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Explicit analytical expressions for the drag and diffusion coefficients of a spherical
particle attached to the flat interface between two immiscible fluids are constructed
for the case of a vanishing viscosity ratio between the fluid phases. The model is
designed to account explicitly for the dependence on the contact angle between the
two fluids and the solid surface. The Lorentz reciprocal theorem is applied in the
context of geometric perturbations from the limiting cases of 90◦ and 180◦ contact
angles. The model agrees well with the experimental and numerical data from the
literature. Also, an advantage of the method utilized is that the drag and diffusion
coefficients can be calculated up to one order higher in the perturbation parameter
than the known velocity and pressure fields. Extensions to other particle shapes with
known velocity and pressure fields are straightforward.
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1. Introduction
The diffusive behaviour of colloidal particles is drastically altered compared to

diffusion in a bulk fluid when the particles are affected by the presence of an interface
between two immiscible fluids. The motion of particles attached to a fluid interface
occurs predominantly parallel to the interface, but may also involve temporary particle
detachment, as can be concluded from experiments (Walder, Honciuc & Schwartz
2010; Sriram, Walder & Schwartz 2012). The phenomenon of two-dimensional
interfacial diffusion is not yet fully understood, which is reflected in the variety of
experimental results as well as related theoretical models. For example, Chen & Tong
(2008) and Peng et al. (2009) have studied the influence of the surface concentration
of diffusing particles on the diffusion coefficient. In the limit of infinite dilution, the
measured diffusion coefficient is found to be very close to the bulk value in one of
the fluid phases. The authors of both publications explain the data by assuming the
interface as incompressible, although there is no reason to assume contamination
of the interface (Peng et al. 2009). As another example, experimentalists have
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FIGURE 1. Geometrical conventions used in §§ 2 and 3, respectively. The dash-dotted lines
represent the planar fluid–fluid interface, while the origins of the respective coordinate
systems are marked by ×. The three-phase contact angle is measured in the upper fluid 1.
Dashed arrows indicate the direction of positive torques Mπ/2 and Mπ. The particle is
moving to the right.

occasionally found the size dependence of the diffusion coefficient to differ from
the inverse of the particle radius, a−1 (Wang et al. 2011; Du, Liddle & Berglund
2012), at variance with the modified Stokes–Einstein relation (Brenner & Leal 1978)

D= kBT
6πµ1af (Θ, µ2/µ1)

. (1.1)

By the index 1 we denote the fluid with the higher viscosity µ1, while index 2 denotes
the fluid having the lower viscosity. The three-phase contact angle Θ is measured in
fluid 1, cf. figure 1. In (1.1), the function f specifies the deviation of the drag force
from the Stokes drag of a spherical particle suspended in the bulk of fluid 1. In terms
of the drag force FD acting on the attached particle, f is thus defined by

FD =−6πµ1af U, (1.2)

where U denotes the particle velocity relative to the undisturbed fluids. Even when
the modified Stokes–Einstein relation (1.1) is valid, as we shall assume in this study,
the functional form of the drag coefficient f of a translating interfacial particle is
not known. Especially the dependence of f on Θ could help explain experimental
data showing an unexpected scaling of f with the particle size (Wang et al. 2011;
Du et al. 2012), since Θ is modified by line-tension effects, which become especially
prominent on small scales. A variety of theoretical and experimental studies deal with
the drag coefficient of particles attached to fluid–fluid interfaces (Fulford & Blake
1986; O’Neill, Ranger & Brenner 1986; Danov et al. 1995, 1998; Petkov et al. 1995;
Cichocki et al. 2004; Fischer, Dhar & Heinig 2006; Pozrikidis 2007; Ally & Amirfazli
2010; Bławzdziewicz, Ekiel-Jeżewska & Wajnryb 2010). However, the corresponding
theoretical models mostly rely on numerical methods.

With this work, we intend to contribute to the field by providing an explicit
analytical expression for the drag coefficient of a spherical particle attached to a pure
interface between two fluids of very different viscosity in the limit of low Reynolds
number. The derived expression can be viewed as a generalization of the Stokes
drag formula valid for all contact angles between the three phases. According to the
Stokes–Einstein relation (1.1), the diffusion coefficient D directly follows from the
drag coefficient f . The work is based on a recent article Dörr & Hardt (2015) in
which the flow field around a sphere attached to a fluid interface with a contact angle
of 90◦ was computed to obtain the deformation of the interface. These earlier results
are complemented by a second perturbation expansion around a contact angle of 180◦.
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Drag and diffusion coefficients of a spherical particle 609

Based on these perturbation expansions, the Lorentz reciprocal theorem allows us to
obtain the drag coefficient of the particle with high accuracy. The derived expression
agrees well with the numerical results of Zabarankin (2007), obtained for contact
angles below 90◦, and it goes beyond these by covering the full range of contact
angles.

2. Geometric expansion around a contact angle of 90◦

2.1. Series expansion of the flow field

Our modelling focuses on the drag coefficient of a rigid sphere translating along
a fluid–fluid interface at low Reynolds number. We study the fundamental case of
a clean fluid–fluid interface. Therefore, we do not employ any incompressibility
constraint for the interface and assume a vanishing interfacial viscosity. Also, we
neglect any deformation of the fluid–fluid interface on the scale of the particle
radius a, corresponding to a negligible influence of external forces acting normal to
the fluid–fluid interface, such as buoyancy or electromagnetic forces. Assuming a
planar interface also implies that the capillary number Ca = µ1U/σ (with U = ‖U‖
and the fluid–fluid interfacial tension σ ), measuring dynamic deformations of the
fluid–fluid interface, is small compared to unity (Radoev, Nedjalkov & Djakovich
1992).

In addition to interfacial deformations, we neglect particle rotation. The validity
of this assumption depends on the conditions at the three-phase contact line, for
which two limiting cases exist. Firstly, the contact line can be pinned to defects
of the particle surface, meaning that it retains a fixed position with respect to the
latter. A pinned contact line prevents the particle from rotating if the capillary
forces due to the fluid–fluid interface are sufficiently large. Secondly, the contact
line can move tangentially to the particle surface if the contact angle hysteresis is
small or vanishes. In this case, the particle may rotate with an angular velocity Ω

dependent on the rate of dissipation occurring at the contact line. In a hydrodynamic
picture the rate of dissipation is related to the extent of velocity slip at the solid
surface. The model presented in this paper, relying on contact line pinning, can
still be applicable to a rotating particle with a moving contact line. If the angular
speed Ω is negligible compared to U/a, the particle may be approximately considered
non-rotating, because then the particle’s surface velocity associated with the rotational
motion is much smaller than the surface velocity U associated with the translational
motion. For increasing angular velocity, that is, decreasing dissipation at the moving
contact line, the assumption of a non-rotating particle loses its validity. Consequently,
the following model is valid for a particle with Ωa/U� 1.

To further simplify the mathematical treatment, we assume a vanishing viscosity
ratio between the two fluids, µ2/µ1→ 0. As a consequence of this assumption, the
condition of tangential stress being continuous upon crossing the fluid interface is
simplified to a condition of vanishing tangential stress exerted upon the fluid interface
by fluid 1. Thus the planar fluid–fluid interface effectively becomes a symmetry plane
from the viewpoint of fluid 1, while the influence of fluid 2 can be neglected. For this
reason, the flow problem is analogous to the motion of a body possessing reflection
symmetry moving parallel to its symmetry plane. Clearly, for a contact angle Θ of
90◦, the symmetric body is spherical, resulting in the classical Stokes flow problem
around a sphere. The corresponding drag on an interfacial particle is then simply half
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(a)

(b)

FIGURE 2. (Colour online) Pair of flow problems connected by the Lorentz reciprocal
theorem (2.16). (a) A sphere moving along a fluid–fluid interface with vanishing viscosity
ratio causes a flow field identical to the classical Stokes flow problem in a bulk fluid,
denoted by û and T̂ , if the contact angle Θ equals 90◦. (b) For Θ 6= 90◦, the flow problem
is equivalent to a pair of fused spheres moving through a bulk fluid. By means of a
perturbation expansion, the boundary condition on the complex particle surface is projected
onto a sphere and the flow field in this case is denoted by u and T .

the Stokes drag in the bulk of fluid 1 (Ranger 1978; O’Neill et al. 1986; Radoev et al.
1992; Danov et al. 1995; Petkov et al. 1995; Ally & Amirfazli 2010), implying

f (90◦, 0)= 1/2, (2.1)

where the function f is defined by (1.1).
For contact angles differing from 90◦, the symmetric body consists of two fused

spheres (cf. figure 2b). This case has been studied by Zabarankin (2007), who provides
drag coefficient values derived from a numerical solution of a Fredholm integral
equation. Recently, Dörr & Hardt (2015) have derived the asymptotic expression

f (Θ, 0)= 1
2

[
1+ 9

16 cosΘ +O(cos2 Θ)
]
. (2.2)

The result (2.2) has been obtained following a method of Brenner (1964) (cf. Dörr
& Hardt 2015) concerning necessary corrections to the method), which is based on
spherical harmonics expansions and yields the velocity and pressure fields around
a slightly deformed sphere. To this end, the particle shape (given by the pair of
fused spheres of radius a in our case) needs to be parameterised in spherical
coordinates (r, θ, ϕ), with the origin lying in the particle’s symmetry plane, according
to

r= rp(θ, ϕ), (2.3)

and subsequently expanded in a power series

rp(θ, ϕ)= a[1+ εφ(1)(θ, ϕ)+ ε2φ(2)(θ, ϕ)+ · · · ] (2.4)

in terms of a small parameter ε. Here, we choose ε = cosΘ , so that 2εa equals the
distance between the centres of the fused spheres (cf. figure 1a). Accordingly, if we
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Drag and diffusion coefficients of a spherical particle 611

assume the centres of the spheres to lie on the x-axis with the symmetry plane given
by x= 0, the particle shape is described by

rp(θ, ϕ)= a
[

1+ ε sin θ |cos ϕ| + ε2

(
sin2 θ cos2 ϕ − 1

2

)
+ · · ·

]
, (2.5)

from which the functions φ(1) and φ(2) in (2.4) can be read.
At the same time, the velocity and pressure fields, u and p, are written in the form

u = u(0) + εu(1) + ε2u(2) +O(ε3), and (2.6)
p = p(0) + εp(1) + ε2p(2) +O(ε3). (2.7)

The particle moves with the velocity U. Therefore, the flow field obeys the boundary
conditions

u|Σp
=U (2.8)

at the particle surface Σp, and
u|Σ∞ = 0 (2.9)

on a spherical surface Σ∞ at r→∞. While condition (2.9) is readily adapted to the
perturbation expansion (2.6), condition (2.8) on the particle surface requires a Taylor
series expansion for removal of the implicit dependence on the shape parameter ε.
To be precise, the boundary condition (2.8) in conjunction with the expanded particle
shape (2.4) reads

u(rp, θ, ϕ)=U, (2.10)

which equals

u(0)(rp, θ, ϕ)+ εu(1)(rp, θ, ϕ)+ ε2u(2)(rp, θ, ϕ)+O(ε3)=U. (2.11)

In (2.11), the argument rp depends on ε, so that the velocity vectors u(i) (i∈ {0, 1, 2})
are to be expanded in a Taylor series about r = a in powers of ε, using (2.4). After
performing the expansions, inserting the results into (2.11) and grouping of terms, we
arrive at

u(0) =U

u(1) =−aφ(1)
∂u(0)

∂r

u(2) =−aφ(2)
∂u(0)

∂r
− a2

2

[
φ(1)
]2 ∂

2u(0)

∂r2
− aφ(1)

∂u(1)

∂r

 at r= a. (2.12)

Clearly, the zeroth-order problem corresponds to a spherical particle moving with
constant velocity U in an unbounded fluid, for which the velocity and pressure
fields

u(0) =−1
2

U
(a

r

)2 (a
r
− 3

r
a

)
cos θer − 1

4
U
(a

r

)2 (a
r
+ 3

r
a

)
sin θeθ , (2.13)

and

p(0) = 3
2
µ1Ua

cos θ
r2

(2.14)
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612 A. Dörr, S. Hardt, H. Masoud and H. A. Stone

are well known (Happel & Brenner 1983). The first-order problem has been solved
by Dörr & Hardt (2015) in the particle’s rest frame. Because the frame of reference
only affects the zeroth-order flow u(0) by addition or subtraction of the velocity
field U, the first-order flow field u(1) considered by Dörr & Hardt (2015) may
be directly used in the present study. The supplementary material available at
http://dx.doi.org/10.1017/jfm.2016.41 contains the complete set of expressions required
to calculate the velocity field u(1). Since u(1) is equal to the infinite series

∑∞
k=0 u(1)k

(Brenner 1964), the number of included terms needs to be limited in practical
calculations. The values reported below as well as in the supplementary material
correspond to k 6 20. With this choice, the O(ε2) contribution to the drag coefficient
can be calculated to three significant digits, as will be shown in the following section.

2.2. Applying the Lorentz reciprocal theorem
According to the above discussion, we are in a position to compute the velocity fields
u(i)(a, θ, ϕ), i ∈ {0, 1, 2}, on a spherical surface by means of (2.12). In other words,
we are faced with two flow problems involving a sphere of radius a in an unbounded
fluid, see figure 2. The first of these problems (figure 2a), constructed by setting ε

to zero, consists of a sphere with a no-slip surface condition and translating with
velocity U. We shall denote the velocity and stress tensor fields belonging to this first
problem by û and T̂ , respectively. The second problem (figure 2b), associated with the
truncated perturbation expansion in ε and denoted by u and T , is given by a sphere
with a prescribed surface velocity field of

u(a, θ, ϕ)=
∞∑

i=0

εiu(i)(a, θ, ϕ)=U + εu(1)(a, θ, ϕ)+ ε2u(2)(a, θ, ϕ)+O(ε3), (2.15)

according to (2.12).
Since the solutions (û, T̂ ) and (u, T ) correspond to the same flow geometry, they

are related by the Lorentz reciprocal theorem for Stokes flow (Lorentz 1896; Brenner
1964; Happel & Brenner 1983),∫

Σ

(
T̂ · n

)
· u dΣ =

∫
Σ

(T · n) · û dΣ, (2.16)

where Σ comprises the particle surface Σp (outer normal vector n = −er) and the
surface Σ∞ at infinity (outer normal vector n= er).

The application of the reciprocal theorem (2.16) to a number of problems involving
the motion of particles in low Reynolds number flows has been reviewed by Leal
(1980); for several more recent applications, see Stone & Samuel (1996), Masoud &
Stone (2014) and Schönecker & Hardt (2014). Its use in the present study is inspired
by the works of Brenner (1964) and Stone & Samuel (1996). Brenner (1964) showed
that the drag force can be calculated to one order higher than the order to which the
flow field is known. Returning to our calculation, the contribution from the integral
over Σ∞ in (2.16) vanishes because

‖û‖ ∼ r−1, ‖u‖ ∼ r−1, ‖T̂ · er‖ ∼ r−2, and ‖T · er‖ ∼ r−2 for r→∞.
(2.17a−d)
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Drag and diffusion coefficients of a spherical particle 613

The integral in (2.16) thus reduces to an integral over the particle surface Σp.
Recalling that T̂ · n=−T̂ · er = 3µ1U/(2a) (Stone & Samuel 1996) and using (2.15),
the reciprocal theorem can be written as∫

Σp

3µ1

2a
U ·
[
U + εu(1) + ε2u(2) +O(ε3)

]
dΣ =

∫
Σp

(T · n) · U dΣ. (2.18)

Since U is a constant vector and
∫
Σp

dΣ = 4πa2, (2.18) simplifies to

6πµ1U2 + 3µ1

2a
U ·

∫
Σp

[
εu(1) + ε2u(2) +O(ε3)

]
dΣ =U ·

∫
Σp

T · n dΣ︸ ︷︷ ︸
=−FD

. (2.19)

The integral on the right-hand side of (2.19) has been identified with the negative of
the Stokes drag FD on the particle because n=−er. Then, using (2.12), (2.13), (2.4)
and (2.5) in conjunction with the velocity field u(1) according to Dörr & Hardt (2015),
the integral occurring in (2.19) can be evaluated, yielding

FD =−6πµ1aU[1+ 9
16ε− 0.139ε2 +O(ε3)]. (2.20)

Thus, the drag coefficient (1.2) for the original problem of a spherical particle
diffusing along a fluid–fluid interface of zero viscosity ratio is given by

fπ/2(Θ, 0)= 1
2 [1+ 9

16 cosΘ − 0.139 cos2 Θ +O(cos3 Θ)]. (2.21)

Correspondingly, for the diffusion coefficient (1.1) it follows that

D= 16kBT
3πµ1a

[
16+ 9 cosΘ − 2.224 cos2 Θ +O(cos3 Θ)

] . (2.22)

Note that the numerical coefficient 0.139 in (2.21) can be calculated to any desired
number of significant digits, provided that a sufficient number of terms is considered
in the spherical harmonics expansion by Brenner (1964) and Dörr & Hardt (2015).
As stated above, the value 0.139 . . .≈ 765 368 413 099/5497 558 138 880 corresponds
to 20 terms. The torque Mπ/2 acting on the particle in the direction indicated in
figure 1(a) was calculated by Dörr & Hardt (2015) (cf. (3.24) and (4.19) therein) as

Mπ/2 =πµ1a2U[ 32 + 2.863 cosΘ +O(cos2 Θ)]. (2.23)

3. Geometric expansion around a contact angle of 180◦

3.1. Series expansion of the flow field
For contact angles Θ close to 180◦ (π−Θ� 1), the symmetric body takes the form
of a lens (see figure 1b). Therefore, it is more realistic to describe the body shape
in terms of a perturbation expansion from a circular disk. Let (r, θ, z) be cylindrical
coordinates, where z=0 represents the interface and r=0 passes through the centre of
the lens. In these coordinates, the surface of the symmetric particle can be described
as

z=± R
sinΘ

[√
1−

( r
R

)2
sin2Θ + cosΘ

]
=±R[εφ (r)+O

(
ε2
)], (3.1)
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614 A. Dörr, S. Hardt, H. Masoud and H. A. Stone

where R= a sinΘ is the radius of the three-phase contact line, ε= zmax/R= cot (Θ/2)
is the aspect ratio of the lens, and φ (r)= 1− (r/R)2. It is then natural to write the
velocity and pressure in the form

u = u(0) + εu(1) +O(ε2), and (3.2)
p = p(0) + εp(1) +O(ε2). (3.3)

Note that ε, r, and φ (r) have different definitions than in the previous section.
To proceed, we represent the boundary conditions at the actual surface of the

particle in terms of a Taylor series about z = 0, similar to what was done in § 2.1.
Hence, the velocity at z= 0 is given by

u= u(0) + ε
[

u(1) + Rφ (r)
∂u(0)

∂z

]
+O(ε2). (3.4)

All boundary conditions from now on are applied at z= 0. At O (1), we must solve
for the edgewise translation of a circular disk with the boundary condition

u(0) =U at z= 0 (r 6 R). (3.5)

At O (ε), the flow must satisfy

u(1) =−Rφ (r)
∂u(0)

∂z
at z= 0 (r 6 R). (3.6)

At all orders, the flow vanishes at infinity.

3.2. Applying the Lorentz reciprocal theorem
Applying the reciprocal theorem (2.16), we obtain∫

Σp

(T̂ · n) · [u(0) + εu(1) +O(ε2)] dS= FD · U, (3.7)

where Σp denotes the surface of the disk (z= 0, r 6 R) and n=±ez. As above, the
integrals over Σ∞ are zero (see (2.17)). Applying the boundary conditions (3.5) and
(3.6) and replacing T̂ · n=µ1∂u(0)/∂z, (3.7) reduces to (accounting for both sides of
the disk)

FD · U =−32
3
µ1RU2 − 2µ1Rε

∫ R

r=0

∫ 2π

θ=0
φ (r)

(
∂u(0)

∂z

)2

r dr dθ +O
(
ε2
)
. (3.8)

The ideas used to derive (3.8) are also useful in analysing the motion of a particle at
a surfactant-covered interface (Stone & Masoud 2015).

The velocity field u(0) for flow about a circular disk translating edgewise is known
analytically (e.g. Ranger 1978; Davis 1990; Tanzosh & Stone 1996):

u(0)r (r, θ, z)= 2U cos θ
3π

[
3 cot−1 λ− λζ 2

λ2 + ζ 2
+ λ3(1− ζ 2)

(1+ λ2)(λ2 + ζ 2)

]
, (3.9a)

u(0)θ (r, θ, z)= 2U sin θ
3π

[
−3 cot−1 λ+ λζ 2

λ2 + ζ 2
+ λ3(1− ζ 2)

(1+ λ2)(λ2 + ζ 2)

]
, (3.9b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.41


Drag and diffusion coefficients of a spherical particle 615

where λ and ζ are the oblate spheroidal coordinates defined via z = Rλζ and r2 =
R2(1+λ2)(1− ζ 2), with 06 ζ < 1. After θ integration, the integration in r (at z= 0) is
accomplished by transforming to ζ . Substituting ∂u(0)/∂z at z= 0 from (3.9) into (3.8)
and performing the integration yields

FD =−32
3
µ1RU

[
1+ 4ε

3π
+O

(
ε2
)]

(ε� 1). (3.10)

Hence, substituting for R, the drag coefficient of the original problem, which
introduces a factor of half, is given by

fπ(Θ, 0)= 8
9π

sinΘ
{

1+ 4 cot (Θ/2)
3π

+O
[
cot2 (Θ/2)

]}
(π−Θ� 1) . (3.11)

If we set Θ =π/2 in (3.11), we obtain fπ= 8(3π+ 4)/(27π2) for the drag coefficient,
which differs by less than 20 % from the exact value f =1/2 (cf. (2.1)). The torque Mπ

associated with half of the drag force (3.10),

Mπ = 16
3 µ1RUa

[
1+O (cot(Θ/2))

]= 16
3 µ1a2U sinΘ[1+O(cot(Θ/2))], (3.12)

follows from the fact that the pressure is homogeneous on the disk surface (cf. (50) in
Tanzosh & Stone 1996), and therefore does not contribute to the torque. The direction
of positive torque is defined in figure 1(b).

4. Discussion

In figure 3, we compare the result (2.21) and its first-order part (2.2) to experimental
and theoretical drag coefficient values from the literature. The numerical solution
to the full flow problem by Zabarankin (2007) may serve as a reference. The
point where Θ = 0 corresponds to the case of two touching spheres, to which the
result f (0, 0) = 0.7426 by Jeffrey & Onishi (1984), coinciding with the value by
Zabarankin (2007), applies. As can be seen, the first-order result (2.2) already agrees
well with the reference data. The inclusion of the cos2 Θ-term, resulting in (2.21),
leads to a significantly better agreement between the asymptotic model and the
numerical solution. With a maximum error in the drag coefficient f of less than 0.02
(3 %), the quadratic expression may even be applied to the full range of contact angles
between 0◦ and 90◦. Although the region where 90◦ < Θ < 180◦ lacks experimental
and numerical reference data, the qualitative behaviour of the drag coefficient in that
region may be discussed. The drag coefficient is expected to approach zero when the
contact angle approaches 180◦, a behaviour which is not reproduced by (2.21), but
by the result (3.11). Therefore, a transition region between the two expressions (2.21)
and (3.11) exists. Numerical values of the drag coefficient in that region can be
approximated by an interpolation formula, e.g.

f (Θ, 0)≈ 2
(

1− Θ
π

)
fπ/2 + 2

(
Θ

π
− 1

2

)
fπ,

π

2
<Θ <π, (4.1a,b)

as plotted in figure 3.
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Jeffrey & Onishi (1984)
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FIGURE 3. (Colour online) Comparison of the models (2.2) and (2.21) with experimental
and theoretical drag coefficient values taken from the literature. The limit of contact angles
close to 180◦, (3.11), is shown as a dashed curve. In the experiments by Petkov et al.
(1995), an air–water interface with a very small viscosity ratio, µ2/µ1≈ 0.02, was studied.
The remaining curves are valid under the assumption µ2/µ1 = 0.

5. Conclusions

With (2.21), (3.11) and (2.22), we have developed explicit expressions for the drag
and diffusion coefficients of a spherical particle attached to the interface between
two immiscible fluids for the case of a small viscosity ratio between the two phases.
The relations account for the dependence on the contact angle between the two fluids
and the solid surface. Following from the assumption on the viscosity ratio, the
drag and diffusion coefficients of a pair of fused spheres moving perpendicular to
their line-of-centres has been found simultaneously. This approach had been designed
to cover contact angles near 90◦. The extension to contact angles near 180◦ has
been provided by considering a perturbation about a disk shape. A comparison
between the two models and reference data has shown that the model (2.21) can
be applied to the entire range of contact angles below 90◦ with high accuracy. In
conjunction with the model (3.11) applicable at large contact angles and with the
interpolation formula (4.1), the drag and diffusion coefficients for contact angles
between 0◦ and 180◦ can be accurately described. The method, originally developed
by Brenner (1964), can be applied to any particle shape resulting from a small
geometric modification of another particle shape with a known flow field. Finally, we
note that the extension of our analyses to the systems with phases of comparable
viscosity might not be straightforward unless the interface passes through the particle’s
plane of symmetry (i.e. Θ =π/2).

While the relevance of this work for cases with contact angles below or close
to 90◦ seems evident, particles with very large contact angles appear to be quite
exotic. However, in the past few years methods have been described to fabricate
superhydrophobic particles, and corresponding applications have been sketched
(Larmour, Saunders & Bell 2008; Zhang et al. 2012). A prominent feature of
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superhydrophobic particles is their high mobility on water surfaces, for which the
results of this article provide a mathematical description.
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