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COMPUTABILITY AND THE CONNES EMBEDDING PROBLEM

ISAAC GOLDBRINGAND BRADDHART

Abstract. The Connes Embedding Problem (CEP) asks whether every separable II1 factor
embeds into an ultrapower of the hyperfinite II1 factor. We show that the CEP is equivalent
to the statement that every type II1 tracial von Neumann algebra has a computable universal
theory.

§1. Introduction. With the advent of continuous model theory, model
theoretic studies of operator algebras began in earnest (see [11,12]). The class
ofC*-algebras and tracial vonNeumann algebraswere seen to be elementary
classes as were many interesting subclasses - II1 factors, particular von
Neumann algebras, being one such; see [10] for other examples. Naturally
one would look at existentially closed models in these classes ([8]) and
attempt to identify model complete theories and theories with significant
quantifier simplification. The results in this direction have been decidably
negative. For tracial von Neumann algebras, it is known that there is no
model companion ([7]); in fact, no known theory of II1 factors is model
complete ([8]). For C*-algebras, the only theory of an infinite-dimensional
algebra which has quantifier elimination is the entirely atypical theory of
C (X ), continuous functions from X into C where X is Cantor space ([5]).
It follows that the class of C*-algebras does not have a model companion.
Most of the work to date in this area has focused on identifying useful
elementary properties, classes, and their axioms. The axioms for all known
elementary classes have been recursive and indeed of low quantifier com-
plexity (∀∃-axiomatizable or better). In this paper, we would like to address
the other end of the spectrum: we want to consider the possibility that the
theories of even iconic operator algebras such as the hyperfinite II1 factorR
are not computable. By computable, in the continuous setting, we mean: is
there an algorithm such that given a sentence ϕ and � > 0, the algorithm
successfully computes the “truth value” ϕR (see Section 3) to within �?
To apparently make it easier, we ask if the universal theory of R is com-
putable. We find ourselves at the doorstep of one of the most celebrated
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problems in the theory of operator algebras, the Connes Embedding Prob-
lem (CEP): does every separable II1 factor embed into an ultrapower of
R? In [12], it is shown that CEP is equivalent to the logical statement that
every II1 factor has the same universal theory as R. In this paper, we show
that CEP is equivalent to the statement that every type II1 von Neumann
algebra has a computable universal theory. Although this result does not
resolve the question of the computability of the theory of R, we view this
result as cautionary. CEP is a well-studied problem (see the survey [3] for
many equivalences) and its resolution would only deal with the issue of the
universal theory if one believes that Th(R) is computable.
We would like to thank David Sherman for a helpful conversation
regarding this project.

§2. Prerequisites from von Neumann Algebras. The study of what are
now called von Neumann algebras began in the 1930’s with the work of
Murray and von Neumann [9] and was motivated by von Neumann’s work
in the foundations of quantummechanics. In this section, we recall the basic
definitions needed from the theory of von Neumann algebras. If H is a
complex Hilbert space, B(H ) denotes the set of bounded operators on H .
B(H ) has the structure of a unital ∗-algebra and a unital ∗-subalgebra A
of B(H ) is said to be a von Neumann algebra if A is closed in the strong
operator topology, which is the weakest topology on B(H ) that makes, for
each x ∈ H , the map T �→ ‖T (x)‖ : B(H )→ C continuous.

Example 2.1. For any Hilbert spaceH , B(H ) is a vonNeumann algebra.
In particular, ifH is n-dimensional, then B(H ) in this case is isomorphic to
Mn(C), the algebra of n × n matrices over C.
Of particular importance in von Neumann algebras are the projections.
If A is a von Neumann algebra then p ∈ A is a projection if p2 = p = p∗.
Any von Neumann algebra is generated by its projections. The role of von
Neumann algebras and projections in the study of representation theory and
invariant subspaces is highlighted by the following example taken from [6].

Example 2.2. Suppose that Γ is a group and H is a Hilbert space. Con-
sider U (H ), the unitary group of B(H ); that is, the set of u ∈ B(H ) such
that u∗ = u−1. Fix a group homomorphism f : Γ → U (H ); f is called a
unitary representation of Γ. An important object of study in representation
theory are subspaces of H which are invariant under the representation
f. We say that a closed subspace K ⊆ H is f-invariant if for all � ∈ Γ,
f(�)(K) ⊆ K . Now if K is any f-invariant closed subspace and p is the
orthogonal projection ofH onto K then a small calculation (see section 2.2
of [6]) shows that the projection p commutes with f(�) for all � ∈ Γ. Con-
versely, ifp is any projectionwhich commutes with all elements off(Γ), then
the associated closed subspace ofH is f-invariant. In this way, the study of
f-invariant closed subspaces of H becomes the study of projections in the
von Neumann algebra

f(Γ)′ = {a ∈ B(H ) : a commutes with f(�) for all � ∈ Γ},
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240 ISAAC GOLDBRINGAND BRADDHART

known as the commutant of f(Γ). More about the relationship between
representation theory and von Neumann algebras can be found in [14].

If A is a von Neumann algebra, then a trace on A is a linear functional
tr : A→ C such that

(1) tr(1) = 1;
(2) tr is positive, that is, for all a ∈ A, tr(a∗a) ≥ 0;
(3) tr(ab) = tr(ba) for all a, b ∈ A;
(4) tr is faithful, that is, tr(x) = 0 if and only if x = 0; and
(5) tr is normal, that is, whenever (pα) is a collection of mutually
orthogonal projections from A with join

∨
pα, then tr(

∨
pα) =∑

tr(pα).

If tr is a trace on A, then tr induces a norm on A, called the 2-norm, defined
by ‖x‖2 :=

√
tr(x∗x); A is then called separable if it is separable in the

topology induced by the 2-norm.

Example 2.3. In the case of Mn(C), there is a trace which is the nor-
malized version of the usual trace on matrices, that is, if A = (aij) then
tr(A) = 1

n

∑
i aii .

Example 2.4. Here is a more general example related to our comments
about representation theory above. Suppose that Γ is a group. Let �2(Γ)
be the Hilbert space formally generated by an orthogonal basis �h for all
h ∈ Γ. For any g ∈ Γ, define ug := f(g) to be the linear operator on �2(Γ)
determined by ug(�h) = �gh for all h ∈ Γ. Notice that f(g) is unitary for all
g ∈ Γ (since u∗g = u−1g = ug−1 ) and so f is a unitary representation of Γ; it
is called the left regular representation. The vonNeumann algebra generated
by f(Γ) is called the group von Neumann algebra L(Γ). The group algebra
C[Γ] consisting of formal sums

∑
g∈Γ cgug with finite support is weakly

dense in L(Γ) and for that reason we also think of elements of L(Γ) as
formal sums

∑
g∈Γ cgug . (NB: not all such expressions define elements of

L(Γ)). One can define a trace on L(Γ) as follows:

tr(
∑
g∈Γ
cgug) = ce,

where e is the identity in Γ.

If A is a von Neumann algebra, then the center of A is the set Z(A) :=
{x ∈ A : xy = yx for all y ∈ A}. The center of A is a ∗-subalgebra of A
and thus contains (a copy of) C. A is said to be a factor if the center of A
is as small as possible, that is, when Z(A) = C. B(H ) is an example of a
factor for any Hilbert space H . One can check that L(Γ) is a factor if and
only if every nontrivial conjugacy class in Γ is infinite.
A tracial von Neumann algebra is a pair (A, tr), whereA is a vonNeumann
algebra and tr is a trace on A. We will often suppress mention of the trace
and simply say “LetA be a tracial von Neumann algebra. . . ” It is a fact that
a factor admits at most one trace, so this abuse in notation should cause no
confusion in the case of factors.
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An infinite-dimensional factor that admits a trace is called a II1 factor. Of
particular importance in this paper is the hyperfinite II1 factorR, which can
be described as follows. The map

X �→
(
X 0
0X

)
,

which sendsM2n (C) toM2n+1(C) is an embedding of tracial von Neumann
algebras; by definition, R is the inductive limit of these embeddings. The
trace on R is induced by the normalized traces on the matrix algebras. It is
a fact that R embeds into any II1 factor.
More generally, a tracial vonNeumann algebra is said to be of type II1 if it
contains a copy ofR. This definition is not quite the standard one and in fact
the standard definition of a type II1 von Neumann algebra automatically
implies that it is tracial.
There is an ultraproduct construction for tracial von Neumann algebras:
if (Ai : i ∈ I ) is a family of tracial von Neumann algebras and � is a
nonprincipal ultrafilter on I , the tracial ultraproduct of the family (Ai ) with
respect to � is the set

∏
� Ai :=

⊕
i∈I Ai/c�(Ai ), where⊕

i∈I
Ai := {(ai ) ∈

∏
i

Ai : sup
i∈I

‖ai‖ <∞}

and

c�(Ai ) := {(ai ) ∈
⊕
i∈I
Ai : lim

�
‖ai‖2 = 0}.

It should be stressed that the definition of
⊕
i∈I Ai does not contain a typo:

the norm being used in the definition is the operator norm, not the 2-norm.
When Ai = A for all i ∈ I , we refer to the tracial ultraproduct as the
tracial ultrapower of A with respect to �, denoted A� . It is a nontrivial fact
that

∏
� Ai is once again a tracial von Neumann algebra; contrast this with

the fact that, except in only extreme circumstances, the C∗ ultraproduct of
tracial von Neumann algebras is never a von Neumann algebra (the C∗

algebra ultraproduct uses the operator norm instead of the 2-norm in the
definition of c�). For more details on this tracial ultraproduct construction,
see, for example, [14, Section 7].
We say that a separable tracial von Neumann algebra is embeddable if it
embeds intoR� for some (equivalently, any) nonprincipal ultrapower on N.
As alluded to in the introduction, the Connes Embedding Problem (CEP)
asks whether or not every separable II1 factor is embeddable.

§3. Prerequisites from Logic. In this section, we describe an appropriate
language in continuous logic for studying tracial von Neumann algebras.
For a von Neumann algebra A, we let A1 denote the operator norm
unit ball. By a ∗-polynomial p(x1, . . . , xn) in the indeterminates x1, . . . , xn
we mean an expression built from the indeterminates using the ∗-algebra
operations. Let F denote the set of all ∗-polynomials p(x1, . . . , xn) (n ≥ 0)
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such that, for any von Neumann algebra A, we have p(An1) ⊆ A1. For
example, the following functions belong to F :
• the “constant symbols” 0 and 1 (thought of as 0-ary functions);
• x �→ x∗;
• x �→ 	x (|	| ≤ 1);
• (x, y) �→ xy;
• (x, y) �→ x+y

2 .

We then work in the language L := F ∪ {trR, tr�, d}, where tr� (resp.
tr�) denote the real (resp. imaginary) parts of the trace and d denotes the
metric on the operator norm unit ball given by d (x, y) := ‖x− y‖2. We can
then formulate certain properties of tracial vonNeumann algebras using the
language L as follows.
Basic L-formulae will be formulae of the form tr�(p(
x)) or tr�(p(
x)) for
p ∈ F . Quantifier-free L-formulae are formulae of the form f(ϕ1, . . . , ϕm),
where f : Rm → R is a continuous function and ϕ1, . . . , ϕm are basic
L-formulae. Finally, an arbitrary L-formula is of the form

Q1x1∈A1 · · ·Qkxk∈A1ϕ(x1, . . . , xn),
where k ≤ n, ϕ(x1, . . . , xn) is a quantifier-free formula, and eachQi is either
sup or inf; we think of theseQi ’s as quantifiers over the unit ball of the algebra.

Remarks 3.1.

(1) Our setup here is a bit more specialized than the general treatment
of continuous logic in [1], but a dense set of the formulae in [1] are
logically equivalent to formulae in the above form, so there is no loss
of generality in our treatment here.

(2) In order to keep the set of formulae “separable”, when form-
ing the set of quantifier-free formulae, we restrict ourselves to
a countable dense subset of the set of all continuous functions
Rm → R as m ranges over N. In fact, one can take this count-
able dense set to be “finitely generated” which is important for our
computability-theoretic considerations. (See [2].)

Suppose that ϕ(
x) is a formula, A is a tracial von Neumann algebra,
and 
a ∈ An1 , where n is the length of the tuple 
x. We let ϕ(
a)A denote the
real number obtained by replacing the variables 
x with the tuple 
a; we may
think of ϕ(
a)A as the truth value of ϕ(
x) in A when 
x is replaced by 
a. For
example, if ϕ(x1) is the formula supx2 d (x1x2, x2x1), then ϕ(a)

A = 0 if and
only if a is in the center of A.
If ϕ has no free variables (that is, all variables occurring in ϕ are bounded
by some quantifier), then we say that ϕ is a sentence and we observe that
ϕA is a real number. Given a tracial von Neumann algebra, the theory of
A is the function Th(A) which maps the sentence ϕ to the real number
ϕA. Sometimes authors define Th(A) to consists of the set of sentences ϕ
for which ϕA = 0; since Th(A), as we have defined it, is determined by its
zeroset, these two formulations are equivalent.

https://doi.org/10.1017/bsl.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.5


COMPUTABILITY AND CEP 243

If ϕ(
x) is a formula, then there is a bounded interval [mϕ,Mϕ] ⊆ R called
the range of ϕ such that, for any tracial von Neumann algebra A and any

a ∈ A, we have ϕ(
a)A ∈ [mϕ,Mϕ]. A sentence of the form

sup
x1∈A1

· · · sup
xn∈A1

ϕ(x1, . . . , xn)

is called universal if the range of ϕ is non-negative and similarly existential
if all the quantifiers are inf. This terminology is justified if one thinks of the
value 0 as “true”. If we restrict the function Th(A) to the set of all universal
(resp. existential) sentences, the resulting function is defined to be the uni-
versal (resp. existential) theory of A, denoted Th∀(A) (resp. Th∃(A)). We
should also mention that, as a consequence of Łos’ theorem (and the fact
that the tracial ultraproduct construction is the continuous logic ultraprod-
uct construction), we have Th(A) = Th(A�) for any ultrafilter �; for more
details, see [11].

Remark 3.2. In what follows, we will restrict ourselves to L-structures
that are tracial von Neumann algebras. We can do this because it is shown
in [11] that the class of (unit balls of) tracial von Neumann algebras forms
a universally axiomatizable class of L-structures.

Let T be a set of L-sentences. We say that a tracial von Neumann algebra
A models T , written A |= T , if ϕA = 0 for each ϕ ∈ T . It is shown in
[11] that there is a set TII1 of L-sentences such that A |= TII1 if and only
if A is a II1 factor. In fact, by examining TII1 , one can show that there is a
recursively enumerable such set TII1 , meaning that there is an algorithm that
runs forever and continually returns the axioms of TII1 . The aforementioned
observation will be crucial for what is to follow and so we isolate it:

Fact 3.3. The class of II1 factors has a recursively enumerable axiomati-
zation.

Up until now, we have been treating tracial vonNeumann algebras seman-
tically. It will be crucial to also treat them syntactically. In [2], a proof system
for continuous logic is established. In our context, this gives meaning to the
phrase “the axiomsTII1 can prove the sentence �,” which we denoteTII1 � �.
Fact 3.4. The set {� : TII1 � �} is recursively enumerable.
Proof. This follows immediately from the existence of the proof system
developed in [2] together with Fact 3.3. �
There is a connection between the semantic and syntactic treatments
developed above (which [2] refers to as “Pavelka-style completeness”). Let
−. : R2 → R be the function x −. y := max(x − y, 0) and let D denote the
set of dyadic rational numbers.

Fact 3.5 ([2, Corollary 9.8]). For a sentence ϕ, we have

sup{ϕA : A |= TII1} = inf{r ∈ D
>0 : TII1 � ϕ −. r}.

We denote this common value by ϕTII1 .

https://doi.org/10.1017/bsl.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.5


244 ISAAC GOLDBRINGAND BRADDHART

Remark 3.6. By Downward Löwenheim-Skolem, every tracial von
Neumann algebra has a separable subalgebra with the same theory.
Consequently, we have that

ϕTII1 = sup{ϕA : A |= TII1 and A is separable}.
CEP and Model Theory: At this point, it is convenient to recall the con-
nection between CEP and model theory. If A,B are tracial von Neumann
algebras and A is a subalgebra of B , then Th∀(A) ≤ Th∀(B) (as functions).
Since R embeds into any II1 factor, we have that Th∀(R) ≤ Th∀(A) for
every II1 factorA. IfA is an embeddable tracial von Neumann algebra, then
certainly Th∀(A) ≤ Th∀(R) (as Th(R) = Th(R�)). Conversely, suppose
that A is a separable tracial von Neumann algebra such that Th∀(A) ≤
Th∀(R). It is then a standard fact of model theory (see, for example, [13,
Proposition 13.1]) that A is embeddable. We thus see that CEP is equiva-
lent to the statement that, for every II1 factor A, we have that Th∀(A) =
Th∀(R). (Actually, we just saw that CEP is equivalent to the statement that
Th∀(A) = Th∀(R) for every separable type II1 von Neumann algebra.) As a
side remark, note that, for tracial von Neumann algebras A and B , we have
Th∀(A) = Th∀(B) if and only if Th∃(A) = Th∃(B), which is easily seen to
be equivalent to the operator algebraic conjecture known as the Microstate
Conjecture.

§4. CEP impliesComputability. In this section, we assume that CEPholds.
For ease of notation, we set T := TII1 .

Lemma 4.1. Suppose that � is universal. Then �T = �R.
Proof. By definition, �R ≤ �T . Now fix a separable II1 factor M ; we
must show �M ≤ �R. This follows immediately from the fact that M is
embeddable. �
Lemma 4.2. Suppose that � is existential. Then �T = �R.
Proof. Again, it suffices to show that �M ≤ �R for arbitrary M |= T .
But this follows from the fact thatM contains a copy of R. �
Corollary 4.3. If � is a universal sentence, then (M� −. �)T =M� −. �T .
Proof. Observe that M� −. � is logically equivalent to an existential
sentence. Using the previous two lemmas, we have

(M� −. �)T = (M� −. �)R =M� −. �R =M� −. �T . �
If A is a tracial von Neumann algebra, we say that Th∀(A) is computable
if there is an algorithm such that, upon inputs universal sentence � and
positive dyadic rational number �, returns an interval I ⊆ R of length at
most � with dyadic rational endpoints such that �A ∈ I . One defines Th∃(A)
being computable in an analogous way.

Remark 4.4. This is not the same notion of computable theory as defined
in [2] but is more appropriate for our needs.

Corollary 4.5. Th∀(R) and Th∃(R) are computable.
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Proof. Here is the algorithm: given universal � and positive dyadic ratio-
nal �, run all proofs from T and wait until you see that T � � −. r and
T � (M� −. �) −. s , where r − (M� − s) ≤ �. By the previous corollary, this
algorithm will eventually halt and the interval [M� − s, r] will be the desired
interval. �

§5. Computability implies CEP. Recall that if CEP is false, then there are
at least two distinct universal (equivalently existential) theories of type II1
algebras. In fact:
Proposition 5.1. Suppose that CEP fails. Then there are continuum many
different universal (equivalently existential ) theories of type II1 algebras. In
fact, there is a single existential sentence � such that �M takes on continuum
many values asM ranges over all type II1 algebras.
Proof. For N ∈ N, A a type II1 algebra, a a tuple from A, and � > 0, let
�N,A,a,� be the existential sentence

inf
x

(
max
deg p≤N

max(| tr�(p(x)) − tr�(p(a))|, | tr�(p(x)) − tr�(p(a))|)
)
−. �.

Here the max is over all ∗-monomials p ∈ F of degree at most N with
complex coefficient 1. Since CEP fails, there are N , A, a, and � > 0 such
that �RN,A,a,� > 0. (Of course �

A
N,A,a,� = 0.) For simplicity, set � := �N,A,a,�

and r := �R. For each t ∈ [0, 1], setAt := tR⊕ (1− t)A, which denotes the
direct sum ofR andAwith trace trt := t trR+(1− t) trA. Note that eachAt
is a type II1 algebra and the map t �→ �At : [0, 1]→ R is continuous. Since
�A0 = 0 and �A1 = r, the proof of the proposition is complete. �
Corollary 5.2. Suppose that the universal theory of every type II1 algebra
is computable. Then CEP holds.
Proof. Suppose thatCEP fails. By the previous lemma, there are uncount-
ably many universal theories of type II1 algebras. But there are only count-
ably many programs that could be computing universal theories of type
II1 algebras, whence not every type II1 algebra has a computable universal
theory. �

§6. Further computability-theoretic consequences of the CEP. In this sec-
tion, we assume that CEP holds and we derive some further computability-
theoretic results. Unlike Section 4, in this section, we let T denote the
set of sentences whose models are the tracial von Neumann algebras (see
Remark 3.2).
Fix a separable II1 factor A with enumerated subset X = (a0, a1, a2, . . .)
that generatesA (as a vonNeumann algebra).We now pass to a languageLX
containing L obtained by adding to L new constant symbols for each ai . We
now add toT sentences of the formmax(rn−. f(
a), f(
a)−. sn), wheref ∈ F
and (rn, sn) is a sequence of intervals of dyadic rationals containing f(
a)
with sn − rn → 0; we call the resulting theory T(A,X ). (In model-theoretic
lingo: we are just adding the atomic diagram of A to T .) Note that a model
of T(A,X ) is a tracial von Neumann algebra B whose interpretations of the
new constants generate a von Neumann subalgebra of B isomorphic to A.
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We say that (A,X ) as above is recursively presented if there is an algorithm
that enumerates each sequence of intervals (rn, sn) for each f ∈ F . It is a
standard construction in recursion theory to code a recursively presented
tracial von Neumann algebra (A,X ) by a single natural number, which we
refer to as the Gödel code of (A,X ).
Fix a recursively presented II1 factor (A,X ). Suppose that � = supx ϕ(x)
is a universal sentence and � is a positive dyadic rational. Then clearly there
is n ∈ N such that �A ≤ maxi≤n ϕ(ai )A+�; we will say that such an n is good
for (A,X, �, �). Consider the following algorithmic question: is there a way
of computably determining some n that is good for (A,X, �, �)? The next
result tells us that CEP implies that there is a single algorithm that works for
all recursively presented (A,X ) and all � and �.

Theorem 6.1 (CEP). There is a computable partial function f : N ×
N × D

>0 ⇀ N such that, if e is the Gödel code of a recursively presented
separable II1 factor (A,X ) and n is the Gödel code of a universal sentence
� = supx ϕ(x), then f(m, n, �) is good for (A,X, �, �).

Proof. Here is the algorithm for determining f(m, n, �). First, use the
computability of Th∀(R) to determine an interval I = [c, d ] ⊆ R with
|I | ≤ �

2 such that �
R ∈ I . By CEP, �R = �A. We claim that there is an N

such that c − �
2 ≤ ϕ(aN )A. Indeed, there is N such that �A − �

2 ≤ ϕ(aN )A.
For such anN , we have that c− �

2 ≤ ϕ(aN )A ≤ �A ≤ d and d−(c− �
2) ≤ �,

whence N is good for (A,X, �, �). Now we just start computing ϕ(ai )A

(which we can do since (A,X ) is recursively presented) and wait until we
reach N with c − �

2 ≤ ϕ(aN )A. �
Note that there is a countable X ⊆ R such that (R, X ) is recursively
presented. In the rest of this paper, we fix such an X and let TR := T(R,X )
and letRX denote the obvious expansion ofR to an LX -structure.
In the next proof, we will need the following fact (see [7, Lemma 3.1]):

Fact 6.2. For any nonprincipal ultrafilter � onN, any embedding h : R →
R� is elementary, that is, for any formula ϕ(
x), and any tuple 
a ∈ R, we
have ϕR(
a) = ϕR�(h(
a)).
Lemma 6.3 (CEP). Suppose that � is a universal or existentialLX -sentence.
Then �TR = �

RX .
Proof. As in Section 4, we need only show that �M ≤ �RX for every
M |= TR. First suppose that � is existential, say � = infx ϕ(ca, x), where
a is a tuple from X and ca is the corresponding tuple of constants. Let
i : R →M be the embedding ofR intoM determined by setting i(a) := cMa
for every a ∈ X . Then
�M = inf{ϕ(i(a), b)M : b ∈M} ≤ inf{ϕ(i(a), i(d ))M : d ∈ R} = �RX .
Now suppose that � is universal, say � = supx ϕ(ca, x). Fix an embedding
j :M → R� . Then
�M = sup{ϕ(i(a), b)M : b ∈M} ≤ sup{ϕ(ji(a), d )RU

: d ∈ RU} = �RX ,
since ji : R → R� is elementary. �
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Corollary 6.4 (CEP). Th∀(RX ) and Th∃(RX ) are computable.
Proof. This follows from the previous lemma just as in Section 4. �
Define Th∃∀(R) to be the restriction of Th(R) to the set of formulae of
the form

Q1x1∈A1 · · ·Qkxk∈A1ϕ(x1, . . . , xn),
where ϕ is quantifier-free, k ≤ n, and such that there is l ∈ {1, . . . , k} such
that Qi = inf for i ∈ {1, . . . , l} and Qi = sup for i ∈ {l + 1, · · · , k}.
We say that Th∃∀(R) is upper computably enumerable if there is an algo-
rithm that enumerates all sentences of the form � −. s , where � is an
∃∀-sentence and s is a dyadic rational with �R < s .
Corollary 6.5 (CEP). Th∃∀(R) is upper computably enumerable.
Proof. Consider (for simplicity) the sentence infx supy ϕ(x, y). For each
a ∈ X and � ∈ D>0, use the previous corollary to find an interval I = [r, s]
with dyadic endpoints of length ≤ � such that supy ϕ(a, y)R ∈ I . We
then add the condition infx supy ϕ(a, y) ≤ s to our enumeration. We
claim that this algorithm shows that Th∃∀(R) is upper computably enu-
merable. Indeed, suppose that infx supy ϕ(x, y) = s . Fix s

′ ∈ D, s < s ′.
Fix 
 ∈ D>0 such that s + 2
 < s ′. We claim that when the algorithm
encounters a ∈ X such that supy ϕ(a, y)R ≤ s + 
, our algorithm will let
us know that infx supy ϕ(x, y) ≤ s ′. Indeed, our algorithm will tell us that
infx supy ϕ(x, y) ≤ d , where d ∈ D>0 and d ≤ supy ϕ(a, y)R + 
. �
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