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ABSTRACT
Objectives: Armed conflict has contributed to an unprecedented number of internally displaced persons
(IDPs), individuals who are forced out of their homes but remain within their country. IDPs often urgently
require shelter, food, and healthcare, yet prediction of when IDPs will migrate to an area remains a major
challenge for aid delivery organizations. We sought to develop an IDP migration forecasting framework
that could empower humanitarian aid groups to more effectively allocate resources during conflicts.

Methods:Wemodeledmonthly IDPmigration between provinces within Syria and within Yemen using data
on food prices, fuel prices, wages, location, time, and conflict reports. We compared machine learning
methods with baseline persistence methods of forecasting.

Results:We found amachine learning approach thatmore accurately forecastmigration trends than baseline
persistence methods. A random forest model outperformed the best persistence model in terms of root
mean square error of log migration by 26% and 17% for the Syria and Yemen datasets, respectively.

Conclusions: Integrating diverse data sources into a machine learning model appears to improve IDP
migration prediction. Further work should examine whether implementation of such models can enable
proactive aid allocation for IDPs in anticipation of forecast arrivals.
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Armed conflict has contributed to an alarming
rate of migration, with over 68.5 million for-
cibly displaced people worldwide.1 Of those

displaced, over 40 million are considered internally dis-
placed persons (IDPs), individuals who are forced out of
their homes but remain within their country. IDPs often
require aid in the form of food, shelter, or health care.
However, because much of internal displacement arises
from regional instability for which local authorities are
either unwilling or unequipped to provide aid, it is rare
for IDPs to find support from their governments.2

Humanitarian response to IDPs is instead typically
provided by international nongovernmental organiza-
tions. Such aid groups face many logistical challenges
providing support to IDPs within conflict-rife zones,
one of which is resource allocation across many pos-
sible sites to which IDPs may migrate. Given the
unpredictability of conflict zones, it is difficult to
anticipate when and where IDPs will arrive, so it is
unclear which shelters and camps will reach capacity
soonest, and where supplies and workers should be
sent. At present, allocations are often ad hoc and
delayed. It would, therefore, be valuable to forecast
IDP migration so that aid groups can proactively pre-
pare to distribute resources in an anticipatory manner.

Some previous works use simulation modeling3–5 or
linear statistical models to forecast migration.6,7

These methods are useful for data-scarce scenarios
because they do not require much data to implement,
but they might not be able to leverage the information
found in large and heterogeneous datasets to the extent
that machine learning methods can.8 Additionally, no
study to our knowledge has modeled IDP migration,
which is more granular and noisy than international
migration, despite being more common. Historically,
IDP migration data have been delayed, missing, and
sometimes anecdotal rather than consistently
collected, due to difficulties in obtaining reliable data.
Our work builds on previous works in that we use
machine learning models on large, heterogeneous
datasets (the scale of which has previously been
unavailable) for internal displacement migration fore-
casting (as opposed to international migration
forecasting).

In recent years, internal displacement task forces have
been established to collect on-site data on IDP
migration through surveys, registrations, and site
monitoring, all of which are triangulated and verified
through multiple sources. Additionally, other public
data sources have emerged, providing potential
predictors of migration, including market prices for
staple goods, wages, and conflict events. By using these
data, we are able to provide monthly forecasts of IDP
migration across provinces in Syria and Yemen using
machine learning.
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METHODS
Data
We obtained monthly IDP migration data within Syria and
Yemen from publicly available datasets provided by
the United Nations Office for the Coordination of
Humanitarian Affairs and the International Organization for
Migration, respectively. The Syria dataset spans from
January 2016 toDecember 2017; the Yemen dataset spans from
January 2014 to September 2017. We determined each
observation within our dataset to be each unique grouping
of month, origin province, and destination province. The
Syria and Yemen datasets thus contain 1505 and 3563
observations, respectively.

We obtained monthly food prices, fuel prices, and wages
within provinces of both Syria and Yemen from the World
Food Program’s global food price database. The dataset con-
tains values for commodities such as cheese, wheat, diesel,
and gas. We calculated the median value for commodities
for the categories of food, fuel, and wages. The values were
originally recorded across distinct districts and marketplaces
within provinces, so we calculated the medians of all values
across provinces per month to get province-level values for
the model. The global food price database is updated monthly
and spans from the early 2000s to December 2017. We used
within-month median imputation for missing values. In the
Syria and Yemen price datasets, 6% and 46% of values were
missing, respectively. Wage data were only available for July
2016 onward for Yemen, so we excluded the wage data from
the Yemen analysis.

We obtained conflict data from 2 separate sources: The
Integrated Conflict Early Warning System (ICEWS) dataset
and the Armed Conflict Location and Event Data
(ACLED) collection. The ICEWS dataset consists of political
events across the globe and is publicly available for data span-
ning from 1995 to 2016. We took the subset of ICEWS events
based on codes that corresponded to armed conflict events.
The ACLED dataset consists of global armed conflict event
data; the Middle East ACLED data span from 2017 to May
2018.We defined a conflict intensity variable using these data,
defined as the number of violent events per month for a given
province, scaled to zero mean and unit variance. Scaling was
done at the dataset level (separately for ICEWS and ACLED)
to account for potential frequency biases in data collection
between the 2 datasets.

We finally created a distance metric by taking the coordinates
of each province’s centroid and calculating the Haversine
distance9 between each province pair, ie, the distance across
a sphere of 2 points given their coordinates.

Models
We trained various statistical and machine learning models to
predict next month’s migrations for each observation. Broadly,

we formulate the models as ŷijk= f(x), where i= 1, : : : , N
origin provinces, j= 1, : : : , ni origin-destination pairs, k = 1,
: : : , nij monthly observations for each origin-destination pair,
ŷ represents the estimated number of IDP migrations for a
given location, and x represents our set of covariates. Details
on the specific models can be found in the Supplementary
Materials, which are available online.

For each model, our covariates consisted of monthly features
derived from the aforementioned datasets. We used monthly
data from both the origin and destination for each destination-
origin pair to model the “push and pull” factors10 of migration.
Our model covariates for each observation were thus the date,
monthly food prices, fuel prices, wages, and conflict intensity
from both the origin and destination, as well as the distance
between the origin and destination. To account for the fact
that marketplace data typically take 3 months to be collected
and shared, we used food/fuel prices and wages with a 3-month
lag to reflect available covariates for real-time forecasting. For
example, we use prices and wages from January 2017 to predict
migrations for April 2017. Conflict data are updated monthly,
so we used the previous month’s conflict intensity metric for
each observation. However, we also include a 3-month lagged
conflict intensity variable to account for interactions with
price data. An autoregressive term, the previous month’s
IDP migrations for a given origin–destination pair, was
included as the final covariate.

For comparison against our machine learning models, we
applied the baseline persistence methods of last observation
carried forward (LOCF) and historical mean (HM). Both
methods are done from within origin–destination
pairs. More specifically, HM was calculated as
ŷijk= (yij1þ : : : þ yijnij)/nij and LOCF was calculated as
ŷijk= yijk-1.

We evaluated our models by forecasting out-of-sample 1
month ahead using a rolling origin. We started at month 5
for Syria (out of 24) andmonth 23 for Yemen (out of 44); these
are the time points at which all origin and destination prov-
inces became present in the datasets. We use root mean
squared error (RMSE), mean absolute error (MAE), and sign
accuracy as metrics for evaluation. Sign accuracy is a metric we
introduce that measures how well a model can predict whether
a given observation will be an increase in migrations from the
previous month, or not. Specifically, we measure this as a
binary classifier evaluation at each observation: an observation
is a 1 for an increase inmigrations, and 0 otherwise.We test our
methods both on log and absolute units (see Supplementary
Materials).

RESULTS
The baseline persistence models we tested, HM and LOCF,
were able to capture trends of IDPmigration and log-migration
within each province with RMSE (RMSE= 10587 and 10661
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for Syria HM and LOCF, 1332 and 1413 for Yemen HM and
LOCF) and MAE (MAE= 3066 and 2577 for Syria HM and
LOCF, 288 and 326 for YemenHM and LOCF) values that are
moderately low, with poor R2 (R2= 0.24 and 0.34 for Syria
HM and LOCF, 0.08 and 0.17 for Yemen HM and LOCF) val-
ues (Table 1). Because the persistence models relied solely on
historical data, they were unable to provide forecasts for
regions for which there previously had been no IDP arrivals,
instead producing erroneous zero predictions. Additionally,
both persistence models performed poorly in terms of sign
accuracy (63% and 59% for Syria HM and LOCF, 67% and
60% for Yemen HM and LOCF).

By comparison, machine learning models we trained outper-
formed HM and LOCF forecasts in terms of RMSE, MAE,
and R2 for both predicting migration and log-migration, as well
as sign accuracy (Table 1). Furthermore, the machine learning
models were able to make predictions for regions without pre-
vious data, avoiding erroneous zero predictions. The machine
learning models had similar predictive performances, although
the random forest machine learning algorithm in particular
appeared slightly better overall than the others across both
countries. The random forest specifically outperformed
LOCF in terms of RMSE of log-migration by 26% and 17%
for the Syria and Yemen datasets, respectively.

DISCUSSION
We found that forecasting IDP migration by integrating
diverse data sources into a machine learning model appears
to improve IDP migration prediction. If we assume human-
level performance to be similar to that of the persistence mod-
els, then we would expect machine learning models to improve
forecasting by 20-30% in terms of RMSE, potentially facilitat-
ing more accurate resource allocation.

We observed that the random forest, our best machine learn-
ing model, captured overall trends of IDP migrations for each

province but occasionally failed to capture sudden spikes in
displacement (Figure 1). Our model obtained a 70% and
74% sign accuracy for Syria and Yemen, respectively
(Table 1). These are relatively high values (± 2% sign accuracy
compared with other machine learning models we tested), but
they also suggest room for improvement in absolute terms of
detecting spikes. This is likely because our features are unable
to fully characterize when spikes occur. For example, our con-
flict intensity metric is determined by how many armed con-
flict events occur in a month, but did not consider the
magnitude of the armed conflict event. In comparison, the
baseline persistence methods were fundamentally poor at
detecting large spikes in displacement because they simply pro-
jected past data.

The limitations of our work are largely related to the quality of
the available data. There is substantial uncertainty inherent to
the datasets we used: the ground truth for IDP migration num-
bers, conflict events, prices, and wages are all subject to the
unreliability of on-site data collection. The IDP migration val-
ues also lack potentially valuable disaggregated information,
such as age or sex, or more granular information, such as daily
migrations (instead of monthly) or subdistrict-level migrations
(instead of provinces). There were also substantial amounts of
missing data from the price dataset for Yemen that were
imputed, possibly explaining the poorer predictive
performance of the machine learning models when applied
to the data from Yemen.

Future work could involve incorporating new kinds of data
into our models. Other approaches could involve obtaining
new datasets, such as acquiring annotated satellite imagery,
cell phone data, or relevant social media posts and adding
them to our models. Additionally, incorporating our models
directly into the workflow of aid agencies using their supply
chain data would allow for explicit optimization of resource
allocation based on forecast IDP migration.

TABLE 1
Predictive Performance of Forecasting Methods for Syria (a) and Yemen (b) on Both Migration and Log-Migration
(a) Syria Predictive Performance

Model RMSE MAE R2 RMSE (log) MAE (log) R2 (log) Sign Acc.
HM 10587.07 3066.02 0.24 2.15 1.66 0.38 0.63
LOCF 10660.7 2577.37 0.34 2.01 1.44 0.46 0.59
RF 9576.61 2237.73 0.45 1.49 1.14 0.59 0.70

(b) Yemen Predictive Performance

Model RMSE MAE R2 RMSE (log) MAE (log) R2 (log) Sign Acc.
HM 1332.29 287.78 0.08 2.10 1.75 0.30 0.67
LOCF 1413.30 325.92 0.17 1.48 1.13 0.33 0.60
RF 1140.01 247.05 0.21 1.23 0.98 0.39 0.74

Abbreviations: HM, historical mean; LOCF, last observation carried forward; MAE, mean absolute error; RF, random forest; RMSE, root mean squared error; R2, coef-
ficient of determination.
a Boldface type indicates best forecasting performance for a given metric.
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FIGURE 1
Observed and Forecast Number of IDP Arrivals in Each Province by Month for Syria and Yemen. Forecasts for each month were
made from a random forest model trained on data from prior months. Gray shaded regions denote 95% prediction intervals
determined by the quantiles of the individual trees for each prediction.
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FIGURE 1
Continued.
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CONCLUSIONS
Forecasting IDP migration patterns appears to be viable using
machine learning methods. In the future, more comprehensive
data collection (disaggregated information, higher resolution,
and less missing data) would likely lead to better predictive
performance and thus better decision-making. We hope that
our work can help promote discussion on what can be accom-
plished with IDP data, with the eventual goal of direct opera-
tional use by aid agencies.
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