
Proceedings of the Royal Society of Edinburgh, 146A, 415–433, 2016
DOI:10.1017/S0308210515000487

Self-propelled motion in
a viscous compressible fluid
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In this paper we focus on the existence of a weak solution to a system describing a
self-propelled motion of a single deformable body in a viscous compressible fluid that
occupies a bounded domain in the three-dimensional Euclidean space. The governing
system considered for the fluid is the isentropic compressible Navier–Stokes equation.
We prove the existence of a weak solution up to a collision.
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1. Introduction

This paper is devoted to the self-propelled motion of a body S in a viscous com-
pressible fluid that is contained in a bounded domain Ω ⊂ R

3.
Self-propelled motion, or self-propulsion, is a common means of locomotion of

macroscopic objects. Typical examples are motions performed by birds, fishes, aero-
planes, rockets and submarines. In the microscopic world, many minute organisms,
such as flagellates and ciliates, move by self-propulsion; these have been studied
by many authors. Even though the hydrodynamical mechanisms of self-propulsion
may be different for macroscopic and microscopic bodies (see [32]), the self-propelled
motion of a body in a viscous liquid is essentially due to the interaction between
the boundary of the body and a liquid. Hence, the boundary of the body serves
as the driver, and the distribution V∗ of the velocity on the boundary of the body
serves as its thrust. The thrust can be generated by muscular action, as in animal
locomotion, or by mechanical device, as in an aeroplane.

In a famous experiment by Taylor [33], a mechanical fish can happily swim in
water but makes no progress in a very viscous liquid, e.g. corn syrup. The fish
consists of a cylindrical body with a plane tail that flaps to and fro. Due to the
reversibility of flow in a liquid with no inertia or, mathematically, due to the lin-
earity of the equations, whatever impetus the fish achieves by one tail flap, it will
immediately lose with the next flap. In a commonly accepted model of ciliata, the
layer model, the motion of the cilia produces a velocity distribution on a surface
enclosing the layer of cilia, which serves to propel the animal [1, 23]. A principal
characteristic of ‘flight’ is that a significant part of the aerodynamic force is needed
to cancel the weight of the organism. Thus, certain features of flying apply to
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buoyant fish. In forward flight such a force can be obtained by creating horizontal
vorticity, this being the main purpose of the lifting surface of the body. The soaring
and gliding of birds provides a familiar example, where the classical aerodynam-
ics of fixed-wing aircraft can be applied at once. The observations of birds led to
the Lanchester–Prandtl wing theory (the notion of circulation and induced drag of
wings). For more detail see [4].

The system relating to a swimming or flying creature can be considered as a
fluid–structure system. In recent years, many mathematical works have been pub-
lished in the field of fluid–structure interaction problems, many of them tackling
the well-posedness of the corresponding equations of motion. The main difficulties
in obtaining the well-posedness of such systems are the nonlinearity from the fluid
(Navier–Stokes or Euler) equations, the coupling between the equations of the fluid
and the equations of the structure and the fact that the spatial domain of the fluid
is moving and unknown. The latter problem is simplest in the case of a rigid body
structure, since in this case the motion of the structure is completely described by
its rotation and translation. In the case where the structure is deformable, e.g. for
an elastic structure, the existence of weak solutions could be very difficult to obtain:
if the displacement of the structure is not regular, neither is the domain of the fluid.
In [2, 5, 7] some approximated models are considered for the motion of an elastic
structure in a viscous incompressible fluid. More precisely, the equations for the
elasticity are modified in order to gain some regularity for the elastic deformation.
Note that in the case of plate equations it is possible to obtain the existence of
a weak solution without these approximations [19] (see also [3]). For the case of
non-Newtonian fluids with elastic structure see [22].

Concerning the mathematical theory of compressible fluids, the fundamental
results in the Newtonian case have been obtained in the last two decades by
Lions [24] (the barotropic case with p(ρ) = ργ) and Feireisl et al . [13] (the general-
ization to a larger class of exponents, γ), Feireisl [10] and Feireisl and Novotný [11]
(heat conductive fluids, singular limits). Based on the entropy inequality, the con-
cept was further generalized to the notions of dissipative solutions and weak–strong
uniqueness (see [12,15]).

The case of two dimensions was studied, for example, in [28]. Except for an exis-
tence result, San Mart́ın et al . prove the uniqueness of the solution and provide
some numerical simulations. For three spatial dimensions, Starovoitov [31] studies
the motion of several rigid bodies, whereas Nečasová et al . [25] provide an exis-
tence result of the equation describing the self-propelled motion of a body in an
incompressible fluid. The existence problem of the strong solution of self-propelled
motion was studied by both Galdi and Silvestre: in [29] Silvestre studied the Stokes
approximation of the self-propelled motion of a rigid body in a viscous liquid fill-
ing all the three-dimensional space outside the body. Precisely, the existence and
uniqueness of the strong solution to the coupled systems of equations describing
the motion of the body–liquid system were proved for any time and any regular
distribution of velocity on the boundary of the body. In [30] Silvestre investigated
the motion of a self-propelled rigid body through a Navier–Stokes fluid filling the
whole exterior domain. The existence of a weak solution that is defined globally in
time, provided that the net flux across the boundary, for the prescribed boundary
values for the velocity, is zero. The works of Galdi [16,17] were devoted to the self-
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propulsion of a rigid body at vanishing Reynolds number. Galdi considered that the
shape of the body is constant during the motion; the thrust is produced because the
body generates a non-zero momentum flux through its boundary and/or because it
moves portions of its boundary. As already mentioned, in the limit of zero Reynolds
number the importance of inertia in determining the motion of the fluid, and con-
sequently the motion of the body, becomes negligible. The motion of the body is
therefore completely determined by its geometry and by the distribution of the
velocity on its boundary. In fact, it was shown in [16] that, in the steady case, the
motion of the body can be completely decoupled from that of the liquid, and the
method used in [17] can also be extended to unsteady self-propelled motion in order
to separate the motions of the body and the liquid.

The main aim of this paper is to provide a similar result to that in [25] for the case
of a compressible fluid surrounding a body. In order to prove our main theorem, we
use a method presented in [9]. This is based on an approximate system with a high-
viscosity limit that simulates a rigid body. Many parts of the proof are similar to
those in [9], and thus they are only sketched without any rigorous details. However,
there are some problems that appear to be due to the self-propelled motion and
coupling with the compressible fluid. In this paper we focus on the differences
coming from the non-rigid motion rather than on the problems solved in [9].

Remark 1.1.

• It is more natural to consider the incompressible case than the compressible
in case of flying birds or insects. Our problem can be seen as a preparation
for the singular limit and rigorous justification of the model described in [25].

• In [9] the existence of a global weak solution up to collisions was proven, which
means only a local solution, similarly to [25].

• Note the differences in the case of collisions in compressible and incompressible
cases: collisions can occur only in the case of slip–boundary conditions for
incompressible fluids (see [18]), and in the compressible case collisions can
occur even with Dirichlet conditions [9]. In the incompressible case it was
proved that collisions cannot occur with Dirichlet conditions [20,21].

This paper is organized as follows. In § 2 we introduce the setting and a gov-
erning system. The main theorem is presented in § 3. Furthermore, we introduce
an approximate system in § 4. The deformable body in an approximate system is
treated as a part of a fluid that has tremendous viscosity. In § 5 we deal with limit-
ing processes in order to obtain the main result. In the appendix we include some
useful lemmas.

2. Setting

We consider a flying body with a deformable structure that occupies a bounded
open connected set St at an instant t ∈ [0, T ]. The body is surrounded by a viscous
compressible fluid in a bounded domain Ω ⊂ R

3, i.e. the fluid fills a domain Ft :=
Ω \ St at an instant t. A function ρSt : St �→ (0,∞) stands for the density of the
body. We consider that St and Ω are locally Lipschitz domains in R

3.
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The motion of the body consists of three elements: a translation described by
a ∈ R3, a rotation represented by Q ∈ SO(3) and a smooth deformation A : R

3 �→
R

3, i.e. A is a smooth orientation-preserving diffeomorphism that is prescribed and
stands for the self-propelled motion. Thus, the domain St can be described using a
function η[t] : R

3 �→ R
3 as follows:

St = η[t]S0,

i.e. every point x ∈ St can be expressed as

x = η[t](y) = a(t) + Q(t)At(y),

where y ∈ S0 (S0 is the initial position of the body). The velocity of a point x is

x′(t) = η′[t](η−1[t](x))
= a′(t) + Q′(t)At(y) + Q(t)∂tAt(y)
= a′(t) + ω(t) × (x − a(t)) + w(t, x)
=: uS(t, x), (2.1)

where w(t, x) = Q(t)∂tAt(A−1
t (QT(t)(x − a(t)))) and

S(ω) =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ , S(ω(t)) = Q′(t)QT(t).

In what follows, we use overlined letters for quantities related to the body, which
is considered without any rotation and translation, i.e. in a deformed configuration.
Namely,

S̄t = At(S0),

w̄(t, x̄) =
∂

∂t
At(A−1

t (x̄)) ∀x̄ ∈ St.

Moreover, there exists a smooth function Λ̄ that coincides with w̄ on a set S̄t

and is supported on a neighbourhood of S̄t, i.e.

Λ̄(t, x̄) =

{
w̄(t, x̄) for x̄ ∈ S̄t,

0 if dist(x̄, S̄t) � σ,

where σ is sufficiently small.
We define

Λ(t, x) = Q(t)Λ̄(t, (QT(t)(x − a(t)))).

We denote the density of a deformable structure at an instant t ∈ [0, T ] by ρS :=
ρS(· , t) : St �→ (0,∞). This is given by

ρS(t, x) =
ρS0(A−1

t (Q(t)T[x − a(t)]))
det(∇At(A−1

t (Q(t)T[x − a(t)])))
. (2.2)

Consequently, the density in a deformed configuration may be expressed as

ρ̄S(t, x) =
ρS0(A−1

t (x̄))
det(∇At(A−1

t (x̄)))
.

https://doi.org/10.1017/S0308210515000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000487


Self-propelled motion in a viscous compressible fluid 419

In what follows, we assume that At is prescribed, and establish equations for a(t)
and Q(t). Moreover, we assume that At satisfies the following hypotheses, presented
in [25].

(H1) For every t � 0, the mapping y �→ A(t, y) is a smooth diffeomorphism from
R

3 onto R
3. Moreover, for every y ∈ R

3, the mapping t �→ A(t, y) is smooth.

(H2) The total volume of the body remains constant, i.e.

|S̄t| = |S0|.

(H3) The centre of gravity and the angular momentum of the body cannot be
changed by interior forces: ∫

S̄t

ρ̄S(t, x̄)w̄(t, x̄) dx̄ = 0,

∫
S̄t

ρ̄S(t, x̄)[x̄ × w̄(t, x̄)] dx̄ = 0.

For x ∈ Ω and t ∈ [0, T ], we set1

u(t, x) = χFtuF (t, x) + χStuS(t, x),
ρ(t, x) = χFtρF (t, x) + χStρS(t, x),

where uF and ρF are the velocity and density, respectively, of the surrounding fluid.
We assume that the following equations hold.

• Balance of mass:
∂tρF + div(ρFuF ) = 0 on Ft. (2.3)

• Balance of linear momentum:

∂t(ρFuF ) + div(ρFuF ⊗ uF ) + ∇p = div T(uF ) + ρFg on Ft, (2.4)

where g is the exterior force.

The stress tensor T is given via

T(uF ) := 2µDuF + λI div uF , (2.5)

where 2D = ∇+∇T is the symmetrical part of the stress tensor, µ ∈ (0,∞), λ ∈ R

and µ + λ � 0, µ and λ are constant coefficients of viscosity. A pressure p is given
by

p = αργ
F , α > 0, (2.6)

with γ ∈ R restricted below. We consider the following boundary conditions:

uF (t, x) =

{
0, x ∈ ∂Ω,

a′(t) + ω(t) × (x − a(t)) + w(t, x) = uS(t, x), x ∈ ∂St.
(2.7)

1 We denote by χM the characteristic function of a set M .
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Since the motion Āt is prescribed, we have to introduce equations for the unknowns
a(t) and ω(t) that describe the movement of the body. Before we write down the
equations, we set

M :=
∫

St

ρS dx,

J(t) :=
∫

St

ρS(t, x)(|x − a(t)|2 − (x − a(t)) ⊗ (x − a(t))) dx.

Finally, the functions a(t), ω(t) should satisfy

Ma′′(t) = −
∫

∂St

(T − pI)n dΓ +
∫

St

ρSg dx,

(Jω)′(t) = −
∫

∂St

(x − a(t)) × (T − pI)n dΓ +
∫

St

ρS(x − a(t)) × g dx.

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

The initial state is described by

a(0) = 0, Q(0) = I, A0 = I, ρS(0) = ρS0 ,

a′(0) = a0, ω(0) = ω0, ρF (0) = ρF0, ρ(0)u(0) = m0.

}
(2.9)

For brevity, we set ρ0 = χF0ρF0 + χS0ρS0 . We define

Hσ(St) = {v ∈ L2(Ω); v = 0 on ∂Ω, D(v) = 0 in St},

Kσ(St) = Hσ(St) ∩ H1
0 (Ω),

where Lη and Hη
0 , Hη are the classical Lebesgue and Sobolev spaces. Furthermore,

L2
σ(Ω) = Hσ(St), H1

σ(Ω) = Kσ(St).

We set

ρ(t, x) =

{
ρF (t, x) if x ∈ Ft,

ρS(t, x) if x ∈ St,

u(t, x) =

{
u(t, x) if x ∈ Ft,

a′(t) + ω(t) × (x − a(t)) + w(t, x) if x ∈ St.

Definition 2.1 (weak solution). We say that a pair

(ρ,u) ∈ L∞(Lγ) × L2(0, T∗; Kσ(St)), T∗ > 0,

is a weak solution of (2.3)–(2.9) if the following hold.

(i) ρ � 0.

(ii) The renormalized equation of continuity, i.e.

∂tb(ρ) + div(b(ρ)u) + (b′(ρ)ρ − b(ρ)) div u = 0, (2.10)

where b ∈ C1(R), holds in a weak sense.
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(iii) The balance of linear momentum holds in a weak sense, i.e.

∫ T

0

∫
Ω

((ρu)∂tϕ + [ρu ⊗ u] : Dϕ + p div ϕ) dx dt

=
∫ T

0

∫
Ω

(T(u) : Dϕ − ρgϕ) dx dt +
∫

Ω

(m0ϕ(0, ·)) dx ∀ϕ ∈ R(St),

(2.11)

where

R(St) = {ϕ ∈ C∞
0 ([0, T )×Ω), Dϕ(x) = 0 on an open neighbourhood of S̄t}.

(2.12)

(iv) The energy inequality

1
2

∫
Ω

(
ρ(τ)|u(τ)|2 +

α

γ − 1
ργ(τ)

)
dx +

∫ τ

0

∫
Ω

(2µ|Du|2 + λ(div u)2) dx dt

� C(ρ(0),u(0), g)

holds for almost every (a.e.) τ ∈ [0, T ].

(v) The movement of the body S is compatible with u in following sense:

uF (t, ·) − uS(t, ·) belongs locally to the space W 1,2
0 (Ω \ St). (2.13)

Remark 2.2.

• The overall density and velocity satisfy this definition of the weak solution.
Indeed, (2.1)–(2.3) yield (2.10). This can be verified by a straightforward
calculation.

Furthermore, let ϕ ∈ R(St). We use this ϕ as a test function in (2.4). We get

∫ T

0

∫
Ft

(∂t(ρu)ϕ + div(ρu ⊗ u)ϕ − p div ϕ) dx dt

=
∫ T

0

∫
Ft

(−T(u)Dϕ + ρgϕ) dx dt

+
∫ T

0

∫
∂St

(T(u)ϕn − pϕn) dΓ dt, (2.14)

where n is a unit outer normal of St.

Due to (H3) we have∫
St

ρu dx = Ma′(t),
∫

St

(ρ(x − a(t)) × u) dx = J(t)ω.

Furthermore, the transport theorem (see [26, theorem 1.22]) yields∫
St

∂t(ρu) dx +
∫

St

div(ρu × u) dx = Ma′′(t)
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and∫
St

((x − a(t)) × ∂t(ρu)) dx +
∫

St

((x − a(t)) × div(ρu × u)) dx = (Jω)′(t).

Since Dϕ = 0 on St, there exist lϕ(t) ∈ R
3 and ξϕ(t) ∈ R

3 such that ϕ(x) =
lϕ + ξϕ × (x − a(t)) for every x ∈ St. Thus, according to (2.8),∫

St

(∂t(ρu)ϕ + div(ρu ⊗ u)ϕ) dx = Ma′′(t)lϕ + ξϕ(Jω)′(t)

= −
∫

∂St

(T(u) − pI)ϕn dΓ +
∫

St

ρSgϕ dx.

(2.15)

Consequently, (2.11) follows from (2.14) and (2.15). Let us point out that
the boundary integrals presented in (2.8) vanish in a weak formulation. For
more details about the weak formulation of system we refer the reader to [28,
proposition 2].

• There is no a priori reason to assume that the momentum (ρu) is continuous
in time. We can only have that a function

t �→
∫

R3
(ρu) · ψ

is continuous in a certain neighbourhood of a point t0 provided ψ = ψ(x) ∈
D(Ω) and ψ = 0 on a neighbourhood of S̄0.

• An alternative condition to the concept of compatibility of the velocity u with
the rigid objects was used in [6, 27], namely

u ∈ L2((0, T ); W 1,2
0 ∩ V s(Ω)),

where the sets V s = V s(t) are defined as

V s = {u ∈ W 1,2(Ω) | DuρS(t) = 0}.

3. Main result

Theorem 3.1 (main result). Let Ω be a C2+ν domain, ν > 0, let γ > 3
2 and let

S0 ⊂⊂ Ω be a bounded open connected set. Let there exist c1, c2 > 0 and initial data
ρ0, m0 be such that

ρ0 � 0, ρ0χS0 ∈ [c1, c2], ρ0 ∈ Lγ(Ω),

m0 = 0 almost everywhere on the set {x ∈ Ω | ρ0 = 0},
m2

0

ρ0
∈ L1(Ω),

and let g be a bounded measurable function in L∞((0, T ) × R
3).

Then there exists T∗ ∈ (0,∞) such that there exists a weak solution (ρ,u) of
(2.3)–(2.9) on the interval (0, T∗).
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Remark 3.2. The approximation of the problem (2.3)–(2.9) is constructed in the
following way.

• d-approximation: we approximate the continuity equation by adding the term
d∆ρ, and we also add the term d∇ρ∇u to the momentum equation.

• β-approximation: we introduce the artificial pressure by adding a term bρβ ,
β > 2, to the constitutive equation.

• n-approximation: we use the penalization method introduced by Starovoitov
et al . [27] to consider the viscosity coefficients dependent on the distance to
the boundary.

• N -approximation: we use Galerkin approximation in order to obtain the exis-
tence of a solution to an approximate problem. Since this method is standard
(see [13, 26]), we skip it here, and the existence result to the approximate
problem is given directly by lemma 4.1.

Letting n → ∞, d → 0 and β → 0, we get the existence of the weak solution of the
problem.

4. Approximate problem

4.1. Approximation (d, β, n)

We use an approximation scheme that is proposed in [25, remark 11] (i.e. we suppose
that the viscosity of a compressible fluid rapidly increases on the body St) together
with a known approximation scheme [13]. The part of the velocity that is zero on a
‘fluid domain’ is denoted by µχ and that which grows rapidly on a ‘body domain’
is denoted by λχ. These viscosities are defined precisely later (see § 5.2). Now, it is
enough to assume that functions µχ : R × R

3 �→ R and λχ : R × R
3 �→ R obey

µχ � 0, λχ + µχ + µ + λ � 0, (4.1)

where the variable χ depends on u and will be specified in § 5.1.
The approximate problem consists of the following equations.

• A continuity equation together with Neumann condition:

∂tρ + div(ρu) = d∆ρ, d > 0,

∇ρ · n|∂Ω = 0.

}
(4.2)

• A momentum equation (we define v = u − Λ):

∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ) + d∇ρ∇u

= div(µDu + µχ(Dv))
+ div(λI div u + λχI div v) + ρg,

u|∂Ω = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

where Λ := Λu : [0, T ] × Ω �→ R
n is a given function depending on u.
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• A constitutive relation for a pressure:

p = p(ρ) = αργ + bρβ , α, b > 0, β > max{4, γ}. (4.4)

• The initial data, which complete this system:

ρ(0) = ρ0, (ρu)(0) = m0, (4.5)

where ρ0 ∈ C2+ν(Ω̄), 0 < c2 � ρ0 � c3, ∇ρ0 · n|∂Ω = 0 and m0 ∈ C2(Ω̄).

Lemma 4.1 (existence of a solution to an approximate system). Let Ω ⊂ R
3 be a

bounded C2+ν , ν > 0, domain, let S0 ⊂ Ω be a bounded open connected set and let
g ∈ D((0, T )×Ω) be given. Let (4.1) hold and let β > max{4, γ}, γ > 3

2 . Moreover,
let Λu satisfy

‖∂tΛu‖L2(0,T,L∞(Ω)) � C(1 + ‖u‖L2((0,T,L2(Ω)))),

‖Λu‖L∞(0,T0,L∞(Ω)) + ‖∇Λu‖L∞(0,T,L∞(Ω))

+‖∆Λu‖L∞(0,T,(L∞)(Ω)) � C,

Λu|∂Ω = 0,

and let µχ and λχ be defined as in § 5.2.
Then there exists a weak solution, (ρ,u) ∈ L∞(0, T, Lβ(Ω)) × L2(0, T, W 1,2

0 (Ω)),
to the problem (4.2)–(4.5).

Proof. The proof is similar to that in [13]. The presence of the two unknowns Λ
and χ does not cause any significant problems.

5. Proof of the main theorem

5.1. Average rigid motion

Let St be a set defined for all times t. Hereafter, we simply write χ instead of χSt
:

M[χ,ρ] =
∫

supp χ

ρ dx,

a[χ,ρ] =
1

M[χ,ρ]

∫
supp χ

ρ(x)x dx,

I[χ,ρ] =
∫

supp χ

ρ(x)(|x − a[χ,ρ]|2 − (x − a[χ,ρ]) ⊗ (x − a[χ,ρ])) dx,

l[χ,ρ,u] =
1

M[χ,ρ]

∫
supp χ

ρu dx,

ω[χ,ρ,u] = (I[χ,ρ])−1
∫

supp χ

ρ(x)((x − a[χ,ρ]) × u(x)) dx.

The quantities l[χ,ρ] and ω[χ,ρ,u] express an average transition and rotation of
St, respectively. Thus, an average rigid motion of a body S can be described by a
function Π[χ,ρ,u], which is defined as follows:

Π[χ,ρ,u](x) = l[χ,ρ,u] + ω[χ,ρ,u] × (x − a[χ,ρ]).
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Furthermore, we define a function Q[χ,ρ,u] : R �→ R
n×n as a solution to the fol-

lowing ordinary differential equation:

Q′
[χ,ρ,u](t) = S(ω[χ,ρ,u])Q[χ,ρ,u](t), Q[χ,ρ,u](0) = I,

and a function c[χ,ρ,u] : R �→ R
3 as a solution of

c′
[χ,ρ,u](t) = ω[χ,ρ,u](t) × c[χ,ρ,u](t) + l[χ,ρ,u](t), c(0) = 0.

We set

Λ[χ,ρ,u](t, x) = Q[χ,ρ,u](t)Λ̄(t, Q∗
[χ,ρ,u](x − c[χ,ρ,u])).

Let S0 ∈ Ω and u, ρ0 be given with ρ0(x) ∈ [c1, c2] for all x ∈ S0. We prescribe
the movement of body St by the following system of equations:

∂tρ̃ + div(ρ̃(Π[χ,ρ̃,u] + Λ[χ,ρ̃,u])) = 0 on St,

∂tχ + div(χ(Π[χ,ρ̃,u] + Λ[χ,ρ̃,u])) = 0 on St,

}
(5.1)

where St = suppχ(t). We complete (5.1) with the following initial conditions:

ρ̃(0) = ρ0 in S0 and χ(0) = χS0 . (5.2)

According to lemma A.4 a solution to (5.1), (5.2) exists. Moreover, since Π[χ,ρ̃,u]+
Λχ,ρ̃,u is solenoidal and ρ̃ ∈ [C1, C2], we use lemmas A.2 and A.3 in order to obtain

‖Π[χ,ρ̃,u]‖L∞(Ω) � c‖u‖L2(Ω), (5.3)
‖∂tΛ[χ,ρ̃,u]‖L2(0,T,L∞(Ω)) � c(1 + ‖u‖L2(Ω)), (5.4)

‖Λ[χ,ρ̃,u]‖L∞(0,T,L∞(Ω)) + ‖∇Λ[χ,ρ̃,u]‖L∞(0,T,L∞(Ω))

+‖∆Λ[χ,ρ̃,u]‖L∞(0,T,L∞(Ω)) � c. (5.5)

Furthermore, Π is a linear function; thus, we get ∇xΠ = S(ω). One may derive
that

‖∇xΠ‖L2(0,T,L∞(Ω)) � c‖u‖L2(0,T,L2(Ω)). (5.6)

For details we refer reader to the proof of [25, lemma 4].
From (5.3) one may also derive that there exists T > 0 such that Λ[χ,ρ̃,u](t)|∂Ω =

0 for all t < T .

Proposition 5.1. For every u ∈ L1(0, T, L1) it holds that

Π[χ,ρ̃,u] = Π[χ,ρ̃,u+Λ[χ,ρ̃,u]].

Consequently,

Λ[χ,ρ̃,u] = Λ[χ,ρ̃,u+Λ[χ,ρ̃,u]].

Proof. The first identity follows from the definition of Π and from hypothesis (H3).
The second identity is an easy consequence of the definition of Λ.
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5.2. High-viscosity limit: approximation n

Let {µχn
}∞

n=1 and {λχn
}∞

n=1 be sequences of viscosities specified later. Let un

and ρn be corresponding weak solution to (4.1)–(4.5), where Λn := Λ[χn,ρ̃n,un] and
Πn := Π[χn,ρ̃n,un] are constructed as in § 5.1. Furthermore, we define a set Snt as
Snt = suppχn(t, ·). We set un = vn + Λn. In what follows, we assume

un|∂Ω = vn|∂Ω = Λn|∂Ω = 0,

at least on some time interval (0, Tn). In order to proceed to the limit (letting
n �→ ∞), we have to estimate norms of solutions independently on n. We integrate
(4.2) over Ω in order to get

‖ρn‖L∞(0,T,L1(Ω)) � C.

We multiply (4.3) by v and we integrate over Ω and time interval (0, t). We get∫
Ω

1
4ρn(t)|un(t)|2 +

α

γ − 1
(ργ

n)(t) +
b

β − 1
ρβ

n(t)

+
∫ t

0

∫
Ω

(µ + 2µχn)|Dvn|2 + (λ + λχn)|div vn|2

� C(ρ(0),u(0),m0,Λ, g, Ω) + C

∫ t

0

∫
Ω

ρn|un|2 + C(α)
∫ t

0

∫
Ω

ργ
n.

(5.7)

Using Gronwall’s inequality we obtain

‖vn‖L2(0,T,W 1,2(Ω)) + ‖ρn|un|2‖L∞(0,T,L1(Ω)) + ‖ρβ
n‖L∞(0,T,L1(Ω))

� C(T, ρ(0),u(0),m0,Λ, g, Ω), (5.8)

where the constant on the right-hand side is independent of n and d. Furthermore,
from (5.8) and (4.1), we get

‖∇ρn‖2
2 � C, (5.9)

where again the right-hand side does not depend on n and d. According to (5.3)–
(5.5) the quantities Λn and Πn are estimated uniformly and thus there exists T∗ > 0
such that

Λn(t)|∂Ω = 0

for all t ∈ (0, T∗) and for all n ∈ N. From now we will work on this time interval
unless stated otherwise.

We define viscosities µn := µχn and λn := λχn by the following formula:

λn = µn = nχn.

We also define the distance

dbS(x) = dRN \S(x) − dS̄(x),

where dK(x) = miny∈K |x − y|, provided K ⊂ R
n is a closed set. We use dbS to

define the convergence of sets. We write Snt
b−→ St if and only if dbSnt → dbSt in

Cloc(R3).
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We proceed to a limit as n tends to ∞ (passing to a subsequence if needed). Since
the limiting process is the same as in [9], we present here only conclusions without
detailed proof. From (5.7)–(5.9) it follows, passing to a subsequence if necessary,
that

ρn → ρ in Lβ((0, T∗) × Ω),

∇ρn → ∇ρ weakly in L2((0, T∗) × Ω),

vn → v weakly in L2(0, T∗, W
1,2
0 (Ω)),

ρnun → ρu weakly in L2((0, T∗) × Ω),

ρnvn ⊗ vn → P weakly in L2N/(2N−1)((0, T∗) × Ω).

From (4.2) one may derive

‖ρn(τ)‖2
L2(Ω) + 2d

∫ τ

0

∫
Ω

‖∇ρn‖2 = −
∫ τ

0

∫
Ω

div un|ρn|2 + ‖ρ0‖2
L2(Ω)

and also

‖ρ(τ)‖2
L2(Ω) + 2d

∫ τ

0

∫
Ω

‖∇ρ‖2 = −
∫ τ

0

∫
Ω

div u|ρ|2 + ‖ρ0‖2
L2(Ω).

Thus, ‖∇ρn‖L2(0,T∗,L2(Ω)) → ‖∇ρ‖L2(0,T∗,L2(Ω)), and since L2 is a strictly convex
space we get ∇ρn → ∇ρ strongly in L2((0, T∗) × Ω). Consequently,

∇vn∇ρn → ∇v∇ρ in D′((0, T∗) × Ω).

According to (5.3), (5.5) and (5.6), Πn + Λn is bounded in L2(0, T∗, W
1,∞(Ω))

independently of n. Thus, the hypotheses of lemma A.1 are satisfied and one may
derive that

Πn + Λn → Π[χ,ρ̃,u] + Λ[χ,ρ̃,u] in Cloc(R3) uniformly in t,

and also
Snt

b−→ St uniformly in t.

We define

P s = {(t, x), x ∈ St},

P f = ([0, T∗] × Ω) \ P s.

Both P s and P f are open. Thus, for a point (t, x) ∈ P f there exist the open
intervals J ⊂ [0, T ] and U ⊂ P f such that

(t, x) ∈ J × U ⊂ J × U ⊂ P f .

We have ∂tρn bounded in Lq(J, W−k,q(U)) for some q > 1, k � 1 (see [13,
lemma 2.4]) and, consequently,

(ρnun) → (ρu) in C(J̄ , L2β/(β+1)(U)).

Due to a compact embedding L2β/(β+1) ⊂ W−1,2 we get

ρnun ⊗ un → ρu ⊗ u weakly in L6/5(J × U).
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Thus, P = ρu ⊗ u on P f . Moreover, since µΨn and λΨn tend to infinity on every
compact Ks ⊂ P s, we derive from (5.7) that Dvn → 0 in L2(Ks). Therefore,

∫ T∗

0

∫
Ω

((ρu)∂tϕ + [ρu ⊗ u] : Dϕ + p div ϕ + d∇u∇ρϕ) dx dt

=
∫ T∗

0

∫
Ω

(µDuDϕ + λ div u div ϕ + ρgϕ) dx dt +
∫

Ω

m0ϕ(0, ·) dx

whenever ϕ ∈ R(St) (see (2.12) for a definition).
This proves the following lemma.

Lemma 5.2. Let Ω ⊂ R
3 be a bounded C2+ν domain with ν > 0. Let p be given

by (4.4) with β > max{4, γ}, γ > 3
2 . Let (4.5) hold and let S0 ⊂ Ω be a bounded

open connected set. Then there exist a time T∗ and functions ρ ∈ L∞(0, T∗, L
β),

u ∈ L2(0, T∗, W
1,2
0 )∩L∞(0, T∗L

2), ρ̃ ∈ L∞(0, T∗, L
∞) and χ ∈ Char(0, T∗, R

3) such
that

• ρ,u satisfy (4.2), (2.11) and initial condition (4.5) in a weak sense for ρ ∈
C([0, T∗], L1),

• ρ̃ and χ satisfy (5.1).

5.3. Vanishing-viscosity limit

In this subsection, we proceed to a limit with the parameter d. Let dn → 0 and let
un and ρn be corresponding weak solutions to (4.2)–(4.5) that are constructed as
in lemma 5.2. Furthermore, let Snt be bodies with corresponding motion described
by Πn = Π[χn,ρ̃n,un] and Λn = Λ[χn,ρ̃n,un]. From estimates (5.8) and (5.9) we get
following convergences:

dn∇un∇ρn → 0 in L1((0, T∗) × Ω),

dn∆ρn → 0 in L2(0, T∗, W
−1,2(Ω)),

ρn → ρ in C([0, T∗], L
β
weak),

un → u weakly in L2(0, T∗, W
1,2
0 ),

and, consequently,

(ρnun) → (ρu) weakly∗ in L∞(0, T∗, L
2β/(β+1)(Ω)).

Thus, ρ and u satisfy the continuity equation in D′((0, T∗) × Ω) and, using the
same regularization procedure as in [8], we can derive that ρ and u also satisfy the
renormalized continuity equation.

According to lemmas A.2 and A.3, it holds that

‖Π[χn,ρn,un] + Λ[χn,ρn,un]‖L2(L∞) + ‖∇(Π[χn,ρn,un] + Λ[χn,ρn,un])‖L2(L∞) � C.

It follows from lemma A.1 that

Snt
b−→ St
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and

Π[χn,ρn,un] + Λ[χn,ρn,un] → Π[χ,ρ̃,u] + Λ[χ,ρ̃,u] weakly∗ in L2(0, T, W 1,∞(Ω)).

Furthermore, we define

P s = {(t, x), x ∈ St},

P f = ((0, T∗) × Ω) \ P s.

Similarly to the result of the previous subsection (see also [9, § 8]) we have

ρnun ⊗ un → P in L6/5((0, T ) × Ω)

and
P = ρu ⊗ u on P f .

Following the procedure in [9, § 8] step by step, we derive that p(ρn) → p(ρ)
weakly in L(β+1)/β(Kf ) for any compact Kf ⊂ P f .

Precisely, we claim that the pressure p(ρn) is locally bounded in L
(β+1)/β
loc (P f ).

One may derive the following lemma in a similar way to that in [9].

Lemma 5.3. For any compact Kf ⊂ P f , there exists a constant c independent of
d, such that

‖ρn‖Lβ+1(Kf ) + ‖ρn‖Lγ+1(Kf ) � c(Kf ).

This implies that

p(ρn) → p(ρ) weakly in L(β+1)/β(Kf ) for any compact Kf ⊂ P f .

Then we can pass to the limit

∫ T∗

0

∫
RN

((ρu)∂tϕ + [ρu ⊗ u] : Dϕ + p(ρ) div ϕ) dx dt

=
∫ T∗

0

∫
RN

(T(u) : D(ϕ) − ρgϕ) dx dt.

Our final aim is the strong convergence of density. Similarly to [9], we apply the
following result.

Lemma 5.4. Let β > 7. Then

lim
n→∞

∫ T∗

0

∫
Rn

φ(p(ρn) − (λ + 2µ) div un)ρn dx dt

=
∫ T∗

0

∫
Rn

φ(p(ρ) − (λ + 2µ) div u)ρ dx dt

for any φ ∈ D(Qf ).

We can conclude that (ρ div u) � ρ div u, where (ρ div u) := lim ρn div un in, say,
L1(Ω × (0, T∗)).
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Furthermore, (5.4), (5.5) and the Aubin–Lions lemma yield div Λn → div Λ
strongly in Lp(Lq) for any p, q ∈ (1,∞). Thus, for any KS ⊂ St compact, it holds
that

ρn div un = ρn div Λn → ρ div Λ = ρ div u = ρ div u on KS .

It follows that
ρ div u � ρ div u on (0, T∗) × R

3.

This, together with renormalized continuity equation, yields that

ρn → ρ in L1((0, T∗) × Ω)

and, consequently,
p(ρ) = p(ρ) on P f

(see [13, § 4.6]).
Thus, the functions u and ρ satisfy (2.10) and (2.11).
We are now in the best position to prove uχ = (Π[χ,ρ,u] + Λ[χ,ρ,u])χ. We point

out that Dvχ = 0 almost everywhere, and thus v is a rigid velocity on a body
S. According to considerations in [25, § 3.1], it holds that vχ = (Π[χ,ρ̃,v])χ. By
proposition 5.1 we have

uχ = (v + Λ[χ,ρ̃,u])χ = (Π[χ,ρ̃,v] + Λ[χ,ρ̃,u])χ = (Π[χ,ρ̃,u] + Λ[χ,ρ̃,u])χ.

Moreover, from the uniqueness of a solution to the transport equation, we get
ρ̃χ = ρχ. To conclude this subsection, we formulate all results into the following
lemma.

Lemma 5.5. Let Ω ⊂ R
N be a bounded C2+ν domain with ν > 0. Let p be given by

(4.4) with β > max{4, γ}, γ > 3
2 . Then there exist a time T∗ and functions

ρ ∈ L∞(0, T∗, L
β), u ∈ L2(0, T∗, W

1,2
0 ) ∩ L∞(0, T∗, L

2), χ ∈ Char(0, T∗, R
3)

such that ρ and u solve (2.10), (2.11) and the compatibility condition (2.13) is
satisfied.

5.4. Limit in pressure and domain

Our final task is to prove an existence of a solution for a pressure given by (2.6)
and for a general domain Ω. We take a sequence of real numbers bn → 0, a sequence
of domains Ωn, Ωn ⊂ Ωn+1, Ωn

b−→ Ω and the sequence of weak solutions un, ρn

constructed in lemma 5.5. This idea is summarized in the following lemma.

Lemma 5.6. Let Ωn, Ω ⊂ R
3 be bounded domains such that

Ωn ⊂ Ωn+1, Ωn
b−→ Ω as n → ∞.

The pressure p = pn is given by

pn(ρ) = αργ + bnρβ

with
γ > 3

2 , β > 1, bn → 0 as n → ∞.

Let ρn and un be solutions to (2.3)–(2.5) and (2.6)–(2.9), respectively.
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Then there is a subsequence such that

ρn → ρ in C([0, T∗], L1(Ω)),

un → u weakly in L2(0, T∗, W
1,2
0 (Ω)),

where ρ and u are weak solutions to (2.3)–(2.9).

Proof. The proof is similar to that of [9, theorem 9.1], since there is no difficulty
arising from a self-deformation of the body.

Proof of theorem 3.1. We approximate a general bounded domain Ω by a sequence
of smooth domains Ωn, Ωn

b−→ Ω, Ωn ⊂ Ωn+1. This approximation exists according
to [14, lemma 7.1]. According to lemma 5.5 there exist solutions ρn, un on Ωn that
satisfy the hypothesis of lemma 5.6. In order to prove the main result, it suffices to
proceed to a limit with n → ∞.

Appendix A.

Lemma A.1 (Feireisl [9, proposition 5.1]). Let un(t, x) be a family of functions such
that t → un(t, ·) is continuous from [0, T ] to R

3, x → un(·,x) is measurable from
R

3 to R
3 and

t → ‖un(t, ·)‖L∞(R3) + ‖∇un(t, ·)‖L∞(R3)

is bounded in L2(0, T ).
Let ηn[t] : R

3 → R
3 be the solution of the problem

d
dt

ηn[t](x) = un(t, ηn[t](x)), ηn[0](x) = x, x ∈ R
3.

Let also Bn ⊂ R
3 be a sequence such that Bn

b−→ B, and denote by Bn(t) =
ηn[t](Bn) the image of Bn by the flow un.

Then, passing to subsequences,

ηn[t] → η[t] in Cloc(R3) as n → ∞ uniformly in [0, T ],

where η[t] solves

d
dt

η[t](x) = u(t, η[t](x)), η[0](x) = x, x ∈ R
3,

and un → u weakly∗ in L2(0, T ; W 1,∞(R3)).
Moreover, Bn(t) b−→ B(t) uniformly in [0, T ], where B(t) = η[t](B).

Lemma A.2 (Nečasová et al . [25, lemma 4]). Assume that ψ0 is the characteristic
function of S0. Then, there exists a positive constant C = C(Ω, S0, C1, C2,A) such
that, for all ρ ∈ L∞((0, T )×Ω), v ∈ L∞(0, T ; L2(Ω)) and ρ(t, ·) ∈ [C1, C2] for a.e.
t ∈ [0, T ], we have

‖Π[ψ,ρ,v]‖L∞(Ω) � C‖v‖L2(Ω),

where χ is the solution of (5.1).
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Lemma A.3 (Nečasová et al . [25, lemma 5]). Assume that ψ0 is the characteristic
function of S0. Then, there exists a positive constant C = C(Ω, S0, C1, C2,A) such
that, for all ρ ∈ L∞((0, T ) × Ω), v ∈ L∞(0, T ; L2(Ω)) such that ρ(t, ·) ∈ [C3, C4] ⊂
(0,∞) for a.e. t ∈ [0, T ], we have∥∥∥∥∂Λ[ψ,ρ,v]

∂t

∥∥∥∥
L2(0,T ;L∞(Ω))

� C(1 + ‖v‖L2(0,T ;L2(Ω)))

and

‖Λ[ψ,ρ,v]‖L∞(0,T ;L∞(Ω)) + ‖∇Λ[ψ,ρ,v]‖L∞(0,T ;L∞(Ω))

+ ‖∆Λ[ψ,ρ,v]‖L∞(0,T ;L∞(Ω)) � C.

Lemma A.4 (Nečasová et al . [25, lemma 8]). Assume u ∈ L∞(0, T ; L2(Ω)), ρ0ε ∈
C∞(R3), ρ0ε ∈ [C1, C2] ⊂ (0,∞) for a.e. x ∈ R

3, ψ0 ∈ char(R3), and S(ψ0) is
bounded and of non-empty interior. Then the problem 5.1 admits a unique solution
(ρ, ψ) ∈ L∞((0, T ) × R

3). Moreover, for a.e. t ∈ (0, T ),

ρ(t) ∈ [C3, C4] for a.e. x ∈ R
3. (A 1)
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