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A founding member of the Computer-Aided Design 
Group at the University of Cambridge, UK, and a 
student and collaborator of CAD pioneer Steven A. 
Coons at MIT, Robin Forrest occupies an important 
place in the history of computational design. Along 
with important contributions to the mathematics of 
shape representation, his coining of the term 
‘computational geometry’ in 1971 offered a handle on 
design techniques that started to emerge – somewhat 
uncomfortably at first – in the interstices of 
engineering, mathematics, and the fledgling field of 
computer science. Initially fostered by government-
sponsored research into Computer-Aided Design for 
aircraft and car manufacturing, the methods he 
helped develop have since been encoded in countless 
commercial software systems for 3D modelling and 
simulation, helping structure the intellectual work – 
and the professional identity – of architects, 
engineers, and other practitioners of design. 

In this interview Forrest reflects on a career that 
spans different fields and institutions, and offers 
clarifying insights on the international and 
interdisciplinary network of researchers that during 
the 1960s and 1970s helped to define the seminal 
ideas and technologies for computational design –
particularly those developing at the University of 
Cambridge and at MIT. He talks at length about the 
application of Coons’s and Pierre Bézier’s techniques 
for surface representation to aircraft and car design, 
and about the transition these ushered from manual 
to computational design methods across entire 
industries – crisply presaging future architectural 
developments towards parametrically controlled 
geometry. Finally, he shares candidly details about 
his collaborations with artists and architects, 
including Cybernetic Serendipity curator Jasia 
Reihardt and centre for Land Use and Built Form 
Studies director Lionel March, offering an unusual 
perspective on the early (and ongoing) fascination of 
architects and artists with both computation and 
computer scientists. 

The conversation offers profound insight into the 
technical and conceptual rearrangement of design 
practices around the processing, display, and 

manufacturing capacities of digital computers, as 
well as into the infrastructural changes that 
undergird the last three decades of architectural 
production. It hints further at new interpretive 
directions that open up when accounting for the 
agency of technological systems, their designers, and 
the institutions that host them in the collaborative 
production of our artificial environments. 

Daniel Cardoso Llach (DC): Can you tell me about the 
context that led you to Cambridge as a student, and 
then to MIT?

Robin Forrest (RF): One summer in Canada I worked 
on control systems for nuclear reactors and I got 
interested in control theory. So I decided I wanted to 
do a PhD in control theory. There were only two 
places that did it in the UK. One was Imperial College 
and the other was Cambridge. So I applied to the 
Engineering Department at the University of 
Cambridge after obtaining my mechanical 
engineering degree in the University of Edinburgh. 
 I intended to study control systems but I didn’t really 
like the topics that I was offered. I wanted something 
more mathematical, I thought. Basically I suppose  
I was a mathematician rather than an engineer.  
I started in October of 1965, and in November my 
then supervisor Donald Welbourn said, ‘We are 
thinking of setting up a CAD group.’ Both Welbourn 
and [Mathematical Laboratory director] Maurice 
Wilkes had gone to MIT and seen Sketchpad and the 
Timesharing system,1 so they were going to set up a 
group at Cambridge.2 They employed Charles Lang in 
the Mathematical Laboratory because he had worked 
with Doug Ross and Steve Coons at MIT.3 His job was 
to link computers together: the graphics display to 
the mainframe. The Engineering Department hired 
Crispin Grey, and I had a research studentship from 
Trinity College, which didn’t cost academic 
departments anything, so I sort of came ‘free’. I had 
to find the topic, and the most pressing problem that 
was seen at that stage was the representation of 
curved surfaces. That’s where a lot of the money for 
Computer-Aided Design (CAD) in the States came in, 
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and that’s why Steve Coons got involved, and that’s 
why he was so important. 

DC: Before becoming a faculty member at MIT in 1948 
Steve Coons spent several years working in industry 
designing aircraft shapes. Starting on 1959 he and 
Douglas Ross co-directed the Computer-Aided Design 
Project at MIT, a joint research project between 
Mechanical Engineering and the Servomechanisms 
Laboratory, which laid the technical and theoretical 
foundations of Computer-Aided Design.4 In what 
ways do you think Coons’s experience in the aircraft 
industry shaped his research on CAD?

RF: Before computational descriptions were 
available, aircraft used to be lofted and engineers 
would draw full-scale plane sections. For example, 
the definition of the Spitfire [airplane] was a set of 
lines scribed on sheets of aluminum on plane tables 
somewhere in Hampshire. Everything was taken 
from that. You would take drawings off of the scribed 
sheets. These were full-scale drawings, and the 
problem was that if a bomb dropped there, of course, 
you would essentially lose the definition of the 
Spitfire. But of course you would send drawings – line 
drawings – down to the manufacturing department, 
but there were always problems, as the aircraft was 
only defined at the sections and interpolation 
between sections was not precisely defined.  
These were the problems Coons probably dealt  
with in industry.

At some stage North American Aviation designed a 
system called AUTOLOFT, which instead of drawing 
conic sections, which is what was normally used, 
actually defined the conic sections by their 
coefficients. So they had a numerical definition of all 
the curves, which of course you could put on a sheet 
of paper. So it’s more precise and you can transcribe 

it exactly. They started having mathematically 
described shapes, but just the sections. But of course, 
with the development of numerically controlled 
machinery, you could machine those and, as you 
wrote, the Servomechanisms Laboratory at MIT had 
an important role to play in that area.5 [With CNC] 
you got the precision. But the aircraft got more 
complicated and it became more important to 
actually see how you go from one section to  
another. I mean, you can’t just describe a fully  
three-dimensional surface with a set of line 
drawings. So, that was where Steve got involved in 
trying to get the definition of curved surfaces. His 
surface methods basically interpolated surfaces 
through sets of two curves, and the curves could be 
anything you like. There are particular cases, such  
as the bi-cubic surfaces. 

So, the Servomechanisms Laboratory team came in 
because you could have machines that could actually 
cut three-dimensional surfaces accurately. So there 
was a need, and the equipment  – the manufacturing 
– was there. It was a question of what were the 
equations you were going to cut. And that’s where 
Steve got going, and that’s where I got going [1].

DC: Yes, as you explain in your 1972 article ‘On Coons 
and Other Methods for the Representation of Curved 
Surfaces’, Steve’s mathematical techniques are 
significant because they are the first parametric 
methods for interpolating surfaces from a set of 
bounding curves.6 Can you tell me more about how 
these ‘Coons patches’ were used and why they were 
influential in practice?

RF: The point about Steve’s work was that designers 
liked to design curves and sketch them in paper and 
that kind of thing. They liked a surface fitted to these 
curves but they didn’t want to be constrained to the 

1
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kind of curve that they designed. So you had to find a 
surfacing method that would interpolate between 
any kind of curves provided the curves actually 
meshed – that they fit, that they intersected at the 
corners. And that’s what Coons surfaces really were. 
Steve used to say that you could have any curve you 
like, that you could even have handwriting as a curve. 
And it would create a surface through the 
handwriting. You know, so you could go from a 
straight line to handwriting, to a circular arc, and 
you could put a meshed surface in between them all. 
But in practice very few people actually ever used 
Coons surfaces with arbitrary curves. They used what 
was called the tensor product version of them, where 
you have curves roughly of the same kind.

General Motors [GM] used them a little bit. But they 
had problems. But well, GM was ruled by the stylists. I 
don’t know if they still do, but the stylists used to 
produce a full-sized clay model of the car and paint it 
up. There was a big styling room in the Tech Centre, 
and they would light the model from all directions, 
and you would walk around it and admire it, and 
they would say, ‘That’s it!’ Then engineers would have 
to go and digitise this at incredible tolerances 
because, as far as the stylists are concerned, it was the 
perfect surface. To digitise the model they used to 
capture a point every few inches, and when the 
surface got a bit tricky, they captured around ten 
points more along and across the clay – a 
hundredfold increase locally. So you got a profusion 
of data from the curves across the car, and this 
required very sophisticated curve fitting and curve 
smoothing-fairing programs. It got really quite 
elaborate. [Pierre] Bézier used to say that it took GM a 
megabyte to do a trunk lid, but he got a full car in 64 
K[ilo]bytes! 

When these clay models of cars were digitised you 
would find that they weren’t symmetrical. But the 

stylists wouldn’t believe that. There are all sorts of 
horror stories of cars with one side five inches longer 
than the other. For example, when they were making 
headlights they couldn’t take the left one and do the 
other in its image, they had to design it again 
because the other side was different. Stylists were 
bent on using manual methods and couldn’t be 
persuaded to let the engineers clean them up. They 
ruled the company, really. They changed the models 
every year, and style was all – they were the gods. You 
know, the engineers had to fit the mechanics inside 
what was given to them by the stylists. It was not a 
question of wrapping the car body around the works. 
It was the other way around. I think to a certain 
extent this is still the case. 

The idea of Coons’s methods was then to try and 
cover all the shapes that designers would want, and 
also to hide the mathematics so that they wouldn’t 
need to be mathematicians to use the system [2].

DC: So it was not only about being able to define and 
encode geometry but also about allowing designers 
to manipulate shapes easily.

RF: Yes, and also to do all the things that you had to 
do with the model: to be able to stress it, analyse it, to 
be able to calculate voids and weights —and 
eventually to calculate the aerodynamics, I suppose. 
It very much was building the geometric model from 
which all sorts of developments could be derived – 
including line drawings if you wanted them – but 
also instructions for machine tools and different 
sorts of analysis.

DC: Gauss defined mathematical methods for 
parametric surface representation in the 1830s, and 
Schoenberg published work on splines in the 1940s. 
Do you see a technical lineage between these 

1   Prior to computers, 
mathematical 
definition of shapes 
made the design of 
artefacts such as the 
RAF’s Spitfire 
warplane safer and 
more mobile.

2   Steve Coons 
pioneered 
parametric methods 
for interpolating 
surfaces between 
sets of bounding 
curves, circa 1967.
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proof for Elaine. ‘You can’t have that!’ But I’m sure 
Steve was right!

DC: Tell me more about your time at MIT and your 
collaboration with Coons and Douglas Ross and the 
CAD Project during your time at Project MAC.

RF: Project MAC was in this building separate from 
the MIT campus in Tech Square. It had the Artificial 
Intelligence lab, with Marvin Minsky at the top floor, 
I think, and then there was Doug’s group on floor 
five. And the people there were basically doing 
various software engineering projects. I went to MIT 
to work with Coons but he had forgotten to tell me 
he was going to be at Harvard working with Ivan 
Sutherland. So, there was really nobody there who 
was interacting directly with what I was doing. 
However, I could always talk to Doug there and 
bounce ideas off him and others. Steve at Harvard 
was interesting.8 I would go up to Harvard once a 
week and I, Danny Cohen, and Ted Lee would talk 
with Coons and Ivan Sutherland. Ivan had quite a 
short attention span and he would get bored and go 
out. Steve would also get bored and disappear, and 
then the rest of us would talk all day about surfaces 
and graphics. Ted Lee did a thesis with Steve and Ivan 
as advisors on rational bi-cubic surfaces. I don’t think 
Dan was just working with Steve. They were 
developing the head mounted display at that stage. I 
think there was more interaction between Steve and 
Nicholas Negroponte than there was between Steve 
and his students in mechanical engineering. I don’t 
know at what stage did Steve get involved with Nick. 
He took me to meet Nick in 1969. He and Steve 
Gregory cooked a meal for us in Salt Lake City on one 
occasion. Good chap.9

DC: Both the CAD Project at MIT and the Cambridge 
CAD Group were interdisciplinary and 
interdepartmental efforts combining computers, 
engineering and mathematics. How did these 
collaborations between different disciplines work in 
practice?

RF: At Cambridge this was a strength, but also a 
source for all sorts of problems later on. It was a rich 
man’s game to begin with – I think that was one of 
the reasons. We were lucky in Cambridge, because 
there were not many university departments that did 
Computer-Aided Design in the 1960s. Most simply 
they couldn’t get the grants, and couldn’t get the 
money for equipment, whereas if you ran an Air 
Force contract [like the MIT CAD Project] you could 
get the funding. At the Cambridge CAD Group we 
were not funded by defence. Our funding came from 
the Science Research Council. And it was rather 
tricky because we were a joint group between the 
Engineering Department and the Maths Lab, and 
there was always a question of who would fund us. 
There was always an argument, which got quite 
difficult sometimes, whether we should be funded 
for the kind of work that we did. They didn’t think it 
was mechanical engineering, or they didn’t really see 
where things were going. 

mathematicians and Coons? Did they have an 
influence on his work?

RF: I think they probably did not. I can say two things 
to that. One is that, at one stage, halfway through my 
thesis, Charles Lang said that I should go and talk to 
some mathematicians to get some help, so I went to 
talk to a couple different people. One was an old 
numerical analyst from the days of the numerical 
tables (which you probably don’t remember at all). 
He referred me to a mechanical desk calculator 
manual from 1936, which was not really relevant. 
Those were the days when computers were people. 
The other one was Peter Swinnerton-Dyer, to whom I 
explained what I was doing. He said, ‘Well some of 
this work on cubics was very fashionable at the turn 
of the century, but it’s no longer fashionable now, 
and what you are trying to do is rather different from 
the interests of mathematicians. So I can see you’ve 
got problems!’ That was the extent of my 
mathematical help at Cambridge. The 
mathematicians were, say in the cubic case, 
interested in what happens at infinity, and in 
classifying curves according to this. This wasn’t really 
relevant to engineers – who wants to know about 
what happens at infinity? 

The other thing is that Schoenberg had basically 
developed his techniques for B-Splines for smoothing 
actuary tables: data for insurance companies. And 
the mathematics he used enabled him to analyse a 
lot of their properties, but it was very unstable 
numerically. The algorithms were not something 
you would really want to use. So they were not really 
known except in theoretical numerical analysis until 
the correlation between Bézier and Bernstein came 
out and Bill Gordon at GM Research Labs recognised 
that Bézier is a special case of B-Splines, I would say. 
And then we had two independent developments of 
stable numerical algorithms for computing 
B-Splines, and that’s when all became possible. But 
all that was in the early ‘70s, long after Steve was 
really innovating.7

DC: It sounds as if there was a sort of disconnect 
between mathematics and engineering, and that 
Steve Coons’s methods for parametric surface 
representation were more closely linked to practical 
questions emerging from design and manufacturing 
than to established mathematical theories.

RF: Yes, he was an intuitive mathematician. He really 
… He just thought that way. I don’t think he had deep 
mathematical knowledge. [Pierre] Bézier did, but not 
Coons. I recall that Steve and I thought that if you 
had a closed polygon you probably could have a 
closed B-Spline curve, and that if you increased the 
degree of the B-Spline, you could start using some of 
the points more than once – so the curve would 
shrink. We recognised that by increasing the degree 
to infinity the curve would shrink to a point. And Rich 
Riesenfeld and Elaine [Cohen] asked: ‘Would it be a 
square point or a circular point?’ And Steve and I 
both said: ‘It would be a circular point!’ And Steve 
said: ‘What else could it be?!’ That wasn’t enough 
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Looking back, the ‘60s were very much the time 
when computer science came of age and many of the 
basics, which we now tend to take for granted, were 
being developed. Engineers did not understand the 
difference between being able to generate a drawing 
that looked like a recognisable artefact, and being 
able to construct a model that accurately represented 
the artefact and from which drawings could be 
produced but which fed into other aspects of design 
such as stress analysis and manufacture. Early 
commercial systems such as Computervision, in 
which Coons and Negroponte had a stake, were in 
practice systems for generating conventional 
mechanical and architectural drawings. 

Coons was not a computer user but rather a 
visionary, and he could see how things had to 
develop. I don’t think he understood the amount of 
computer science which was necessary and which 
had to be invented. Doug Ross did, but he probably 
became a bit detached from real applications. The 
same scenario played out at Cambridge. I started out 
as a Mechanical Engineer in the Engineering 
Department and ended up as Computer Scientist in 
the Maths. Lab. The point about interaction is that 
the interaction has to be with something and that 
something has to be a computer model. 

DC: These ideas about interaction seem to resonate 
with cybernetics. Can you say something about the 
influences on the CAD Group during this period? 

RF: [Benjamin Lee] Whorf’s and [Joseph Carl Robert] 
Licklider’s ideas were influential. I came across 

Things got difficult because none of us had 
tenured posts, and we were all on contract. At that 
stage the Maths Lab had only one tenured post, and 
didn’t have any lecturers at all. The Engineering 
Department eventually appointed people as 
lecturers, but they came in from outside, and they 
were assigned to our group, but I think they did not 
really understand what we were doing. 

For example, at one point Welbourn was frustrated 
at the rate of transfer of the research to practical 
systems – he got fed up waiting for us to do all the 
software and the tools – and he set up a side group 
that produced a program that specialised on ducts, 
because there was a market for people who would do 
ducts design. But you couldn’t do anything else but 
ducts. So it was very narrow. We regarded this kind of 
system as the province of the CAD Centre, but I think 
Welbourn ignored this.10 

A source of these problems was that ‘graphics’ was 
not part of computer science in those days. It was a 
part of engineering. At the same time, I don’t think 
that engineers understood what needed to be done as 
far as computer software was concerned. You know? 
They didn’t understand why we needed data 
structures, and why we needed to develop this and 
that. I don’t think they really understood, to a certain 
extent as Steve Coons did, that you could build a 
model from which everything else flowed. It was not 
only to produce drawings. It was something more. 

DC: It sounds like you had to convince both sides. On 
the one hand the engineers about the importance of 
computing, and on the other the mathematicians and 
computer scientists of the importance of graphics.

RF: Yes. After I finished my PhD in 1968 I was 
employed by the Engineering Department and at one 
point I got tackled by a faculty member who said that 
I could do nothing for him, that my work would be of 
no use to him. He actually said that! 

We did a couple of PhD theses in our group in the 
Engineering Department. One was finite element 
stress analysis, that is the automatic generation of 
meshes for stress analysis. The other one was 3D and 
numerically controlled cutting. The first thing we 
cut was a shoe last, which was not exactly the easiest 
thing to start with. It caused lots of grief [3]!

DC: I would like to return to your previous mention of 
data structures. You mentioned that the Cambridge 
CAD Group built ‘tools to build systems’, and that part 
of this was to design new data structures. At the time 
you had LISP and FORTRAN, and therefore you had 
lists, arrays, and linked lists, but you were probably 
referring to higher-level data structures. 

RF: Higher and much more complicated. We needed a 
framework from which you could hang all those 
things. You needed something which was not two-
dimensional, so a [data] tree would have three, four, or 
five-dimensional links. This is what Doug Ross called a 
‘Plex’. But yes. It wasn’t straightforward. You couldn’t 
do things with lists and big searches. You had to reflect 
the three-dimensional nature of things. 

 3   Early uses of 
computational 
geometry at the 
Cambridge CAD 
Group included the 
geometric 

modelling and 
numerically-
controlled 
manufacturing of a 
metal shoe last, 
October 1968.
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lots of work later on just to talk people into working 
out how to intersect two line segments, which is a 
deceptively simple problem.13 The mathematicians 
would say, ‘Intersections of lines? That’s easy: we just 
set up these two equations and invert the matrix.’ 
That’s the problem, sometimes you have to 
recognise that a matrix might not suit you, because 
lines are parallel or coincide. You see? If you read 
any book on numerical analysis it says that you can 
do all these wonderful operations on matrices, but 
accuracy depends on how orthogonal they are. 
What does that mean? Well that actually means that 
in geometric terms, the lines are at right angles. And 
then your errors are very small. But if they’re not, if 
they’re nearly parallel, where do these lines 
intersect? You have this big sloppy business there. 
You get all sorts of numerical problems. 

DC: There is again a seeming contrast between 
mathematicians’ and engineers’ approach to 
geometric problems. The contrast stems from 
engineers’ approach being closer to design and to 
material and manufacturing constraints, while 
mathematicians’ approach leans more towards 
abstraction.

RF: Well, that’s why I started talking about 
Computational Geometry. Basically the kinds of 
geometry we were dealing with were not particularly 
sophisticated as far as mathematicians were 
concerned – they couldn’t see what the problem was. 
But we had these problems [in design and 
manufacturing], and in actually implementing them 
on a computer the problem was making them 
accessible to designers so that they could modify them 
and do the things they wanted. And that was 
something that mathematicians probably didn’t 
quite understand. And then we also had the problems 
of just complexity – the number of pieces. You know. 
Things got more difficult once you moved into higher 
dimensions. So, going back to the numerical 
problems, when you designed using Ian Braid’s 
system, you would insert a new face, split a face, put in 
a new edge, and this and that, and you actually had to 
evaluate the geometry to find out whether you 
intersected anything or created a new object, or 
chopped a bit off. This all involved numerical work. 
You might end with a data structure, which was in 
some sense invalid due to numerical error. There is an 
extension of Euler’s equation for polyhedra, which 
Braid used, which guarantees that the data structure 
in a sense actually represents a legal object provided 
the numbers are accurate.

And the construction solid geometry people would 
say, ‘We can prove ours is correct.’ The only trouble is 
that you had these operations: you could slice things, 
cut them, and the rest of it. I would ask them the 
questions, ‘Well, I’ve done this. But how many bits does 
it have? Is it one solid piece, or is it more than one bit?’ 
B-Rep people could tell you that. CSG people couldn’t.

DC: How would you characterise the differences 
between the work at Cambridge and what was going 
on at MIT? To what extent were there overlaps?

Whorf’s work through Licklider and others.11 I think 
the point people took from Whorf was the idea that 
our own language to a certain extent dictates the 
ideas we can understand and express, and the 
introduction of interactive computing had the 
potential of creating a new form of language. 
Accordingly, Steve Coons used to emphasise how CAD 
would involve a designer ‘talking to a computer’ by 
which he meant using a teletype terminal or a light 
pen. Building practical computer models for real 
applications demanded new software tools.

In terms of geometric representation the one that 
really got going was the one that started off at 
Stanford on the AI lab – the winged edge polyhedron 
– which defined a data structure for polyhedra in 
which the basic element was the representation of an 
edge, which had pointers to edges in adjacent faces.12 
In this data structure you got links and pointers that 
go around the faces of the polyhedron, and there are 
ways of traversing all the faces of the polyhedron, so 
it was all three-dimensionally linked. And that was 
the basis from which Ian Braid started off for volume 
and solid modelling. He took it a little bit further 
than the original Stanford stuff.

DC: So this is the origin of Boundary Representations, 
or B-Reps, which were fundamental to many solid 
modelling software systems. It is tempting to see the 
Cambridge CAD Group as a point at which two 
distinct sensibilities about computation in design 
converged: on the one hand a concern with 
geometry and curved surfaces, shaped by work in 
aircraft and car design, in particular Coons’s and 
Bézier’s, and on the other hand, a concern with data 
structures and systems for describing and 
accounting for mechanical parts. The combination 
of geometric representations and attributes… 

RF: Yes, well, I did the surfaces because we saw that 
was a problem at the time. But then Charles [Lang] 
would ask ‘What about what we could call simple 
mechanical parts?’ That’s why we got into the 
volume modelling business, the solid modelling 
business. And there are all sorts of issues there, 
which we discovered, which we hadn’t realised the 
problems before, such as combinatorial problems. 
The complexity of things gets actually quite difficult 
to handle. You got lots of numbers and lots of bits. 
Lots of pieces, edges, fillets, and holes. You are not 
dealing with a fuselage and a few bits, you have 
hundreds or thousands of pieces instead. And there 
were issues on how accurate the representation was. 
There were two conflicting systems. There was the 
B-Reps [system] and there was constructive solid 
geometry. And, there were turf wars between the two. 

Basically constructive solid geometry says that you 
could assemble everything from half spaces, so you 
could create objects by union and intersections of 
half spaces. And you get this sort of tree of 
operations of intersection and union of these half 
spaces. The thing is that you can prove all sorts of 
things mathematically about this. But, you run into 
the real problems of real computational geometry, 
which are numerical problems. For example, I did 
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going on in GM, we knew what was going on in Ford. 
We were very privileged. We had to be careful about 
what we said to whom, but we did indeed have a good 
knowledge of what was going on.

When we started off at Cambridge we were one 
office at the Maths Lab, and in the next-door office 
there were three people who were writing the time-
sharing operating system. And whenever Charles 
[Lang] needed some special instructions to link the 
PDP satellite to the big machine he would shout 
through the door ‘Can you do this?’ and they 
would shout back ‘Yes, we’ll do that!’ We were a very 
small team.

I think it’s difficult to understand nowadays, but 
when we started it really was the primitive days of 
computing and a lot of things were not around. The 
big mainframe computer at Cambridge, which was 
built by the lab, had an operating system that, when I 
got there, had been written by one man. It was a batch 
operating system that he wrote entirely in machine 
code. Allegedly, if anything went wrong you would 
phone him up and he would have the whole operating 
system in his head! You can imagine a patch…

DC: Sounds like he was the operating system.

RF: Yes, there were some amazing people around. 
This was Peter Swinnerton-Dyer, an eminent 
mathematician. He thought computer science was 

RF: The work of the Cambridge CAD Group was 
slightly divergent from MIT’s. At a given point there 
wasn’t, I think, a lot of interest from the MIT 
mechanical engineering department in what Coons 
was doing. They suddenly didn’t teach any more 
courses on it. There was Ivan Sutherland, who was a 
PhD student, and there were a few students —Tim 
Johnson, Robert Parmalee, and others— who did 
Master’s, but there was really nothing much after 
that. Doug [Ross] was really obsessed with software 
engineering. 

When we started in Cambridge we were very lucky 
because Maurice Wilkes had £50,000 that he could 
spend any way he liked, and he went and bought a 
DEC PDP computer and display. Nobody else had that 
kind of money and the freedom to do that. I think we 
were one of the first academic CAD groups, in an 
academic department, rather than existing under 
military contracts. So, when I was doing my thesis, 
the people I talked to were in the industry. There was 
nobody doing anything remotely like it in a 
university —which made my life slightly difficult. 
There were people in the aircraft and car industries, 
and to some extent in the ship industry, so I started 
by writing to many of them, asking about what they 
were doing. Also, for some reason, we got a lot of the 
MIT reports sent to us by the air attaché in 
Washington, and from Doug Ross’s group. So we 
knew what was going on. We also knew what was 

4   The Cambridge 
CAD Group’s 
model-making 
machine was an 
early 5-axis CNC 
machine inspired 
by Bezier’s 
UNISURF system, 
February 1971.
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draw curves manually and then fit polygons round 
the curves using a ruler and digitise the polygon 
vertices. The machine then drew the corresponding 
Bézier curve enabling the fit to be examined and 
improved on by tweaking the vertices. I went to 
Renault once with people who were in the business 
of making car bodies in England. Bézier handed me a 
pencil and a straight edge and said: ‘You produce a 
curve your way.’ The curve I drew was about four feet 
long, and I got it within a quarter of an inch margin 
of error. And Bézier just got it down to about one 
sixtieth of an inch. That blew the minds of the 
people with me.

Bézier built this machine, with which you could 
build car panels, but he just left it. He got one or two 
star designers who were interested but wondered 
what the thing was. He told them how to use it. Some 
of them were convinced and played around with it. 
He said, ‘One morning I came in, and this beautiful 
wooden sculpture was outside my door, and that’s 
when I realised I had won the battle. Because this can 
do art.’ And this is the way to introduce these 
technologies. You don’t force it. You let people find it 
for themselves and do amazing things, and then they 
do things and you are left thinking, ‘How the heck 
did they do that with my system? I don’t know!’ 
That’s the nice thing about this kind of work.

But on the other hand, you saw these guys using 
these systems and … I used to tell students that we 
shot ourselves in the foot because we made these 
things relatively easy to use. So nobody really saw the 
work that had gone into it. We should have made it 
very difficult, and then we could have charged vast 
amounts of money to do it properly for them [4]!

DC: Bézier is best known for developing an intuitive 
technique to design curves by moving external 
control points. You decoded Bézier’s mathematics 
and revealed that it was based on Bernstein 
polynomials. Can you talk about what was important 
about that discovery and more generally about 
Bézier’s methods?

RF: It explained why Bézier curves worked. People 
want to define curves by points and by passing curves 
through points. That’s what I wanted. I wanted a 
curve to go here. The problem with interpolation is 
that the more points you have and the more you try 
to interpolate, the more opportunities the curve has 
to wiggle. If you are connecting the points with 
straight lines and you count the number of times 
you have to change from turning to the right to 
turning to the left, or vice versa, the inflections, the 
best you could get out of interpolation was the same 
number of inflections —but you generally got more, 
so it became wigglier. The point of Bézier is that you 
are designing basically with the points off the curve, 
but you are guaranteed to get at most as many 
wiggles as you had in your data, and then generally 
you could get fewer. So you could put noisy data and 
get smooth curves out. The other problem with 
interpolating points is that if you want to move the 
curve between two points and still go through all the 
others, it would wiggle between the other points, 

easy. Another example of our work from this period 
is the FORTRAN compiler we eventually used. It was 
written as a PhD project because there just wasn’t a 
FORTRAN compiler around. These were the days of 
people creating compilers and data structures: the 
infancy of computer science. You could knock off a 
system, which would do one particular thing. We 
thought that we were in the business of building tools 
to build systems to do things. 

Another system we developed is the graphics 
package GINO. It was further developed by the CAD 
Centre 14 and became GINO for FORTRAN, or GINO-F, 
and Martin Newell went to Salt Lake City to work with 
Sutherland and with other people, worked with Jim 
Clark, and they built a system there that became GL. 
So Open-GL is a sort of grandson of GINO.

DC: To what extent was GINO also the result of 
connecting the Titan machine to the PDP display, 
and of the need to develop libraries or routines for 
graphical display? 

RF: It was a device-independent graphics system. You 
had code-generators for different devices so that it 
would drive the PDP-7 display. But we also had the 
other systems such as the Tektronics storage tube 
display and a plotter, and two model-making 
machines – machines to cut foam – that we built. 
When we got the first machine working we realised 
that we didn’t have anything to cut. So Peter 
Woodsford wrote a code-generator for the foam-
cutting machine one evening, and the next morning 
we started cutting surfaces. 

DC: Tell me more about these model-making 
machines. What motivated you and the group to 
build them?

RF: There was a series of conferences called ProLaMaT, 
Programming Languages for Machine Tools. They 
had one in Rome in 1969, and Charles Lang and I 
went there. Doug Ross went there, and Pierre Bézier 
went there. There were some hardcore numerical 
control people there but Charles [Lang] and I, and 
Bézier, and Doug Ross, we also knew what we were 
doing and we got to know each other very well. After 
the conference we went to visit Bézier and saw what 
he was doing. He had a system that could cut full-
sized car panels, and we were very impressed by that. 
So by 1969/1970 we decided to build our own. Our 
machine was much smaller. I suppose it was an early 
3D printer in a way. But it was a milling machine; it 
had a wood router on it. And then we built a second 
one, a five-axis machine, for which I designed the 
mechanical side. Like Bézier’s system, ours had three 
linear motions, and then we could rotate the head’s 
angle manually to get the best cutting angle. 

Bézier was vice-president of production 
engineering at Renault, and was in a position to say 
to his staff: ‘You can stop using clay models and now 
you will use my method.’ But he told us he didn’t do 
that. He had built his machine, and the workshop 
had a full-sized drafting system with which to draw a 
car full size, and could digitise shapes.15 You could 
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generated in the computer, they are recorded and 
developed digitally. Your description of the work by 
Bézier at Renault and the work of engineers and 
designers at GM suggests that architects have not 
only appropriated software tools from these 
industries, but also an approach to method – and 
perhaps an aesthetic sensibility – in order to develop 
new architectural languages. 

RF: Right. So Gehry designs a little bit like the old 
way GM designed cars. Of course, there’s a question 
of cost too, and of construction techniques. If you 
were an accountant you wouldn’t do anything but 
straight lines and planes. Anything else is expensive 
– unless you do hyperbolic parabolas, where you can 
use straight materials. There are limits to what we 
can do.

CATIA, on the other hand, is interesting. You know, 
when I was doing research everyone used their own 
systems, until that got too expensive. Eventually 
CATIA won out and then suddenly everyone started 
using CATIA. Until then, Boeing had their own 
system, McDonnell Douglas had their own system, 
Lockheed had their own system. 

General Motors doesn’t get enough credit for 
doing pioneering work. They had the DAC-1 
computer and they did a lot of really interesting 
work, but they published about six months after 
Ivan Sutherland, so they didn’t get all the credit for 
all of the techniques that Ivan describes. I think they 
were influenced by what was happening at MIT, but 
also developed their own stuff. These are very, very 
good people and of course they had the money in 
those days. They were very much in cahoots with 
IBM, and the displays they developed with them 
became the 2250, which was of course a very 
expensive machine – I mean, it cost a quarter of a 
million dollars, just the display.

Also, well, Bézier, was a very shrewd man. I think 
the other thing is that people got rather obsessed 
with graphics to begin with, and particularly shaded 
graphics, when raster graphics came out. You could 
look at things on the screen and that was it, and that 
was not right. We knew that there were things that 

and it would change. With Bézier’s methods if you 
pulled the curve then it would only move in one 
direction. So it’s intrinsically a way of defining 
smooth curves and fair surfaces. He was a very smart 
man, Bézier [5]. 

DC: It’s interesting to consider the car design process 
you describe at GM and Renault, which was so much 
based on the digitisation of physical models, in 
relation with what architects like Frank Gehry do 
today. Work at Gehry’s office often starts from 
physical models built with paper, cardboard, clay, 
which are scanned and then rationalised, optimized, 
and documented using software – notably a version 
of CATIA. So, while the designs themselves are not 

5   Sequence of 
images showing 
the effects of 
transforming a 
B-Spline curve’s 
control polygon, 
July 1974.

6   Multipatch joining, 
an early technique 
to produce smooth 
curved surfaces by 
aggregating 
parametrically 
defined surface 
sections developed 
by the Cambridge 
CAD Group, circa 
1968.

5
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across fields, we have a big building in the University 
here, designed by Norman Foster. And there was a 
retrospective exhibition of Foster’s work with the 
British Museum atrium, and the Gerkin in London, 
and so on. Robert Aish was there. He worked for a 
company that helped Foster and Partners actually 
build the actual shapes.18 

I hadn’t realised how much the aerospace work 
had influenced architecture. Do you use Rhino? That 
came out of Boeing, I think. It’s a NURBS-based 
system. I met some of the people from early on.19 I 
was a consultant at Boeing at one stage, and I knew 
some of the people who worked with NURBS went to 
work with Boeing. I have met the Rhino people – I 
know of them and they probably know of me. But it’s 
fascinating. Basically the students I lectured to at 
Syracuse in the 1970s, Rich [Riesenfeld], but also 
Lewis Knapp and Ken Versprille, they developed 
NURBS: their three theses led to NURBS.20 So it’s 
strange in a way, because now I row in a sea-going 
boat. And the boat comes in a kit, just like a model 
aircraft. You pop up the parts from plywood sheets 
and bend them to shape, and all the rest of it. The 
parts are usually cut using numerically controlled 
cutting tools, but I asked the guy who made it about 
the process. And he said, ‘Well, we modelled these 
boats from the line drawings we get from the boat 
designer, and we turn them into 3D using a system 
called Rhino.’ So, now I row on a boat designed in 
Rhino, which uses math that I helped to develop!

DC: I see that you have a poster for the 1968 
exhibition Cybernetic Serendipity.21 Can you share a 
few thoughts about your collaborations with artists 
or practitioners in other fields?

RF:  I am actually the author of that image [points at one 
of the images in the poster]. Cybernetic Serendipity was 
the first conference in computer art, and Jasia 
Reichardt came around to Cambridge sort of ‘trawling 
for data’, and took a few polaroids of things in the 
screen, which she later superimposed. The image was 
… Well … We weren’t really trying to design anything. 
We were just trying to see how flexible we could be. 
And she said, ‘I’ll take this!’ So she picked up a bunch 
of our polaroids and said, ‘That’s it! That’s art!’ And off 
she went with it. This was early 1968, at Cambridge, 
when I was writing my thesis or shortly after.

DC: So she basically came to see what you were doing 
in the CAD group…

RF: Yes. And I ended up showing some work in that 
exhibition, and going on the poster – I think she 
signed it for me somewhere. So, whenever someone 
talks to me about art, I say, ‘I exhibited in the ICA!’ 
There were some interesting people there: Gordon 
Pask, John Lansdown, Lionel Penrose, Meredith 
Thring, and many others. As always, there’s that 
question of what is art? I never considered my image 
to be art, but she did. So, it must be art! But why that 
image? I just … You know. Of all the stuff they had [6]!

DC: Robin, thank you. 

you couldn’t really see on a big screen. You had to 
know what to look for. There was an obsession at one 
stage with something called ‘twist vectors’, and 
‘bi-cubic surfaces’. And nobody knew what to do with 
them, but you had to have them. And we made some 
models at Cambridge, of a bi-cubic patch, which was 
basically a bump and a 4x4 array of surface patches. 
And one we had properly computed twist vectors, 
and the other we set them all to zero, which is what 
we tended to do. If you looked at these two side by 
side, they looked identical. But if you ran your finger 
over them, you could feel that there was a flat area 
that didn’t show up in the graphics. Well, you could 
probably see it if you read it in the screen in the right 
fancy way and if you got the orientation right. But, 
your finger is quite sensitive to things having bumps 
in them.

DC: Your 1971 paper ‘Computational Geometry’ is 
not only foundational to the field but also offers a 
remarkably clear case for the value of 
computational descriptions to design and 
manufacturing.16 Architects in particular have had a 
fascination with geometry and, more recently, with 
numerical control. You knew and collaborated with 
members of the centre for Land Use and Built Form 
Studies here at Cambridge, and contributed a 
chapter to one of Lionel March’s volumes. Can you 
tell me a bit about those collaborations and, more 
generally, about seeing Computational Geometry 
used across design fields?

RF: There was a lot of interest from architects in the 
work of the CAD Group. For example, one of the 
earliest users of the display system in the 
Mathematical Laboratory was William Newman, who 
had studied architecture at Cambridge and wrote a 
pioneering design system for building layout called 
NIBS – for Newman’s Industrial Buildings System.17 

Crispin Grey left the CAD Group in the late 1960s to 
work for Land Use and Built Form Studies. Through 
him I met several of the members of LUBFS socially. 
The Maths Lab, being the site of the University’s 
computing service, was a point of contact. 
Collaboration was informal but easy in the 
Cambridge environment. I had written a technical 
report on transformations and matrices, based on 
earlier notes by Bert Herzog of the University of 
Michigan, to explain some of the features of the 
GINO graphics package. Lionel March asked me for a 
version for one of his volumes and, being interested 
in modern architecture, I thought the Seagram 
Building would provide a recognisable model to 
illustrate the chapter. I cannot claim it is accurate, 
but it looks approximately correct! This loose 
collaboration had an unexpected result for me: a few 
months later I discovered that I had been listed as a 
member of the Architecture Faculty because I was the 
type of person they liked to associate with. There 
were later collaborations with architects after I left 
Cambridge. For example, a model of a hospital 
created using a modular design system was cut on 
one of the model-making machines we built.

Regarding the use of computational geometry 
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Notes
1. ‘Timesharing’ enabled multiple 

researchers to access a computer 
remotely through terminals 
distributed across the MIT campus. 
Sketchpad, developed by Coons’s 
student Ivan Sutherland as part of 
his PhD thesis at MIT, was the first 
interactive graphics system. Ivan 
Edward Sutherland, ‘Sketchpad, a 
Man-Machine Graphical 
Communication System’ 
(Massachusetts Institute of 
Technology, 1963).

2. Maurice Wilkes and Donald 
Welbourn are both important 
figures of postwar computing in 
Britain and, as Forrest recalls, 
played a founding role in the 
establishment of the CAD Group at 
Cambridge. Wilkes was the 
director of the Mathematical 
Laboratory (which is also referred 
to as Maths Lab throughout the 
interview) and Donald Welbourn, 
Forrest’s first advisor, was a 
member of the Engineering 
Department faculty. The 
Mathematical Laboratory was 
renamed to Computer Laboratory 
in the late sixties. Haroon Ahmed, 
Cambridge Computing: The First 75 
Years, University of Cambridge: 
Computer Laboratory (London: Third 
Millenium Publishing, 2013).

3. Steve Coons and Douglas Ross 
co-directed the Computer Aided 
Design (CAD) Project at MIT 
between 1959 and 1970. Sponsored 
by the US Air Force, the project 
explored the possibilities of 
computers in design, and laid the 
foundations of CAD systems. For 
an expanded discussion of the MIT 
CAD Project and its architectural 
repercussions, see: Daniel Cardoso 
Llach, Builders of the Vision: Software 
and the Imagination of Design 
(London, New York: Routledge, 
2015).

4. For an expanded discussion of the 
Computer-Aided Design Project at 
MIT and its architectural 
repercussions, see: Ibid.

5. Daniel Cardoso Llach, ‘Software 
Comes to Matter: Towards a 
Material History of Computational 
Design’, DesignIssues, 31:3 (2015), 
41–55, available online: < 
doi:10.1162/DESI_a_00337> 
[accessed 15 September 2016].

6. Robin Forrest, ‘On Coons and Other 
Methods for the Representation of 
Surfaces’, Computer Graphics and 
Image Processing, 1 (1972), 341–59.

7. The first publication on Coons’s 
surface methods dates to 1964, but 
several accounts point to earlier 
developments. Steven Anson 

Coons, Institute of Technology 
Massachusetts, and MAC 
(Massachusetts Institute of 
Technology) Project, Surfaces for 
Computer-Aided Design of Space 
Figures, ESL Memorandum 9442-, 
M-139 (Cambridge, MA: 
Massachusetts Institute of 
Technology, Electronic Systems 
Laboratory, 1964).

8. Forrest recalls that in the summer 
of 1967 Steve Coons was a visiting 
scholar at Harvard working with 
Ivan Sutherland.

9. Negroponte took a class with Steve 
in 1966 when he was still a student, 
and then it was because of Steve 
that he started teaching, filling in 
for Steve in the Mechanical 
Engineering Department before 
being hired in Architecture, where 
he and Leon Groissier started the 
Architecture Machine group in 
1968. See more about this 
relationship: Daniel Cardoso 
Llach, Builders of the Vision: Software 
and the Imagination of Design 
(London, New York: Routledge, 
2015).

10. Forrest recalls that the system, 
called Duct, ‘ended up in a curious 
way involved with Rich 
Riesenfeld’s work in Utah, and 
becoming part of a much larger 
system after both Riesenfeld’s 
Alpha-1 system and Duct were 
bought by another company called 
Delcam.’

11. See J. C. R. Licklider, ‘Man-
Computer Symbiosis’, IRE 
Transactions on Human Factors in 
Electronics HFE, 1 (March 1960), 
4–11; and Benjamin Lee Whorf, 
Language, Thought, and Reality: 
Selected Writings of Benjamin Lee 
Whorf, ed. by John B. Carroll (The 
MIT Press: Cambridge Mass., 1964 
[orig. pub. 1956]).

12. Bruce G. Baumgart, Winged Edge 
Polyhedron Representation (Stanford, 
CA: Stanford University, 1972).

13. See Robin Forrest, ‘On the 
Intersection of Lines’, 
Computational Geometry Project 
(Norwich: University of East 
Anglia, November 1984), Robin 
Forrest files.

14. The Computer-Aided Design 
Centre was funded in 1967 by the 
British government through the 
Ministry of Technology in 
Madingley Road, Cambridge, CB3 
OHB. With time, it became a 
private organization, which, 
under the direction of Crispin 
Grey, evolved into Aveva PLC. 
According to Forrest, the Centre 
provided ‘a direct route for the 
CAD Group’s research to be 

developed and exploited by 
industry’. Aveva PLC still develops 
CAD systems for specialised 
applications such as oilrigs, 
refineries, and ships. Crispin Grey, 
one of the original CAD Group 
members, and later a member of 
the centre for Land Use and Built 
Form Studies at Cambridge, was 
the CEO in charge of taking the 
CAD Centre to the private sector.

15. P. E. Bézier, ‘Example of an Existing 
System in the Motor Industry: The 
Unisurf System’, Proceedings of the 
Royal Society of London A: 
Mathematical, Physical and 
Engineering Sciences, 321:1545 (9 
February 1971), 207–18, available 
online: < doi:10.1098/
rspa.1971.0027> [accessed 15 
September 2016].

16. Robin Forrest, ‘Computational 
Geometry’, Proceedings of the Royal 
Society of London, A. 321 (1971), 187–
95.

17. Newman would later work in 
Xerox and co-author with Bob 
Sproull a book on interactive 
computer graphics. William M. 
Newman and Robert F. Sproull, 
eds, Principles of Interactive Computer 
Graphics, 2nd edn (New York, NY: 
McGraw-Hill, Inc., 1979). 

18. At this time Robert Aish worked 
at Bentley Systems, where he 
developed a software system 
called Generative Components 
that made many computational 
geometric techniques available to 
architects. He was also at the 
Smart Geometry Group, which 
trained many practicing 
architects in parametric design. 
Aish now works at Autodesk, the 
makers of Autocad, developing a 
visual programming 
environment called Dynamo. He 
is interviewed in this volume, see 
‘The Evolution of Architectural 
Computing: From Building 
Modelling to Design 
Computation’. 

19. Rhino is short for Rhinoceros, a 
3D modelling software developed 
by the Seattle based company 
McNeel and Associates and used 
widely by architects and 
industrial designers. To develop 
the software the company’s CEO 
Bob McNeel hired 
mathematicians from Boeing 
who had developed 
computational methods for 
surface modelling. For further 
detail, see: Cardoso Llach, Builders 
of the Vision: Software and the 
Imagination of Design, p. 93.

20. NURBS (Non-Uniform-Rational-
Bezier Surfaces) are 
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computational representations of 
complex surfaces. For a technical 
introduction and a history of 
NURBS, see: David F. Rogers, An 
Introduction to NURBS: With Historical 
Perspective (San Francisco, CA: 
Morgan Kaufmann, 2001). 

21. The 1968 exhibition Cybernetic 
Serendipity was a pioneering event 
of computer art that brought 
together artists, architects, and 
computer scientists. Forrest’s 
image in the poster, which hangs 
in his studio, is a series of 
superimposed wireframe drawings 
of curved surfaces. Forrest’s 
contribution to the exhibition was 
titled ‘Mathematically Defined 
Surfaces’. See Jasia Reichardt, ed., 
Cybernetic Serendipity. The Computer 
and the Arts, 1st edn (Praeger: New 
York 1969), p. 96.
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