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Abstract
If the Earth’s oblateness is neglected in marine navigation, then the sphere gives a relatively simple solution for
course and distance between any two points. The navigation sphere where a span of one minute of arc is equal to
nautical mile is used. The primary deficiency of this approach is the lack of a closed-form formula that takes the
Earth’s eccentricity into account. Considering the Earth as an oblate spheroid, i.e., a rotational ellipsoid with a small
flattening, the problem of computing the length of the meridian arc leads to the understanding of elliptic integrals.
In this paper, incomplete elliptic integrals of the first, second and third kind are used to find an arbitrary elliptical
arc. The results prove an advantage of using geocentric latitude compared to geodetic and reduced latitude.

1. Introduction

Elliptic integrals are an invaluable tool in marine navigation considering that the Earth is an oblate
spheroid. Trigonometric functions are used to determine the arc length of a circle, whereas elliptic
integrals are used to find the arc length of an ellipse. The calculation of an elliptic meridian arc (L𝑚) is
approximated using the harmonic series expansion method, i.e., a binomial expansion of the integrand
that allows the navigator to obtain the required precision without seeking the sub-metre accuracies
pursued in geodetic applications. Geodesic (geographic-𝜑), reduced (eccentric or parametric-𝛽) and
geocentric latitude (𝜓) are used for third, second and first elliptic integral, respectively. In the following,
a stands for semi-major axis, [𝑐 = 𝑎(1 − 𝑒2)

1/2
] is the semi-minor axis and [𝑒 = (1 − (𝑐2/𝑎2))

1/2
] is the

first eccentricity of the meridian ellipse. Since the parallels of latitude are circles, it follows that geodetic,
reduced and geocentric longitude are all equal in value. Geodesic, reduced and geocentric latitudes
are related by (tan2𝛽 = tan 𝜑 tan 𝜓), where (−(𝜋/2) ≤ 𝜑, 𝛽, 𝜓 ≤ (𝜋/2)). In the scientific literature on
marine navigation, the following relation is predominantly used (e.g. Meyer and Rollins, 2011):

𝐿𝑚 (𝜑𝑖) = 𝑎(1 − 𝑒2)

∫ 𝜑𝑖

0

𝑑𝜑

(1 − 𝑒2sin2𝜑)3/2 = 𝑎(1 − 𝑒2)
∏

(𝑒2; 𝜑𝑖 |𝑒
2) (1)

where
∏

(𝑒2; 𝜙𝑖 |𝑒
2) is a special case of the incomplete elliptic integral of the third kind:

∏
(𝑛; 𝜑𝑖 |𝑚) =

∫ 𝜑𝑖

0

𝑑𝜑

(1 − 𝑛sin2𝜑)(1 − 𝑚sin2𝜑)1/2 (2)

A constant n is known as the elliptic characteristic, while parameter m is the elliptic modulus squared
(𝑚 = 𝑘2; 0 ≤ 𝑘2 ≤ 1). The above is referred to as the incomplete elliptic integral. The complete elliptic
integral can be obtained by setting the upper bound of the integral (amplitude angle – 𝜑𝑖) to its maximum
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range (0 ≤ 𝜑𝑖 ≤ (𝜋/2)). Equation (1) can be divided into an incomplete elliptic integral of the second
kind and a term of elementary functions:

𝐿𝑚 (𝜑𝑖) = 𝑎

[∫ 𝜑𝑖

0
(1 − 𝑒2sin2𝜑)

1/2
𝑑𝜑 −

𝑒2sin2𝜑𝑖

2(1 − 𝑒2sin2𝜑𝑖)
1/2

]
(3)

In geodesy applications, an incomplete elliptic integral of the second kind is dealt with
(Θ = (𝜋/2) − 𝛽):

𝐿𝑚 (Θ𝑖) = 𝑎

∫ Θ𝑖

0
(1 − 𝑒2sin2Θ)

1/2
𝑑Θ = 𝑎𝐸 (Θ𝑖 |𝑒

2) (4)

In this paper, an incomplete elliptic of the first kind, not discussed previously in the marine navigation
literature, will serve as an intermediate solution (𝜒 = (𝜋/2) − 𝜓):

𝐿𝑚 (𝜒𝑖) = 𝑐

∫ 𝜒𝑖

0

𝑑𝜒

(1 − 𝑒2sin2 𝜒)1/2 = 𝑐𝐹 (𝜒𝑖 |𝑒
2) (5)

Equation (5) entails a succinct form of an elliptic integral of the second kind where an arc length
may be determined by the following equation:

𝐿𝑚 (𝜓𝑖) = 𝑎

∫ 𝜓𝑖

0
(1 − 𝑒2sin2𝜓)

1/2
𝑑𝜓 = 𝑎𝐸 (𝜓𝑖 |𝑒

2) (6)

An application of elliptic integral of the third kind in marine navigation emerged from the works of
J. E. D. Williams (1950, 1982) and Sadler (1956). Turner (1970, 1984) used Equation (1) to calculate
the distance from the equator to a parallel in latitude, while R. Williams (1981, 1982, 1996) coined the
term and proposed a table of ‘latitude parts’ (or difference in latitude parts, DLP), synonymous with
meridional distance, to be used alongside meridional parts (or difference in meridional parts, DMP).
Since the computer has become a commonplace tool, these tables have lost their importance. Hiraiwa
(1987) proposed a modification of sailing calculations to correct an erroneous method by treating the
Earth in part as a sphere and in part as a terrestrial spheroid. Carlton Wippern (1992) evaluated an
elliptic integral of the second kind based on reduced co-latitude. R. Williams (1998) was critical of the
practice of using methods of computation that contained elements from the spherical and ellipsoidal
models in the same formula. Earle (2005) reiterated that plane and Mercator sailings should be based on
either the spherical model or the spheroidal model but not the two combined. As reduced latitude (𝛽)
is not commonly used in marine navigation, Petrović (2007) in a preliminary communication derived
an equation similar to Equation (4) based on the small difference between geocentric and eccentric
latitude, which can be neglected in marine navigation (𝜓 ≈ 𝛽). The equation can be readily applied to
sailing calculations. In addition, the geodesic (shortest path) between two points on a rotational ellipsoid
(spheroid) also involves the use of elliptic integrals. This subject is extensively treated in numerous
texts. In two superb articles, Karney F.F.C. (2011, 2012) derived algorithms for the computations of the
forward and inverse geodetic problems for an ellipsoid of revolution.

2. Analysis

The effect of the asphericity of the Earth on marine navigation can be explained using the vectorial
equation of a rotational ellipsoid (spheroid):

�𝑟 = {𝑎 sin 𝑢 cos 𝑣, 𝑎 sin 𝑢 sin 𝑣, 𝑐 cos 𝑢} (7)
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The axis of rotation of the rotational ellipsoid is Oz, whereas the coordinates u and v make an
orthogonal net defined on the interval 𝑢 = [0, 𝜋], 𝑣 = [−𝜋, 𝜋]. The curvilinear coordinates (𝑢, 𝑣) of a
point on a surface are latitude (geographic, reduced or geocentric) and longitude.

The first-order Gauss values or coefficients of the first differential form of the rotational ellipsoid
(spheroid) are:

𝐸 = �𝑟2
𝑢 =

(
𝜕𝑥

𝜕𝑢

)2

+

(
𝜕𝑦

𝜕𝑢

)2

+

(
𝜕𝑧

𝜕𝑢

)2

𝐹 = �𝑟𝑢 · �𝑟𝑣 =
𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
+

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣
+

𝜕𝑧

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝐺 = �𝑟2
𝑣 =

(
𝜕𝑥

𝜕𝑣

)2

+

(
𝜕𝑦

𝜕𝑣

)2

+

(
𝜕𝑧

𝜕𝑣

)2

For the given parametrisation of the rotational ellipsoid, the first differential form is the quadratic
form defined on vectors (𝑑𝑢, 𝑑𝑣) in the uv plane by the following pattern:

𝑑𝑠2 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 (8)

The calculation of the elliptic meridian arc will be derived as per the above differential form, Struik
(1988).

2.1. Derivation of a meridian arc formula with an incomplete elliptic integral of the third kind

In the scientific and professional literature, the difference in latitude parts is obtained by integration of
radius of curvature as a function of geographic (geodetic) latitude. The geodetic (geographic) latitude
is the angle that the normal to the ellipsoid, at a certain point (T), makes with the plane of the geodetic
equator (Figure 1). The prime vertical is a plane containing the normal of the Earth’s surface at the
location of interest, perpendicular to the local meridian. The spheroid is represented by the following
vector equation (geographic latitude):

�𝑟 (𝜑, 𝜆) = [𝑁 cos 𝜑 cos 𝜆, 𝑁 cos 𝜑 sin 𝜆, 𝑁 (1 − 𝑒2) sin 𝜑] (9)

where 𝜆 stands for geographic longitude (−𝜋 ≤ 𝜆 ≤ 𝜋) and the radius of curvature in the direction of
the prime vertical, i.e., along the parallel (N):

𝑁 =
𝑎

(1 − 𝑒2sin2𝜑)1/2

The first differential form for the spheroid (geographic latitude) is:

𝑑𝑠2 = 𝐸𝑑𝜑2 + 2𝐹𝑑𝜑𝑑𝜆 + 𝐺𝑑𝜆2 (10)

with the coefficients of the first fundamental form:

𝐸 =

(
𝜕𝑥

𝜕𝜑

)2

+

(
𝜕𝑦

𝜕𝜑

)2

+

(
𝜕𝑧

𝜕𝜑

)2

=
𝑎2 (1 − 𝑒2)

2

(1 − 𝑒2sin2𝜑)3

𝐹 =

(
𝜕𝑥

𝜕𝜑

𝜕𝑥

𝜕𝜆

)
+

(
𝜕𝑦

𝜕𝜑

𝜕𝑦

𝜕𝜆

)
+

(
𝜕𝑧

𝜕𝜑

𝜕𝑧

𝜕𝜆

)
= 0

𝐺 =

(
𝜕𝑥

𝜕𝜆

)2

+

(
𝜕𝑦

𝜕𝜆

)2

+

(
𝜕𝑧

𝜕𝜆

)2

=
𝑎2cos2𝜑

1 − 𝑒2sin2𝜑
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Figure 1. Meridian arc on the spheroid.

There ensues the first fundamental form for the spheroid:

𝑑𝑠2 =
𝑎2 (1 − 𝑒2)

2
𝑑𝜑2

(1 − 𝑒2sin2𝜑)3 +
𝑎2cos2𝜑𝑑𝜆2

1 − 𝑒2sin2𝜑
= 𝑀2𝑑𝜑2 + 𝑁2cos2𝜑𝑑𝜆2 = 𝑀2𝑑𝜑2 + 𝑟2𝑑𝜆2 (11)

with [𝑀 = 𝑎(1 − 𝑒2)(1 − 𝑒2sin2𝜑)
−3/2

] as the radius of curvature along the meridian (in the meridional
plane) while (𝑟 = 𝑁cos𝜑) is the radius of the parallel. Taking 𝑑𝜆 = 0 in Equation (11), it becomes
identical with Equation (1). By expanding into a convergent series, integrating term by term and
retaining up to term (sin2𝜑) yields:

𝐿𝑚 (𝜑𝑖) = 𝑎

[(
1 −

1
4

𝑒2 −
3
64

𝑒4
)

𝜑𝑖 −

(
3
8

𝑒2 +
3
32

𝑒4
)

sin 2𝜑𝑖

]
(12)

Equation (12) is the standard series expansion formula for the accurate calculation of the meridian
arc length, which is proposed in a number of marine navigation papers.

2.2. Derivation of a meridian arc formula with an incomplete elliptic integral of the second kind
based on reduced latitude

The reduced (eccentric or parametric) latitude is defined by the radius drawn from the centre of the
ellipsoid of revolution (spheroid) to the point on the tangent sphere of radius (a). A straight line
perpendicular to the plane of the equator passing through point (T) cuts the surrounding sphere at the
said point. The spheroid can be presented by the following vector equation (reduced latitude):

�𝑟 (𝛽, 𝜆) = [𝑎 cos 𝛽 cos 𝜆, 𝑎 cos 𝛽 sin 𝜆, 𝑎(1 − 𝑒2)
1/2 sin 𝛽] (13)

The first differential form for the spheroid (reduced latitude) is given by:

𝑑𝑠2 = 𝐸𝑑𝛽2 + 2𝐹𝑑𝛽𝑑𝜆 + 𝐺𝑑𝜆2 (14)

where:
𝐸 = 𝑎2(1 − 𝑒2cos2𝛽); 𝐹 = 0; 𝐺 = 𝑎2cos2𝛽
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Finally, the first fundamental form is defined by:

𝑑𝑠2 = 𝑎2 (1 − 𝑒2cos2𝛽)𝑑𝛽2 + 𝑎2cos2𝛽𝑑𝜆2 (15)

Inserting 𝑑𝜆 = 0 in the above Equation (15), Equation (4) follows. A binomial expansion for the
above integral, confined for the (sin2𝛽) term, provides an alternative solution for meridional distance
compared with Equation (12), thus:

𝐿𝑚 (𝛽𝑖) = 𝑎

[(
1 −

1
4

𝑒2
)

𝛽𝑖 −
1
8

𝑒2sin2𝛽𝑖

]
(16)

2.3. Derivation of a meridian arc formula with an incomplete elliptic integral of the first kind based
on geocentric latitude

The geocentric latitude is the angle at the centre of the ellipsoid between the plane of the equator and a
radius vector to a point on the surface of the rotational ellipsoid (spheroid). The equation of an ellipse
with respect to the geocentric latitude reads:

𝑟2
𝑣cos2𝜓

𝑎2 +
𝑟2
𝑣sin2𝜓

𝑐2 = 1

which gives the formula for the geocentric radius (𝑟𝑣 ):

𝑟𝑣 = 𝑎

[
1 − 𝑒2

1 − 𝑒2cos2𝜓

]1/2

(17)

By expanding the denominator ((1/(1 − 𝑒2cos2𝜓)) = 1 + 𝑒2cos2𝜓 + 𝑒4cos4𝜓 + · · ·), omitting terms
higher than (𝑒2), the above relation can be rewritten as:

𝑟𝑣 = 𝑎[1 − 𝑒2sin2𝜓]1/2 (18)

The above relation can serve as an approximation of the radius of curvature with respect to the
geocentric latitude. The rotational ellipsoid (spheroid) vector equation based on geocentric latitude is:

⇀
𝑟 (𝜓, 𝜆) =

[
𝑐 cos 𝜓 cos 𝜆

(1 − 𝑒2𝑐𝑜𝑠2𝜓)1/2 ,
𝑐 cos 𝜓 sin 𝜆

(1 − 𝑒2𝑐𝑜𝑠2𝜓)1/2 ,
𝑐 sin 𝜓

(1 − 𝑒2𝑐𝑜𝑠2𝜓)1/2

]
(19)

The first differential form for the spheroid (geocentric latitude) is given by:

𝑑𝑠2 = 𝐸𝑑𝜓2 + 2𝐹𝑑𝜓𝑑𝜆 + 𝐺𝑑𝜆2 (20)

where:

𝐸 =
𝑐2 [1 − 𝑒2(2 − 𝑒2)cos2𝜓]

(1 − 𝑒2cos2𝜓)3 ; 𝐹 = 0; 𝐺 =
𝑐2cos2𝜓

1 − 𝑒2cos2𝜓

The first fundamental form then follows:

𝑑𝑠2 =
𝑐2 [1 − 𝑒2(2 − 𝑒2)cos2𝜓]

(1 − 𝑒2cos2𝜓)3 𝑑𝜓2 +
𝑐2cos2𝜓

1 − 𝑒2cos2𝜓
𝑑𝜆2 (21)
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Inserting 𝑑𝜆 = 0 in Equation (21), an integral for meridian arc is obtained:

𝑠 = 𝑐

∫ 𝜓𝑖

0

[1 − 𝑒2(2 − 𝑒2)cos2𝜓]
1/2

(1 − 𝑒2cos2𝜓)3/2 𝑑𝜓 (22)

By expanding the integrand (numerator) in Equation (22) with a substitute, i.e.[
(1 − 𝑒2(2 − 𝑒2)cos2𝜓)

1/2
= 1 − 𝑒2cos2𝜓 +

1
2

𝑒4cos2𝜓 − · · ·

]
,

then simplifying up to (𝑒2) term, it reads:

𝑠 = 𝑐

∫ 𝜒𝑖

0

𝑑𝜒

(1 − 𝑒2sin2 𝜒)1/2 = 𝑐𝐹 (𝜒 |𝑒2), (23)

which is Equation (5). The above relation can be rewritten using the relation for geocentric radius,
Equation (17), then integrating within certain limits resulting in Equation (6). A binomial expansion for
the said integral, Equation (6), confined for the (sin2𝜓) term, also provides a neat solution for meridional
distance compared with Equation (12), thus:

𝐿𝑚 (𝜓𝑖) = 𝑎

[(
1 −

1
4

𝑒2
)

𝜓𝑖 +
1
8

𝑒2 sin 2𝜓𝑖

]
(24)

3. Comparison of the formulas for calculating elliptic meridian arc

The distance along the meridional arc of the spheroid as a function of geodetic (geographic), reduced
(parametric, eccentric) or geocentric latitude is defined in terms of an elliptic integrals. For calculation
of the elliptic meridian arc, the computational software WolframAlpha will be used as a reference value.
It contains a built-in subroutine in a Wolfram language, i.e., Elliptic𝑃𝑖(𝑛; 𝜑|𝑚), or

∏
(𝑒2; 𝜑𝑖 |𝑒

2) in this
case, which solves the incomplete elliptic integral of the third kind.

Equations (12), (16) and (24) may be rewritten in the form of latitude difference as follows:

𝐿𝑚 (Δ𝜑) = 𝑎

[(
1 −

1
4

𝑒2 −
3
64

𝑒4
)
Δ𝜑 −

(
3
8

𝑒2 +
3
32

𝑒4
)
(sin2𝜑2 − sin2𝜑1)

]
(25)

𝐿𝑚 (Δ𝛽) = 𝑎

[(
1 −

1
4

𝑒2
)
Δ𝛽 −

1
8

𝑒2(sin2𝛽2 − sin2𝛽1)

]
(26)

𝐿𝑚 (Δ𝜓) = 𝑎

[(
1 −

1
4

𝑒2
)
Δ𝜓 +

1
8

𝑒2(sin2𝜓2 − sin2𝜓1)

]
(27)

where Δ𝜑 = 𝜑2 − 𝜑1, Δ𝛽 = 𝛽2 − 𝛽1 and Δ𝜓 = 𝜓2 − 𝜓1 are the geodetic, reduced and geocentric latitude
differences, respectively. The above truncated series are adequate for the requirements of marine sailing
calculations. Thus, seeking greater accuracy has no practical value. The results of the comparative
analysis, presented in Table 1, point out the advantage of meridian arc length calculation with the
equation as a function of geocentric latitude. Compared with the numerical integration techniques given
in WolframAlpha it approximates the meridian arc well. Equations (26) and (27) with two terms yield
at least the same accuracy as Equation (25) with four terms.

For sailing along the parallel, the departure is the distance travelled (𝑑𝑝), while meridian sailing
takes the form (𝑑𝑚), respectively (Figure 2).

https://doi.org/10.1017/S037346332200042X Published online by Cambridge University Press

https://doi.org/10.1017/S037346332200042X


1124 Miljenko Petrović

Table 1. Meridian ellipse (WGS 84) arc length in nautical miles.

dL𝑚 (0◦ ∼) 15° 30° 45° 60° 75°

Δ
[
𝑎(1 − 𝑒2)

∏
(𝑒2; 𝜑𝑖 |𝑒2)

]
895 · 78 1792 · 72 2691 · 65 3592 · 91 4496 · 19

L𝑚 (Δ𝜓) 895 · 78 1792 · 72 2691 · 66 3592 · 91 4496 · 19
L𝑚 (Δ𝛽) 895 · 79 1792 · 73 2691 · 67 3592 · 92 4496 · 20
L𝑚 (Δ𝜑) 895 · 77 1792 · 71 2691 · 65 3592 · 92 4496 · 19

Figure 2. Infinitesimal triangle on the spheroid.

In order to find a distance on a rotational ellipsoid (𝐷𝑒 ≡ 𝑠) Equation (11) can be rewritten as follows:

𝑑𝑠2 = 𝑟2

[(
𝑀

𝑟

)2

(𝑑𝜑)2 + (𝑑𝜆)2

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎(1 − 𝑒2)𝑑𝜑

(1 − 𝑒2sin2𝜑)3/2

(1 − 𝑒2)𝑑𝜑

(1 − 𝑒2sin2𝜑) cos 𝜑

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑎(1 − 𝑒2)

(1 − 𝑒2sin2𝜑)3/2

𝑎 cos 𝜑

(1 − 𝑒2sin2𝜑)1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

(𝑑𝜑)2 + (𝑑𝜆)2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and finally, a well-known relation is deduced:

𝐷𝑒 =
DLP
DMP

[
(DMP)2 + (Δ𝜆)2]1/2 (28)

By taking into account that [(1 + tan2𝛼)
1/2

= 1/cos 𝛼], the above formula is equal to
(𝐷𝑒 = DLP/cos 𝛼). For the sphere [

∏
(0; 𝜑|0)], DLP becomes the difference of latitude (Δ𝜑).

To determine the azimuth of the rhumb line (𝛼), i.e., the course between two given points on the
ellipsoid of revolution (spheroid), the following relations are derived from Figure 2:

𝑑𝑝

𝑑𝑚
=

𝑎 cos 𝜑𝑑𝜆

(1 − 𝑒2sin2𝜑)1/2

𝑎(1 − 𝑒2)𝑑𝜑

(1 − 𝑒2sin2𝜑)3/2

=
(1 − 𝑒2sin2𝜑) cos 𝜑𝑑𝜆

(1 − 𝑒2)𝑑𝜑
(29)
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Table 2. Formulas for solving the infinitesimal triangle.

Geodetic Reduced Geocentric
latitude latitude latitude
(𝜑) (𝛽) (𝜓)

𝑑𝑝
𝑎 cos 𝜑 𝑑𝜆

(1 − 𝑒2𝑠𝑖𝑛2𝜑)1/2 𝑎 cos 𝛽 𝑑𝜆
𝑎(1 − 𝑒2)

1/2 cos 𝜓𝑑𝜆

(1 − 𝑒2cos2𝜓)1/2

𝑑𝑚
𝑎(1 − 𝑒2)𝑑𝜑

(1 − 𝑒2sin2𝜑)3/2 𝑎(1 − 𝑒2cos2𝛽)1/2 𝑑𝛽
𝑎(1 − 𝑒2)

1/2
𝑑𝜓

(1 − 𝑒2cos2𝜓)1/2

𝑑𝑠 = [(𝑑𝑚)2 + (𝑑𝑝)2]1/2 𝛼 = 𝑎𝑟𝑐 𝑡𝑎𝑛
(
𝑑𝑝
𝑑𝑚

)

tan 𝛼 =
∫𝜆2
𝜆1

𝑑𝜆

∫
𝜑2
𝜑1

(1 − 𝑒2)𝑑𝜑

(1 − 𝑒2sin2𝜑) cos 𝜑

=
𝜆2 − 𝜆1

ln

⎡⎢⎢⎢⎢⎢⎣
tan

( 𝜋

4
+

𝜑2

2

)
tan

( 𝜋

4
+

𝜑1

2

) ⎤⎥⎥⎥⎥⎥⎦ +
𝑒

2
ln

[
(1 − 𝑒 sin 𝜑2)

(1 + 𝑒 sin 𝜑2)

(1 + 𝑒 sin 𝜑1)

(1 − 𝑒 sin 𝜑1)

] (30)

The integral in the denominator of Equation (30) contains the ratio of the two main curva-
tures

(∫ 𝜑2

𝜑1
(𝑀/𝑁 cos 𝜑)𝑑𝜑

)
and in fact is a special case of the elliptic integral of the third kind,

i.e.,
∏
(𝑒2; 𝜑𝑖 |1). For zero eccentricity (sphere), it becomes a special case of an elliptic integral

of the first kind, i.e., 𝐹 (𝜑𝑖 |1). An overview of the formulas is given in Table 2. It can be seen
that (tan 𝛼 = cos 𝜓𝑑𝜆/𝑑𝜓) shows a simplified way of calculating meridional parts for a spheroid(
DMP =

∫ 𝜓2

𝜓1
𝑑𝜓/cos 𝜓

)
with accuracy sufficient for marine use.

4. Nautical mile in relation to a finite meridian arc

The nautical mile is defined as a unit of distance equivalent to the length of a minute of arc of a meridian.
Due to the elliptical form of the meridians, the nautical mile has a length that varies with latitude.
Equation (12) is proposed in a number of textbooks as a standard geodetic formula for the calculation
of the meridian arc length. In the following, the infinitesimal plane triangle (Figure 1) is used to derive
a formula that represents the length of the arc of the meridian equal to the nautical mile. The same arc
length corresponds to one minute of arc at the centre of the rotational ellipsoid (spheroid). In order
to find a functional relation (Δ𝑠/Δ𝜑) the finite increments (Δ𝑥,Δ𝑦, Δ𝑠) are expressed as infinitesimal
values (𝑑𝑥, 𝑑𝑦, 𝑑𝑠) as follows:

𝑑𝑠

𝑑𝜑
=

𝑑𝑠

𝑑𝑦

𝑑𝑦

𝑑𝛽

𝑑𝛽

𝑑𝜑
(31)

The first part of the right-hand side of the equation is (𝑑𝑠/𝑑𝑦 = sec 𝜑). From the parametric equation of
an ellipse (𝑥 = 𝑎 cos 𝛽; 𝑦 = 𝑐 sin 𝛽), where a and c stand for semi-major and semi-minor axis respectively,
the second term follows (𝑑𝑦/𝑑𝛽 = 𝑐 cos 𝛽). The third partial derivation is obtained by differentiating the
known relation (tan 𝛽 = (𝑐/𝑎) tan 𝜑), i.e., (𝑑𝛽/𝑑𝜑 = (𝑐/𝑎)(cos2𝛽/cos2𝜑)). Inserting the constituents
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of Equation (31) yields:
𝑑𝑠

𝑑𝜑
=

𝑐2

𝑎

cos3𝛽

cos3𝜑
(32)

From the trigonometry (sec2𝛽 = 1 + tan2𝛽) ensues [cos3𝛽 = 𝑎3/(𝑎2 + 𝑐2tan2𝜑)
3/2

]. Introducing flat-
tening ( 𝑓 = (𝑎 − 𝑐)/𝑎) within relation 𝑐2 = 𝑎2 (1 − 𝑓 )2, after several transformations, Equation (32)
reads:

𝑑𝑠

𝑑𝜑
=

𝑎(1 − 2 𝑓 )

(1 − 2 𝑓 sin2𝜑 + 𝑓 2sin2𝜑)3/2 (33)

Expanding the denominator from Equation (33) in a binomial series, neglecting the small terms of
second and higher order, after transition to finite values it can then be recast as:

Δ𝑠 = 𝑎

[
1 −

𝑓

2
(1 + 3 cos 2𝜑)

]
Δ𝜑′ (34)

For geodetic datum WGS 84 (World Geodetic System 1984), the defining parameters are semi-major
axis (a = 6,378,137.000 m) and flattening factor of the Earth (1/ 𝑓 = 298.257223563). By inserting one
minute of arc in radians (Δ̂𝜑 = 1/3437.746771), a simplified equation for Δ𝑠 follows:

Δ𝑠 ≡ Δ𝑚 = 1852.2 − 9.3 cos 2𝜑 (35)

A nautical mile of 1,852 m corresponds to a geographic latitude of 44◦23′ while at the equator the
mile spans 1,842.9 m and at the poles 1,861.5 m. One minute of longitude at the equator is known as
a geographic (geodetic) mile (1,855.324847 m). The correlation factor for conversion between nautical
and geographic miles is approximately 1 · 0018. The nautical mile can be derived from the differential
of Equation (1):

𝑑𝑠 ≡ 𝑑𝑚 = 1855.324847(1 − 𝑒2)(1 − 𝑒2sin2𝜑)−3/2𝑑𝜑′ (36)

Alternatively, the differential with respect to reduced or geocentric latitude can give the same result.
The prime sign in Δ𝜑′(34) and 𝑑𝜑′(36) indicates measurement in minutes of arc. Albeit different
spheroids best suit the shape of the Earth in different geographical locations, in marine navigation the
Earth is approximated by a regular spheroid being WGS 84. In the past Bessel, Clarke and International
(Hayford) terrestrial spheroids were mostly used as a base for compiling nautical tables of meridional
parts and latitude parts.

5. Conclusion

The spherical-Earth approximation suffices for many low-precision applications. The effect of the
Earth’s oblateness can be readily applied to sailing calculations as well. A rotational ellipsoid with
small eccentricity (spheroid) approximates well the shape of the geoid and thus can be used for various
calculations. The intersection of the surface of the spheroid with a plane passing through its poles
produces a meridian ellipse. A deeper insight into the principles of navigation leads to the understanding
of spheroidal models and elliptic integrals. A more convenient solution for meridional distance is
provided by an equation that is based on geocentric or reduced (parametric) latitude. Plane and Mercator
sailings should be based upon either the spherical or the spheroidal model. The error lies in the use of
meridional parts for the spheroidal Earth together with latitude differences for the spherical Earth. For
solutions on the spheroid, the difference in latitude parts that takes account of the elliptical Earth shape
must be determined and used in place of difference in latitude, while difference in meridional parts on
the spheroid is also computed from a formula that takes account of the meridian ellipse. The results of
comparative analysis point out the advantage of calculation of meridian arc length with equation as a
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function of geocentric latitude or even reduced latitude. The proposed truncated formulas are compact,
with negligible errors for practical use. The units used are also different in that the sphere invokes units
of nautical miles whereas the spheroid invokes units of geographic (geodetic) miles.
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