, for any v in G, we get the following triangle in Set:

N(v) N(τG(v))

N(f(v))

τvG

fv

τ
f(v)
H

Since τvG and τ
f(v)
H are both bijections, fv is a bijection, so f is a local isomorphism.

Note that for any GT , there is a graph homomorphism κ : GT → G2 sending every

edge-point (a point in O) to ε and every vertex (a point in A) to V . Post-composing each

object in Graph/GT with κ yields the forgetful functor:

Uκ : Graph/GT → Graph/G2.

In particular, this sends an object τ : G→ GT in Graph/GT to an object κ◦τ in Graph/G2.

We can now define typed open-graphs, which are essentially the typed graphs of

Graph/GT with the restriction that the wires may not branch.

Definition 8.10 (T -open-graph). A GT -typed graph G is called a T -open-graph if Uκ(G) ∈
Graph/G2 is an open-graph. The category OGraphT is the full subcategory of (Graph/GT )∼=
whose objects are T -open-graphs.

Note that the forgetful functor Uκ restricts to another, and more useful, functor:

U : OGraphT → OGraph.

Lemma 8.11. Monos in OGraphT are injective maps.

Proof. Suppose m : G → H in OGraphT is not injective. If m takes two distinct edges

e1 and e2 to a single edge, we suppose the source of e1 (and hence of e2) is an edge-point.

Then, since G is a T -open-graph, it must take two edge-points to a single edge-point in

H . Otherwise, if we suppose it is a vertex, then, by local isomorphism, m must take two

distinct vertices on to a single vertex. Thus it suffices to only consider points.
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If m takes two distinct vertices v1, v2 in G to a single vertex in H , then let K be

the subgraph of G consisting of just v1 and its neighbourhood. If m takes two distinct

edge-points to a single edge-point in H , then let K be a T -open-graph consisting of a

single edge-point. In either case, there are at least two distinct maps f, g : K → G such

that mf = mg.

Theorem 8.12. The embedding functor S ′ : OGraphT → Graph/GT is a selective adhesive

functor.

Proof. From Lemma 8.11, S ′ preserves monos. Creation of isomorphisms follows from

the fact that all isomorphisms are local isomorphisms and the property of being a T -

open-graph is invariant under isomorphism. The faithfulness and reflection of pushouts

follows from it being a full subcategory embedding.

Definition 8.13 (boundary-coherence in OGraphT ). A span A
f
← B

g
→ C in OGraphT is said

to be boundary-coherent if its image under U is boundary-coherent in

OGraph.

Theorem 8.14. Boundary-coherent spans in OGraphT are S ′ adhesive.

Proof. We prove this property by using the two embeddings and two forgetful

functors:

OGraphT Graph/GT

OGraph Graph/G2

S ′

S

U Uκ

Let f, g be a boundary-coherent span in OGraphT , and let the following square be its

pushout in (Graph/GT )∼=:

S ′(A) S ′(B)

S ′(C) D

S ′(f)

p1

S ′(g) p2

Since OGraphT is a full subcategory of Graph/GT , it suffices to show that D is

in OGraphT . By definition, U(f), U(g) is boundary-coherent and hence S-adhesive in

OGraph, so its pushout D′ exists and S preserves it. S(D′) is a pushout of

(SU(f), SU(g)) = (UκS
′(f), UκS

′(g)).

Uκ(D) is the pushout of the right-hand side, so by the uniqueness of pushouts, S(D′) ∼=
Uκ(D). Finally, D′ is in OGraph, so D is a T -open-graph in OGraphT .
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Boundary maps are defined as in OGraph. The construction of subtraction carries over

verbatim, and is preserved by U. Also, analogously to OGraph, the uniqueness of pushout

complements follows from the adhesiveness of Graph/GT .

9. Monoidal theories

Plugging gives us a tool for composing open-graphs. We can take this a step further

and discuss composing open-graphs in a categorical sense, using cospan categories over

OGraph or OGraphT . For our purposes, we shall focus on the latter.

For a graphical signature

T : A→ O∗ × O∗,

we define a precategory DCsp(OGraphT ) of directed cospans over OGraphT as a certain

restriction of the usual cospan construction Csp(C) on a category with pushouts. We

then define a composition on DCsp(OGraphT ) that is associative and unital up to edge-

homeomorphism. Thus, by forming a quotient of the hom-sets of DCsp(OGraphT ) over

�, we obtain a genuine category DCsp(OGraphT )//�.

Recall that a precategory C consists of a set (or proper class) of objects, and for each

pair of objects, an associated hom-set. We make no assumptions about composition or

identies. We define the precategory DCsp(OGraphT ) as follows. Its objects are words in

O∗, considered as point-graphs in OGraphT , equipped with a total ordering on points. An

arrow G : X → Y in OGraphT is a cospan

Y
c−→ G

d←− X

where G does not contain any isolated points†, d is the inclusion of In(G) ∼= X, and c

is the inclusion of Out(G) ∼= Y . In general, we shall write cospans from right-to-left to

match ‘◦’-style composition ordering. Also note that when there is no ambiguity, we shall

use the letter G to refer both to the cospan and to the T -open-graph in the middle.

We can compose two cospans G : X → Y and H : Y → Z in DCsp(OGraphT ) by

forming the pushout along Y .

Y

Z H G X

H ◦ G

c

d c

d

p1 p2

† T -open-graphs containing isolated points are problematic when using cospan categories to construct free

monoidal categories – see Remark 9.17 for more details.
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Proposition 9.1. The cospan

Z H ◦ G X
p1 ◦ c p2 ◦ d

is an arrow in DCsp(OGraphT ).

Proof. If G and H have no isolated points, then H ◦ G has no isolated points. Also,

since the pushout over Y identifies all of the outputs of G with all of the inputs of H , the

map p1 ◦ c is an embedding of Z ∼= Out(H) ∼= Out(H ◦ G) and p2 ◦ d is an embedding of

X ∼= In(G) ∼= In(H ◦ G).

It follows from the associativity of pushouts that this composition operation is

associative up to boundary-preserving isomorphism. That is, for three cospans

Z → K ← Y → H ← X → G←W,

the following diagram commutes:

K ◦ (H ◦ G)

Z W

(K ◦H) ◦ G

∼=

In the usual cospan construction, we would define 1X as a cospan

X
1−→ X

1←− X.

However, in the precategory of directed cospans, we have forbidden the middle T -open-

graph from having any isolated points. Therefore, we consider cospans that behave as

identities only up to edge-homeomorphism.

Definition 9.2 (identity T -open-graphs). For a point graph X, we construct IdX as a

T -open-graph with points X + X and a single edge connecting i1(x) to i2(x) for each

x ∈ X.

Example 9.3. Consider the following point graph:

X :=

The T -open-graph IdX is defined as

IdX :=
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Since In(IdX) ∼= X and Out(IdX) ∼= X, the following cospan is an arrow IdX : X → X

in DCsp(OGraphT ):

X → IdX ← X.

Note that G ◦ IdX �∼= G and G �∼= IdY ◦ G. However, G is equivalent to both of these

T -open-graphs up to edge-homeomorphism. To see this, simply contract away the edges

in IdX ⊆ G ◦ IdX or IdY ⊆ IdY ◦ G using one of the H-rules from Definition 7.14.

9.1. Rewrite categories

By passing from cospans of T -open-graphs to cospans of �-equivalence classes of

cospans, the composition ◦ becomes strictly associative and there exist identities for

all objects. In particular, we can turn the precategory DCsp(OGraphT ) into a geniune

category DCsp(OGraphT )//�, called the rewrite category of �. However, for ◦ to be well

defined, we must first show that the composition operation does not depend on the choice

of representative.

Lemma 9.4. Let the following cospan be an arrow in DCsp(OGraphT ):

Y
c−→ G

d←− X.

Let m be a matching of a rewrite L R on G, and let the induced rewrite be

G
b1←− B

b2−→ G[L R]m (7)

where b1 and b2 are the boundary maps into G and G[L R]m, respectively. Then there

exists a unique ĉ and d̂ such that

Y
ĉ−→ G[L R]m

̂d←− X

is an arrow in DCsp(OGraphT ) and the following diagram commutes for some maps c′

and d′:

G

Y B X

G[L R]m

c

c′

ĉ

b1

b2

d

d′

̂d

Proof. Since diagram (7) is a span of boundary maps, it restricts to a smaller span

G
b′1←− In(G) ∼= In(G[L R]m)

b′2−→ G[L R]m

where b′1 and b′2 are monos. Since the image of d is contained in the image of b′1, it factors

uniquely through b′1 as d = b′1 ◦ d′. Furthermore, d̂ := b′2 ◦ d′ is the unique map making

the above diagram commute. The construction follows similarly for c.
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Definition 9.5 (rewriting on cospans). For a cospan

Y
c−→ G

d←− X

in DCsp(OGraphT ) and a matching m of a rewrite L R on G, we write G[L R]m for

the T -open-graph (and associated cospan) defined by Lemma 9.4.

Theorem 9.6. Let G : A → B, H : B → C be cospans in DCsp(OGraphT ), and m be a

matching of a rule L R on G. Then there exists a matching m′ on H ◦ G such that

H ◦ (G[L R]m) ∼= (H ◦ G)[L R]m′ .

Similarly, for any cospan matching n on H , there exists n′ such that

(H[L R]n) ◦ G ∼= (H ◦ G)[L R]n′ .

Proof. The result follows from Theorem 7.6 and Lemma 9.4. In both cases, m′ and

n′ are formed by composing the original mapping with the inclusion of the matched

T -open-graph into the (S ′-adhesive) pushout.

We will now define rewrite systems for cospans in the same way as we did for open-

graphs.

Definition 9.7 (rewrite systems for cospans). Let � be a set of rewrite rules. We write

G � H if there exists a rule L R in � and a cospan matching m such that

G[L R]m ∼= H . Let *
� be the closure of � as an equivalence relation.

Let � be the typed version of the edge-homeomorphism rewrite system from Defini-

tion 7.14. This system consists of a line contraction rule HL(o) and a circle contraction

rule HC(o) for each o ∈ O. It also has an input contraction rule Hk
T (a) for each a ∈ A

and each input k ∈ 1..N defined by T (a), and similarly an output contraction rule Hk
S (a).

Note that when A and O are finite, this rewrite system is finite, unlike in the untyped case,

where it is countably infinite.

Theorem 9.8. Up to edge-homeomorphism, the composition of cospans is associative and

unital.

Proof. By the associativity of pushouts,

(I ◦H) ◦ G ∼= I ◦ (H ◦ G).

By definition, the relation *
� subsumes cospan isomorphism. T -open-graphs of the

form IdX are identities with respect to composition. Since G contains no isolated points,

every edge in G ◦ IdX that came from IdX must be next to another edge. Therefore, one

of the edge-homeomorphism rewrite rules can be used to contract it away. Thus, G ◦ IdX

can be transformed back into G. Similarly, IdY ◦ G *
� G.

We can now define rewrite categories.
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Definition 9.9. Let � be a rewrite system containing �. Then DCsp(OGraphT )//� is a

category with:

— objects as (totally ordered) point-graphs;

— arrows are equivalence classes G̃ of directed cospans, up to *
�;

— composition defined by pushout of cospans; and

— identities as cospans X → IdX ← X for all X.

Theorem 9.10. All rewrite categories are symmetric monoidal categories.

Proof. The monoidal product is defined on objects and arrows by the disjoint union of

T -open-graphs. Let

G̃ : X → Y

H̃ : X ′ → Y ′

be arrows in DCsp(OGraphT )//� represented by cospans G and H , respectively. Then

G̃⊗ H̃ : X ⊗X ′ → Y ⊗ Y ′

is an arrow represented by the cospan

Y + Y ′ → G + H ← X + X ′.

Associativity follows from the associativity of coproducts in OGraph. Symmetry maps

are defined as follows. Let s : X + Y → Y + X be the usual swap map for coproducts in

OGraph. Then the swap map σ : X ⊗ Y → Y ⊗X in DCsp(OGraphT )//� is represented

by the cospan

Y + X → IdY +X ← Y + X
s← X + Y .

The equations σ ◦ σ = Id and (G̃ ⊗ H̃) ◦ σ = σ ◦ (H̃ ⊗ G̃) follow from T -open-graph

isomorphism and rewriting with the edge-homeomorphism rules.

We shall now focus on the special case of DCsp(OGraphT )//� and show that it defines

the free (symmetric or traced) modoidal category over a graphical signature T .

9.2. Free monoidal categories

For a class O, let O∗ be the class of finite words formed from elements of O.

Definition 9.11 (monoidal precategory). A monoidal precategory consists of a class of

primitive objects O and for every pair v, w ∈ obM := O∗ a set hom(v, w) of arrows. A

monoidal prefunctor F : M → N consists of a monoid homomorphism obM → obN
and for every hom-set a function hom(v, w) → hom(Fv, Fw). The category of monoidal

precategories and monoidal prefunctors is called MonPreCat.

Note that monoidal precategories do not necessarily have composition or identities,

and the ‘monoidal product’ is only defined for objects. Monoidal categories and graphical

signatures are both cases of monoidal precategories. In the case of a graphical signature
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T : A→ O∗ ×O∗, the class of primitive objects is O, and for any pair of words v, w ∈ O∗,

the hom-set is formed from the inverse image of T :

hom(v, w) := T−1(v, w) ⊆ A.

Definition 9.12. Let TSMC(T ) := DCsp(OGraphT )//�. Let SMC(T ) be the subcategory

of TSMC(T ) where every T -open-graph in the middle of a cospan is directed acyclic.

SMC(T ) has the property that no T -open-graphs contain ‘feedback loops’. Note that T ,

as a monoidal precategory, embeds canonically into SMC(T ), and hence into TSMC(T ).

Theorem 9.13. SMC(T ) is the free symmetric monoidal category of T . That is, for any

symmetric monoidal category V, any monoidal prefunctor F : T →V extends uniquely

to a symmetric monoidal functor from SMC(T ). For the embedding of T ↪→ SMC(T ),

there exists a unique monoidal functor F̂ making the following diagram commute:

T V

SMC(T )

F

F̂

We can prove the above theorem using the geometric characterisation of symmetric

monoidal categories given in Joyal and Street (1991). The details of this proof are given

in Appendix A.

Definition 9.14 (trace operator). For objects A, B and C of TSMC(T ), a trace operator is

defined to be a function

trBA,C(−) : homTSMC(T )(A⊗ B,C ⊗ B)→ homTSMC(T )(A,C).

Intuitively, this introduces edges that connect from B in the codomain to B in the domain.

We first construct the identity graph as in Definition 9.2:

B
o→ IdB

i← B

Let G̃ : A⊗B → C ⊗B be an arrow in TSMC(T ), which is represented by a cospan G.

The arrows of the cospan G factor over the coproduct A+ B and C + B, so we can write

them as

C + B
[c1 ,c2]−→ G

[d1 ,d2]←− A + B

for arrows c1 : C → G, c2 : B → G, and so on.
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We now perform the following (boundary-coherent) pushout of G and IdB , for [d2, c2]

the induced map from the coproduct B + B:

B + B G

IdB G′

[d2, c2]

p2

[o, i] p1

p1 is mono because [o, i] is, so let the following be a new cospan G′:

C
p1c1−→ G′

p1d1←− A.

Define trBA,C(G̃) := G̃′. Since plugging and rewriting are compatible, this does not depend

on the choice of representative G.

Example 9.15. The following diagram is an illustration of applying a trace operator:

Bi
1 Bi

2

Bo
1 Bo

2

A Bi
1 Bi

2

C Bo
1 Bo

1

Bi
1 Bi

2

Bo
1 Bo

2

A Bi
1 Bi

2

C Bo
1

Bo
2

*
�

This provides a natural way of working with traced symmetric monoidal categories,

and subsequently compact closed categories. We conjecture that this is, in fact, a free

construction of traced symmetric monoidal categories.

Conjecture 9.16. The trace operator of Definition 9.14 gives TSMC(T ) the structure of

the free traced symmetric monoidal category over T .

Remark 9.17 (free categories and isolated points). It is now possible to see why we disallow

isolated points in the category DCsp(OGraphT ). Consider the simplest case of a cospan

involving an isolated point in the middle. Let P be the graph consisting of just one

isolated point. Now consider composing the cospan

P
1−→ P

1←− P
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with the cospan IdP . Since rewrite rules must be spans of monomorphisms to ensure that

the rewrite process is well defined, they cannot contain isolated points in either the left-

or right-hand side. Thus there cannot be a rule that relates P and P ◦ IdP
∼= IdP , so IdP

would no longer be an identity if isolated points were allowed. Worse still, we would have

two cospans, P and IdP , that should be interpreted as identity maps in the free category,

and which are incomparable.

9.3. PROPs

PROPs, or PROduct categories with Permutations, are a convenient way of describing

symmetric monoidal algebraic structures internal to some monoidal category V.

Definition 9.18. A PROP is a symmetric monoidal category whose objects are the natural

numbers and where the tensor product is given by addition.

Examples of PROPs are the (skeletal) category � of finite sets and functions, Csp(�)

of cospans of finite sets, with composition as pushout, Mat(�) whose objects are natural

numbers m, n and whose arrows are m× n matrices of natural numbers, and Mat(�) the

same for integers.

PROPs are interesting because they define categories of algebras.

Definition 9.19. For a PROP 	 and some fixed symmetric monoidal category V, the

category 	-Alg of 	-algebras has as objects strict symmetric monoidal functors 	 → V
and has as arrows monoidal natural transformations.

As their name suggests, algebras of PROPs represent internal algebraic structures. For

instance, the algebras of �, Csp(�), Mat(�) and Mat(�) in V are internal monoids,

special Frobenius algebras, bialgebras and Hopf algebras, respectively.

PROPs can be combined with each other in much the same way as monads using

distributive laws (Lack 2004), and even more flexible interaction theories, like the one used

in Coecke and Duncan (2009).

A rich class of PROPs can be obtained from the rewrite categories defined in Section 9.1.

Consider a typed graph category made from a ‘single-sorted’ graphical signature

T : A→ {•}∗ × {•}∗.

Hence, the objects of DCsp(OGraphT ) are point graphs containing n isolated points of

type ‘•’, which we can represent by the natural numbers. Since the monoidal product on

objects is the disjoint union, m⊗ n = m + n.

Let 
 be some graphical theory, expressed as a rewrite system. Then, for � the edge-

homeomorphism rewrite system, we can form the combined system 
+�, and the rewrite

category

E := DCsp(OGraphT )// (
 + �).

The algebras of E will be structures in V that satisfy precisely the identities given

graphically by E. By expanding the graphical signature T , this procedure generalises

naturally from PROPs to multi-sorted monoidal theories. Taking V to be some concrete
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category like Vect�, this formalises the notion of concrete models for some graphical

theory.

10. Conclusions and further work

We have presented a theory of open-graphs to support graphical reasoning about

computational processes. These graphs are visualised with an interface made of half-

edges that enter or leave the graph. We formalised this by introducing a notion of

intermediate points that occur along an edge or ‘wire’. This allows a single wire to be cut

into arbitrarily many smaller wires, and, conversely, supports composition by plugging

wires together. We also described methods supporting graphical rewriting using the so-

called double pushout approach, and showed how graphical rewriting rules can themselves

be composed. We then formalised the relationship between graphs that are ‘semantically’

the same by defining a graph rewrite system called edge-homeomorphism, by analogy with

homeomorphism in topological spaces.

We then generalised our construction of open-graphs to work with many types of

vertices and wires. In particular, we parameterised open-graphs using a graphical signature

that provides the typing constraints for composing graphs. The typing of open-graphs lets

us express many kinds of processes, notably those with distinguished inputs and outputs.

Building on graphical signatures, we then showed that cospans over typed open-graphs,

modulo edge-homeomorphism, form free symmetric monoidal categories over a set of

generators. By taking richer rewrite systems, we can obtain a large and interesting class

of monoidal theory categories, including PROPs. In this way, we have provided a general

method of reasoning about a wide variety of graphical theories.

The constructions presented here have deliberately been kept finitary and decidable for

the case of finite open-graphs. This is with an eye to implementation of graphical reasoning

software, which would form a conceptual bridge to let us enjoy the intuitive power of

graphical languages, while benefiting from rigorous, computer-assisted manipulation. In

particular, our theory provides a platform for bringing techniques from rewriting, such as

critical pair analysis and Knuth–Bendix completion (Knuth and Bendix 1970), to process-

centric graphical languages and monoidal categories. An implementation of this work is

already largely completed†, although a proof that this does indeed implement the theory

presented here remains for future work. Another area of further work is to extend this

formalism to support pattern-graphs, as introduced in Dixon and Duncan (2009). More

generally, we would like to be able to reason with graphs and rules that contain repeated

or recursive structures.

Our construction of PROPs and free symmetric monoidal categories is also only a

beginning. The graphical notation for traced symmetric monoidal categories introduced

in, for example, Selinger (2009) gives us strong reason to believe that Conjecture 9.16 is

correct. For a suitable definition of traced monoidal theories, generalising the definition

of PROPs to the traced setting, we believe that the construction in Section 9.3 actually

† see http://dream.inf.ed.ac.uk/projects/quantomatic for details.

https://doi.org/10.1017/S0960129512000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000138


L. Dixon and A. Kissinger 356

forms the free traced monoidal theory satisfying the equations reflected by a rewrite

system.

On a more fundamental level, the notion of edge-homeomorphism suggests a deep

and telling connection not only with topological graphs, but also with their more exotic

cousins, topological directed graphs. This has previously only been explored in an ad

hoc manner, but we believe it can be made fully formal using the notions of directed

topological spaces, as presented in Grandis (2009) or Krishnan (2009). We feel that, in

the context of such a presentation, the technical content of this paper will arise naturally

as a discrete reflection of the deeper, topological theory.

Appendix A. Proof of freeness for SMC(T )

We shall prove Theorem 9.13 using the geometric characterisation of symmetric monoidal

categories given in Joyal and Street (1991).

Theorem 9.13. SMC(T ) is the free symmetric monoidal category of T . That is, for any

symmetric monoidal category V, any monoidal prefunctor F : T →V extends uniquely

to a symmetric monoidal functor from SMC(T ). For the embedding of T ↪→ SMC(T ),

there exists a unique monoidal functor F̂ making the following diagram commute:

T V

SMC(T )

F

F̂

First, we recall several definitions from Joyal and Street (1991).

Definition A.1 (generalised topological graph). A generalised topological graph is a pair

(G,G0), where G is a Hausdorff space and G0 is a discrete, closed subset where G − G0

is isomorphic to a sum of open intervals Io := (0, 1) ⊆ � and copies of S1. The

compactification of an open interval Io ⊆ G−G0 is called an edge ê. A copy of S1 ⊆ G−G0

is called a circle ĉ.

Note that all edges naturally embed in the compactification Ĝ ⊇ G obtained by adding

endpoints to open edges.

Definition A.2 (polarised graph). A polarised graph is a tuple Γ := (G,G0, ω, π), where ω

assigns an orientation to each ê and each circle ĉ in (G,G0). We can therefore define an

input ê(0) and an output ê(1) for each edge. For each vertex v ∈ G0, in(v) is the set of

edges such that ê(1) = v and out(v) is the set of edges such that ê(0) = v. Finally, π assigns

to each v a total order on in(v) and out(v), called a polarisation. A polarised graph that

contains no directed cycles is said to be progressive.

Polarised graphs come with a notion of boundary. Furthermore, we can put an ordering

on this boundary.
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Definition A.3 (boundary of a polarised graph). For a polarised graph Γ := (G,G0, ω, π),

∂Γ := Ĝ− G is a discrete space called the boundary of Γ. Points in ∂Γ that are the input

of some edge are called inputs of Γ, and outputs of edges in ∂Γ are called outputs of Γ. A

polarised graph with a pair of total orders β0 on its inputs and β1 on its outputs is called

an anchored graph.

Definition A.4 (valuation). For an anchored graph Γ and a monoidal precategory M, a

valuation v of Γ is a function v0 that assigns an object of M to every edge in Γ and

a function v1 that assigns an arrow to every vertex in such a way that respects the

domain and codomain of the arrows in M. A map of anchored graphs with valuations

(Γ, v) → (Γ′, v′) is a collection of maps that respect all of the structure of Γ and the

valuations.

Since an anchored graph gives a total order to inputs and outputs, we can associate

input and output words to a pair (Γ, v). Let T : A → O∗ × O∗ be a graphical signature.

�S (T ) is the category whose objects are words in O∗. For words v and w, arrows are

isomorphism classes of progressive anchored graphs with valuations into T that have

input word v and output word w.

Joyal and Street (1991) showed that �S (T ) is the free symmetric monoidal category

over T . For the proof of Theorem 9.13 it suffices to show that a symmetric monoidal

equivalence exists from SMC(T ) to �S (T ).

We can now prove Theorem 9.13 by defining a geometric realisation functor �−�T :

SMC(T )→ �S (T ) that is identity-on-objects and showing it admits a (weak) inverse.

Proof. We let G̃ : X → Y be an arrow in SMC(T ) and choose a directed cospan

Y
c−→ G

d←− X of T -open-graphs to represent the equivalence class G̃.

The category Graph sits inside the category of simplicial complexes, so there is a

geometric realisation functor �−� : Graph→ Top.

G is an element of the slice category over GT , so it comes with a map τG : G → GT .

The underlying graph of G has an embedding of its boundary and its set of vertices. That

is, there exist maps b : X + Y → G and v : V → G in Graph, where X + Y and V are

discrete graphs.

For H := �G� − �X + Y � and H0 := �V �, (H,H0) defines a generalised topological

graph. Note that the compactification Ĥ = �G�. Since each edge (or circle) in Ĥ has an

underlying directed chain (or cycle) of edge points, we can equip it with an orientation

ω. Recall that edges adjacent to a vertex in GT have a natural total order given by their

word order in T . We can use this order to assign a polarisation π to the vertices in

H0. Thus (H,H0, ω, π) defines a polarised graph. It is progressive precisely because G is

directed-acyclic. The total order on X and Y induces a total order on the inputs and

outputs of G, and hence total orders βi, βo on the inputs and outputs of the polarised

graph. Thus Γ = (H,H0, ω, π, β) is a progressive anchored graph. For Γ, a valuation v

into T can clearly be deduced by the typing map τG : G → GT , so (Γ, v) is an arrow

in �S (T ).

Let Γ′ be the result of performing this construction on some other G′ representing G̃.

Then G could be rewritten to G′ by only merging or subdividing edges. The only step of
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the construction that makes explicit reference to (internal) edge-points is the application

of �−� : Graph → Top to the underlying graphs of G and G′. This process forgets edge

points, so Γ′ ∼= Γ. Also, for any G′ that yields a progressive anchored graph Γ′ ∼= Γ, G′ is

simply another triangularisation of Γ, so G′ rewrites to G using edge-homeomorphism.

This construction respects composition and the symmetric monoidal structure, so

�G̃�T = Γ defines a symmetric monoidal functor into �S (T ). Furthermore, �−�T admits

a weak inverse by sending a progressive anchored graph Γ to the equivalence class G̃

represented by any G such that the above construction performed on G yields a progressive

anchored graph Γ′ ∼= Γ.
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