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Slice-torus Concordance Invariants and
Whitehead Doubles of Links

Alberto Cavallo and Carlo Collari

Abstract. In this paper we extend the deûnition of slice-torus invariant to links. We prove a few prop-
erties of the newly-deûned slice-torus link invariants: the behaviour under crossing change, a slice
genus bound, an obstruction to strong sliceness, and a combinatorial bound. Furthermore, we pro-
vide an application to the computation of the splitting number. Finally, we use the slice-torus link
invariants and the Whitehead doubling to deûne new strong concordance invariants for links, which
are proven to be independent of the corresponding slice-torus link invariant.

1 Introduction

he study of knots up to concordance is extremely relevant in low-dimensional topol-
ogy, and it has been extensively pursued. Two (smooth) knots in S3 are said to be
concordant if they bound a properly (smoothly) embedded annulus in S3 × [0, 1].
A knot is called slice if it is concordant to the unknot. he set of knots up to con-
cordance, endowed with the operation of connected sum, is an inûnitely generated
Abelian group C, called the concordance group, whose neutral element is the class of
slice knots.

he advent of knot homologies (such as knot Floer homology and Khovanov–
Rozansky homologies) led to the deûnition of a variety of new tools to study concor-
dance, to obstruct sliceness and to compute the slice genus (i.e., the minimal genus
of a surface properly embedded in D4 bounding the given knot). he earlier among
these tools are theOzsváth–Szabó invariant τ [27] and the Rasmussen invariant s [29].
hese invariants (once suitably normalized) share lot of properties, and Livingston
[21] decided to study them in a more general framework. Livingston deûned a class
of invariants, which were later named by Lewark [20], as follows.

Deûnition 1.1 ([20, 21]) A slice-torus invariant is a knot concordance invariant ν

such that the following hold:

▷ ν ∶ C→ R is a group homomorphism;
▷ ∣ν(K)∣ ⩽ g4(K), where g4 denotes the slice genus, for each knot K;
▷ for each torus knot T(p, q) we have that

ν(T(p, q)) = (p − 1)(q − 1)
2

.
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1424 A. Cavallo and C. Collari

he family of the slice torus invariants also includes, aside from τ and s/2, (a suit-
able normalization of) the sln (n ⩾ 3) analogues of the Rasmussen invariant. hese
invariants, denoted by sn , were introduced independently by Lobb [23] and Wu [35].
he sn ’s provide orthogonal information with respect to τ and s, and they were shown
to be linearly independent from s and τ by Lewark ([20]).

he slice-torus invariants can be used to produce other concordance invariants.
For example, using the fact that if two knots are concordant then also theirWhitehead
doubles are also concordant, Livingston and Naik ([22]) deûned1 the functions

Fν(K)(t) = ν(W+(K , t)) and Fν(K)(t) = ν(W−(K , t)), t ∈ Z,
where ν is a slice-torus invariant andW±(K , t) denotes the positive (resp. negative)
t-twistedWhitehead double of K. hese functions are non-increasing, non-constant,
take values respectively in [0, 1] and [−1, 0], and assume both the maximal and the
minimal possible values. In particular, if the slice-torus invariant is integer-valued all
the information contained in each function can be condensed into a single integer.
hese integers, denoted by tν and tν , are deûned as the maximal value of t such that
Fν(K , t) and Fν(K , t), respectively, assume their maximum. It is not diõcult to see
that tν(K) = −tν(−K∗) − 1, where −K∗ is the mirror image of K with the orientation
reversed, so these invariants contain the same amount of information. At the time
of writing it is still unknown whether the invariant tν can provide new information
with respect to ν. In fact, there are some hints in the opposite direction; for instance,
it is known that tτ = 2τ − 1 ([15, heorem 1.5]), and it has been conjectured that
ts/2 = 3s/2 − 1 ([28]).

he aim of this paper is to extend these deûnitions and constructions to the case of
links and to describe some applications and examples. Before stating the main results
of this paper, let us recall a few basic facts about link concordance. he ûrst thing
one should point out is that the deûnition of concordance is no longer unique. Two
oriented links in S3 are said to be
▷ weakly concordant if there exists a genus 0 connected, compact, oriented surface,

properly embedded in S3 × [0, 1], bounding the two links;
▷ strongly concordant if there exists a disjoint union of annuli, properly embedded

in S3 × [0, 1], such that each of them bounds a component of each link.
In particular, strongly concordant links should have the same number of components.
A link is said to be weakly (resp. strongly) slice if is weakly (resp. strongly) concordant
to an unlink. Similarly, one can deûne a (weak) slice genus and a strong slice genus. he
former is just theminimal genus of any connected, compact, oriented surface properly
embedded in S3 × [0, 1] bounding the link. he latter has a similar deûnition but one
has to consider only the surfaces such that each connected component bounds exactly
one component of the link. he (weak) slice genus of a link shall be denoted by g4.
Almost all the slice-torus invariants known to the authors can be extended to

strong concordance invariants of links (see [4, 7, 18]), and they give rise to bounds
on the slice genus. hus far these invariants have been studied separately. Motivated
by the common properties of these extended slice-torus invariants, in Section 2 we

1hese functions were originally deûned only for integer-valued slice-torus invariants. Of course, the
same deûnition works for all slice-torus invariants, and most of the properties proved in [22] still hold.
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Slice-torus Concordance Invariants and Whitehead Doubles of Links 1425

give the deûnition of slice-torus link invariants. For now, the reader should keep in
mind that these areR-valued strong concordance invariants, and that when restricted
to knots these invariants give rise to R-valued slice-torus invariants (Corollary 2.12).
Moreover, the slice-torus link invariants include (once properly rescaled and trans-
lated) the extension to links of τ ([7]), s ([4]), and the sn invariants ([18]). Some of the
results in this paper concerning the slice-torus link invariants were proved separately
for τ, s, and the sn ’s. We will mention whenever a result was known for one or more
of the above-mentioned invariants, or if it is completely new.

he ûrst result, which is known for τ, s and sn (n ⩾ 3), consists of a bound on the
slice genus and an obstruction to strong sliceness.

Proposition 1.2 If ν is a slice-torus link invariant and L is an ℓ-component link, then

−g4(L) ⩽ ν(L) ⩽ g4(L) + ℓ − 1.

Furthermore, if L is a strongly slice link, then ν(L) = 0.

Another known property of s, τ, and sn is the detection of the 3-dimensional and,
under the hypothesis of non-splitness, the slice genus of positive links. It turns out
that these results holds for any slice-torus link invariant.

heorem 1.3 Let L be an ℓ-component positive link, and let D be a positive diagram

representing L. hen

ν(L) = g3(L) + ℓ − ℓs =
n(D) − O(D) + ℓ

2
for each slice-torus link invariant ν, where n(D) is the number of crossings of D, O(D)
denotes the number of Seifert circles, and ℓs is the number of split components of L.

Futhermore, if L is also non-split then

ν(L) = g4(L) + ℓ − 1.

Computing the value of slice-torus link invariants for non-positive links can be dif-
ûcult. However we provide a combinatorial bound whose proof appears in Section 2,
which allows us to compute the slice-torus link invariants for certain classes of links,
namely quasi-positive links (heorem 3.2) and negative links (Proposition 2.16). his
bound was known for the s-invariant (e.g., [6, 16]), but unknown for τ and the sn ’s.
Moreover, the values of the sn ’s for quasi-positive and negative links and the value of τ
for negative links were unknown (the value of τ for quasi-positive links was computed
in [8]).

heorem 1.4 Let L be an ℓ-component link, let ℓs be the number of split components

of L, and let ν be a slice-torus link invariant. For each non-splittable
2
diagram D repre-

senting L, the following inequality holds:

(1.1)
w(D) − O(D) + 2s+(D) + ℓ − 2ℓs

2
⩽ ν(L).

2hat is, the number of connected components of D is the number of split components of L. Equiva-
lently, we cannot obtain another diagram for L with more connected components than D.
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he ûrst truly novel application of the slice-torus link invariants is the computa-
tion of the splitting number. Before proceeding further, we wish to remind the reader
of the deûnition of the two main versions of the splitting number. Following [2], the
splitting number s̃p is the minimal number of crossing changes (among all diagrams)
necessary to transform an ℓ-component link L into the disjoint union of ℓ knots. A
second version of the splitting number, which was studied, for example, in [9,10], has
a similar deûnition, but the only crossing changes allowed are those between diòerent
components. We denote this second version by sp, and call it the strong splitting num-

ber. Clearly, we have the inequality s̃p ⩽ sp, but the equality does not hold in general.
We prove that the slice-torus link invariants can be used to produce a lower bound
for the splitting number s̃p.

heorem 1.5 Suppose that ν is a slice-torus link invariant and L is a link with com-

ponents K1 , . . . ,Kℓ . hen we have

(1.2) ∣ν(L) −
ℓ
∑
i=1

ν(K i)∣ ⩽ s̃p(L).

Furthermore, we provide an inûnite family of examples where our bound on s̃p is
sharp and s̃p ≠ sp (Proposition 3.7). To the best of our knowledge, there is no other
known method to compute the value of the splitting number for this family of links.
A weaker version of heorem 1.5 featuring the strong splitting number was proved,
for the sn-invariants, in [18].

Remark 1.6 Few months a�er this paper was posted on the arxiv, the authors were
informed that another bound on the splitting number s̃p was previously discovered by
A.Conway in his Ph.D. thesis [13, Proposition 4.4.5]. Conway’s bound is not published
and does not appear in the arxiv and uses completely diòerent techniques from the
ones used in this paper. hemain ingredients for Conway’s bound are themultivariate
signature and nullity. It can also be checked that Conway’s bound can be used to
compute the splitting number for the family Lt in Proposition 3.7. Nonetheless, we
expect the two bounds to be independent. Since the comparison between the two
bounds falls outside the scope of this paper, we leave the discussion of this topic to a
forthcoming paper.

he ûnal part of our paper is dedicated to the deûnition of new strong concordance
invariants via Whitehead doubling. he notion of Whitehead double for links is not
unique. We will be interested in two diòerent kinds of Whitehead doubles. he ûrst
kind is the fully clasped Whitehead double W±(L,m), which is basically obtained
by doubling all the components, where m ∈ Zℓ encodes the number of twists in the
double of each component. he second type ofWhitehead double we are interested in
is the reduced Whitehead doubleW ′

±
(L,m; L1), which is obtained by doubling only

the component L1 and inserting m ∈ Z full twists. Notice that in the case L is a knot,
the two constructions yield the same result: the m-twisted Whitehead double of L.

We use the fact that if two links are strongly concordant, then their Whitehead
doubles are also strongly concordant (heorem 4.1) to deûne four functions that are
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strong concordance invariants. More precisely, we consider the functions

Fν(L)(t) = ν(W+(L, t)) and F
′

ν(L; L1)(t) = ν(W ′

+
(L, t; L1))

and

Fν(L)(t) = ν(W−(L, t)) and F
′

ν(L; L1)(t) = ν(W ′

−
(L, t; L1)) ,

where ν is a slice-torus link invariant. hese functions generalize the functions
Fν(K)(t) and Fν(K)(t), and thus the invariant tν deûned byLivingston andNaik [22].

heorem 1.7 Suppose that ν is a slice-torus link invariant, L is a link, and L1 a compo-

nent of L. he functions Fν(L), F′ν(L; L1), Fν(L), and F
′

ν(L; L1) are non-increasing and
bounded. Furthermore, Fν(L) and Fν(L) are non-constant and assume the maximal
possible value.

As an application, we show that these functions can be used to obstruct the exis-
tence of a strong concordance to a split link (heorem 6.3). We conclude the paper
with some sample computations, proving the following result, which is still unknown
in the case of knots.

heorem 1.8 here exists a 2-component link L and a slice-torus link invariant ν such

that the function F′ν does not depend only on the linking matrix of L and on ν(L).

2 Slice-torus Link Invariants

In this section, we introduce the slice-torus link invariants and prove their ûrst prop-
erties. We start by proving that slice-torus link invariants have a controlled behaviour
with respect to the crossing changes. his will be fundamental in the last part of the
paper. A�erward, we prove the bound on the slice genus, which follows from a more
general bound on the diòerence of the slice-torus link invariants of cobordant links.
Finally, we compute the value of the slice-torus link invariants of the positive links,
andwe use it to produce the combinatorial bound. From the combinatorial boundwill
follow the computation of the value of slice-torus link invariants of negative links.

2.1 Definition and First Properties

Let us start with the deûnition of slice-torus link invariants.

Deûnition 2.1 A slice-torus link invariant is an R-valued strong concordance link
invariant ν satisfying the following properties:

(A) if L1 and L2 are related by an oriented band move, and L1 has one component
less than L2 (cf. Figure 1), then

ν(L2) − 1 ⩽ ν(L1) ⩽ ν(L2);

(B) ν is additive under disjoint union, that is ν(L1 ⊔ L2) = ν(L1) + ν(L2);
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1428 A. Cavallo and C. Collari

Figure 1: A schematic description of a band move between the links L1 and L2 (le�), and the
local description of an oriented band move (right).

(C) for each ℓ-component link L we have

0 ⩽ ν(L) + ν(−L∗) ⩽ ℓ − 1,

where L∗ denotes the mirror image of L, and −L denotes L with the orientation
reversed;

(D) if Tp ,q is the positive (p, q)-torus knot, then

ν(Tp ,q) =
(p − 1)(q − 1)

2
.

Property (C) in this deûnition can be relaxed in the following sense: we can require
the inequality in the property to hold only in the case of knots. hus, we obtain that
for each knot K, we have

ν(−K∗) = −ν(K).
With this diòerent deûnition in place, we can prove the following property:

(C′) for every ℓ-component link L, we have

0 ⩽ ν(L) + ν(−L∗) ⩽ ℓ,

and ν(−K∗) = −ν(K) for each knot K.

his is done by observing that we can obtain a strongly slice link if we perform ℓ band
moves on the link L ⊔−L∗. In turn, this can be seen by putting a diagram of L, and its
mirror image with reverse orientation, in a symmetric position with respect to a line.
hen add an unknotted band between each pair of corresponding components. he
result of this operation is a link bounding a ribbon surface that is the union of ribbon
disks, and thus is a strongly slice link. Now (C′) follows from Property (B). All the
results in the paper, with the exception of Proposition 4.9 and some computations in
Section 5, remain true replacing Property (C) with Property (C′) in the deûnition of
slice-torus link invariant.
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Our choice of Property (C) is motivated by the fact that, once suitably normalised,
s ([4, Lemma 6.1]), the sn ’s ([18, heorem 3]), and τ satisfy it (see the examples be-
low for the normalizations). For the latter invariant, Property (C) follows from the
additivity with respect to the connected sum ([7, Subsection 3.3]), and from the fol-
lowing lemma.

Lemma 2.2 Suppose that ν is a strong concordance invariant that satisûes Properties

(A), (B), and (D) and is additive under connected sums of links. hen Property (C) also
holds and ν is a slice-torus link invariant.

Proof As we remarked before, we can apply ℓ band moves on L ⊔ −L∗, each one
between a component of L and its corresponding mirror image, in the way that the
result is strongly slice. We observe that the ûrst of these moves changes L ⊔ −L∗ into
L′ = L# − L∗; then we have that ν(L′) = ν(L) + ν(−L∗) by assumption.
At this point, applying Property (A) ℓ − 1 times yields to

0 ⩽ ν(L′) = ν(L) + ν(−L∗) ⩽ ℓ − 1,

where we used that ν(J) = 0 if J is strongly slice. his last claim follows from the
additivity under connected sums and Property (B). ∎

Example 2.3 he quantity νs = s+ℓ−1
2 is a slice-torus link invariant, where s is the

extension of Rasmussen invariant (cf. [29]) to links introduced in [4], and ℓ is the
number of components of the link.

Example 2.4 heOzsváth–Szabó τ-invariant (cf. [27]), whichwas extended to links
in [7], is a slice-torus link invariant.

Example 2.5 More generally, we can consider the sln version of the Rasmussen
invariant, denoted with sn , introduced by Lobb and Wu independently in [25, 35],
which were extended to links in [18]. hen we have that

νsn =
−sn(L) + (ℓ − 1)(n − 1)

2(n − 1)
is a slice-torus link invariant. In particular, if n = 2, then sn(L) = −s(L), and we
recover the expression in Example 2.3.

Remark 2.6 he unknot can be seen as T1,p . In particular, it follows from Property
(D) that for each slice-torus link invariant, ν(◯) = 0.

he value of a slice-torus link invariant on the Hopf link and the negative trefoil
knot is constant (i.e., does not depend on the slice-torus link invariant). Since these
values will be used in the follow up, we record them in the following lemma.

Lemma 2.7 Let ν be a slice-torus link invariant, and denote by H± the positive

(resp. negative) Hopf link. hen we have that ν(T∗

2,3) = −1, ν(H+) = 1 and ν(H−) = 0.

Proof he ûrst equality follows directly from Properties (C) and (D) in the deûni-
tion of slice-torus invariant, and from the fact that T∗

2,3 = −T∗

2,3. As concerns the other
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1430 A. Cavallo and C. Collari

two equalities, notice that H± can be obtained from both the positive (resp. negative)
trefoil knot and the unknot via a band move. hus, it follows from Property (A) that

1 = ν(T2,3) ⩽ ν(H+) ⩽ ν(◯) + 1 = 1.

A similar reasoning works for the negative Hopf link. ∎

Even though Property (C) implies that ν(−K∗) = −ν(K) for each knot K, the
previous lemma disproves the analogue of this result for multi-component links.

We now turn to another property of the slice torus link invariants: the additivity
under connected sum of knots.

Proposition 2.8 Let K1 and K2 be two oriented knots. hen for each slice-torus link

invariant ν, we have

ν(K1#K2) = ν(K1) + ν(K2),
where # denotes the connected sum.

Proof Since any connected sum can be obtained from a disjoint union via a band
move, Properties (A) and (B) in Deûnition 2.1 tell us that

ν(K1#K2) ⩽ ν(K1 ⊔ K2) = ν(K1) + ν(K2).
he same reasoning applied to−K∗

1 and−K∗

2 , together with Property (C), implies that

−ν(K1#K2) = ν(−(K1#K2)∗) ⩽ ν(−K∗

1 ) + ν(−K∗

2 ) = −ν(K1) − ν(K2),
and the equality follows. ∎

Remark 2.9 Denote by L1#K1 ,K2L2 the connected sum of L1 and L2 along the com-
ponents K1 and K2, respectively. hen it follows from Properties (A) and (B) that

ν(L1) + ν(L2) − 1 ⩽ ν(L1#K1 ,K2L2) ⩽ ν(L1) + ν(L2),
for each slice-torus link invariant ν.

We conclude this subsection with the following proposition, concerning the be-
haviour of slice-torus link invariants under crossing changes. Recall that a cobordism
between two oriented links L0 and L1 is an oriented compact surface Σ, properly em-
bedded in S3 × [0, 1], such that

Σ ∩ {0} = L0 , and Σ ∩ {1} = −L1 ,

where the orientation on the le�-hand side of each equation is induced by Σ, and each
connected component of Σ has boundary on both L0 and L1. (his kind of cobordism
is sometimes called good cobordism in the literature, e.g., [4, 29].)

Proposition 2.10 Let D+ and D− be two link diagrams representing the links L+ and

L−, respectively. Suppose that D− is obtained from D+ by replacing a positive crossing

with a negative one; then

ν(L−) ⩽ ν(L+) ⩽ ν(L−) + 1,

for each slice-torus link invariant ν.
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Figure 2: Two band moves relating L+#KT
∗

2,3 and L−.

Figure 3: Two band moves relating L+ and L−.

Proof he links L+#KT∗

2,3 and L− are related by two band moves, where K is a
component of L+ corresponding to a component of D+ passing through the cross-
ing changed. A movie describing the two band moves is shown in Figure 2.

he cobordism described in Figure 2 can have either genus 0 or genus 1, depending
onwhether the strands involved in the ûrst bandmove belong to diòerent components
or not. In both cases, combining the inequalities given by Property (A), we obtain

ν(L−) − 1 ⩽ ν(L+#KT
∗

2,3).
Putting together the above inequality, the inequalities in Remark 2.9, and the compu-
tations in Lemma 2.7, we obtain

ν(L−) − 1 ⩽ ν(L+#KT
∗

2,3) ⩽ ν(L+) + ν(T∗

2,3) = ν(L+) − 1,

which is the ûrst inequality in the statement. To recover the second inequality, con-
sider the cobordism in Figure 3. here are two cases to consider, depending whether
or not the ûrst band move merges two components. In both cases, Property (A) tells
us that

ν(L+) − 1 ⩽ ν(L−),
and the result follows. ∎

2.2 A Bound on the Slice-genus

In analogy with the case of the slice-torus invariants, each slice-torus link invariant
gives rise to a lower bound for the slice genus. his bound is a consequence of the
following more general proposition.

Proposition 2.11 Let ν be a slice-torus link invariant. Given two links L0 and L1 with

ℓ0 and ℓ1 components, respectively, such that there exists a cobordism Σ ⊂ S3 × [0, 1]
from L0 to L1 with k connected components, we have

ν(L1) − g(Σ) − ℓ1 + k ⩽ ν(L0) ⩽ ν(L1) + g(Σ) + ℓ0 − k,

where g(Σ) denotes the genus of Σ. In particular, when Σ is connected,

ν(L1) − g(Σ) − ℓ1 + 1 ⩽ ν(L0) ⩽ ν(L1) + g(Σ) + ℓ0 − 1.
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Proof By standard arguments, up to a boundary ûxing ambient isotopy we can as-
sume that the projection onto the second factor

pr2 ∶ S3 × [0, 1] Ð→ [0, 1],

when restricted to Σ/∂Σ has only a ûnite number of (non-degenerate) critical values,
let us denote these values by 0 < t0 < ⋅ ⋅ ⋅ < th < 1. Basic Morse theory tells us that we
can assume the links L±i = pr−1

2 (t i±є)∩Σ, where i ∈ {0, . . . , h} and є > 0 is suõciently
small, to be obtained one from the other by either an oriented band move (1-handle
attachment), the split union with an unknot (0-handle attachment), or the removal
of an unknotted split component (2-handle attachment). Furthermore, we have that
pr−1

2 ([t i + є, t i+1 − є]) is (topologically) a disjoint union of cylinders and that L+i and
L−i+1 are isotopic.

hanks to [17, heorem 3.1], up to isotopy the order of the attachments can be
chosen as follows:

(1) We start with L0 = Σ ∩ S3 × {0}.
(2) We attach all the 0-handles.
(3) We perform a sequence of fusion 1-handles (i.e., 1-handles attachments lowering

the number of components) merging all the newly attached 0-handles.
(4) We perform another sequence of ℓ − k fusion 1-handles until we end up with a

k-component link diagram. Each fusion move merges two knots that belong to
the same component of Σ.

(5) We perform g ûssion 1-handles (i.e., 1-handles attachments increasing the num-
ber of components), followed by g fusion 1-handles (with g = g(Σ)).

(6) We perform a sequence of ûssion 1-handles (and isotopies) ending up into the
link obtained as a split union of L1 and an unlink.

(7) We attach all 2-handles on the unlink.
(8) We end up with L1 = Σ ∩ S3 × {1}.
A schematic representation of the cobordism Σ when the surface is connected can
be seen in Figure 4. As highlighted in Figure 4, the cobordism obtained from the
attachments described in point 0 to 3 (resp. in points 6 and 8) is a strong concordance
between L0 and a link L′0 (resp. a link L′1 and L1).
By the strong-concordance invariance of ν, it follows immediately that ν(L0) =

ν(L′0) and ν(L1) = ν(L′1). Now consider the portion of Σ between the link L′0 and L′1,
say Σ′; then it follows from Property (A) that

ν(L′0) ⩽ ν(L′1) + g(Σ′) + ℓ0 − k.

Since g(Σ′) = g(Σ), the second inequality in the statement follows. he other in-
equality is obtained by reversing the roles of L0 and L1. ∎

Now, as an easy consequence of Proposition 2.11, we obtain the desired lower bound
on the slice genus.

Proof of Proposition 1.2 Consider a minimal genus surface Σ ⊂ D4 bounding L

(= Σ∩S3). Without altering the genus, we can assume Σ to be connected. By removing
a small disk from Σ, we obtain a genus g4(L) cobordism between L and the unknot.
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Figure 4: A schematic description of a connected cobordism Σ a�er the re-ordering of the
handles.

hen Proposition 2.11 tells us that

−g4(L) = ν(◯) − g(Σ) − 1 + 1 ⩽ ν(L) ⩽ g(Σ) + ν(◯) + ℓ − 1 = g4(L) + ℓ − 1.

Moreover, if L is strongly slice, then L is strongly concordant to an unlink. Since ν is
a strong concordance invariant, we have that ν(L) = ν(◯ℓ) = 0, where◯ℓ denotes
the unlink with ℓ components. ∎

Another consequence of Proposition 2.11, together with Proposition 2.8, is the fol-
lowing corollary.

Corollary 2.12 If ν is a slice-torus link invariant, then the restriction of ν to knots is

a slice-torus invariant. ∎

At this point the following question arises naturally.

Question 2.13 Let ν be a slice-torus invariant. Is there a slice-torus link invariant ν̃
whose restriction to knots is ν? If such ν̃ exists, is it unique?

he authors believe that all the known slice-torus link invariants admit such an
extension, and the answer to the above question is le� for future work.

2.3 Combinatorial Bounds and the Detection of the Slice Genus

Using the slice-genus bound proved in Proposition 2.11, we can adapt the arguments
used by Kawamura [16] for slice-torus invariants, and Abe ([1], see also [20]) for the
Rasmussen invariant s, to the case of slice-torus link invariants.
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Figure 5: he oriented resolution of a crossing.

Figure 6: An oriented band move adding a positive crossing to the diagram. Notice that this
procedure does not change the number of Seifert circles. Moreover, if the arcs a and b belong
to diòerent components, then the band move is a fusion move.

Before going into the details, we need to introduce some notation. Let D be an
oriented link diagram representing a link L. Denote by n(D), n+(D) and n−(D)
the number of crossings, positive crossings, and negative crossings of D, respectively.
he oriented resolution of D is the set of circles (Seifert circles) obtained by replacing
each crossing with its oriented resolution, as shown in Figure 5. Denote by O(D) the
number of Seifert circles of D. If D is non-split, then a Seifert surface for the link L

can be obtained by considering a disk for each Seifert circle, and for each crossing
on the diagram, we add a band between the corresponding circles. his procedure
goes o�en under the name of Seifert algorithm, and it is easy to see that it produces
a connected, compact, oriented surface in S3 bounding the link L, which is precisely
the deûnition of Seifert surface (see, for example, [30, Chapter 5]). Furthermore, the
genus of the surface ΣD obtained via the Seifert algorithm can be easily computed as
an exercise, and it turns out that

g(ΣD) = 1 + n(D) − O(D) − ℓ

2
.

Now we can take the ûrst step towards our combinatorial bound. More precisely,
we prove heorem 1.3, which asserts that the slice-torus link invariants compute the
Seifert genus of positive links, and also the slice genus in the non-split case.

Proof of Theorem 1.3 We suppose ûrst that L is non-split. Consider the Seifert sur-
face ΣD obtained via the Seifert algorithm from D. We can remove a small disk from
ΣD , and apply the bound in Proposition 2.11 to obtain the following inequalities

ν(L) ⩽ g4(L) + ℓ − 1 ⩽ g3(L) + ℓ − 1 ⩽ g(ΣD) + ℓ − 1 = n(D) − O(D) + ℓ

2
.

Now, starting from L, we can apply a sequence of ℓ − 1 fusion moves as in Figure 6 to
obtain a positive knot K, and a connected genus 0 cobordism from K to L.
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he slice-torus link invariants detect the genus of positive knots (Corollary 2.12 and
[16,heorem 4.4]), and their value can be computed directly from a positive diagram.
his leads us to the following sequence of equalities:

n(D) − O(D) + ℓ

2
=

n(DK)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n(D) + ℓ − 1−O(D) + 1

2
= ν(K),

where DK is the positive diagram of K obtained from D by attaching bands as shown
in Figure 6. Finally, from Proposition 2.11, we obtain the inequality

ν(K) ⩽ ν(L),

and the claim follows.
he statement for split links is proved by observing that, except for the slice-genus,

all the quantities involved in the equalities for non-split links are additive under dis-
joint unions. ∎

Corollary 2.14 Let ν be a slice-torus link invariant. hen for each coherently oriented,

positive torus link T of type Tm ,n , we have the equalities

ν(T) = g3(T) + ℓ − 1 = g4(T) + ℓ − 1 = (n − 1)(m − 1) + ℓ − 1
2

,

where ℓ = GCD(m, n) is the number of components of T.

Proof he statement follows immediately from heorem 1.3. ∎

Before proceeding further we need somemore notation. First, we need to describe
how to associate with D a graph Γ(D), called the Seifert graph. he vertices of Γ(D)
are the Seifert circles, and there is an edge between two vertices for each crossing the
corresponding circles share in D. An edge of the Seifert graph is positive (resp. nega-
tive) if the corresponding crossing is positive (resp. negative). Let s+(D) (resp. s−(D))
denote the number of connected components of the graph obtained from Γ(D) by re-
moving all the negative (resp. positive) edges.

here is another graph G(D) we can obtain from D. his graph has one vertex
for each component of the link L represented by D, and two vertices of G(D) share a
crossing if there is at least a negative crossing joining the corresponding components.

Now that all the notation is set into place, we can state the following lemma,
which is basically due to Kawamura. For the sake of completeness, we will spell out
the proof.

Lemma 2.15 ([16, Lemma 5.5]) If L is a link with a non-splittable diagram D, then

there exists a positive link L+, a diagram D+ for L+, and a cobordism
3 Σ+ from L to L+

such that

n(D+) = n+(D) + s+(D) − 1, O(D+) = O(D)

3Recall that for us each cobordism between links is such that each connected component of the cobor-
dism has boundary touching both links.
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and

χ(Σ+) = −n−(D) + s+(D) − 1.

Furthermore, the number of components of Σ+ is lower than or equal to the number of

components of G(D).

Proof Let us start from D. Via band moves (cf. the ûrst part of Figure 3), we can
eliminate all the negative crossings in D. With this procedure we end up with a col-
lection of s+(D) link diagrams, say D1, . . . , Ds+(D). Moreover, we can see the Seifert
graph of each D i as a sub-graph of Γ(D). Consider the graph Γ obtained from Γ(D)
by collapsing each Γ(D i). Notice that each vertex of Γ corresponds to a D i . Since L

is non-split, the diagram D is connected (as a graph) and non-splittable. In particu-
lar, Γ(D) (and thus Γ) is connected. Pick a spanning tree T for Γ. Via band moves
we add a positive crossing (cf. the second part of Figure 3) between D i and D j if the
corresponding vertices in Γ are joined by an edge in T . Call D+ and Σ+ the diagram
and the surface, respectively, obtained via the procedure just described.

he computation of the number of crossings and the number of Seifert circles
of D+, and the computation of the Euler characteristic of Σ+ are easily done. More-
over, Σ+ is a cobordism by construction.
All that is le� is to count the number of connected components of Σ+. Since Σ+

is a cobordism, each connected component touches a component of L. Moreover, if
there is a negative crossing in D between two components L1 and L2, then there is a
band joining them. It follows that L1 and L2 belong to the same connected component
of Σ+. ∎

Proof of Theorem 1.4 Let us borrow the notation from the statement of Lemma2.15.
First, we want to compute the genus of Σ+. We can assume L non-split, since all
the quantities in the statement are additive under disjoint union. From the general
formula

χ(Σ) = 2c(Σ) − 2g(Σ) − c(∂Σ),
where c denotes the number of connected components, we obtain

−g(Σ) = χ(Σ) + c(∂Σ)
2

− c(Σ).

Denoted by ℓ+ the number of components of L+, plugging in Σ+ and replacing the
corresponding quantities with their value we obtain

−g(Σ+) =
−n−(D) + s+(D) − 1 + ℓ + ℓ+

2
− c(Σ+).

We should argue that we can assume G(D) to be connected. his is easily done by
replacing D with a diagram D′ such that

w(D) = w(D′), O(D) = O(D′), s+(D) = s+(D′), and c(G(D′)) = 1.

his can be obtained by choosing a positive crossing between each pair of components
of L that share only positive crossings, and perform a second Reidemeister as illus-
trated in Figure 7. Since c(Σ+) ⩽ c(G(D)) = 1, we can assume Σ+ to be connected.
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Figure 7: A second Reidemeister move near a positive crossing.

Now consider the quantity

ν(L+) − g(Σ+) − ℓ+ + 1.

Since L+ is positive, from heorem 1.3 it follows that this is equal to

n+(D) + s+(D) − 1 − O(D) + ℓ+

2
+ −n−(D) + s+(D) − 1 + ℓ + ℓ+

2
− 1 − ℓ+ + 1,

and simple computations show that this equals

w(D) − O(D) + 2s+(D) + ℓ − 2
2

.

Finally, Proposition 2.11 tells us that

ν(L+) − g(Σ+) − ℓ+ + 1 ⩽ ν(L),

and the result follows. ∎

he combinatorial bound presented in heorem 1.4 is analogous to the bounds
presented in [6,16] (see also [1,20,24]) for the Rasmussen and Rasmussen–Beliakova–
Wehrli invariants. A possible direction of work might be to ûnd an analogue of the
combinatorial bound presented in [12]. Let us leave thismatter aside for now and turn
to the last result of this section.

Proposition 2.16 Let L be a negative link, and let ℓs be the number of its split compo-

nents. hen

ν(L) = −n(D) + O(D) + ℓ − 2ℓs
2

for each negative diagram D and each slice-torus link invariant ν.

Proof Combining Corollary 2.12 with [20,heorem 5] (notice the diòerent normal-
ization, and, see also, [1]), we obtain that our claim is true for negative knots. Since
the quantities ν, n, O, ℓ, and ℓs are additive with respect to the disjoint union, we
can assume L to be non-split (ℓs = 1). he proof goes by induction on the number of
components of L. Suppose the claim true for all 1 ⩽ ℓ < r, and assume ℓ = r. hen by
performing a band move similar to the one in Figure 6 between two components, we
can obtain a negative link L′ that has ℓ−1 components, is non-split, and has a negative
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Figure 8: A quasi-positive 3-braid and its “geometrical” representation.

diagram with n(D) + 1 crossings and O(D) Seifert circles. By Property (A), we have

ν(L) ⩽ ν(L′) + 1 = −n(D) − 1 + O(D) + ℓ − 1 − 2
2

+ 1

= −n(D) + O(D) + ℓ − 2
2

,

where the ûrst equality is the inductive hypothesis. Since any negative diagram is
non-splittable, the other inequality follows from heorem 1.4. ∎

his proposition allows us to prove the equivalent of Corollary 2.14 for coherently
oriented, negative torus links.

Corollary 2.17 Let T∗ be the mirror image of a torus link of type Tm ,n with all the

components oriented in the same direction. hen for every slice-torus link invariant ν,

we have the equalities

ν(T∗) = −g3(T) = −g4(T) = ℓ − 1 − (n − 1)(m − 1)
2

,

where ℓ = GCD(m, n) is the number of components of T.

Proof Proposition 2.16 says that

ν(L∗) = ℓ − 1 − ν(L)
if L is a non-split positive link. hen the claim follows from this observation, Corol-
lary 2.14, and the fact that g4(L) = g4(L∗) and g3(L) = g3(L∗). ∎

3 Applications

his section is dedicated to two applications. he ûrst is an application of the com-
binatorial bound, and consists of the computation of the slice-torus link invariants of
quasi-positive links. he second application is a lower bound on the splitting number
of links.

3.1 Quasi-positive Links

Let us recall the deûnition of quasi-positive braid and quasi-positive link.
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Deûnition 3.1 A quasi-positive link is any link that can be realized as the closure
of a d-braid of the form

b
∏
i=1

w iσ j iw
−1
i ,

where σ j for j = 1, . . . , d − 1 are the Artin generators of the d-braids group.

hus, quasi-positive links are closures of braids consisting of arbitrary conjugates
of positive (Artin) generators.

heorem 3.2 Consider the d-braid B = (w1σ j1w
−1
1 ) . . . (wbσ jbw

−1
b ), and denote by L

its closure. hen, for every slice-torus link invariant ν, we have the equality

ν(L) = b − d + ℓ

2
,

where ℓ is the number of components of L.

Proof Since all quantities involved in the statement are additive under disjoint union,
we can assume L to be non-split. First, we wish to prove the inequality

ν(L) ⩽ ℓ − χ(Σ)
2

,

where Σ is a compact oriented surface, properly embedded in D4, such that ∂Σ = L.
Assume Σ has k connected components. hen Proposition 2.11 tells us that

ν(L) ⩽ g(Σ) + ℓ − k = ℓ − χ(Σ)
2

.

Since L bounds a surface ΣB , which satisûes the previous properties and is such
that χ(ΣB) = d − b, as it is shown in [33], we obtain that

ν(L) ⩽ b − d + ℓ

2
.

he other inequality follows from the bound in equation (1.1). In fact, this gives
that

b − d + 2s+(B) + ℓ − 2
2

= w(B) − O(B) + 2s+(B) + ℓ − 2
2

⩽ ν(L).

Since 1 ⩽ s+(B), the statement follows. ∎

3.2 Splitting Number

As we anticipated, the slice-torus link invariants can be used to obtain a lower bound
for the splitting number s̃p of a link ([2]), which is sometimes called weak splitting
number ([5]). Let us recall its deûnition ûrst.

Deûnition 3.3 he splitting number s̃p(L) of a link L is deûned as the minimum
number of crossing changes to perform on a diagram (for all possible diagrams) of L
in order to turn the link into a disjoint union of knots.
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Note that in literature, the symbol sp(L) usually denotes a diòerent version of the
splitting number of L, which we called the strong splitting number in the introduc-
tion. he strong splitting number sp is deûned exactly as s̃p, but the only crossing
changes allowed are those between diòerent components. In particular, we have that
s̃p(L) ⩽ sp(L).

Remark 3.4 For each oriented link L, we have

sp(L) ≡ ∑
1⩽i< j⩽ℓ

l k(L i , L j) mod (2),

where L1 , . . . , Lℓ denote the components of L. his fact can be easily proved by in-
duction; alternatively, the reader can consult [9, Lemma 2.1].

Proof of Theorem 1.5 If s̃p(L) = 0, then L is a disjoint union of knots. he additiv-
ity of ν (Property (B)) tells us that in this case, the le�-hand side of equation (1.2) is
also zero. hus, the (in)equality holds. We claim that the quantity

∣ν(L) −
ℓ

∑
i=1

ν(K i)∣

increases at most by 1 at each crossing change. he theorem is then proved by induc-
tion on the value of s̃p(L) as follows; consider aminimal sequence of crossing changes
from L to a split union of knots. Denote by L′ the ûrst step in this sequence; then

∣ν(L) −
ℓ

∑
i=1

ν(K i)∣ ⩽ ∣ν(L′) −
ℓ

∑
i=1

ν(K′

i)∣ + 1 ⩽ s̃p(L′) + 1 = s̃p(L),

where the ûrst inequality is our claim, and the second inequality follows from the
inductive hypothesis.

Now let us prove our claim. First, assume the crossing change to happen between
diòerent components. In particular, none of the K i ’s is modiûed under this crossing
change, while ν(L) can either increase or decrease at most by 1 (cf. Proposition 2.10).
Now assume the crossing change to be performed on a component of L, say K = K i
for some i. his crossing change modiûes both L and K, but leaves all the other com-
ponents unchanged. Again from Proposition 2.10, it follows that

(3.1) ν(L+) − 1 ⩽ ν(L−) ⩽ ν(L+)

and that

(3.2) −ν(K+) ⩽ −ν(K−) ⩽ −ν(K+) + 1,

where the plus andminus denote the signs of the crossing, before and a�er the change.
Adding equations (3.1) and (3.2), we obtain

ν(L+) − ν(K+) − 1 ⩽ ν(L−) − ν(K−) ⩽ ν(L+) − ν(K+) + 1.

Since either L = L+ and K = K+, or L = L− and K = K−, and all the other components
of L are le� unchanged, the claim follows. ∎
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Corollary 3.5 Let p and q be coprime integers, and k > 0. hen the following equality

holds:

sp(Tkp ,kq) = s̃p(Tkp ,kq) =
k(k − 1)∣pq∣

2
.

Proof In [18, Corollary 3], the author proves that

(3.3) ∣νsn(T) −
k

∑
i=1

νsn(K i)∣ = sp(Tkp ,kq) =
k(k − 1)pq

2
,

where p, q > 0, T is the positive torus link of type Tkp ,kq , and K1,. . . , Kk are the com-
ponents of T . Notice that by Corollary 2.14 the value of any slice-torus link invariant
on positive torus links does not depend on the chosen invariant; therefore, Jeong’s
computation holds for any slice-torus link invariant. From equation (3.3) and from

∣ν(L) −
ℓ

∑
i=1

ν(K i)∣ ⩽ s̃p(L) ⩽ sp(L),

the desired equality follows for p, q > 0. In the other cases, at most we recover the
mirror image of Tk∣p∣,k∣q∣, and since the splitting number of a link and its mirror is the
same, the corollary follows. ∎

Remark 3.6 Notice that s̃p(L) does not depend on the orientation of L. It follows
that the inequality inheorem 1.5 holds for every relative orientation of the link. hus,
the maximum among all these values is still a lower bound for s̃p(L).

In [2, 5] some lower bounds for s̃p are also given. In this paper we describe an
inûnite family of 2-components links for which heorem 1.5 allows us to compute s̃p,
where all the obstructions in [2, 5] fail.

Proposition 3.7 Let us consider the links Lt in Figure 9. hen we have that s̃p(Lt) = t

and sp(Lt) = t + 1 for every t ⩾ 1.

Proof We use the link version of the τ-invariant, see [7]. Since Lt is non-split alter-
nating for every t ⩾ 1, we have that τ(Lt) is determined by the signature

τ(Lt) =
ℓ − 1 − σ(Lt)

2
= 1 − σ(Lt)

2
;

where ℓ is the number of components of the link, which is always equal to two in this
case.
An easy computation gives that σ(Lt) = 1 − 2t, and thus τ(Lt) = t, for every t ⩾ 1.

he link Lt has unknotted components; hence, heorem 1.5 implies t ⩽ s̃p(Lt). On
the other hand, we immediately see that Lt can be unlinked (and thus reduced to the
split union of knots) by changing t crossings: one crossing for each full twist except
one, plus the crossing circled in Figure 9. hus, we proved that s̃p(Lt) = t.

It follows that
sp(Lt) ⩾ s̃p(Lt) = t.
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Figure 9: A diagram for the 2-component link Lt , where t ∈ N/{0} denotes the number of
positive full twists.

Moreover, a simple computation shows that

∣l k(Kt ,K′

t)∣ = t − 1,

where Kt and K′

t are the components of Lt . herefore, by Remark 3.4, we have that
sp(Lt) is at least t + 1. Finally, a direct inspection of the diagram in Figure 9 tells us
that t + 1 ⩾ sp(Lt), and the statement follows. ∎

4 Whitehead Doubles and a Concordance Invariant for Links

In this section we deûne some link invariants related to Livingston and Naik’s invari-
ant tν and study some of their properties. We start by deûning the fully clasped and
the reduced Whitehead doubles. hen we deûne the functions Fν , F′ν , Fν and Fν and
prove their basic properties. Finally, we prove an obstruction for a link to be concor-
dant to a split link. We recall that each strong concordance deûnes a bijection between
the components of the two links, identifying them. hroughout this section all links
are oriented.

4.1 Whitehead Doubles of Links

Unlike the case of knots, the Whitehead double of links is not uniquely deûned. In
this paper we use two among many possible deûnitions of Whitehead double. he
two constructions give non-isotopic links, unless our link is a knot or the unlink.

heûrst familywe introducewill be referred to as fully claspedWhitehead doubles,
and is deûned as follows. Let L be a link with ℓ components, and let t = (t1 , . . . , tℓ) ∈
Zℓ . he positively (resp. negatively) fully clasped Whitehead double W±(L, t) is the
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Figure 10: he patterns W±

t . he box represents either ∣t∣ positive full twists or ∣t∣ negative full
twists, depending on whether t is positive or negative.

ℓ-component link obtained by the satellite of companion L, with pattern4 on the i-th
component given by the positively (resp. negatively) clasped t-twist knot W±

t i (see
Figure 10).

he second family of Whitehead doubles considered in this paper is called the re-
duced Whitehead doubles. Let L be a link. Fix t ∈ Z. he positive (resp. negative)
reducedWhitehead doubleW ′

±
(L, t; L1) is the ℓ-component link obtained by the satel-

lite of companion L, with pattern on L1 given by the positively (resp. negatively)
clasped twist knot W±

t (Figure 10).
For both of these families, there are diagramswhich can be easily described directly

from a diagram D of L. Given a diagram D, representing L, denote by D1, . . . ,Dℓ
the sub-diagrams representing the components L1, . . . ,Lℓ . Draw a parallel copy of the
diagramsD1, . . . ,Dℓ , add t i−w(D i) full twists between the two copies ofD i , and insert
the clasps in all the components to obtain the diagram D±(L, t) for the fully clasped
Whitehead double. he diagram D′

±
(L, t; L1) for the reduced Whitehead double can

be obtained as follows: draw a parallel copy of D1 (the component corresponding
to L1), add t − w(D1) full twists and a clasp between the two copies of D1, and leave
all the other components untouched. An example of such diagrams is depicted in
Figure 11.

4.2 Slice-torus Link Invariants of Whitehead Doubles

Now we shall study how the slice-torus link invariants behave in the case of White-
head doubles. Before proceeding, we observe that given a link L and a slice-torus link
invariant ν, there are two functions

Fν(L)∶ Zℓ Ð→ R and F
′

ν(L; L1)∶ ZÐ→ R

deûned as

Fν(L)(t) = ν(W+(L, t)) and F
′

ν(L; L1)(t) = ν(W ′

+
(L, t; L1)) .

4he homeomorphism sending the torus containing the knot W±

t to a tubular neighbouhood of each
component is assumed to send the longitude drawn in red in Figure 10 to the longitude determined by a
Seifert surface.
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Figure 11: Diagrams of the (untwisted) fully clasped (bottom le�) and (untwisted) reduced
(bottom right) Whitehead doubles of the Hopf link (top le�).

Similarly, we can deûne Fν(L) and F′ν(L) by using the negative Whitehead doubles.
Since two equivalent links have equivalentWhitehead doubles, it follows immediately
that these functions are link invariants (where we identify the variables correspond-
ing to isotopic components), but we can say more. In fact, we have that all of these
functions are also invariant under strong concordance.

heorem 4.1 Let L1 and L2 be two ℓ-component links which are strongly concor-

dant. Consider t ∈ Zℓ and t ∈ Z. Denote by L′1 and L′2 two components of L1 and L2,

respectively. hen W±(L1 , t) and W ′

±
(L1 , t; L′1) are strongly concordant (respecting the

ordering of the components) toW±(L2 , t) andW ′

±
(L2 , t; L′2), respectively. In particular,

the functions Fν , Fν , F′ν , and F
′

ν are strong concordance invariants of links.

Proof Suppose that the strong concordance between L1 and L2 appears as in Fig-
ure 4. Consider amovie (i.e., a sequence of bandmoves, birth and death of unknotted
components, andReidemeistermoves) from a diagramof L1 into one of L2, describing
a concordance. We start by taking the fully claspedWhitehead doubles of L1, obtained
by doubling the given diagram of L1 as we described before in this section. Every birth
move now becomes a double birth move (see Figure 12), which corresponds to the at-
tachment of two 0-handles. Moreover, when we have a split move, the component
involved will be doubled, and then the move now consists of two band moves instead
of one, as shown in Figure 13. herefore, we have two cases, depending on whether
the doubled component is clasped or not. If it is clasped, then a�er the band moves
it will be split into three components, one containing the clasp and the other two be-
ing one the double of the other. On the other hand, if the doubled component is not
clasped, then the bands will turn it into two doubled components.

Now in the case of a merge move, we observe that two clasped components cannot
be joined together. In fact, otherwise our cobordism would not be a strong concor-
dance. his implies that each merge move corresponds precisely to the inverse of a
split move, and then we obtain the same conclusions as the previous case.
At this point, we can perform the death moves, which will be doubled in the same

way as the birth moves. his is because the clasps and the full twists can be isotoped
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Figure 12: A double birth move.

Figure 13: A double band move.

to be everywhere on their doubled component of L1; therefore, we can always be sure
that clasps and twists will not appear on the components that we want to cancel with
the death moves.
A�er this procedure, we are le� with a diagram of the fully clasped Whitehead

double of L2, with the same number of twists. Moreover, the new cobordism that we
have obtained is a strong concordance by construction.
For the reduced Whitehead doubles the reasoning is exactly the same, provided

that we take care of two more details.
First, we only double the birth moves that will be joined with the clasped compo-

nent and not the others.
Second, we have to observe that we cannot have a merge move between a compo-

nent that is doubled and one that is not. In fact, we start from a strong concordance
and, as we remarked before, we cannot merge diòerent components of L1 together.
hen the claim follows from the same argument we used for fully clasped doubles. ∎

Remark 4.2 In the case L is a knot, the functions Fν(L) and F′ν(L; L) coincide.
Furthermore, when ν is Z-valued these functions assume only two values, and the
point where their value changes is the tν invariant introduced in [22].

Let us start by proving that the functions we introduced are bounded.

heorem 4.3 For each ℓ-component link L and m ∈ Zℓ , then

Fν(L)(m) ∈ [0, ℓ] and Fν(L)(m) ∈ [−ℓ, 0].

Furthermore, given a component L0 of L and m ∈ Z, we have

F
′

ν(L; L0)(m) ∈ [ν0 , ν0 + 1] and F
′

ν(L; L0)(m) ∈ [ν0 − 1, ν0],

https://doi.org/10.4153/S0008414X19000294 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000294


1446 A. Cavallo and C. Collari

Figure 14: A band move between W−(L,m; L0) and (L/L0) ⊔ H−.

where

ν0 =
⎧⎪⎪⎨⎪⎪⎩

ν(L/L0), ℓ ⩾ 2,
0, ℓ = 1.

Proof Let us prove only the part of statement concerning the invariants F′ν and F
′

ν .
he rest of the statement can be proved by iterating the same reasoning.

Notice that we can obtain a diagram of (L/L0) ⊔ H+ via a single band move on
D+(L,m; L0) (similar to the one illustrated in Figure 14). hus, from Properties (A)
and (B), and Lemma 2.7 it follows that

ν(W+(L,m; L0)) ⩽ ν((L/L0) ⊔H+) = ν0 + 1

and
ν0 = ν0 + 1 − 1 = ν((L/L0) ⊔H+) − 1 ⩽ ν(W+(L,m; L0)).

he same reasoning applies for F
′

ν , the only change is that we get H− instead of H+

(see Figure 14). Since ν(H−) = 0, the result follows. ∎

Moreover, there is a non-increasing property akin to the one proved in [22].

heorem 4.4 Let L be an oriented link, and let ν be a slice-torus link invariant. If m

and n are two elements of Zℓ such that m i ⩾ n i for all i, then

Fν(L)(n) −
ℓ

∑
i=1

(m i − n i) ⩽ Fν(L)(m) ⩽ Fν(L)(n).

Furthermore, if m ⩾ n are two integers, then

F
′

ν(L; L0)(n) − (m − n) ⩽ F′ν(L; L0)(m) ⩽ F′ν(L; L0)(n).

Moreover, the same result holds for Fν and F
′

ν .

Proof It is suõcient to prove the result for the case m i = n i , for all i ≠ i0, and
m i0 = n i0 + 1. It is suõcient to notice that, in this case, one can obtain W±(L,m)
(resp. W ′

±
(L,m; L0)) from W±(L, n) (resp. W ′

±
(L, n; L0)) by a second Reidemeister

move and a crossing change from a positive crossing to a negative crossing (see Fig-
ure 15) and the result follows from Proposition 2.10. ∎

In particular, heorem 4.4 implies that every time we add a positive full twist on
one component, the value of ν cannot increase, and it can decrease at most by one.
From the fact that ν(K) = −ν(−K∗), for each knot K and slice-torus invariant ν,

it follows that Fν(K)(t) = −Fν(K∗)(−t). In the case of links, this property does not
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Figure 15: How obtain W±(L,m) (resp. W ′

±(L,m; L0)) from W±(L, n) (resp. W ′

±(L, n; L0)) by
a second Reidemeister move and a crossing change.

Figure 16: A sequence of band moves and isotopies relating positive and negative clasps.

hold, but the invariants Fν and Fν (and their “reduced” variants) still share a similar,
albeit weaker, symmetry property, which is made precise in the following result.

Proposition 4.5 Let L be an ℓ-component oriented link and let ν be a slice-torus link

invariant. If there exists m (resp. n) in Zℓ such that

Fν(L)(m) = ℓ (resp. Fν(L)(n) = −ℓ),

then

Fν(L)(m) = 0 (resp. Fν(L)(n) = 0).
Moreover, let L0 be a component of L, if there exists m (resp. n) in Z such that

F
′

ν(L; L0)(m) = ν0 + 1 (resp. F′ν(L; L0)(n) = ν0 − 1),

then

F
′

ν(L; L0)(m) = ν0 (resp. F′ν(L; L0)(n) = ν0),
where ν0 is deûned as in heorem 4.3.

Proof We will prove only the parts of the statement concerning the functions F′ν
and F

′

ν . he proofs for the other functions are completely analogous and thence le�
to the reader. Let us start by considering the sequence of band moves (and isotopies)
depicted in Figure 16. By Property (A), we obtain that

∣ν(W ′

+
(L,m; L0)) − ν(W ′

−
(L,m; L0))∣ ⩽ 1.

It follows that if F′ν(L; L0)(n) = ν0 + 1 (resp. F
′

ν(L; L0)(m) = ν0 − 1), then

ν0 ⩽ F
′

ν(L; L0)(m) (resp. F′ν(L; L0)(n) ⩽ ν0).

heorem 4.3 provides the other half of the bound(s), and the equality follows. ∎
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We saw that ν(W±(L, t)) is bounded for every ℓ-component link L. Now we want
to prove that for some ℓ-tuples (t1 , . . . , tℓ), the invariant ν assumes the maximum
value possible. To do this we equip S3 with the standard contact structure ξst and we
recall that thehurston–Bennequin number tb(L) of a Legendrian knot is the linking
number between L and the contact framing Lξst induced by ξst. See [14] for details.

heorem 4.6 Suppose that ν is a slice-torus link invariant. hen for each Legen-

drian representative L of L in (S3 , ξst), and (t1 , . . . , tℓ) such that t i = tb(Li) for every
i = 1, . . . , ℓ, we have that

Fν(L)(t1 , . . . , tℓ) = ℓ.

Proof Let us consider a surface F′ such that the Legendrian link L in S3 equipped
with the contact structure ξst is embedded in F′, and tb(L) coincides with the Seifert
framing induced by F′. his means that the (t1 , . . . , tℓ)-twisted double of the link L

can be embedded in F′ as the boundary of a collar neighbourhood ofL. Let us call this
neighbourhood F′′ ⊂ F′. Moreover, we can change F′′ by positive Hopf plumbings in
such a way that the new surface F has W+(L, t1 , . . . , tℓ) as boundary.
From the work of Rudolph [31, 32] and thanks to our choice of (t1 , . . . , tℓ), we can

assume that F′′ is a quasi-positive surface. herefore, since F it is obtained from F′′

through positive Hopf plumbings, F is also a quasi-positive surface. his also implies
that W+(L, t1 , . . . , tℓ) is a strongly quasi-positive link.

Now, possibly a�er performing more positive plumbings, the surface F can be
seen as a subsurface of a minimal Seifert surface G of a torus knot Tm ,n , for m, n
suõciently big. (See [31, 32].) he surface Σ = G/F̊ is a connected cobordism be-
tween W+(L, t1 , . . . , tℓ) and Tm ,n (this is basically the same argument used in [22]);
its genus can be computed from the fact that χ(F) + χ(Σ) = χ(G). Hence, we have

(−ℓ) + (1 − 2g(Σ) − ℓ) = 1 − 2g(G),
because F is by construction the union of ℓ copies of a torus with a disk removed, and
Σ and G are both connected, which gives

g(Σ) = g(G) − ℓ.

Each surface S in S3 with boundary subdivision ∂0S ⊔ ∂1S can be seen5 as a surface in
S3 × [0, 1] such that S ∩ (S3 × {i}) = ∂ iS. In particular, we can see Σ as a cobordism
between Tm ,n andW+(L, t1 , . . . , tℓ). Propositions 2.11 and 1.2 imply that

ν(Tm ,n) ⩽ ν(W+(L, t1 , . . . , tℓ)) + g(Σ) = ν(W+(L, t1 , . . . , tℓ)) + g(G) − ℓ,

which, in turn, gives
ℓ ⩽ ν(W+(L, t1 , . . . , tℓ)) ,

since ν(Tm ,n) = g(G) (cf. Corollary 2.14). Now the statement follows directly from
heorem 4.3. ∎

he last theorem, together with Proposition 4.5, immediately implies the following
corollary.

5Consider a Morse function f ∶ S → [0, 1] such that f −1(i) = ∂ iS, i = 0, 1 (it is easily shown that such
a function always exists). he desired embedding is given by the map

F ∶ S Ð→ S3 × [0, 1] ∶ p ↦ (p, f (p)).
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Corollary 4.7 Let L be a link. For every t ∈ Zℓ , as in the hypotheses of heorem 4.6,
we have that Fν(L)(t) = 0.

In [22] it was proved that in the case of knots, the functions Fν and Fν also assume
the minimal value. hat is, we have the following proposition.

Proposition 4.8 (Livingston andNaik, [22]) If K is a knot, then there exists an integer

t such that

ν(W+(K , t)) = 0 and ν(W−(K , t)) = −1.

In general, we do not have the same result in the case of multi-component links.
hat is to say, we cannot prove that any of the functions we introduced reach the
minimum. However, we can prove that some of them are non-constant.

Proposition 4.9 For every slice-torus link invariant ν and ℓ-component link L, there

exists an ℓ-tuple (t1 , . . . , tℓ) such that

Fν(L)(t1 , . . . , t i , . . . , tℓ) ∈ (ℓ − 1, ℓ],
Fν(L)(t1 , . . . , t i + 1, . . . , tℓ) ∈ (ℓ − 2, ℓ − 1]

for some i, and the same holds true for Fν(L).

Proof Suppose that Fν(L) has values only in the interval (ℓ − 1, ℓ]. hen by Prop-
erty (C), we have that

ν(W+(L, t)∗) = ν(W−(L∗ ,−t)) ⩽ −1

for each t ∈ Zℓ , but this contradicts Corollary 4.7. he claim follows from heo-
rem 4.4. he case of Fν(L) is dealt with in the same way. ∎

5 An Example: the Hopf Link

In this section, we will give compute explicitly the functions Fνs and Fνs for the Hopf
link, where νs is the slice-torus link invariant associated with s. Notice that the fully
clasped Whitehead doubles of the positive and negative Hopf links are isotopic, and
thus the computation we achieve are valid both for H+ and H−. To lighten the no-
tation, throughout the section we shall omit H± from the notation unless confusion
may arise.

5.1 Computations for General Slice-torus Link Invariant

Let ν be a slice-torus link invariant. here are a few observations on Fν(t1 , t2) and
Fν(t1 , t2) that can be made, and allow us to partially compute these functions.
First, notice that exchanging the roles of the components of the Hopf link yields

the same link. hus, we obtain the following symmetry property:

Fν(H±)(t1 , t2) = Fν(H±)(t2 , t1), for all (t1 , t2) ∈ Z2 .
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Furthermore, with the same reasoning as in the proof of heorem 4.3, it follows
immediately that

ν(W+(◯, t i)) ⩽ Fν(t1 , t2) ⩽ ν(W+(◯, t i)) + 1, i ∈ {1, 2}.

Moreover, sinceW+(◯,−1) = T2,3 andW+(◯, 0) = ◯, we have that

ν(W+(◯, t)) = Fν(◯)(t) =
⎧⎪⎪⎨⎪⎪⎩

1, t ⩽ −1,
0, t ⩾ 0,

for each ν. Putting these facts together with heorem 4.3, and with the fact that the
combinatorial bound (cf. heorem 1.4) is sharp in the case (t1 , t2) = (0, 0), we obtain
that

Fν(t1 , t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2, (t1 , t2) ∈ (−∞,−1] × (−∞,−1],
1, (t1 , t2) or (t2 , t1) ∈ [−1,−∞) × (−∞, 0] ∪ {(0, 0)},
∈ [0, 1], otherwise.

A similar, reasoning works with Fν , with the only diòerence that the bound is sharp
in (1, 1) and not in (0, 0). his lead us to the following:

Fν(t1 , t2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, (t1 , t2) ∈ (−∞,−1] × (−∞,−1]
∈ [−1, 0], (t1 , t2) or (t2 , t1) ∈ {0} × (−∞, 0],
−1, (t1 , t2) or (t2 , t1) ∈ [1,+∞) × (−∞, 0] ∪ {(1, 1)},
∈ [−2,−1], otherwise.

.

he information we gathered on the functions Fν and Fν is summarized in Figure 17.

Remark 5.1 his amount of information is already enough to distinguish the unlink
with two components, and every disjoint union of two knots, from the Hopf link by
applying heorem 6.3.

5.2 Computations with the s-invariant

he s-invariant was introduced by Rasmussen [29] in the case of knots and extended
to links by Beliakova and Werhli [4]. Let us say a few words on this invariant.
Fix a ûeldF, in [19] E. S. Lee introduced a link homology theoryH∗

Lee( ⋅ ,F), which
is a deformation ofKhovanov homology. hehomology of this theory is pretty simple:
given an oriented link diagram D representing a link L there is a set of cycles, called
canonical generators, whose homology classes generateH∗

Lee(L,F). his set is indexed
by the possible orientations of the underlying unoriented diagram ([19,heorem 5.1]).
Moreover, the homological degree h of each canonical generator is completely deter-
mined by the linking matrix of L. However, this theory has a natural (decreasing)
ûltration F∗, called the quantum ûltration, which contains non-trivial information
on concordance.

Let D be an oriented link diagram. he set of the possible orientations of the un-
derlying unoriented diagram will be denoted by O(D), and the canonical generator
associated with a given o ∈ O(D) will be denoted by vo(D;F) ∈ Ch(o ,L)

Lee (D,F).
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Figure 17: (Colour online.) Partial computations of the functions Fν(H±)(t1 , t2) and
Fν(H±)(t1 , t2) for an arbitrary slice-torus link invariant ν.

Deûnition 5.2 (Rasmussen [29], Beliakova–Wehrli [4]) Let D be an oriented link
diagram representing an oriented link L. he Rasmussen–Beliakova–Wehrli (RBW)
invariant associated with o ∈ O(D) is the integer

s(o, L;F) = Fdeg([vo(D;F) − v−o(D;F)]) − Fdeg([vo(D;F) + v−o(D;F)])
2

,
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where Fdeg indicates the ûltered degree in H●

TLee(L,F) and −o denotes the opposite
orientation with respect to o. If o is exactly the orientation induced by L, we will omit
o from the notation and call s(L;F) the s-invariant or Rasmussen invariant of L.

Remark 5.3 he original deûnition of the RBW-invariants ([4, 29]) does not work
over ûelds of characteristic 2. However, using a twisted version of Lee theory, deûned
by Bar-Natan in [3], one can extend the deûnition to characteristic 2 (of course, the
two theories give the same invariants if char(F) ≠ 2, see [26]). With an abuse of
notation, we call these extended invariants RBW-invariants.

Let D be an oriented link diagram representing the oriented link L. It can be easily
shown (see, for instance, [12, Proposition 11] and subsequent proof) that

s(L;F) − 1 = Fdeg ([v−oD(D)]) = Fdeg ([voD(D)])
= max{ Fdeg(x) ∣ x ∈ [voD(D)]} ,

where oD is the orientation of D, and the ûltered degree Fdeg(x) is deûned as the
maximal j such that x ∈ F jC

∗

Lee(D,F). We shallmake use of this alternative deûnition
of s to prove the following results, which allows one to compute s in a number of cases.

Proposition 5.4 Let L be an oriented link, D an oriented diagram representing L

and L̃ the unoriented link underlying L. If for each o ∈ O(D) such that for vo(D) ∈
C0

Lee(D,F), we have that L is isotopic to (L̃, o), then

s(L;F) = 1 +min{ j ∈ Z ∣ Gr
j
F
H

0
Lee(L;F) ≠ 0} ,

where Gr∗F indicates the associated graded object corresponding to the quantum

ûltration.

Proof he homology classes of the canonical generators associated with the orien-
tations satisfying the above hypothesis, generate H0

Lee(L;F). Since L is isotopic to
(L̃, o), for all o’s such that vo(D) ∈ C0

Lee(D,F), it follows that all the corresponding
[vo]’s have the same ûltered degree. he set of such [vo]’s is a basis of H0

TLee(L;F),
and the minimal ûltered degree of the elements of a basis of a ûltered vector space
does not depend on the choice of the basis (this fact is easy to prove, but the lazy
reader can consult, for example, [11, Corollary A.6]). he claim follows immediately
from the fact that the minimal degree of the elements of a ûltered basis6 of a ûltered
vector space V is the minimal degree where Gr∗V is non-trivial. ∎

Remark 5.5 he proof of the previous proposition does not imply anything about
the support of the associated graded object (also called the Pardon invariant), aside
from the RBW invariant being the lowest non-trivial quantum degree (plus one) in
homological degree 0. In particular, we did not prove that Gr∗FH0

Lee(L;F) is sup-
ported only in two degrees, which is false, as we shall see in the examples.

6Aûltered basisof a ûltered vector spaceV is a basis{e i}i=1, . . . ,k forV such that the direct sumûltration
onV = ⊕k

i=1 F ⟨e i⟩ coincides with the original ûltration (where the ûltration onF ⟨e i⟩ is understood). It is
clear that every ûltered vector space admits a ûltered basis, and this choice gives an isomorphism between
V and Gr∗V .
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Using Proposition 5.4 and the knight move pairings ([11,19]) we can determine the
s-invariant from Khovanov homology in many cases, including the Whitehead dou-
bles of the Hopf link. An essential data to perform a computation using the knight
move pairing is the homological degrees on which Lee homology is supported. hese
are completely determined by the linking matrix. In our case, since the linking ma-
trix of fully clasped Whitehead doubles is always vanishing, Lee homology is always
concentrated in homological degree 0.

Remark 5.6 We remark that, in general, the knight move pairing is not suõcient
to compute the associated graded object to Lee homology. However, if the ûeld is of
characteristic diòerent from 2 and the pairing is unique, this method can be used (see
[11, Chapter 2 & Appendix B] for more details).

In order to avoid technical diõculties we will work with F = Q. In this case we are
able complete the computation started at the beginning of the section.

We recall (see Example 2.3) that the Rasmussen invariant is not a slice-torus link
invariant by itself, but we need to re-scale it and add a correction term; more speciû-
cally, recall that the slice-torus link invariant associated with the Rasmussen invariant
is

νs(L) =
s(L) + ℓ − 1

2
∈ Z,

where L is an ℓ-component link. Which means that the values that s(W+(H± , t1 , t2))
can assume are 3, 1, and −1. he KnotTheory package of Mathematica [34] was used
to compute the Khovanov homology, and the results of these computations are col-
lected in the appendix.

Let us start with the linkW+(H± , 0, 1). In this case, the result of our computations
is the following (cf. Table A.1):

dimGr j
F
H

0
Lee(W+(H± , 0, 1)) =

⎧⎪⎪⎨⎪⎪⎩

2, if j = 0, 2,
0, otherwise.

It follows that s(W+(0, 1)) = 1, and thus

Fνs(H±)(0, 1) =
1 + 2 − 1

2
= 1.

Notice that the linkW+(H± , 0, 1) is pseudo-thin; that is, Gr●F H0
Lee is supported in two

points (see [6]).
Now let us consider the links W+(H± , 1, 1) and W+(H± , 0, 2). We have that

(cf. Table A.2)

dimGr j
F
H

0
Lee(W+(H± , 0, 2)) = dimGr j

F
H

0
Lee(W+(H± , 1, 1))

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2, if j = 0,
1, if j = −2, 2,
0, otherwise.

It follows that Fνs(H±)(1, 1) = Fνs(H±)(1, 2) = 0. Notice that neither of these links is
pseudo-thin (cf. Remark 5.5).
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Figure 18: (Colour online.) Computations of the functions Fνs (H±)(t1 , t2) and Fνs (H±)(t1 , t2),
where νs is the slice-torus link invariant associated with the Rasmussen link invariant.

hanks to the non-increasing property proved in heorem 4.4, Fνs is completely
determined. he result of our computations is shown in the top of Figure 18.

Now let us turn to the computation of the function Fνs . We start by computing the
associated graded object to Lee homology for the linkW−(H± , 0, 0), which yields the
following result (cf. Table A.3, le�)

dimGr j
F
H

0
Lee(W−(H± , 0, 0)) =

⎧⎪⎪⎨⎪⎪⎩

2, if j = −2, 0,
0, otherwise.
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As a consequence, we have that Fνs(0, 0) = 0, and thus (by heorem 4.4) it follows
that Fνs(0, t) = Fνs(t, 0) = 0 for each t ⩽ 0.
Finally, we computed the associated graded object to Lee homology for the link

W−(H± , 1, 2) (cf. Table A.3, right), and we obtained that

dimGr j
F
H

0
Lee(W−(H± , 1, 2)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2, if j = −4,
1, if j = −6,−2,
0, otherwise.

Now Proposition 5.4 impies that s(W−(H± , 1, 2)) = −5, and thus Fνs(1, 2) = −2. his
completes the computation of the function Fνs , which is summarized on the bottom
of Figure 18.

Remark 5.7 Notice that while the invariants tν and tν contain the same informa-
tion, in the case of multi-component links the set of points where Fν and Fν change
their values are not related a priori. In Figure 18, we have an example of how the
“jumping loci” of these the two functions are not trivially related.

6 Further Examples

In this section we explore two further examples: the split links and the link L8a9. By
analysing the former example, we are able to deûne a new obstruction for a link to
be strongly concordant to a split link. With the latter example we will see that the
functions F′ν and F

′

ν contain diòerent information than the linking matrix and ν.

6.1 Split Links

Let L i be an ℓ i-component link, for i ∈ {1, 2}. SinceWhitehead doubling and disjoint
union commute, Property (B) tells us that

ν(W±(L1 ⊔ L2 , (t, s))) = ν(W±(L1 , t)) + ν(W±(L2 , s))

for each t ∈ Zℓ1 and s ∈ Zℓ2 . Denote by L the disjoint union of L1 and L2. Proposi-
tion 4.9 implies that there exists a unit square in Zℓ1+ℓ2 with vertices

(t, s), (t + e i , s), (t, s + e j), and (t + e i , s + e j),

for some i , j ∈ {1, . . . , ℓ1+ ℓ2}, where e i denotes the vector (of the appropriate length)
with i-th entry 1 and all the other entries 0, satisfying the following properties:

▷ Fν(L) assumes at least three diòerent values on the vertices of the square;
▷ the maximal and the minimal values of Fν(L) on the square are attained exactly

once;
▷ the maximal value of Fν(L) on the square is equal to ℓ, where ℓ is the number

of the components of L.

We call such a square a 3-valued square for the function Fν(L). he concept of
3-valued square can be generalized as follows.
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Deûnition 6.1 Fix ℓ ⩾ 1, and consider a bounded function F ∶ Zℓ → R. A (k + 1)-
valued cube for F is a k-dimensional cube in Zℓ with edges of length 1, such that the
following hold:
▷ F assumes at least k + 1 diòerent values on the vertices of the cube;
▷ the maximal and the minimal values of F on the cube are attained exactly once;
▷ the maximal value of F on the cube is equal to the maximal value of F.

Notice that a 3-valued square is a 3-valued cube. he existence of a 3-valued square
for Fν(L) and Fν(L) in the case L is the split union of two links can be generalized as
follows.

Proposition 6.2 Suppose that L is a link with ℓs split components. hen Fν(L) and
Fν(L) have at least one (ℓs + 1)-valued cube, for each slice-torus link invariant ν.

Proof It follows from Proposition 4.9, and from the additivity of Fν(L) and Fν(L)
with respect to the disjoint union of links. ∎

his gives a criterion to obstruct the strong concordance with split links. In par-
ticular, this criterion requires only a partial computation of either Fν(L) or Fν(L)
(cf. Remark 5.1).

heorem 6.3 Let L be a link. If there exists a slice-torus link invariant ν such that

either Fν(L) or Fν(L) do not admit any (r + 1)-valued cube, then L is not strongly

concordant to any link with r split components.

Proof It is an immediate consequence of heorem 4.1, which states that Fν and Fν
are strong concordance invariants, and Proposition 6.2. ∎

In particular, when ν is a Z-valued slice-torus link invariant, we have that if an
ℓ-component link L is strongly concordant to the disjoint union of ℓ knots then Fν(L)
has exactly one (ℓ + 1)-valued cube. Moreover, in this case, Fν also assumes the min-
imal value.

6.2 The Link L8a9

In this subsection we use the function F′νs
to prove that the link L = L8a9 (see Fig-

ure 19) is not strongly concordant to the positive Hopf link H+.
Notice that L is a non-split, alternating link with the same signature and linking

matrix as H+. his means that these two links also have the same Lee homology and
the same ûltered link Floer homology (see [6, 7, 19]). It follows that these links have
the same s and τ invariants.

Proposition 6.4 he function F′νs
(L;A) diòers from F′νs

(H±), and thus there is no

strong concordance between the links L and H+.

Proof Let us consider the reduced Whitehead doubles W ′

+
(L, 1;A) andW ′

+
(H± , 1).

We omitted the component in the latter reduced Whitehead double, since the choice
of the component for the Hopf link is immaterial (as the results are isotopic).
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Figure 19: A diagram of the link L, which is the link L8a9 in KnotAtlas.

Similarly to what we did in the previous subsection, the Khovanov homologies
shown in Table A.4 allow us to determine that

dimGr j
F
H

0
Lee(W+(L, 1;A)) =

⎧⎪⎪⎨⎪⎪⎩

2, if j = 0, 2,
0, otherwise,

dimGr j
F
H

0
Lee(W+(H± , 1)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2, if j = 0,
1, if j = −2, 2,
0, otherwise.

It follows from heorem 5.4 that F′νs
(L;A)(1) = (s(W ′

+
(L, 1;A)) + 1)/2 = 1 and

F′νs
(H±)(1) = (s(W ′

+
(H± , 1)) + 1)/2 = 0. ∎

Proposition 6.4 tells us that the functions Fν , Fν , F′ν , and F
′

ν can eòectively
give more information, as concordance invariants, than ν and the linking matrix. In
particular, we have also shown that F′νs

(L) is not determined by the Lee homology
of L.

Proof of Theorem 1.8 he result follows from Proposition 6.4. ∎

A Tables of Khovanov Homology

A.1 Tables Relative to Section 5

In this subsectionwe collect the tables of the Khovanov homology used in the compu-
tations in Section 5. We have highlighted the column corresponding to the homolog-
ical degree 0, which is the homological degree where Lee homology is concentrated
in these cases. All the homologies are computed with coeõcients in Q.
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1

1

1

1

1 1

121

1 2

1

2

11

1 1

21 3
2 3 3

qdeg

hdeg
-10
-8
-6
-4
-2
0
2
4
6
8
10

-6 -5 -4 -3 -2 -1 0 1 2 3 4

Table A.1: he Khovanov homology of the link W+(H± , 0, 1).

1
1
1 1

1

1 2 1
1 1 11

2

1
2 2

1

2

2

1 2

21

2

2

1
1 12 4

1

qdeg

hdeg
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
8
10

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

1
1
1 1

1 2 2
1 1

2

2 3 2
1 1 2

1

2

3

1
1 2 2

2

hdeg

qdeg

-14
-12
-10
-8
-6
-4
-2
0
2
4
6

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Table A.2: he Khovanov homology of the links W+(H± , 1, 1) andW+(H± , 0, 2).
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1
1
1 1 1

1 2 1

1

1 2 1

1

2 2 2

11

11 3
123

qdeg

hdeg
-14
-12
-10
-8
-6
-4
-2
0
2
4
6

-6 -5 -4 -3 -2 -1 0 1 2 3 4

1
1
1 1

1 2 1
1 1 1

2 2
1 2 3

1 1 1
1 3 2

1 2
2 1

1 2
1

qdeg

hdeg
-26
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Table A.3: he Khovanov homology of the links W−(H± , 0, 0) andW−(H± , 1, 2).

https://doi.org/10.4153/S0008414X19000294 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000294


1460 A. Cavallo and C. Collari

A.2 Tables Relative to Section 6

In this subsection we collected the tables of the Khovanov homology used in the com-
putations in Section 6.

2
2
1

1

1 1
1
1

1

1

2
1

1
1

1

qdeg

hdeg
-10
-8
-6
-4
-2
0
2
4
6
8

-6 -5 -4 -3 -2 -1 0 1 2 3

2
1

2

1

1 1

1
1

1

1

qdeg

hdeg
-8
-6
-4
-2
0
2
4
6

-4 -3 -2 -1 0 1 2

Table A.4: he Khovanov homology of the links W ′

+
(L, 1;A) andW ′

+
(H± , 1).
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