
conversation arq . vol 21 . no 1 . 2017 53

conversation
Computer-Aided Design pioneer Robin Forrest and Daniel

Cardoso Llach discuss the early years of CAD research at MIT

and Cambridge, and its architectural repercussions.

Of algorithms, buildings and fighter jets:
a conversation with Robin Forrest
Daniel Cardoso Llach and Robin Forrest

doi: 10.1017/S1359135517000173

arq (2017), 21.1, 53–64. © Cambridge University Press 2017

A founding member of the Computer-Aided Design
Group at the University of Cambridge, UK, and a
student and collaborator of CAD pioneer Steven A.
Coons at MIT, Robin Forrest occupies an important
place in the history of computational design. Along
with important contributions to the mathematics of
shape representation, his coining of the term
‘computational geometry’ in 1971 offered a handle on
design techniques that started to emerge – somewhat
uncomfortably at first – in the interstices of
engineering, mathematics, and the fledgling field of
computer science. Initially fostered by government-
sponsored research into Computer-Aided Design for
aircraft and car manufacturing, the methods he
helped develop have since been encoded in countless
commercial software systems for 3D modelling and
simulation, helping structure the intellectual work –
and the professional identity – of architects,
engineers, and other practitioners of design.

In this interview Forrest reflects on a career that
spans different fields and institutions, and offers
clarifying insights on the international and
interdisciplinary network of researchers that during
the 1960s and 1970s helped to define the seminal
ideas and technologies for computational design –
particularly those developing at the University of
Cambridge and at MIT. He talks at length about the
application of Coons’s and Pierre Bézier’s techniques
for surface representation to aircraft and car design,
and about the transition these ushered from manual
to computational design methods across entire
industries – crisply presaging future architectural
developments towards parametrically controlled
geometry. Finally, he shares candidly details about
his collaborations with artists and architects,
including Cybernetic Serendipity curator Jasia
Reihardt and centre for Land Use and Built Form
Studies director Lionel March, offering an unusual
perspective on the early (and ongoing) fascination of
architects and artists with both computation and
computer scientists.

The conversation offers profound insight into the
technical and conceptual rearrangement of design
practices around the processing, display, and

manufacturing capacities of digital computers, as
well as into the infrastructural changes that
undergird the last three decades of architectural
production. It hints further at new interpretive
directions that open up when accounting for the
agency of technological systems, their designers, and
the institutions that host them in the collaborative
production of our artificial environments.

Daniel Cardoso Llach (DC): Can you tell me about the
context that led you to Cambridge as a student, and
then to MIT?

Robin Forrest (RF): One summer in Canada I worked
on control systems for nuclear reactors and I got
interested in control theory. So I decided I wanted to
do a PhD in control theory. There were only two
places that did it in the UK. One was Imperial College
and the other was Cambridge. So I applied to the
Engineering Department at the University of
Cambridge after obtaining my mechanical
engineering degree in the University of Edinburgh.
 I intended to study control systems but I didn’t really
like the topics that I was offered. I wanted something
more mathematical, I thought. Basically I suppose
I was a mathematician rather than an engineer.
I started in October of 1965, and in November my
then supervisor Donald Welbourn said, ‘We are
thinking of setting up a CAD group.’ Both Welbourn
and [Mathematical Laboratory director] Maurice
Wilkes had gone to MIT and seen Sketchpad and the
Timesharing system,1 so they were going to set up a
group at Cambridge.2 They employed Charles Lang in
the Mathematical Laboratory because he had worked
with Doug Ross and Steve Coons at MIT.3 His job was
to link computers together: the graphics display to
the mainframe. The Engineering Department hired
Crispin Grey, and I had a research studentship from
Trinity College, which didn’t cost academic
departments anything, so I sort of came ‘free’. I had
to find the topic, and the most pressing problem that
was seen at that stage was the representation of
curved surfaces. That’s where a lot of the money for
Computer-Aided Design (CAD) in the States came in,

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

arq . vol 21 . no 1 . 2017 conversation54

Cardoso Llach & Forrest Of algorithms, buildings and fighter jets

and that’s why Steve Coons got involved, and that’s
why he was so important.

DC: Before becoming a faculty member at MIT in 1948
Steve Coons spent several years working in industry
designing aircraft shapes. Starting on 1959 he and
Douglas Ross co-directed the Computer-Aided Design
Project at MIT, a joint research project between
Mechanical Engineering and the Servomechanisms
Laboratory, which laid the technical and theoretical
foundations of Computer-Aided Design.4 In what
ways do you think Coons’s experience in the aircraft
industry shaped his research on CAD?

RF: Before computational descriptions were
available, aircraft used to be lofted and engineers
would draw full-scale plane sections. For example,
the definition of the Spitfire [airplane] was a set of
lines scribed on sheets of aluminum on plane tables
somewhere in Hampshire. Everything was taken
from that. You would take drawings off of the scribed
sheets. These were full-scale drawings, and the
problem was that if a bomb dropped there, of course,
you would essentially lose the definition of the
Spitfire. But of course you would send drawings – line
drawings – down to the manufacturing department,
but there were always problems, as the aircraft was
only defined at the sections and interpolation
between sections was not precisely defined.
These were the problems Coons probably dealt
with in industry.

At some stage North American Aviation designed a
system called AUTOLOFT, which instead of drawing
conic sections, which is what was normally used,
actually defined the conic sections by their
coefficients. So they had a numerical definition of all
the curves, which of course you could put on a sheet
of paper. So it’s more precise and you can transcribe

it exactly. They started having mathematically
described shapes, but just the sections. But of course,
with the development of numerically controlled
machinery, you could machine those and, as you
wrote, the Servomechanisms Laboratory at MIT had
an important role to play in that area.5 [With CNC]
you got the precision. But the aircraft got more
complicated and it became more important to
actually see how you go from one section to
another. I mean, you can’t just describe a fully
three-dimensional surface with a set of line
drawings. So, that was where Steve got involved in
trying to get the definition of curved surfaces. His
surface methods basically interpolated surfaces
through sets of two curves, and the curves could be
anything you like. There are particular cases, such
as the bi-cubic surfaces.

So, the Servomechanisms Laboratory team came in
because you could have machines that could actually
cut three-dimensional surfaces accurately. So there
was a need, and the equipment – the manufacturing
– was there. It was a question of what were the
equations you were going to cut. And that’s where
Steve got going, and that’s where I got going [1].

DC: Yes, as you explain in your 1972 article ‘On Coons
and Other Methods for the Representation of Curved
Surfaces’, Steve’s mathematical techniques are
significant because they are the first parametric
methods for interpolating surfaces from a set of
bounding curves.6 Can you tell me more about how
these ‘Coons patches’ were used and why they were
influential in practice?

RF: The point about Steve’s work was that designers
liked to design curves and sketch them in paper and
that kind of thing. They liked a surface fitted to these
curves but they didn’t want to be constrained to the

1

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

conversation arq . vol 21 . no 1 . 2017 55

 Of algorithms, buildings and fighter jets Cardoso Llach & Forrest

2

kind of curve that they designed. So you had to find a
surfacing method that would interpolate between
any kind of curves provided the curves actually
meshed – that they fit, that they intersected at the
corners. And that’s what Coons surfaces really were.
Steve used to say that you could have any curve you
like, that you could even have handwriting as a curve.
And it would create a surface through the
handwriting. You know, so you could go from a
straight line to handwriting, to a circular arc, and
you could put a meshed surface in between them all.
But in practice very few people actually ever used
Coons surfaces with arbitrary curves. They used what
was called the tensor product version of them, where
you have curves roughly of the same kind.

General Motors [GM] used them a little bit. But they
had problems. But well, GM was ruled by the stylists. I
don’t know if they still do, but the stylists used to
produce a full-sized clay model of the car and paint it
up. There was a big styling room in the Tech Centre,
and they would light the model from all directions,
and you would walk around it and admire it, and
they would say, ‘That’s it!’ Then engineers would have
to go and digitise this at incredible tolerances
because, as far as the stylists are concerned, it was the
perfect surface. To digitise the model they used to
capture a point every few inches, and when the
surface got a bit tricky, they captured around ten
points more along and across the clay – a
hundredfold increase locally. So you got a profusion
of data from the curves across the car, and this
required very sophisticated curve fitting and curve
smoothing-fairing programs. It got really quite
elaborate. [Pierre] Bézier used to say that it took GM a
megabyte to do a trunk lid, but he got a full car in 64
K[ilo]bytes!

When these clay models of cars were digitised you
would find that they weren’t symmetrical. But the

stylists wouldn’t believe that. There are all sorts of
horror stories of cars with one side five inches longer
than the other. For example, when they were making
headlights they couldn’t take the left one and do the
other in its image, they had to design it again
because the other side was different. Stylists were
bent on using manual methods and couldn’t be
persuaded to let the engineers clean them up. They
ruled the company, really. They changed the models
every year, and style was all – they were the gods. You
know, the engineers had to fit the mechanics inside
what was given to them by the stylists. It was not a
question of wrapping the car body around the works.
It was the other way around. I think to a certain
extent this is still the case.

The idea of Coons’s methods was then to try and
cover all the shapes that designers would want, and
also to hide the mathematics so that they wouldn’t
need to be mathematicians to use the system [2].

DC: So it was not only about being able to define and
encode geometry but also about allowing designers
to manipulate shapes easily.

RF: Yes, and also to do all the things that you had to
do with the model: to be able to stress it, analyse it, to
be able to calculate voids and weights —and
eventually to calculate the aerodynamics, I suppose.
It very much was building the geometric model from
which all sorts of developments could be derived –
including line drawings if you wanted them – but
also instructions for machine tools and different
sorts of analysis.

DC: Gauss defined mathematical methods for
parametric surface representation in the 1830s, and
Schoenberg published work on splines in the 1940s.
Do you see a technical lineage between these

1 Prior to computers,
mathematical
definition of shapes
made the design of
artefacts such as the
RAF’s Spitfire
warplane safer and
more mobile.

2 Steve Coons
pioneered
parametric methods
for interpolating
surfaces between
sets of bounding
curves, circa 1967.

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

arq . vol 21 . no 1 . 2017 conversation56

Cardoso Llach & Forrest Of algorithms, buildings and fighter jets

proof for Elaine. ‘You can’t have that!’ But I’m sure
Steve was right!

DC: Tell me more about your time at MIT and your
collaboration with Coons and Douglas Ross and the
CAD Project during your time at Project MAC.

RF: Project MAC was in this building separate from
the MIT campus in Tech Square. It had the Artificial
Intelligence lab, with Marvin Minsky at the top floor,
I think, and then there was Doug’s group on floor
five. And the people there were basically doing
various software engineering projects. I went to MIT
to work with Coons but he had forgotten to tell me
he was going to be at Harvard working with Ivan
Sutherland. So, there was really nobody there who
was interacting directly with what I was doing.
However, I could always talk to Doug there and
bounce ideas off him and others. Steve at Harvard
was interesting.8 I would go up to Harvard once a
week and I, Danny Cohen, and Ted Lee would talk
with Coons and Ivan Sutherland. Ivan had quite a
short attention span and he would get bored and go
out. Steve would also get bored and disappear, and
then the rest of us would talk all day about surfaces
and graphics. Ted Lee did a thesis with Steve and Ivan
as advisors on rational bi-cubic surfaces. I don’t think
Dan was just working with Steve. They were
developing the head mounted display at that stage. I
think there was more interaction between Steve and
Nicholas Negroponte than there was between Steve
and his students in mechanical engineering. I don’t
know at what stage did Steve get involved with Nick.
He took me to meet Nick in 1969. He and Steve
Gregory cooked a meal for us in Salt Lake City on one
occasion. Good chap.9

DC: Both the CAD Project at MIT and the Cambridge
CAD Group were interdisciplinary and
interdepartmental efforts combining computers,
engineering and mathematics. How did these
collaborations between different disciplines work in
practice?

RF: At Cambridge this was a strength, but also a
source for all sorts of problems later on. It was a rich
man’s game to begin with – I think that was one of
the reasons. We were lucky in Cambridge, because
there were not many university departments that did
Computer-Aided Design in the 1960s. Most simply
they couldn’t get the grants, and couldn’t get the
money for equipment, whereas if you ran an Air
Force contract [like the MIT CAD Project] you could
get the funding. At the Cambridge CAD Group we
were not funded by defence. Our funding came from
the Science Research Council. And it was rather
tricky because we were a joint group between the
Engineering Department and the Maths Lab, and
there was always a question of who would fund us.
There was always an argument, which got quite
difficult sometimes, whether we should be funded
for the kind of work that we did. They didn’t think it
was mechanical engineering, or they didn’t really see
where things were going.

mathematicians and Coons? Did they have an
influence on his work?

RF: I think they probably did not. I can say two things
to that. One is that, at one stage, halfway through my
thesis, Charles Lang said that I should go and talk to
some mathematicians to get some help, so I went to
talk to a couple different people. One was an old
numerical analyst from the days of the numerical
tables (which you probably don’t remember at all).
He referred me to a mechanical desk calculator
manual from 1936, which was not really relevant.
Those were the days when computers were people.
The other one was Peter Swinnerton-Dyer, to whom I
explained what I was doing. He said, ‘Well some of
this work on cubics was very fashionable at the turn
of the century, but it’s no longer fashionable now,
and what you are trying to do is rather different from
the interests of mathematicians. So I can see you’ve
got problems!’ That was the extent of my
mathematical help at Cambridge. The
mathematicians were, say in the cubic case,
interested in what happens at infinity, and in
classifying curves according to this. This wasn’t really
relevant to engineers – who wants to know about
what happens at infinity?

The other thing is that Schoenberg had basically
developed his techniques for B-Splines for smoothing
actuary tables: data for insurance companies. And
the mathematics he used enabled him to analyse a
lot of their properties, but it was very unstable
numerically. The algorithms were not something
you would really want to use. So they were not really
known except in theoretical numerical analysis until
the correlation between Bézier and Bernstein came
out and Bill Gordon at GM Research Labs recognised
that Bézier is a special case of B-Splines, I would say.
And then we had two independent developments of
stable numerical algorithms for computing
B-Splines, and that’s when all became possible. But
all that was in the early ‘70s, long after Steve was
really innovating.7

DC: It sounds as if there was a sort of disconnect
between mathematics and engineering, and that
Steve Coons’s methods for parametric surface
representation were more closely linked to practical
questions emerging from design and manufacturing
than to established mathematical theories.

RF: Yes, he was an intuitive mathematician. He really
… He just thought that way. I don’t think he had deep
mathematical knowledge. [Pierre] Bézier did, but not
Coons. I recall that Steve and I thought that if you
had a closed polygon you probably could have a
closed B-Spline curve, and that if you increased the
degree of the B-Spline, you could start using some of
the points more than once – so the curve would
shrink. We recognised that by increasing the degree
to infinity the curve would shrink to a point. And Rich
Riesenfeld and Elaine [Cohen] asked: ‘Would it be a
square point or a circular point?’ And Steve and I
both said: ‘It would be a circular point!’ And Steve
said: ‘What else could it be?!’ That wasn’t enough

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

conversation arq . vol 21 . no 1 . 2017 57

 Of algorithms, buildings and fighter jets Cardoso Llach & Forrest

Looking back, the ‘60s were very much the time
when computer science came of age and many of the
basics, which we now tend to take for granted, were
being developed. Engineers did not understand the
difference between being able to generate a drawing
that looked like a recognisable artefact, and being
able to construct a model that accurately represented
the artefact and from which drawings could be
produced but which fed into other aspects of design
such as stress analysis and manufacture. Early
commercial systems such as Computervision, in
which Coons and Negroponte had a stake, were in
practice systems for generating conventional
mechanical and architectural drawings.

Coons was not a computer user but rather a
visionary, and he could see how things had to
develop. I don’t think he understood the amount of
computer science which was necessary and which
had to be invented. Doug Ross did, but he probably
became a bit detached from real applications. The
same scenario played out at Cambridge. I started out
as a Mechanical Engineer in the Engineering
Department and ended up as Computer Scientist in
the Maths. Lab. The point about interaction is that
the interaction has to be with something and that
something has to be a computer model.

DC: These ideas about interaction seem to resonate
with cybernetics. Can you say something about the
influences on the CAD Group during this period?

RF: [Benjamin Lee] Whorf’s and [Joseph Carl Robert]
Licklider’s ideas were influential. I came across

Things got difficult because none of us had
tenured posts, and we were all on contract. At that
stage the Maths Lab had only one tenured post, and
didn’t have any lecturers at all. The Engineering
Department eventually appointed people as
lecturers, but they came in from outside, and they
were assigned to our group, but I think they did not
really understand what we were doing.

For example, at one point Welbourn was frustrated
at the rate of transfer of the research to practical
systems – he got fed up waiting for us to do all the
software and the tools – and he set up a side group
that produced a program that specialised on ducts,
because there was a market for people who would do
ducts design. But you couldn’t do anything else but
ducts. So it was very narrow. We regarded this kind of
system as the province of the CAD Centre, but I think
Welbourn ignored this.10

A source of these problems was that ‘graphics’ was
not part of computer science in those days. It was a
part of engineering. At the same time, I don’t think
that engineers understood what needed to be done as
far as computer software was concerned. You know?
They didn’t understand why we needed data
structures, and why we needed to develop this and
that. I don’t think they really understood, to a certain
extent as Steve Coons did, that you could build a
model from which everything else flowed. It was not
only to produce drawings. It was something more.

DC: It sounds like you had to convince both sides. On
the one hand the engineers about the importance of
computing, and on the other the mathematicians and
computer scientists of the importance of graphics.

RF: Yes. After I finished my PhD in 1968 I was
employed by the Engineering Department and at one
point I got tackled by a faculty member who said that
I could do nothing for him, that my work would be of
no use to him. He actually said that!

We did a couple of PhD theses in our group in the
Engineering Department. One was finite element
stress analysis, that is the automatic generation of
meshes for stress analysis. The other one was 3D and
numerically controlled cutting. The first thing we
cut was a shoe last, which was not exactly the easiest
thing to start with. It caused lots of grief [3]!

DC: I would like to return to your previous mention of
data structures. You mentioned that the Cambridge
CAD Group built ‘tools to build systems’, and that part
of this was to design new data structures. At the time
you had LISP and FORTRAN, and therefore you had
lists, arrays, and linked lists, but you were probably
referring to higher-level data structures.

RF: Higher and much more complicated. We needed a
framework from which you could hang all those
things. You needed something which was not two-
dimensional, so a [data] tree would have three, four, or
five-dimensional links. This is what Doug Ross called a
‘Plex’. But yes. It wasn’t straightforward. You couldn’t
do things with lists and big searches. You had to reflect
the three-dimensional nature of things.

 3 Early uses of
computational
geometry at the
Cambridge CAD
Group included the
geometric

modelling and
numerically-
controlled
manufacturing of a
metal shoe last,
October 1968.

3

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

arq . vol 21 . no 1 . 2017 conversation58

Cardoso Llach & Forrest Of algorithms, buildings and fighter jets

lots of work later on just to talk people into working
out how to intersect two line segments, which is a
deceptively simple problem.13 The mathematicians
would say, ‘Intersections of lines? That’s easy: we just
set up these two equations and invert the matrix.’
That’s the problem, sometimes you have to
recognise that a matrix might not suit you, because
lines are parallel or coincide. You see? If you read
any book on numerical analysis it says that you can
do all these wonderful operations on matrices, but
accuracy depends on how orthogonal they are.
What does that mean? Well that actually means that
in geometric terms, the lines are at right angles. And
then your errors are very small. But if they’re not, if
they’re nearly parallel, where do these lines
intersect? You have this big sloppy business there.
You get all sorts of numerical problems.

DC: There is again a seeming contrast between
mathematicians’ and engineers’ approach to
geometric problems. The contrast stems from
engineers’ approach being closer to design and to
material and manufacturing constraints, while
mathematicians’ approach leans more towards
abstraction.

RF: Well, that’s why I started talking about
Computational Geometry. Basically the kinds of
geometry we were dealing with were not particularly
sophisticated as far as mathematicians were
concerned – they couldn’t see what the problem was.
But we had these problems [in design and
manufacturing], and in actually implementing them
on a computer the problem was making them
accessible to designers so that they could modify them
and do the things they wanted. And that was
something that mathematicians probably didn’t
quite understand. And then we also had the problems
of just complexity – the number of pieces. You know.
Things got more difficult once you moved into higher
dimensions. So, going back to the numerical
problems, when you designed using Ian Braid’s
system, you would insert a new face, split a face, put in
a new edge, and this and that, and you actually had to
evaluate the geometry to find out whether you
intersected anything or created a new object, or
chopped a bit off. This all involved numerical work.
You might end with a data structure, which was in
some sense invalid due to numerical error. There is an
extension of Euler’s equation for polyhedra, which
Braid used, which guarantees that the data structure
in a sense actually represents a legal object provided
the numbers are accurate.

And the construction solid geometry people would
say, ‘We can prove ours is correct.’ The only trouble is
that you had these operations: you could slice things,
cut them, and the rest of it. I would ask them the
questions, ‘Well, I’ve done this. But how many bits does
it have? Is it one solid piece, or is it more than one bit?’
B-Rep people could tell you that. CSG people couldn’t.

DC: How would you characterise the differences
between the work at Cambridge and what was going
on at MIT? To what extent were there overlaps?

Whorf’s work through Licklider and others.11 I think
the point people took from Whorf was the idea that
our own language to a certain extent dictates the
ideas we can understand and express, and the
introduction of interactive computing had the
potential of creating a new form of language.
Accordingly, Steve Coons used to emphasise how CAD
would involve a designer ‘talking to a computer’ by
which he meant using a teletype terminal or a light
pen. Building practical computer models for real
applications demanded new software tools.

In terms of geometric representation the one that
really got going was the one that started off at
Stanford on the AI lab – the winged edge polyhedron
– which defined a data structure for polyhedra in
which the basic element was the representation of an
edge, which had pointers to edges in adjacent faces.12
In this data structure you got links and pointers that
go around the faces of the polyhedron, and there are
ways of traversing all the faces of the polyhedron, so
it was all three-dimensionally linked. And that was
the basis from which Ian Braid started off for volume
and solid modelling. He took it a little bit further
than the original Stanford stuff.

DC: So this is the origin of Boundary Representations,
or B-Reps, which were fundamental to many solid
modelling software systems. It is tempting to see the
Cambridge CAD Group as a point at which two
distinct sensibilities about computation in design
converged: on the one hand a concern with
geometry and curved surfaces, shaped by work in
aircraft and car design, in particular Coons’s and
Bézier’s, and on the other hand, a concern with data
structures and systems for describing and
accounting for mechanical parts. The combination
of geometric representations and attributes…

RF: Yes, well, I did the surfaces because we saw that
was a problem at the time. But then Charles [Lang]
would ask ‘What about what we could call simple
mechanical parts?’ That’s why we got into the
volume modelling business, the solid modelling
business. And there are all sorts of issues there,
which we discovered, which we hadn’t realised the
problems before, such as combinatorial problems.
The complexity of things gets actually quite difficult
to handle. You got lots of numbers and lots of bits.
Lots of pieces, edges, fillets, and holes. You are not
dealing with a fuselage and a few bits, you have
hundreds or thousands of pieces instead. And there
were issues on how accurate the representation was.
There were two conflicting systems. There was the
B-Reps [system] and there was constructive solid
geometry. And, there were turf wars between the two.

Basically constructive solid geometry says that you
could assemble everything from half spaces, so you
could create objects by union and intersections of
half spaces. And you get this sort of tree of
operations of intersection and union of these half
spaces. The thing is that you can prove all sorts of
things mathematically about this. But, you run into
the real problems of real computational geometry,
which are numerical problems. For example, I did

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

conversation arq . vol 21 . no 1 . 2017 59

 Of algorithms, buildings and fighter jets Cardoso Llach & Forrest

going on in GM, we knew what was going on in Ford.
We were very privileged. We had to be careful about
what we said to whom, but we did indeed have a good
knowledge of what was going on.

When we started off at Cambridge we were one
office at the Maths Lab, and in the next-door office
there were three people who were writing the time-
sharing operating system. And whenever Charles
[Lang] needed some special instructions to link the
PDP satellite to the big machine he would shout
through the door ‘Can you do this?’ and they
would shout back ‘Yes, we’ll do that!’ We were a very
small team.

I think it’s difficult to understand nowadays, but
when we started it really was the primitive days of
computing and a lot of things were not around. The
big mainframe computer at Cambridge, which was
built by the lab, had an operating system that, when I
got there, had been written by one man. It was a batch
operating system that he wrote entirely in machine
code. Allegedly, if anything went wrong you would
phone him up and he would have the whole operating
system in his head! You can imagine a patch…

DC: Sounds like he was the operating system.

RF: Yes, there were some amazing people around.
This was Peter Swinnerton-Dyer, an eminent
mathematician. He thought computer science was

RF: The work of the Cambridge CAD Group was
slightly divergent from MIT’s. At a given point there
wasn’t, I think, a lot of interest from the MIT
mechanical engineering department in what Coons
was doing. They suddenly didn’t teach any more
courses on it. There was Ivan Sutherland, who was a
PhD student, and there were a few students —Tim
Johnson, Robert Parmalee, and others— who did
Master’s, but there was really nothing much after
that. Doug [Ross] was really obsessed with software
engineering.

When we started in Cambridge we were very lucky
because Maurice Wilkes had £50,000 that he could
spend any way he liked, and he went and bought a
DEC PDP computer and display. Nobody else had that
kind of money and the freedom to do that. I think we
were one of the first academic CAD groups, in an
academic department, rather than existing under
military contracts. So, when I was doing my thesis,
the people I talked to were in the industry. There was
nobody doing anything remotely like it in a
university —which made my life slightly difficult.
There were people in the aircraft and car industries,
and to some extent in the ship industry, so I started
by writing to many of them, asking about what they
were doing. Also, for some reason, we got a lot of the
MIT reports sent to us by the air attaché in
Washington, and from Doug Ross’s group. So we
knew what was going on. We also knew what was

4 The Cambridge
CAD Group’s
model-making
machine was an
early 5-axis CNC
machine inspired
by Bezier’s
UNISURF system,
February 1971.

4

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

arq . vol 21 . no 1 . 2017 conversation60

Cardoso Llach & Forrest Of algorithms, buildings and fighter jets

draw curves manually and then fit polygons round
the curves using a ruler and digitise the polygon
vertices. The machine then drew the corresponding
Bézier curve enabling the fit to be examined and
improved on by tweaking the vertices. I went to
Renault once with people who were in the business
of making car bodies in England. Bézier handed me a
pencil and a straight edge and said: ‘You produce a
curve your way.’ The curve I drew was about four feet
long, and I got it within a quarter of an inch margin
of error. And Bézier just got it down to about one
sixtieth of an inch. That blew the minds of the
people with me.

Bézier built this machine, with which you could
build car panels, but he just left it. He got one or two
star designers who were interested but wondered
what the thing was. He told them how to use it. Some
of them were convinced and played around with it.
He said, ‘One morning I came in, and this beautiful
wooden sculpture was outside my door, and that’s
when I realised I had won the battle. Because this can
do art.’ And this is the way to introduce these
technologies. You don’t force it. You let people find it
for themselves and do amazing things, and then they
do things and you are left thinking, ‘How the heck
did they do that with my system? I don’t know!’
That’s the nice thing about this kind of work.

But on the other hand, you saw these guys using
these systems and … I used to tell students that we
shot ourselves in the foot because we made these
things relatively easy to use. So nobody really saw the
work that had gone into it. We should have made it
very difficult, and then we could have charged vast
amounts of money to do it properly for them [4]!

DC: Bézier is best known for developing an intuitive
technique to design curves by moving external
control points. You decoded Bézier’s mathematics
and revealed that it was based on Bernstein
polynomials. Can you talk about what was important
about that discovery and more generally about
Bézier’s methods?

RF: It explained why Bézier curves worked. People
want to define curves by points and by passing curves
through points. That’s what I wanted. I wanted a
curve to go here. The problem with interpolation is
that the more points you have and the more you try
to interpolate, the more opportunities the curve has
to wiggle. If you are connecting the points with
straight lines and you count the number of times
you have to change from turning to the right to
turning to the left, or vice versa, the inflections, the
best you could get out of interpolation was the same
number of inflections —but you generally got more,
so it became wigglier. The point of Bézier is that you
are designing basically with the points off the curve,
but you are guaranteed to get at most as many
wiggles as you had in your data, and then generally
you could get fewer. So you could put noisy data and
get smooth curves out. The other problem with
interpolating points is that if you want to move the
curve between two points and still go through all the
others, it would wiggle between the other points,

easy. Another example of our work from this period
is the FORTRAN compiler we eventually used. It was
written as a PhD project because there just wasn’t a
FORTRAN compiler around. These were the days of
people creating compilers and data structures: the
infancy of computer science. You could knock off a
system, which would do one particular thing. We
thought that we were in the business of building tools
to build systems to do things.

Another system we developed is the graphics
package GINO. It was further developed by the CAD
Centre 14 and became GINO for FORTRAN, or GINO-F,
and Martin Newell went to Salt Lake City to work with
Sutherland and with other people, worked with Jim
Clark, and they built a system there that became GL.
So Open-GL is a sort of grandson of GINO.

DC: To what extent was GINO also the result of
connecting the Titan machine to the PDP display,
and of the need to develop libraries or routines for
graphical display?

RF: It was a device-independent graphics system. You
had code-generators for different devices so that it
would drive the PDP-7 display. But we also had the
other systems such as the Tektronics storage tube
display and a plotter, and two model-making
machines – machines to cut foam – that we built.
When we got the first machine working we realised
that we didn’t have anything to cut. So Peter
Woodsford wrote a code-generator for the foam-
cutting machine one evening, and the next morning
we started cutting surfaces.

DC: Tell me more about these model-making
machines. What motivated you and the group to
build them?

RF: There was a series of conferences called ProLaMaT,
Programming Languages for Machine Tools. They
had one in Rome in 1969, and Charles Lang and I
went there. Doug Ross went there, and Pierre Bézier
went there. There were some hardcore numerical
control people there but Charles [Lang] and I, and
Bézier, and Doug Ross, we also knew what we were
doing and we got to know each other very well. After
the conference we went to visit Bézier and saw what
he was doing. He had a system that could cut full-
sized car panels, and we were very impressed by that.
So by 1969/1970 we decided to build our own. Our
machine was much smaller. I suppose it was an early
3D printer in a way. But it was a milling machine; it
had a wood router on it. And then we built a second
one, a five-axis machine, for which I designed the
mechanical side. Like Bézier’s system, ours had three
linear motions, and then we could rotate the head’s
angle manually to get the best cutting angle.

Bézier was vice-president of production
engineering at Renault, and was in a position to say
to his staff: ‘You can stop using clay models and now
you will use my method.’ But he told us he didn’t do
that. He had built his machine, and the workshop
had a full-sized drafting system with which to draw a
car full size, and could digitise shapes.15 You could

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

conversation arq . vol 21 . no 1 . 2017 61

 Of algorithms, buildings and fighter jets Cardoso Llach & Forrest

generated in the computer, they are recorded and
developed digitally. Your description of the work by
Bézier at Renault and the work of engineers and
designers at GM suggests that architects have not
only appropriated software tools from these
industries, but also an approach to method – and
perhaps an aesthetic sensibility – in order to develop
new architectural languages.

RF: Right. So Gehry designs a little bit like the old
way GM designed cars. Of course, there’s a question
of cost too, and of construction techniques. If you
were an accountant you wouldn’t do anything but
straight lines and planes. Anything else is expensive
– unless you do hyperbolic parabolas, where you can
use straight materials. There are limits to what we
can do.

CATIA, on the other hand, is interesting. You know,
when I was doing research everyone used their own
systems, until that got too expensive. Eventually
CATIA won out and then suddenly everyone started
using CATIA. Until then, Boeing had their own
system, McDonnell Douglas had their own system,
Lockheed had their own system.

General Motors doesn’t get enough credit for
doing pioneering work. They had the DAC-1
computer and they did a lot of really interesting
work, but they published about six months after
Ivan Sutherland, so they didn’t get all the credit for
all of the techniques that Ivan describes. I think they
were influenced by what was happening at MIT, but
also developed their own stuff. These are very, very
good people and of course they had the money in
those days. They were very much in cahoots with
IBM, and the displays they developed with them
became the 2250, which was of course a very
expensive machine – I mean, it cost a quarter of a
million dollars, just the display.

Also, well, Bézier, was a very shrewd man. I think
the other thing is that people got rather obsessed
with graphics to begin with, and particularly shaded
graphics, when raster graphics came out. You could
look at things on the screen and that was it, and that
was not right. We knew that there were things that

and it would change. With Bézier’s methods if you
pulled the curve then it would only move in one
direction. So it’s intrinsically a way of defining
smooth curves and fair surfaces. He was a very smart
man, Bézier [5].

DC: It’s interesting to consider the car design process
you describe at GM and Renault, which was so much
based on the digitisation of physical models, in
relation with what architects like Frank Gehry do
today. Work at Gehry’s office often starts from
physical models built with paper, cardboard, clay,
which are scanned and then rationalised, optimized,
and documented using software – notably a version
of CATIA. So, while the designs themselves are not

5 Sequence of
images showing
the effects of
transforming a
B-Spline curve’s
control polygon,
July 1974.

6 Multipatch joining,
an early technique
to produce smooth
curved surfaces by
aggregating
parametrically
defined surface
sections developed
by the Cambridge
CAD Group, circa
1968.

5

6

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

arq . vol 21 . no 1 . 2017 conversation62

Cardoso Llach & Forrest Of algorithms, buildings and fighter jets

across fields, we have a big building in the University
here, designed by Norman Foster. And there was a
retrospective exhibition of Foster’s work with the
British Museum atrium, and the Gerkin in London,
and so on. Robert Aish was there. He worked for a
company that helped Foster and Partners actually
build the actual shapes.18

I hadn’t realised how much the aerospace work
had influenced architecture. Do you use Rhino? That
came out of Boeing, I think. It’s a NURBS-based
system. I met some of the people from early on.19 I
was a consultant at Boeing at one stage, and I knew
some of the people who worked with NURBS went to
work with Boeing. I have met the Rhino people – I
know of them and they probably know of me. But it’s
fascinating. Basically the students I lectured to at
Syracuse in the 1970s, Rich [Riesenfeld], but also
Lewis Knapp and Ken Versprille, they developed
NURBS: their three theses led to NURBS.20 So it’s
strange in a way, because now I row in a sea-going
boat. And the boat comes in a kit, just like a model
aircraft. You pop up the parts from plywood sheets
and bend them to shape, and all the rest of it. The
parts are usually cut using numerically controlled
cutting tools, but I asked the guy who made it about
the process. And he said, ‘Well, we modelled these
boats from the line drawings we get from the boat
designer, and we turn them into 3D using a system
called Rhino.’ So, now I row on a boat designed in
Rhino, which uses math that I helped to develop!

DC: I see that you have a poster for the 1968
exhibition Cybernetic Serendipity.21 Can you share a
few thoughts about your collaborations with artists
or practitioners in other fields?

RF: I am actually the author of that image [points at one
of the images in the poster]. Cybernetic Serendipity was
the first conference in computer art, and Jasia
Reichardt came around to Cambridge sort of ‘trawling
for data’, and took a few polaroids of things in the
screen, which she later superimposed. The image was
… Well … We weren’t really trying to design anything.
We were just trying to see how flexible we could be.
And she said, ‘I’ll take this!’ So she picked up a bunch
of our polaroids and said, ‘That’s it! That’s art!’ And off
she went with it. This was early 1968, at Cambridge,
when I was writing my thesis or shortly after.

DC: So she basically came to see what you were doing
in the CAD group…

RF: Yes. And I ended up showing some work in that
exhibition, and going on the poster – I think she
signed it for me somewhere. So, whenever someone
talks to me about art, I say, ‘I exhibited in the ICA!’
There were some interesting people there: Gordon
Pask, John Lansdown, Lionel Penrose, Meredith
Thring, and many others. As always, there’s that
question of what is art? I never considered my image
to be art, but she did. So, it must be art! But why that
image? I just … You know. Of all the stuff they had [6]!

DC: Robin, thank you.

you couldn’t really see on a big screen. You had to
know what to look for. There was an obsession at one
stage with something called ‘twist vectors’, and
‘bi-cubic surfaces’. And nobody knew what to do with
them, but you had to have them. And we made some
models at Cambridge, of a bi-cubic patch, which was
basically a bump and a 4x4 array of surface patches.
And one we had properly computed twist vectors,
and the other we set them all to zero, which is what
we tended to do. If you looked at these two side by
side, they looked identical. But if you ran your finger
over them, you could feel that there was a flat area
that didn’t show up in the graphics. Well, you could
probably see it if you read it in the screen in the right
fancy way and if you got the orientation right. But,
your finger is quite sensitive to things having bumps
in them.

DC: Your 1971 paper ‘Computational Geometry’ is
not only foundational to the field but also offers a
remarkably clear case for the value of
computational descriptions to design and
manufacturing.16 Architects in particular have had a
fascination with geometry and, more recently, with
numerical control. You knew and collaborated with
members of the centre for Land Use and Built Form
Studies here at Cambridge, and contributed a
chapter to one of Lionel March’s volumes. Can you
tell me a bit about those collaborations and, more
generally, about seeing Computational Geometry
used across design fields?

RF: There was a lot of interest from architects in the
work of the CAD Group. For example, one of the
earliest users of the display system in the
Mathematical Laboratory was William Newman, who
had studied architecture at Cambridge and wrote a
pioneering design system for building layout called
NIBS – for Newman’s Industrial Buildings System.17

Crispin Grey left the CAD Group in the late 1960s to
work for Land Use and Built Form Studies. Through
him I met several of the members of LUBFS socially.
The Maths Lab, being the site of the University’s
computing service, was a point of contact.
Collaboration was informal but easy in the
Cambridge environment. I had written a technical
report on transformations and matrices, based on
earlier notes by Bert Herzog of the University of
Michigan, to explain some of the features of the
GINO graphics package. Lionel March asked me for a
version for one of his volumes and, being interested
in modern architecture, I thought the Seagram
Building would provide a recognisable model to
illustrate the chapter. I cannot claim it is accurate,
but it looks approximately correct! This loose
collaboration had an unexpected result for me: a few
months later I discovered that I had been listed as a
member of the Architecture Faculty because I was the
type of person they liked to associate with. There
were later collaborations with architects after I left
Cambridge. For example, a model of a hospital
created using a modular design system was cut on
one of the model-making machines we built.

Regarding the use of computational geometry

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

conversation arq . vol 21 . no 1 . 2017 63

 Of algorithms, buildings and fighter jets Cardoso Llach & Forrest

Notes
1. ‘Timesharing’ enabled multiple

researchers to access a computer
remotely through terminals
distributed across the MIT campus.
Sketchpad, developed by Coons’s
student Ivan Sutherland as part of
his PhD thesis at MIT, was the first
interactive graphics system. Ivan
Edward Sutherland, ‘Sketchpad, a
Man-Machine Graphical
Communication System’
(Massachusetts Institute of
Technology, 1963).

2. Maurice Wilkes and Donald
Welbourn are both important
figures of postwar computing in
Britain and, as Forrest recalls,
played a founding role in the
establishment of the CAD Group at
Cambridge. Wilkes was the
director of the Mathematical
Laboratory (which is also referred
to as Maths Lab throughout the
interview) and Donald Welbourn,
Forrest’s first advisor, was a
member of the Engineering
Department faculty. The
Mathematical Laboratory was
renamed to Computer Laboratory
in the late sixties. Haroon Ahmed,
Cambridge Computing: The First 75
Years, University of Cambridge:
Computer Laboratory (London: Third
Millenium Publishing, 2013).

3. Steve Coons and Douglas Ross
co-directed the Computer Aided
Design (CAD) Project at MIT
between 1959 and 1970. Sponsored
by the US Air Force, the project
explored the possibilities of
computers in design, and laid the
foundations of CAD systems. For
an expanded discussion of the MIT
CAD Project and its architectural
repercussions, see: Daniel Cardoso
Llach, Builders of the Vision: Software
and the Imagination of Design
(London, New York: Routledge,
2015).

4. For an expanded discussion of the
Computer-Aided Design Project at
MIT and its architectural
repercussions, see: Ibid.

5. Daniel Cardoso Llach, ‘Software
Comes to Matter: Towards a
Material History of Computational
Design’, DesignIssues, 31:3 (2015),
41–55, available online: <
doi:10.1162/DESI_a_00337>
[accessed 15 September 2016].

6. Robin Forrest, ‘On Coons and Other
Methods for the Representation of
Surfaces’, Computer Graphics and
Image Processing, 1 (1972), 341–59.

7. The first publication on Coons’s
surface methods dates to 1964, but
several accounts point to earlier
developments. Steven Anson

Coons, Institute of Technology
Massachusetts, and MAC
(Massachusetts Institute of
Technology) Project, Surfaces for
Computer-Aided Design of Space
Figures, ESL Memorandum 9442-,
M-139 (Cambridge, MA:
Massachusetts Institute of
Technology, Electronic Systems
Laboratory, 1964).

8. Forrest recalls that in the summer
of 1967 Steve Coons was a visiting
scholar at Harvard working with
Ivan Sutherland.

9. Negroponte took a class with Steve
in 1966 when he was still a student,
and then it was because of Steve
that he started teaching, filling in
for Steve in the Mechanical
Engineering Department before
being hired in Architecture, where
he and Leon Groissier started the
Architecture Machine group in
1968. See more about this
relationship: Daniel Cardoso
Llach, Builders of the Vision: Software
and the Imagination of Design
(London, New York: Routledge,
2015).

10. Forrest recalls that the system,
called Duct, ‘ended up in a curious
way involved with Rich
Riesenfeld’s work in Utah, and
becoming part of a much larger
system after both Riesenfeld’s
Alpha-1 system and Duct were
bought by another company called
Delcam.’

11. See J. C. R. Licklider, ‘Man-
Computer Symbiosis’, IRE
Transactions on Human Factors in
Electronics HFE, 1 (March 1960),
4–11; and Benjamin Lee Whorf,
Language, Thought, and Reality:
Selected Writings of Benjamin Lee
Whorf, ed. by John B. Carroll (The
MIT Press: Cambridge Mass., 1964
[orig. pub. 1956]).

12. Bruce G. Baumgart, Winged Edge
Polyhedron Representation (Stanford,
CA: Stanford University, 1972).

13. See Robin Forrest, ‘On the
Intersection of Lines’,
Computational Geometry Project
(Norwich: University of East
Anglia, November 1984), Robin
Forrest files.

14. The Computer-Aided Design
Centre was funded in 1967 by the
British government through the
Ministry of Technology in
Madingley Road, Cambridge, CB3
OHB. With time, it became a
private organization, which,
under the direction of Crispin
Grey, evolved into Aveva PLC.
According to Forrest, the Centre
provided ‘a direct route for the
CAD Group’s research to be

developed and exploited by
industry’. Aveva PLC still develops
CAD systems for specialised
applications such as oilrigs,
refineries, and ships. Crispin Grey,
one of the original CAD Group
members, and later a member of
the centre for Land Use and Built
Form Studies at Cambridge, was
the CEO in charge of taking the
CAD Centre to the private sector.

15. P. E. Bézier, ‘Example of an Existing
System in the Motor Industry: The
Unisurf System’, Proceedings of the
Royal Society of London A:
Mathematical, Physical and
Engineering Sciences, 321:1545 (9
February 1971), 207–18, available
online: < doi:10.1098/
rspa.1971.0027> [accessed 15
September 2016].

16. Robin Forrest, ‘Computational
Geometry’, Proceedings of the Royal
Society of London, A. 321 (1971), 187–
95.

17. Newman would later work in
Xerox and co-author with Bob
Sproull a book on interactive
computer graphics. William M.
Newman and Robert F. Sproull,
eds, Principles of Interactive Computer
Graphics, 2nd edn (New York, NY:
McGraw-Hill, Inc., 1979).

18. At this time Robert Aish worked
at Bentley Systems, where he
developed a software system
called Generative Components
that made many computational
geometric techniques available to
architects. He was also at the
Smart Geometry Group, which
trained many practicing
architects in parametric design.
Aish now works at Autodesk, the
makers of Autocad, developing a
visual programming
environment called Dynamo. He
is interviewed in this volume, see
‘The Evolution of Architectural
Computing: From Building
Modelling to Design
Computation’.

19. Rhino is short for Rhinoceros, a
3D modelling software developed
by the Seattle based company
McNeel and Associates and used
widely by architects and
industrial designers. To develop
the software the company’s CEO
Bob McNeel hired
mathematicians from Boeing
who had developed
computational methods for
surface modelling. For further
detail, see: Cardoso Llach, Builders
of the Vision: Software and the
Imagination of Design, p. 93.

20. NURBS (Non-Uniform-Rational-
Bezier Surfaces) are

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

arq . vol 21 . no 1 . 2017 conversation64

Cardoso Llach & Forrest Of algorithms, buildings and fighter jets

computational representations of
complex surfaces. For a technical
introduction and a history of
NURBS, see: David F. Rogers, An
Introduction to NURBS: With Historical
Perspective (San Francisco, CA:
Morgan Kaufmann, 2001).

21. The 1968 exhibition Cybernetic
Serendipity was a pioneering event
of computer art that brought
together artists, architects, and
computer scientists. Forrest’s
image in the poster, which hangs
in his studio, is a series of
superimposed wireframe drawings
of curved surfaces. Forrest’s
contribution to the exhibition was
titled ‘Mathematically Defined
Surfaces’. See Jasia Reichardt, ed.,
Cybernetic Serendipity. The Computer
and the Arts, 1st edn (Praeger: New
York 1969), p. 96.

Illustration credits
arq gratefully acknowledges:
Marc Evans (licensed under Creative

Commons Attribution 2.0) 1
Robin Forrest, 2–6

Acknowledgements
This conversation is part of a larger
project on the histories of
computational design by Daniel
Cardoso Llach. Thanks to the Martin
Centre for Architectural and Urban
Studies at the University of
Cambridge, UK, and the School of
Architecture at Carnegie Mellon, US,
for providing the conditions and
material support enabling it.

Authors’ biographies
Robin Forrest worked with Steve Coons
as a Visiting Research Fellow at MIT
Project MAC in 1967 and as a Visiting

Professor at Syracuse University in
1971–2. A founding member of the
Cambridge CAD Group, he moved to
the University of East Anglia in 1974 as a
Reader and became a Professor in 1980.

Daniel Cardoso Llach is Assistant
Professor in the School of Architecture
at Carnegie Mellon University and the
author of Builders of the Vision: Software
and the Imagination of Design (Routledge,
2015). He holds a BArch from
Universidad de los Andes and an MS
and PhD in Design and Computation
from MIT.

Authors’ addresses
Robin Forrest
robin.forrest@gmail.com

Daniel Cardoso Llach
dcardoso@cmu.edu

https://doi.org/10.1017/S1359135517000173 Published online by Cambridge University Press

https://doi.org/10.1017/S1359135517000173

