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Abstract

Tabled evaluation is a recognized and powerful technique that overcomes some limitations

of traditional Prolog systems in dealing with recursion and redundant subcomputations. We

can distinguish two main categories of tabling mechanisms: suspension-based tabling and

linear tabling. While suspension-based mechanisms are considered to obtain better results in

general, they have more memory space requirements and are more complex and harder to

implement than linear tabling mechanisms. Arguably, the SLDT and Dynamic Reordering of

Alternatives (DRA) strategies are the two most successful extensions to standard linear tabled

evaluation. In this work, we propose a new strategy, named dynamic reordering of solutions,

and we present a framework, on top of the Yap system, that supports the combination of all

these three strategies. Our implementation shares the underlying execution environment and

most of the data structures used to implement tabling in Yap. We thus argue that all these

common features allows us to make a first and fair comparison between these different linear

tabling strategies and, therefore, better understand the advantages and weaknesses of each,

when used solely or combined with the others.
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1 Introduction

The operational semantics of Prolog is given by SLD resolution (Lloyd 1987), an

evaluation strategy particularly simple that matches current stack-based machines

particularly well, but that suffers from fundamental limitations, such as in dealing

with recursion and redundant subcomputations. Tabled evaluation (Tamaki and

Sato 1986; Chen and Warren 1996) is a recognized and powerful technique that can

considerably reduce the search space, avoid looping, and have better termination

properties than SLD resolution.

Tabling consists of storing intermediate solutions for subgoals so that they can

be reused when a repeated subgoal appears during the resolution process. Imple-

mentations of tabling are currently available in systems, like XSB Prolog (Sagonas

and Swift 1998), Yap Prolog (Rocha et al. 2000), B-Prolog (Zhou et al. 2000), ALS-

Prolog (Guo and Gupta 2001), Mercury (Somogyi and Sagonas 2006), and Ciao
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Prolog (de Guzmán et al. 2009). In these implementations, we can distinguish two

main categories of tabling mechanisms: suspension-based tabling and linear tabling.

Suspension-based tabling mechanisms need to preserve the computation state

of suspended tabled subgoals in order to ensure that all solutions are correctly

computed. A tabled evaluation can be seen as a sequence of subcomputations that

suspend and later resume. Linear tabling mechanisms use iterative computations

of tabled subgoals to compute fix-points and for that they maintain a single

execution tree without requiring suspension and resumption of subcomputations.

While suspension-based mechanisms are considered to obtain better results in

general, they have more memory space requirements and are more complex and

harder to implement than linear tabling mechanisms.

Arguably, the SLDT (Zhou et al. 2000) and Dynamic Reordering of Alternatives

(DRA) (Guo and Gupta 2001; Areias and Rocha 2010) strategies are the two

most successful extensions to standard linear tabling evaluation. As these strategies

optimize different aspects of the evaluation, they are, in principle, orthogonal to

each other, and thus, it should be possible to combine both in the same system.

However, to the best of our knowledge, no single Prolog system supports both

strategies simultaneously, and thus, understanding the advantages and weaknesses

of each cannot be fully dissociated from the base Prolog system on top of which

they are implemented.

In this work, we propose a new strategy, named Dynamic Reordering of Solutions

(DRS), and we present a framework, on top of the Yap Prolog system, that

integrates and supports the combination of the SLDT, DRA, and DRS strategies.

Our implementation shares the underlying execution environment and most of

the data structures used to implement tabling in Yap (Rocha et al. 2000). In

particular, we took advantage of Yap’s efficient table space data structures based

on tries (Ramakrishnan et al. 1999), which we used with minimal modifications. We

thus argue that all these common support features allows us to make a first and fair

comparison between these different linear tabling strategies and, therefore, better

understand the advantages and weaknesses of each, when used solely or combined

with the others.

The remainder of the paper is organized as follows. First, we briefly introduce

the basics of tabling and describe the execution model for standard linear tabled

evaluation. Next, we present the SLDT, DRA, and DRS strategies and discuss how

they can be used to optimize different aspects of the evaluation. We then provide

some implementation details regarding the integration of the three strategies on top

of the Yap engine. Finally, we present some experimental results and we end by

outlining some conclusions.

2 Standard linear tabled evaluation

Tabling works by storing intermediate solutions for tabled subgoals so that they can

be reused when a repeated call appears.1 In a nutshell, first calls to tabled subgoals

1 A subgoal call repeats a previous call if they are the same up to variable renaming.
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Fig. 1. A standard linear tabled evaluation.

are considered generators and are evaluated as usual, using SLD resolution, but their

solutions are stored in a global data space, called the table space. Repeated calls

to tabled subgoals are considered consumers and are not re-evaluated against the

program clauses, because they can potentially lead to infinite loops, instead they are

resolved by consuming the solutions already stored for the corresponding generator.

During this process, as further new solutions are found, we need to ensure that

they will be consumed by all the consumers; as otherwise, we may miss parts of the

computation and not fully explore the search space.

A generator call C thus keeps trying its matching clauses until a fix-point is

reached. If no new solutions are found during one cycle of trying the matching

clauses, then we have reached a fix-point and we can say that C is completely

evaluated. However, if a number of subgoal calls is mutually dependent, thus

forming a Strongly Connected Component (SCC), then completion is more complex

and we can only complete the calls in a SCC together (Sagonas and Swift 1998).

SCCs are usually represented by the leader call, i.e., the generator call, which does

not depend on older generators. A leader call defines the next completion point, i.e.,

if no new solutions are found during one cycle of trying the matching clauses for

the leader call, then we have reached a fix-point and we can say that all subgoal

calls in the SCC are completely evaluated.

We next illustrate in Figure 1 the standard execution model for linear tabling.

At the top, the figure shows the program code (the left box) and the final state of

the table space (the right box). The program defines two tabled predicates, a/1 and

b/1, each defined by two clauses (clauses c1 to c4). The bottom subfigure shows the

evaluation sequence for the query goal a(X). Generator calls are depicted by black

oval boxes and consumer calls by white oval boxes.

The evaluation starts by inserting a new entry in the table space representing the

generator call a(X) (step 1). Then, a(X) is resolved against its first matching clause,
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clause c1, calling b(X) in the continuation. As this is a first call to b(X), we insert a

new entry in the table space representing b(X) and proceed as shown in the bottom

left tree (step 2). Subgoal b(X) is also resolved against its first matching clause,

clause c3, calling again a(X) in the continuation (step 3). Since a(X) is a repeated

call, we try to consume solutions from the table space, but at this stage no solutions

are available, so execution fails.

We then try the second matching clause for b(X), clause c4, and a first solution

for b(X), X=1, is found and added to the table space (step 4). We then follow a local

scheduling strategy and execution fails (Freire et al. 1996). With local scheduling,

new solutions are only returned to the calling environment when all program clauses

were explored. The execution thus fails back to node 2 and we check for a fix-point

(step 5), but b(X) is not a leader call because it has a dependency (consumer node 3)

to an older call, a(X). Remember that we reach a fix-point when no new solutions

are found during the last cycle of trying the matching clauses for the leader call.

Next, as we are following a local scheduling strategy, the solution for b(X) should

now be propagated to the context of the previous call. We thus propagate the

solution X=1 to the context of the generator call for a(X), which originates a first

solution for a(X), X=1 (step 6). Then, we try the second matching clause for a(X)

and a second solution, X=2, is found and added to the table space (step 7). We then

backtrack again to the generator call for a(X) and because we have already explored

all matching clauses, we check for a fix-point (step 8). We have found new solutions

for both a(X) and b(X), thus the current SCC is scheduled for re-evaluation.

The evaluation then repeats the same sequence as in steps 2 and 3 (now steps

9 and 10), but at this time the consumer call for a(X) has solutions in the table.

Solution X=1 is first forwarded to it, which originates a repeated solution for b(X)

(step 11) and thus execution fails. Then, solution X=2 is also forward to it and a new

solution for b(X) is found. In the continuation, we find another repeated solution

for b(X) (step 13) and we fail a second time in the fix-point check for b(X) (step 14).

Again, as we are following a local scheduling strategy, the solutions for b(X) are

propagated to the context of the generator call for a(X), but only repeated solutions

are found (steps 15 and 16). Clause c2 is then explored, but without any further

developments (step 17).

We then backtrack one more time to the generator call for a(X) and because we

have found a new solution for b(X) during the last iteration, the current SCC is

scheduled again for re-evaluation (step 18). The re-evaluation of the SCC does not

find new solutions for both a(X) and b(X) (steps 19–27). Thus, when backtracking

again to a(X), we have reached a fix-point and because a(X) is a leader call, we can

declare the two subgoal calls to be completed (step 28).

3 Linear tabling strategies

The standard linear tabling mechanism uses a naive approach to evaluate tabled logic

programs. Every time a new solution is found during the last round of evaluation,

the complete search space for the current SCC is scheduled for re-evaluation.

However, some branches of the SCC can be avoided, since it is possible to know
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Fig. 2. Using the DRE strategy to evaluate the program in Figure 1.

beforehand that they will only lead to repeated computations, hence not finding

any new solutions. Next, we will present three different strategies for optimizing

the standard linear tabled evaluation. The common goal of these strategies is to

minimize the number of branches to be explored, thus reducing the search space,

and each strategy tries to focus on different aspects of the evaluation to achieve it.

3.1 Dynamic reordering of execution

The first optimization, which we call Dynamic Reordering of Execution (DRE), is

based on the original SLDT strategy, as proposed by Zhou et al. (Zhou et al.

2000). The key idea of the DRE strategy is to give priority to the program clauses

instead of consuming answers and to achieve that it lets repeated calls to tabled

subgoals execute from the backtracking clause of the former call. A first call to a

tabled subgoal is called a pioneer and repeated calls are called followers of the

pioneer. When backtracking to a pioneer or a follower, we use the same strategy,

first we explore the remaining clauses, and only then, we try to consume solutions.

The fix-point check operation is still only performed by pioneer calls. Figure 2 uses

the same example from Figure 1 to illustrate how DRE evaluation works.

As for the standard strategy, the evaluation starts with first (pioneer) calls to a(X)

(step 1) and b(X) (step 2), and then, in the continuation, a(X) is called repeatedly

(step 3). But now with DRE evaluation, a(X) is considered a follower, and thus, we

steal the backtracking clause of the former call at node 1, i.e., the second matching

clause for a(X), clause c2. The evaluation then proceeds as for a generator call

(right upper tree in Fig. 2), which means that new solutions can be generated for

a(X). We thus try c2, and a first solution for a(X), X=2, is found and added to the

table space (step 4). We then follow a local scheduling strategy and execution fails

backtracking to the follower node. As both matching clauses for a(X) were already

taken, we try to consume solutions. The solution X=2 is then propagated to the

context of b(X), which originates the solution X=2 (step 5). Next, in step 6, we find
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Fig. 3. Using the DRA strategy to evaluate the program in Figure 1.

the second solution for b(X), and in step 7, we check for a fix-point, but b(X) is not

a leader call because it has a dependency (follower node 3) to an older call, a(X).

The solutions for b(X) are then propagated to the context of the pioneer call for

a(X), which originates a second solution for a(X), X=1 (step 9). We then backtrack

to the pioneer call for a(X) and because we have already explored the matching

clause c2 in the follower node 3, we check for a fix-point. Since we have found new

solutions during the last iteration, the current SCC is scheduled for re-evaluation

(step 10). The re-evaluation of the SCC does not find any further solutions (steps

11–18), and thus, the evaluation can be completed at step 19.

3.2 Dynamic reordering of alternatives

The key idea of the DRA strategy, as originally proposed by Guo and Gupta (2001),

is to memoize the clauses (or alternatives) leading to consumer calls, the looping

alternatives, in such a way that when scheduling an SCC for re-evaluation, instead

of trying the full set of matching clauses, we only try the looping alternatives.

Initially, a generator call C explores the matching clauses as in standard linear

tabled evaluation and, if a consumer call is found, the current clause for C is

memoized as a looping alternative. After exploring all the matching clauses, C

enters the looping state and from this point on, it only tries the looping alternatives

until a fix-point is reached. Figure 3 uses again the same example from Figure 1 to

illustrate how DRA evaluation works.

The evaluation sequence for the first SCC round (steps 2–7) is identical to the

standard evaluation of Figure 1. The difference is that this round is also used to

detect the alternatives leading to consumers calls. We only have one consumer call

at node 3 for a(X). The clauses in evaluation up to the corresponding generator, call

a(X) at node 1, are thus marked as looping alternatives and added to the respective
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Fig. 4. Using the DRS strategy to evaluate the program in Figure 1.

table entries. This includes alternative c3 for b(X) and alternative c1 for a(X). As

for the standard strategy, the SCC is then scheduled for two extra re-evaluation

rounds (steps 9–15 and steps 17–23), but now only the looping alternatives are

evaluated, which means that the clauses c2 and c4 are ignored.

3.3 Dynamic reordering of solutions

The last optimization, which we named Dynamic Reordering of Solutions, is a new

proposal that can be seen as a variant of the DRA strategy, but applied to

the consumption of solutions. The key idea of the DRS strategy is to memoize

the solutions leading to consumer calls, the looping solutions. When a nonleader

generator call C consumes solutions to propagate them to the context of the

previous call, if a consumer call is found, the current solution for C is memoized as

a looping solution. Later, if C is scheduled for re-evaluation, instead of trying the

full set of solutions, it only tries the looping solutions plus the new solutions found

during the current round. In each round, the new solutions leading to consumer

calls are added to the previous set of looping solutions. In Figure 4, we use again

the same example from Figure 1 to illustrate how DRS evaluation works.

In this example, we only have one nonleader generator call, b(X), which is called

once for each evaluation round over the SCC (steps 2, 9, and 18 in Fig. 4). By

following the evaluation, it is possible to verify that no solutions are marked as

looping solutions, and thus, on each round, b(X) only consumes the new solutions

found during the round. This means that solution X=1 only is consumed on the first

round (step 6), solution X=2 only is consumed on the second round (step 15) and no

solution is consumed on the last round.
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Fig. 5. Table space organization.

4 Implementation details

This section describes some implementation details regarding the integration of the

three strategies on top of the Yap engine, with particular focus on the table space

data structures and on the tabling operations.

4.1 Table space

To implement the table space, Yap uses tries, which is considered a very efficient way

to implement the table space (Ramakrishnan et al. 1999). Tries are trees in which

common prefixes are represented only once. Tries provide complete discrimination

for terms and permit look up and insertion to be done in a single pass. Figure 5

details the table space organization for the example used on the previous sections.

As other tabling engines, Yap uses two levels of tries: one for the subgoal calls and

other for the computed solutions. A tabled predicate accesses the table space through

a specific table entry data structure. Each different subgoal call is represented as

a unique path in the subgoal trie and each different solution is represented as a

unique path in the solution trie. A key data structure in this organization is the

subgoal frame. Subgoal frames are used to store information about each tabled

subgoal call, namely: the entry point to the solution trie; the state of the subgoal

(ready, evaluating or complete); support to detect if the subgoal is a leader call; and

support to detect if new solutions were found during the last round of evaluation.

The DRE, DRA, and DRS strategies extend the subgoal frame data structure with

the following extra information:

DRE: the pioneer call; and the backtracking clause of the former call.

DRA: support to detect, store, and load looping alternatives; and two new states,

loop ready and loop evaluating, used to detect, respectively, generator and con-

sumer calls in re-evaluating rounds.

DRS: support to detect, store, and load looping solutions.

As these extensions are specific to each strategy, as we will see next, they can be

combined without major overheads.
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Fig. 6. Pseudocode for the new solution operation.

Fig. 7. Pseudocode for the tabled call operation.

4.2 Tabling operations

We next introduce the pseudocode for the main tabling operations required to

support the integration of the three strategies on top of Yap.

We start with Figure 6 showing the pseudocode for the new solution operation.

Initially, the operation simply inserts the given solution SOL in the solution trie

structure for the given subgoal frame SF and, if the solution is new, it updates the

SgFr new solutions subgoal frame field to TRUE. If DRS mode is enabled for the

subgoal, it also marks the newest solution found during the current round. We then

implement a local scheduling strategy and always fail at the end.

Figure 7 shows the pseudocode for the tabled call operation. New calls to tabled

subgoals are inserted into the table space by allocating the necessary data structures.

This includes allocating and initializing a new subgoal frame to represent the given

subgoal call (this is the case where the state of SF is ready). In such case, the tabled
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call operation then updates the state of SF to evaluating; stores a new generator

node;2 and proceeds by executing the current alternative.

On the other hand, if the subgoal call is a repeated call, then the subgoal frame is

already in the table space, and three different situations may occur. First, if the call is

already evaluated (this is the case where the state of SF is complete), the operation

consumes the available solutions by implementing the completed table optimization,

which executes compiled code directly from the solution trie structure associated

with the completed call (Ramakrishnan et al. 1999).

Second, if the call is a first call in a re-evaluating round (this is the case

where the state of SF is loop ready), the operation updates the state of SF to

loop evaluating; stores a new generator node; and proceeds by re-executing the

first looping alternative or the first matching alternative, according to whether the

DRA mode is enabled or disabled for the subgoal.

Third, if the call is a consumer call (this is the case where the state of SF is

evaluating or loop evaluating), the operation first marks the current branch as

a nonleader branch and, if in DRA or DRS mode, it also marks the current branch

as a looping branch. Next, if DRE mode is enabled and there are unexploited

alternatives (i.e., there is a backtracking clause for the former call), it stores a

follower node and proceeds by re-executing the next looping alternative or the next

matching alternative, according to whether the DRA mode is enabled or disabled

for the subgoal. Otherwise, it stores a new consumer node and starts consuming the

available solutions.

To mark the current branch as a nonleader branch, we follow all intermediate

generator calls in evaluation up to the generator call for frame SF and we mark

them as nonleader calls (note that the call at hand defines a new dependency for

the current SCC). To mark the current branch as a looping branch, we follow all

intermediate generator calls in evaluation up to the generator call for frame SF and

we mark the alternatives being evaluated or the solutions being consumed by each

call, respectively, as looping alternatives or looping solutions.

Finally, we discuss in more detail how completion is detected. Remember that

after exploring the last matching clause for a tabled call, we execute the fix-point

check operation. Figure 8 shows the pseudocode for its implementation.

The fix-point check operation starts by checking if the subgoal at hand is a leader

call. If it is leader and has found new solutions during the current round, then the

current SCC is scheduled for a re-evaluation. If it is leader but no new solutions

were found during the current round, then we have reached a fix-point, and thus, the

subgoals in the current SCC are marked as completed and the evaluation proceeds

with the completed table optimization. Otherwise, if the subgoal is not a leader

call, then it propagates the new solutions information to the current leader of the

SCC and starts consuming the available solutions. If DRS mode is enabled, it only

consumes the looping solutions and the solutions found during the current round;

otherwise, it consumes all solutions.

2 Generator, consumer, and follower nodes are implemented as WAM choice points extended with some
extra fields.
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Fig. 8. Pseudocode for the fix-point check operation.

5 Experimental results

To the best of our knowledge, Yap is now the first tabling engine that integrates

and supports the combination of different linear tabling strategies. We have thus

the conditions to better understand the advantages and weaknesses of each strategy

when used solely or combined with the others. In what follows, we present initial

experiments comparing linear tabled evaluation with and without support for the

DRE, DRA, and DRS strategies. The environment for our experiments was a PC

with a 2.83 GHz Intel(R) Core(TM)2 Quad CPU and 4 GBytes of memory running

the Linux kernel 2.6.32-27-generic-pae with Yap 6.0.7.

To put the performance results in perspective, we used two right recursive

definitions of the well-known path/2 predicate, which computes the transitive closure

in a graph, combined with several different configurations of edge/2 facts. One path

definition has the recursive clause first and the other has the recursive clause last.

path_first(X,Z) :- sld1, edge(X,Y), path_first(Y,Z), sld2.
path_first(X,Z) :- sld3, edge(X,Z), sld4.

path_last(X,Z) :- sld3, edge(X,Z), sld4.
path_last(X,Z) :- sld1, edge(X,Y), path_last(Y,Z), sld2.

Regarding the edge facts, we used three configurations: a pyramid, a cycle,

and a grid configuration (Fig. 9 shows an example for each configuration). We

experimented the pyramid and cycle configurations with depths 1,000, 2,000, and

3,000 and the grid configuration with depths 20, 30, and 40. All experiments find

all the solutions for the problem. We chose these experiments because the path/2

predicate implements a relatively easy to understand pattern of computation and its

right recursive definition creates several interdependencies between tabled subgoals.
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Fig. 9. An example of edge configurations.

Table 1. Execution time (ms) for standard linear tabling with local scheduling and the

respective ratios against the several strategies using the right recursive definition of the path

problem (ratios in bold mean that the use of the respective strategies is better than not using

some or all of them)

Pyramid Cycle Grid

Strategy 1,000 2,000 3,000 1,000 2,000 3,000 20 30 40

Recursive clause first

Standard 664 2,669 6,040 377 1,522 3,400 386 2,714 10,689

DRE 1.02 1.01 1.02 1.00 1.01 1.01 1.02 1.00 1.00

DRA 1.55 1.51 1.51 1.22 1.23 1.21 1.14 1.09 1.10

DRS 1.01 1.00 1.01 1.21 1.23 1.22 1.23 1.27 1.31

DRE+DRA 1.52 1.51 1.50 1.24 1.23 1.20 1.15 1.10 1.06

DRE+DRS 1.01 1.01 1.00 1.22 1.23 1.22 1.22 1.23 1.23

DRA+DRS 1.54 1.52 1.51 1.56 1.57 1.52 1.42 1.42 1.43

All 1.56 1.53 1.50 1.55 1.57 1.52 1.38 1.39 1.37

Recursive clause last

Standard 673 2,775 6,216 382 1,542 3,487 365 2,602 10,403

DRE 0.99 1.01 1.01 1.01 1.01 1.01 1.02 1.03 1.03

DRA 1.47 1.49 1.47 1.24 1.22 1.22 1.15 1.13 1.11

DRS 0.99 0.99 1.01 1.20 1.21 1.23 1.21 1.27 1.30

DRE+DRA 1.49 1.34 1.43 1.24 1.22 1.22 1.14 1.12 1.10

DRE+DRS 1.00 0.99 1.01 1.23 1.22 1.23 1.22 1.27 1.30

DRA+DRS 1.47 1.47 1.46 1.55 1.54 1.53 1.42 1.43 1.43

All 1.49 1.48 1.09 1.48 1.56 1.55 1.42 1.44 1.45

Notice also that in the definitions above we included four extra SLD (nontabled)

predicates (the sld1/0, sld2/0, sld3/0, and sld4/0 predicates) in order to measure

how the mixing with SLD computations can affect the base performance.

First, in Table 1, we show the execution time (ms) for standard linear tabled eval-

uation with local scheduling and the ratios comparing standard linear tabling against

DRE, DRA, and DRS solely and combined strategies (All means DRE+DRA+DRS)

for the two definitions of the path/2 predicate without including the four extra SLD

computations. Ratios higher than 1.00 mean that the respective strategies have a

positive impact on the execution time. The results obtained are the average of 10

runs for each configuration.

In addition to the results presented in Table 1, we also collected several statistics

regarding important aspects of the evaluation (not fully presented here due to lack
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Table 2. Statistics for standard linear tabling and the respective ratios against the several

strategies for the grid configuration with depth 40 (ratios in bold mean that the use of the

respective strategies is better than not using some or all of them)

SLD computations

Strategy Alts Sols sld1/0 sld2/0 sld3/0 sld4/0

Recursive clause first

Standard 70,403 50,015,215 35,202 200,974,309 35,201 149,757

DRE 1.05 1.04 1.05 1.04 1.05 1.04

DRA 1.91 1.00 1.00 1.05 21.99 12.00

DRS 1.00 19.55 1.00 1.29 1.00 1.00

DRE+DRA 1.06 1.04 1.05 1.10 1.07 1.11

DRE+DRS 1.05 19.55 1.05 1.33 1.05 1.04

DRA+DRS 1.91 19.55 1.00 1.38 21.99 12.00

All 1.06 19.55 1.05 1.43 1.07 1.11

Recursive clause last

Standard 67,204 48,080,300 48,602 352,277,129 48,602 205,920

DRE 1.00 1.00 1.00 1.00 1.00 1.00

DRA 1.91 1.00 1.00 1.05 20.99 11.50

DRS 1.00 18.79 1.00 1.29 1.00 1.00

DRE+DRA 1.91 1.00 1.00 1.05 20.99 11.50

DRE+DRS 1.00 18.79 1.00 1.29 1.00 1.00

DRA+DRS 1.91 18.79 1.00 1.38 20.99 11.50

All 1.91 18.79 1.00 1.38 20.99 11.50

of space). In Table 2, we show some of these statistics for standard linear tabled

evaluation and the ratios against the several strategies for the particular evaluation

of the grid configuration with depth 40. The Alts column shows the number of

alternatives explored during the evaluation, the Sols column shows the number of

solutions consumed by generator nodes corresponding to nonleader subgoals, and

the SLD columns show the number of times each extra SLD predicate is executed.

Analyzing the general picture of Table 1, the results show that, for most of these

experiments, DRE evaluation has no significant impact in the execution time. On

the other hand, the results indicate that the DRA and DRS strategies are able to

effectively reduce the execution time for most of the experiments, when compared

with standard evaluation, and that by combining both strategies, it is possible to

obtain even better results. We next discuss in more detail each strategy.

DRE: for most of these configurations, DRE has no significant impact. For the

configurations with the recursive clause last and the configurations without loops

(i.e., without interdependencies between subgoals), like the pyramid configurations,

it is not applicable, and thus, no followers nodes are ever stored. For the cycle

configurations, the number of followers is also very reduced, maximum 3 followers

and thus its impact is insignificant. For the grid configurations with the recursive

clause first, the results obtained are the most interesting. For example, in Table 2

for the recursive clause first, DRE executes less alternatives (ratio 1.05) and
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consumes less solutions on nonleader generator nodes (ratio 1.04) than standard

evaluation, but even so the impact on the execution time is minimal.

DRA: the results for DRA evaluation show that the strategy of avoiding the

exploration of nonlooping alternatives in re-evaluation rounds is quite effective, in

general. The results also show that DRA is more effective for programs without

loops (thus without looping alternatives), like the pyramid configurations, than

for programs with larger SCCs, like the cycle and grid configurations. For the

pyramid and grid configurations, the total number of alternatives explored by the

other strategies is around 2 times the total number of alternatives explored with

DRA. For the cycle configurations, this number is around 1.5 times the number

with DRA evaluation. For example, in Table 2, we can observe that standard

evaluation explores 1.91 times more alternatives (respectively, 33,601 and 32,002

more alternatives for the recursive clause first and last) than DRA evaluation for

the grid configuration with depth 40.

DRS: the results for DRS evaluation show that the strategy of avoiding the

consumption of nonlooping solutions in re-evaluation rounds is quite effective

for programs that can benefit from it, like the cycle and grid configurations, and

do not introduces relevant costs for programs that cannot benefit from it, like the

pyramid configurations. Note that the pyramid configurations only execute one

re-evaluation round per SCC and that we only take advantage of DRS evaluation

starting from the second re-evaluation round. For the cycle and grid configuration,

DRS optimization is used several times because these configurations create a single

huge SCC, including all subgoal calls. For example, in Table 2, DRS consumes

47,456,815 (ratio 19.55) and 45,521,900 (ratio 18.79) less solutions than standard

evaluation for the recursive clause first and last, respectively.

Regarding the combination of the strategies, in general, our statistics show that

the best of each world is always present in the combination. By analyzing the

results in Table 1, we can conclude that, for these experiments, by combining the

DRA and DRS strategies it is possible to reduce even further the execution time

of the evaluation, and in most cases, this reduction is higher than the sum of the

reductions obtained with each strategy individually. In particular, Table 2 shows the

same number of solutions and alternatives for DRA+DRS that the respective DRS

and DRA strategies obtain when used solely. This clearly shows the potential of

our framework and suggests that the overhead associated with this combination is

negligible. When DRE is present, the results are, in general, worse than the results

obtained with the DRA/DRS strategies solely. In Table 2, we can observe that,

for the DRE+DRA combination, the number of the alternatives explored is far

more higher than the DRA used solely and that, for the DRE+DRS combination,

the nonconsumed solutions for DRE used solely are included on the nonconsumed

solutions of the DRS optimization. So, for this particular configurations, DRE is

not fully orthogonal to DRA and DRS.

Table 2 also shows the number of times each extra SLD predicate is executed for

the grid configuration with depth 40. We can read these numbers as an estimation of

the performance ratios that we will obtain if the execution time of the corresponding
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SLD predicate clearly overweights the execution time of the other tabled and

nontabled computations. In particular, the sld2/0 predicate (placed at the end of

the recursive clause) is the one that can potentially have a greater influence in the

performance ratios as it clearly exceeds all the others in the number of executions.

In general, these ratios show that by mixing tabled with nontabled computations,

our framework can achieve similar and, for some cases, even better results than the

ones presented in Table 1. In particular, the ratios for the sld2/0 predicate (the

one with greater influence) are very similar to the ratios in Table 1 and for DRA

evaluation, the ratios for the sld3/0 and sld4/0 predicates are excellent (around

22 and 12, respectively) showing that intertwining SLD computations with linear

tabling can affect positively the base performance.

6 Conclusions

We presented a new strategy for linear tabled evaluation of logic programs, named

DRS, and a framework that integrates and supports the combination of DRS

with two other (DRE and DRA) linear tabling strategies. We discussed how these

strategies can optimize different aspects of a tabled evaluation and we presented the

relevant implementation details for their integration on top of the Yap system.

Our experiments for DRS evaluation showed that the strategy of avoiding

the consumption of nonlooping solutions in re-evaluation rounds can be quite

effective for programs that can benefit from it, with insignificant costs for the

other programs. Preliminary results for the combined framework were also very

promising. In particular, the combination of DRA with DRS showed the potential

of our framework to reduce even further the execution time of a linear tabled

evaluation.

Further work will include adding new strategies/optimizations to our framework,

such as the ones proposed in Zhou et al. (2008), and exploring the impact of applying

our strategies to more complex problems, seeking real-world experimental results,

allowing us to improve, and consolidate our current implementation.
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