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Using two-dimensional direct numerical simulations, we investigate the flow in a
fluid of kinematic viscosity ν and density ρ around elliptical foils of density ρs with
major axis c and minor axis b for three different aspect ratios: AR = b/c = 1
(a circle); AR = 0.5; and AR = 0.1. The vertical location of these foils ys(t) =
A sin(2πf0t) oscillates with amplitude A and frequency f0 in two distinct ways: ‘pure’
oscillation, where the foils are constrained to remain in place; and ‘flying’ oscillation,
where horizontal motion is allowed. We simulate the flow for a range of the two
appropriate control parameters, the non-dimensional amplitude, or Keulegan–Carpenter
number KC=2πA/c, and the non-dimensional frequency, or Stokes number β= f0c2/ν.
We observe three distinct patterns of asymmetry, labelled ‘S-type’ for synchronous
asymmetry, ‘QPH-type’ and ‘QPL-type’ for quasi-periodic asymmetry at sufficiently
high and sufficiently low (i.e. AR = 0.1) aspect ratios, respectively. These patterns
are separated at the critical locus in KC–β space by a ‘freezing point’ where the
two incommensurate frequencies of the QP-type flows combine, and we show that
this freezing point tends to occur at smaller values of KC as AR decreases. We
find for the smallest aspect ratio case (AR = 0.1) that the transition to asymmetry,
for all values of KC, occurs for a critical value of an ‘amplitude’ Stokes number
βA = β(KC)2 = 4π2f0A2/ν ' 3. The QPL-type asymmetry for AR= 0.1 is qualitatively
different in physical and mathematical structure from the QPH-type asymmetry at
higher aspect ratio. The flows at the two ends of the ellipse become essentially
decoupled from each other for the QPL-type asymmetry, the two frequencies in the
horizontal force signature being close to the primary frequency, rather than twice
the primary frequency as in the QPH-type asymmetry. Furthermore, the associated
coefficients arising from a Floquet stability analysis close to the critical thresholds are
profoundly different for low aspect ratio foils. Freedom to move slightly suppresses
the transition to S-type asymmetry, and for certain parameters, if a purely oscillating
foil subject to S-type asymmetry is released to move, flow symmetry is rapidly
recovered due to the negative feedback of small horizontal foil motion. Conversely,
for the ‘higher’ aspect ratios, the transition to QPH-type asymmetry is encouraged
when the foil is allowed to move, with strong positive feedback occurring between
the shed vortices from successive oscillation cycles. For AR= 0.1, freedom to move
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Symmetry breaking and flapping flight 17

significantly encourages the onset of asymmetry, but the newly observed ‘primary’
QPL-type asymmetry found for pure oscillation no longer occurs when the foil flies,
with S-type asymmetry leading ultimately to locomotion at a constant speed occurring
all along the transition boundary for all values of KC and β.

Key words: biological fluid dynamics, flow–structure interactions, swimming/flying

1. Introduction
The loss of symmetry as a flow parameter varies is a key phenomenon in fluid

dynamics. A classic and well-known example is the loss of symmetry in the flow
around a cylinder forced to move in uni-directional simple harmonic motion in an
initially quiescent fluid, or equivalently in a sinusoidally oscillating flow around a
stationary cylinder (Honji 1981; Williamson 1985; Tatsuno & Bearman 1990; Nehari,
Armenio & Ballio 2004; An, Cheng & Zhao 2011). These flows are of fundamental
interest, with potential application to the study of loads on structures immersed in
waves or other oscillatory fluid motions. Here, we refer to this class of flows as ‘pure’
oscillations, as the location of the cylinder is fixed in the direction orthogonal to the
oscillation direction.

Another distinct class of oscillatory flows known to exhibit symmetry breaking is
flapping oscillation, a common strategy for flying or swimming animals (Childress
1981). Vandenberghe, Zhang & Childress (2004) proposed an idealized model
considering a plate with an imposed vertical oscillation in a viscous fluid and free
to move horizontally. They demonstrated that the plate begins to move horizontally
as a critical frequency is exceeded, indicating that a symmetry-breaking bifurcation
occurs. Subsequently, there has been much research activity numerically investigating
the effect of variations in the aspect ratio and flexibility on the flapping locomotion
of a two-dimensional body in a viscous fluid (see, for example Alben & Shelley
2005; Lu & Liao 2006; Zhang et al. 2009; Spagnolie et al. 2010; Zhang, Liu & Lu
2010).

The system of a ‘flying’ oscillation is an inherently coupled one in which the
Navier–Stokes equations govern the surrounding fluid and the horizontal motion
is determined by the fluid force acting on its boundary. This system is not easily
represented by a single set of unified differential equations, and so it is challenging
to conduct a conventional linear stability analysis for the flying oscillation class
of flows, unlike the more straightforward pure oscillation class of flows where
such analyses have proved very instructive (Elston, Sheridan & Blackburn 2004;
Elston, Blackburn & Sheridan 2006). However, Alben & Shelley (2005) found clear
evidence of exponential growth in the horizontal velocity of a foil during the initial
transition to flying, suggesting that an inherent linear instability is associated with
the flying transition. Therefore, in this paper, we investigate whether insights from
pure oscillation flows, in particular the mechanisms by which symmetry is lost, are
relevant to flying oscillation flows. An important aspect which we will consider is
the extent to which symmetry breaking is either promoted or suppressed by allowing
horizontal motion of the oscillating body.

There has been much research considering pure oscillations of a circular cylinder,
with less attention being paid to oscillating bodies of different aspect ratios, which
are more relevant for comparison with flying oscillations. For a cylinder of density ρs
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FIGURE 1. (Colour online) Boundaries between two-dimensional symmetrical flows and
those with broken symmetry, established in experiments (Tatsuno & Bearman 1990) (solid
line) and two-dimensional numerical simulation (Elston, Sheridan & Blackburn 2001)
around a circular cylinder (AR = 1.0). Parameter values associated with symmetric flow
as obtained by our two-dimensional simulations are marked byA, while parameter values
associated with asymmetric flow are marked by@.

with diameter D in a viscous fluid of density ρ and kinematic viscosity ν, subjected to
a vertical imposed pure oscillation of ys=A sin 2πf0t (i.e. with period T0= 1/f0), two
natural parameters are the non-dimensional frequency or Stokes number β, and the
non-dimensional amplitude or Keulegan–Carpenter number KC= 2πA/D, defined as

β = f0D2

ν
, KC= 2πA

D
. (1.1a,b)

Several flow regimes have been found in KC–β space, relating to different types of
symmetry-breaking instabilities (see for example Tatsuno & Bearman 1990). Based on
dye-release and free-surface streakline visualization, these authors produced a KC–β
space map of eight different regimes found for β ∈ [5, 150], KC ∈ [1.6, 15]. We are
particularly interested in the first onset of asymmetry in two-dimensional flow, and
so we restrict attention to a relatively small region of KC–β space, where the pure
oscillation flows around cylinders are only two-dimensionally unstable. Effectively, this
requires that we restrict attention to sufficiently small values of β, avoiding regimes
susceptible to primary three-dimensional instabilities.

In figure 1, we plot the transition boundaries in KC–β space determined both
by previous experiments (Tatsuno & Bearman 1990) as well as direct numerical
simulations restricted to two-dimensional flows (Elston et al. 2001). We also plot
our numerical calculations using the numerical methods described in the following
section, showing good agreement and validating our approach. Although this is a
single marginal curve separating symmetric flow below and to the left of the curve
from asymmetric flow above and to the right of the curve, there is a qualitative
difference in the character of the form of the asymmetry either side of the marked
‘freezing point’, as analysed in detail for the AR = 1.0 case by Elston et al. (2004,
2006). To the left, at higher Stokes numbers β, or equivalently smaller values of
KC, the instability develops into a quasi-periodic or ‘QP-type’ asymmetry, with the
horizontal force on the cylinder exhibiting two well-defined and incommensurate
frequencies either side of twice the primary oscillation frequency of the foil. As
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Symmetry breaking and flapping flight 19

presented in these two papers, the results of a linear Floquet stability analysis show
clearly that the QP bifurcation is supercritical, and of Neimark–Sacker type, with the
emergence of a complex-conjugate-pair of Floquet multipliers crossing the unit circle
(thus signifying instability).

Physically, these two frequencies lead to a much lower frequency due to ‘beating’,
associated with a much longer secondary period in the flow dynamics. As β is reduced
moving rightwards along the transition boundary to larger values of KC, the two split
frequencies converge on (twice) the primary frequency as the associated beating
secondary period diverges to infinity, (see for example figure 5c of Elston et al.
(2006)) the critical complex-conjugate-pair Floquet multipliers coalesce at µ = +1
(a single real Floquet multiplier) and the asymmetry ‘freezes’ into a synchronous or
‘S-type’ asymmetry at the ‘freezing point’, a terminology first proposed by Elston
et al. (2006). Although once again Elston et al. (2006) established that the bifurcation
to S-type asymmetry was supercritical, the precise location of the freezing point is
difficult to determine numerically as the quasi-periodicity moves to longer and longer
periods, with differing estimates of the freezing point occurring anywhere in the
range βc ' 12–18 (Elston et al. 2004, 2006).

However, as already noted, the onset of asymmetry for purely oscillating bodies
with different aspect ratios is not so well-understood. Smaller aspect ratios are
also more relevant to the flying oscillation class of flows, and we are interested
in comparing and contrasting the onset of asymmetry in these two classes of
flows, i.e. pure oscillations and flying oscillations. Therefore, we simulate the
two-dimensional flow around oscillating elliptical foils for three different aspect
ratios, namely AR = 1.0 (the previously considered circular cylinder) AR = 0.5
and AR = 0.1. After briefly describing our numerical method in § 2, we identify
the transition boundaries for purely oscillating elliptical foils, and characterise the
observed symmetry breaking in § 3, in particular investigating how varying the aspect
ratio modifies the QP-type and S-type of asymmetry. We show that the QP-type
asymmetry for the smallest aspect ratio is qualitatively different in both physical
and mathematical structure from the previously considered circular cylinder flow.
Both the dynamical flow evolution and the mathematical description in terms of
the calculated coefficients from a Floquet stability analysis, the phase portraits or
Poincaré maps generated from the time evolution of the horizontal force on the foil
are qualitatively different for the flow around a small aspect ratio foil. Physically, there
is no discernible interaction between the flow induced at the two ends of the ellipse
as it oscillates vertically, and the primary frequency f0 splits into two, qualitatively
different from the splitting of its first harmonic 2f0 as in the flows associated with
foils of higher aspect ratio. Therefore, we refer to this low aspect ratio asymmetry
as a ‘primary’ QPL-type asymmetry, to distinguish it from the secondary QPH-type
asymmetry, which is the natural generalization of the previously identified QP-type
asymmetry of oscillating circles with ‘high’ aspect ratio AR= 1.

We demonstrate that reducing the aspect ratio tends to lead to earlier transition to
asymmetry, in the sense of transition occurring for smaller values of β for a given
value of KC, and also that the freezing point tends to move to smaller values of KC
as the aspect ratio decreases. Indeed, we find that the smallest aspect ratio case is
once again qualitatively different, in that for all values of KC which we consider, the
transition to asymmetry occurs close to a fixed value of β(KC)2= 4π2A2f /ν, showing
that in this limit, the actual dimensions of the oscillating foil are not important to
leading order, an observation which is consistent with the lack of interaction observed
between the flow at the two ends of the ellipse for the primary QPL-type asymmetric
flow for the AR= 0.1 ellipse.
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20 J. Deng and C. P. Caulfield

Armed with this insight, in § 4 we then turn our attention to the class of flying
oscillation flows for foils with these three aspect ratios, identifying the time of onset
of the asymmetry. Significantly, freedom for the foil to move horizontally appears to
modify the transition boundary differently on either side of the freezing point. To the
right of the freezing point, when the asymmetry is synchronous, freedom to move
horizontally suppresses the onset of asymmetry, in the sense that asymmetry onsets for
larger values of β at a fixed value of KC. Indeed, we demonstrate that there is a range
of parameter values for which a purely oscillating foil induces a strongly asymmetric
S-type flow that nevertheless completely disappears soon after the foil is released to
move horizontally. A very small amplitude horizontal motion of the foil negatively
feeds back on the instability mechanism for the S-type asymmetry, thus ensuring the
flow remains symmetric to larger values of the Stokes number.

Conversely, for intermediate aspect ratios, freedom to move horizontally encourages
the development of QPH-type asymmetry, in the sense that such asymmetry arises at
smaller values of β for a given value of KC to the right of the freezing point on the
transition boundary. There is a positive feedback mechanism between shed vortices
from the ends of the oscillating foil associated with successive primary oscillation
periods, due to the relatively high frequency of vortex shedding in this region of
parameter space.

The behaviour is qualitatively different for the foil with the smallest aspect ratio, in
that once the foil is free to move horizontally, primary QPL-type asymmetry no longer
occurs. Asymmetry still arises at smaller values of β for given KC, but the asymmetry
is now of S-type for all values of KC, with a synchronous signal in the horizontal
force on the foil at twice the frequency of the primary oscillation. We discuss the
implications of these results for the transition to flying locomotion, and briefly draw
our conclusions in § 5.

2. Problem description and numerical method
2.1. Problem description

We consider elliptical foils with major axis c and minor axis b, such that AR=b/c61,
with uniform mass density ρs, as shown in figure 2(a). The elliptical foil translates
in the infinite x–y plane through a two-dimensional viscous fluid of density ρ and
kinematic viscosity ν. Although variations in the density ratio ρs/ρ undoubtedly affect
the flow dynamics after symmetry breaking (see e.g. Alben & Shelley 2005), here we
are exclusively interested in the initial behaviour very close to the transition boundary,
and so for simplicity, we keep the density ratio fixed at the single value ρs/ρ = 10.

As noted above, we impose a vertical oscillation of the centre of the foil so that
ys(t)=A sin(2πf0t). We generalize the control parameters defined in (1.1) to elliptical
foils by using c as the characteristic length, i.e.

β = f0c2

ν
, KC= 2πA

c
. (2.1a,b)

Henceforth, all lengths are non-dimensionalized with c, all densities are non-
dimensionalized with ρ, and all times are non-dimensionalized with the viscous
time scale c2/ν, such that the non-dimensional period T0 of the primary oscillation
is 1/β, and the non-dimensional primary frequency f0 = β.

The Stokes number β may thus be thought of as a Reynolds number, involving as
it does the balance between inertia and viscosity, or equivalently the relative size of
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FIGURE 2. (a) Geometric definition of an elliptical foil with AR = b/c = 0.5;
(b) representative grid distribution around the foil.

the viscous time scale to the dominant flow time scale, the primary oscillation period
of the foil. However, there are alternative definitions using different combinations of
characteristic velocities and length scales which may be more relevant. For sufficiently
large KC, the flow must depend on the horizontal extent of the ellipse, and so it is
natural to define a Reynolds number using the maximum vertical velocity 2πAf0 as
the velocity scale and the major axis as the length scale,

ReA = 2Acf0

πν
= βKC

π
, (2.2)

where the factor of π makes this definition equivalent to the ‘flapping’ Reynolds
number of Vandenberghe et al. (2004). Typically, for the flows considered here,
ReA∼O(10–100). Conversely, for smaller values of KC, it is at least conceivable that
the horizontal extent of the foil does not play a significant dynamical role, and so A
should also be used as the natural length scale of the flow, leading to an ‘amplitude’
Stokes number βA defined as

βA = β(KC)2 = 4π2f0A2

ν
. (2.3)

2.2. Numerical method
To simulate the flow around an oscillating foil in a quiescent fluid, we use the open
source code OpenFOAM (Jasak 1996). The time-dependent Navier–Stokes equations
are solved using the finite volume method, assuming incompressibility. The mass
and momentum equations are solved on a moving grid domain using the Arbitrary
Lagrangian Eulerian (ALE) formulation (see Ferziger & Peric 2002). The integral
form of the governing (conservation) equation defined in an arbitrary moving volume
V bounded by a closed surface S is:

d
dt

∫
V
ρU dV +

∮
S

ds · ρ(U −Ub)U =
∮

S
ds · (−pI + ρν∇U), (2.4)

where U is the fluid velocity, Ub is the boundary velocity of a finite volume and p
is the pressure. As the volume V is no longer fixed in space, its motion is captured
by the motion of its bounding surface S at the boundary velocity Ub. For the details
of the discretisation and implementation of boundary conditions, as well as the
transformation of the underlying partial differential equations into corresponding
systems of algebraic equations, see Ferziger & Peric (2002).
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22 J. Deng and C. P. Caulfield

The space discretizations are second-order upwind for the convection terms and
central differences for the Laplacian terms, respectively. The time discretization is
first-order implicit Euler. Pressure–velocity coupling is enforced using the PISO
scheme (Ferziger & Peric 2002). The preconditioned conjugate gradient (PCG)
method is used to treat the pressure equation and preconditioned bi-conjugate
gradient (PBiCG) method is used for the velocity equations. Numerical accuracy
is set to double precision and the initial conditions are chosen to be uniform. We set
the boundary condition on the foil to be moving wall, with no flux normal to the
wall. For the class of ‘flying’ oscillation flows, for which the foil is free to move
horizontally, the motion of the foil is determined by the horizontal component of the
force due to the fluid on the foil, through application of Newton’s second law:

ms
d2xb

dt2
= Fx(t), (2.5)

where xb is the horizontal location of the foil, ms is the foil mass given by ms = ρsS
with ρs the foil density and S the foil area. The (in general time-varying) horizontal
component of the force Fx(t) is calculated by integrating the pressure and viscous
stresses over the surface of the foil, and then identifying the component in the
horizontal x-direction. As already noted, we set the density ratio ρs/ρ = 10 for
all simulations. This ordinary differential equation is solved using a fourth-order
Runge–Kutta algorithm.

To assure time-discretization independence, we require two conditions. The first
condition is that the Courant number of all cells, Co, must be less than one, i.e.

Co= δt|U|
δx

< 1, (2.6)

where δt is the time step, |U| is the magnitude of the velocity through that cell and
δx is the cell width in the direction of the velocity. Note that the maximum Co is
usually determined by the smallest cell size, and we continuously ensure that Co< 1
for all cells. The second condition is that we ensure that there at least 2000 time
steps for each primary oscillation period T0 = 1/f0 of oscillation, to ensure that any
unsteadiness caused by this oscillation is well resolved. We have found that requiring
these two conditions yields time accurate and robust results.

To validate the spatial resolution we use, we have carried out a grid-independence
study on a purely oscillating elliptical foil with aspect ratio AR= 1.0, i.e. a circular
cylinder in two-dimensional space, analogously to the study discussed in detail in
Deng, Caulfield & Shao (2014). We find that meshes with approximately 50 000 cells
provide satisfactory and consistent accuracy in space. As an example, we plot the grid
near an elliptical foil with AR = 0.5 in figure 2, which shows the gradual increase
of the mesh size from the foil boundary. The domain is defined as a circle with
a radius 20c. Pressure and all components of the velocity gradient tensor are set
to zero on the boundary of the domain. Further confidence in the fidelity of our
simulations is gained by the good agreement with previous numerical simulations by
Elston et al. (2001) of the calculated transition boundary for flow around an AR= 1.0
foil shown in figure 1, particularly for low β numbers. We identify the transition
boundary between symmetric and asymmetric flow for each aspect ratio analogously
to the transition boundary shown in figure 1 by conducting a bisection-like search with
different parameter pairs in the numerical simulations to identify close parameter pairs,
one of which induces asymmetric flow (marked with a square in the figure) while the
other (marked with a triangle) maintains symmetric flow over many oscillation periods
of the foil.
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3. Symmetry breaking of ‘pure’ oscillations
3.1. Symmetry breaking for AR= 1.0

For ‘elliptical’ foils with AR = 1.0, i.e. circular cylinders, previous researchers have
studied in detail the onset of symmetry breaking for the class of pure vertical
oscillation, where the cylinder is held at a fixed horizontal location. As already
noted, through the use of a Floquet stability analysis restricted to a two-dimensional
subspace, Elston et al. (2006) identified a single marginal stability or transition
boundary in KC–β space, but with two distinct asymmetric flow patterns above
this curve, both arising from supercritical bifurcations depending on whether the
critical Floquet multipliers are real or complex-conjugate pairs. At relatively low
values of β, the flows break x-reflection symmetry, while retaining a spatio-temporal
symmetry, which manifests itself in the z-vorticity component of the flow field as
Ω(x, y, t)=−Ω(x,−y, t + T0/2), where T0 is the period of oscillation. These flows
are synchronous with the oscillatory motion of the cylinder and hence are labelled
S-type. A useful diagnostic is the horizontal force time history of the cylinder, i.e.
the time variation of the horizontal component of the integral of the pressure and
the viscous stresses over the surface of the cylinder. Due to the fact that vortices are
shed in both the upward and downward stroke of the foil, synchronous asymmetry is
expected to have a periodic structure in the horizontal force dominated by a frequency
f = 2f0 = 2β, i.e. twice the frequency of the primary oscillation of the foil.

At higher values of β > βc, ((KCc, βc) is the location of the freezing point in
parameter space) the flow loses this fundamental synchronization with the cylinder’s
motion and a new, secondary, generically incommensurate period arises. Typically,
close to the critical value βc, this secondary period is very long, and so may be
thought of as coming in from infinity as β > βc. These inherently quasi-periodic
flows are labelled QP-type, and Tatsuno & Bearman (1990) observed that large
vortices of opposite sign are formed in succession for equal numbers of oscillation
cycles, direct evidence of the secondary period for such flows.

These two qualitatively different regimes are well-reproduced quantitatively by
our numerical simulations, as shown in figure 1. For the QP-type asymmetries,
a new longer secondary period Ts arises in the horizontal force time history,
resulting from the beating between two close frequencies around (twice) the primary
oscillation frequency. The synchronous frequency bifurcates into two slightly different
frequencies, due to the interaction between successive vortices shedding at relatively
high frequency from the oscillating body. When travelling along the transition
boundary to lower Stokes numbers, towards the freezing point location (KCc, βc),
the two bifurcated frequencies gradually approach each other, converging on twice
the primary oscillation frequency.

An alternative, and formally equivalent method to determine the location of the
freezing point is to consider the ratio of Ts/T0, where T0 is the period of oscillation
of the flapping foil. Elston et al. (2006) derived this ratio from the critical Floquet
multipliers, and showed that, as β→ β+c , Ts/T0→∞. However, due to the fact that
close to the critical value βc, the secondary period is predicted to be arbitrarily long,
it is challenging to determine the freezing point precisely using numerical simulation.
Here, we are not concerned with determining the precise location (KCc, βc) in
parameter space defining the freezing point, but rather we wish to investigate the
physical properties of the QP-type flows and the S-type flows, and their dependence
on aspect ratio for both classes of pure and flying oscillations. For an AR= 1.0, purely
oscillating cylinder, we estimate that the freezing point lies between 16<βc < 28.
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(a) (b) (c) (d)

FIGURE 3. (Colour online) Twenty-two evenly spaced contours of vorticity between −60
(blue) and +60 (red) on the asymmetrical side of the transition boundary for a circular
purely oscillating foil with AR= 1.0 when the centre of the foil is at y=−A, its largest
magnitude negative displacement for flows with a: (a) QP-type asymmetry with KC =
4.89, β = 40; (b) QP-type asymmetry with KC= 5.65, β = 28; (c) S-type asymmetry with
KC= 6.91, β = 16; (d) S-type asymmetry with KC= 8.16, β = 12.

We consider the flow structures associated with these different types of asymmetric
flows around an AR= 1.0 cylinder in figure 3, where we show instantaneous vorticity
contours just on the asymmetrical side of the transition boundary when the cylinder
is at its maximum amplitude negative displacement (i.e. at ys = −A). Panels (a,b)
show QP-type asymmetry, while panels (c,d) show S-type asymmetry. Considering
the S-type asymmetrical flows first, their structure is entirely consistent with the flow
considered by, for example, Tatsuno & Bearman (1990). The opposite signed vortices
which roll up on either side of the cylinder develop with slightly different strengths,
and so as the cylinder reverses in direction, the stronger vortex convects across the
cylinder and is shed at an angle relative to the vertical, leading to an induced flow
with a broken left–right symmetry, thus reinforcing the fact that one of the vortices
is stronger than the other, and so leading to a synchronous asymmetric flow which
still retains an up–down symmetry about the equilibrium position of the oscillating
cylinder. As is clear from comparison of the two panels (c,d), there is no preference
for the direction in which the stronger vortex propagates. Although not shown, the
horizontal force Fx(t) time history of the cylinder is dominated by an oscillation with
twice the frequency of the primary oscillation frequency of the foil.

Conversely, for flows with QP-type asymmetry, a secondary period also develops
in the flow, distinct from the primary oscillation period, leading to a distinct, at least
for flows with parameters far from the freezing point, as shown in panel (a), dipolar
structure of large vortices in the far field. Due to transient effects, and the fact that
as the freezing point is approached the secondary period can be very long, this
structure can be difficult to detect in a single snapshot, such as that shown in panel
(b), but there is a qualitative difference between the two types of flow. A particularly
instructive way to observe this qualitative difference is to consider the Lagrangian
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(a) (b)

FIGURE 4. Computed positions of massless particles advected from close to a circular
cylinder, i.e. AR = 1.0 in flows with parameters (a) KC = 4.89, β = 40 (QP-type
asymmetry) after a release during the interval [94T0, 126T0]; and (b) KC = 8.16,
β = 12 (S-type asymmetry) after a release during the interval [96T0, 112T0] following the
start of pure oscillation with period T0. Blue particles are released continuously from the
right of the equator of the circle, and red particles are released continuously from the left
of the equator of the circle.

evolution of virtual (massless) particles released close to the oscillating body. We
release a continuous stream of particles with velocity 2πAf0/10 at a distance 0.1c
from the ‘equator’ of the oscillating cylinder in a direction ±30◦ from the horizontal.
We colour the particles blue if they are released on the right of the cylinder, and red
if they are released on the left.

To avoid any effect due to initial transients, we show the particle distribution
released during the interval [94T0, 126T0] in figure 4(a) for the QP-type flow shown in
figure 3(a) and the particle distribution during the interval [96T0, 112T0] in figure 4(b)
for the S-type flow shown in figure 3(d). For the QP-type flow, the dipolar vortical
structures are clearly apparent. The particles shed from either side of the cylinder are
initially aligned with the direction of oscillation, but after several cycles they roll up
to form large dipolar vortical structures. Large vortices of opposite sign are formed
successively during each oscillation cycle, and the arrangement of these vortices is
somewhat similar to that in a von Kármán vortex street behind a cylinder in uniform
flow, although the sense of rotation of the vortices is opposite to that found in a
unidirectional flow wake and the vortices convect themselves orthogonally away from
the generating cylinder.

For the S-type flow shown in figure 4(b), the particle distribution is very different,
with symmetry about a horizontal line through the equilibrium position of the
oscillating cylinder, and the multiple small horseshoe structures clearly being
synchronous with the primary oscillation of the cylinder, with no particular larger-scale
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FIGURE 5. (Colour online) Location of transition boundaries as a function of
Keulegan–Carpenter parameter KC and Stokes number β as defined in (1.1) for different
aspect ratios: AR = 1.0 (solid line); AR = 0.5 (dashed line); AR = 0.1 (dash-dotted line).
The marked freezing zone approximates the location of transition between QP-type and
S-type asymmetries. Parameter values associated with symmetric flow as obtained by our
two-dimensional simulations are marked by A, while parameter values associated with
asymmetric flow are marked by@.

structure apart from the over-arching curve of the flow asymmetry extending to the
right of the cylinder. For both cases it is also clear (and unsurprising) that there is
strong communication between the fluid flow either side of the cylinder, due to the
inevitable interaction of the large-scale vortices which develop, with the blue and red
particles being thoroughly inter-mixed. All these observations accord well with the
results presented by Elston et al. (2006).

3.2. Symmetry breaking for AR= 0.5
The general picture of the transition boundary to asymmetry being characterised by
two distinct types of quasi-periodic and synchronous asymmetry for different values
of β either side of the freezing point at (KCc, βc) carries over to flows around
elliptical foils with aspect ratios AR < 1, although reducing the aspect ratio has
an effect on the location of the transition boundary, as shown in figure 5. As for
figure 1, the data for which are reproduced here, we conduct a bisection-like search
using numerical simulations with different parameter pairs. Parameter pairs marked
with triangles maintain symmetric flow over many oscillation periods, while parameter
pairs marked with squares induce asymmetric flow. Generically, for a given value
of β, the boundary shifts to smaller values of KC as the aspect ratio decreases.
Similar values of β ∼ 20 are associated with the freezing zone value of βc where the
symmetry breaking structure switches from QP-type to S-type asymmetry.

Turning our attention to the flow structures, as shown in figure 6, once again, when
the foil is at its largest magnitude negative displacement, although there are clearly
differences in detail, the structure for the flows associated with the intermediate
aspect ratio elliptical foil with AR = 0.5 share strong points of similarity with the
flows for the circular cylinder shown in figure 3. There is clear evidence of the
characteristic dipolar vortical street for the QP-type flow shown in figure 6(a), and
the sweeping, synchronous dominant vortex on one side propagating at an angle
to the vertical characteristic of S-type flow is apparent in figure 6(d). As noted in
the introduction, we refer to this asymmetry as QPH-type asymmetry, associated

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.661


Symmetry breaking and flapping flight 27

(a) (b) (c) (d)

FIGURE 6. (Colour online) Twenty-two evenly spaced contours of vorticity between −60
(blue) and +60 (red) on the asymmetrical side of the transition boundary for an elliptical
purely oscillating foil with AR= 0.5 when the centre of the foil is at y=−A, its largest
magnitude negative displacement for flows with a: (a) QPH-type asymmetry with KC =
3.01, β = 60; (b) QPH-type asymmetry with KC = 4.39, β = 19; (c) S-type asymmetry
with KC= 5.65, β = 11; (d) S-type asymmetry with KC= 8.16, β = 5.

as it is with a sufficiently high-aspect ratio foil so that the QP-type asymmetry is
a simple generalization of the previously discussed asymmetry for flow around an
AR= 1.0 foil.

This resemblance is further confirmed by the Lagrangian massless particle
distributions, (for the QPH-type flow shown in figure 6a and the S-type flow shown in
figure 6d) which we present in figure 7. As before, the particles are introduced after
any initial transient effects have passed. The dipolar vortex street for the QPH-type
flow for the foil with AR= 0.5 is really rather similar to the equivalent flow around
the circular cylinder shown in figure 4 and the synchronous S-type flow also exhibits
a symmetry about a horizontal line through the equilibrium position of the foil,
with identifiable structures associated with each of the oscillation periods, although
the characteristic curved structure actually now bends round at the end, indicative
of a return flow towards the foil. The dipolar vortex street arises from interactions
between vortices shed from either side of the foil during both the up-stroke and the
down-stroke of the foil, and so we expect to be able to detect a frequency close to
2f0 = 2β in the horizontal force history of the foil.

The identification of these flows as being of the generic QPH-type and S-type
asymmetries can be further confirmed by considering the time-dependent properties
of the non-dimensional horizontal force histories Fx(t) for these two flows, which we
plot in figure 8(a) for the QPH-type flow with KC = 3.01, β = 60 and in figure 8(b)
for the S-type flow with KC= 8.16, β= 5. The different spectral properties of the two
flows are immediately apparent, with the S-type flow being dominated by (twice) the
primary frequency of oscillation of the foil, while there is a clear beating of the force
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(a) (b)

FIGURE 7. Computed positions of massless particles advected from close to the elliptical
foil with AR = 0.5 in flows with parameters (a) KC = 4.89, β = 19 (QPH-type
asymmetry) after a release during the interval [130T0, 150T0]; and (b) KC = 8.16,
β = 5 (S-type asymmetry) after a release during the interval [130T0, 170T0] following the
start of pure oscillation with period T0. Blue particles are released continuously from the
right of the equator of the circle, and red particles are released continuously from the left
of the equator of the circle.
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FIGURE 8. Time dependence of the horizontal force Fx(t) on a purely oscillating elliptical
foil with aspect ratio AR= 0.5 at (a) KC= 3.01, β = 60, representing a typical QPH-type
asymmetry, and (b) KC = 8.16, β = 5, representing a typical S-type asymmetry. Time is
scaled with the period of the primary oscillation T0 = 1/β.
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FIGURE 9. Horizontal force power spectra for the flow with a purely oscillating elliptical
foil with AR= 0.5 and (a) KC= 3.01, β= 60; (b) KC= 8.16, β= 5. Frequencies are scaled
with the non-dimensional frequency of the primary oscillation f0 = β.

signal for the QPH-type flow over a much longer period, although there is also a
dependence quite close to twice the primary frequency of oscillation. Unsurprisingly,
the magnitude (non-dimensionalized with ν and c) of the force is substantially larger
for the QPH-type flow than for the S-type flow.

These observations can be made quantitative by consideration of the frequency
power spectra obtained by using a fast Fourier transform, which we plot in figure 9.
It is important to remember that, because of the up–down symmetry of the primary
oscillating frequency of the foil, the frequency inherent in horizontal force time
history for a symmetric flow should be precisely double that of the primary oscillation
frequency f0 = β of the foil. We observe that two similar, but different, frequencies
exist for the QPH-type flow asymmetry corresponding to 1.88f0 and f2 = 2.12f0.
Naturally, there is also substantial power in another lower frequency f3 = 0.12f0 that
is exactly the consequence of beating between the other two frequencies. As expected,
the horizontal force time history for the S-type flow is completely dominated by twice
the primary frequency of oscillation, with a weak contribution of the second harmonic.

3.3. Symmetry breaking for AR= 0.1
The properties of the transition boundary, and indeed the properties of the associated
asymmetric flows, are qualitatively different for pure oscillation of the elliptical foil
with the smallest aspect ratio AR= 0.1, where the foil is, in some sense, long and thin.
Consideration of figure 5 suggests that there is a significant change in the structure
of the transition boundary curve for the smallest value of AR= 0.1. As noted above
during the discussion of the different possible definitions for Reynolds number, it is at
least plausible for such a flow to be dynamically unaffected by the horizontal extent c
of the foil, and so in figure 10, we replot the transition boundaries shown in figure 5
using βA = β(KC)2 as defined in (2.3) as the y-coordinate to test the hypothesis that
c is not significant for the foil with aspect ratio AR= 0.1. This hypothesis proves to
be correct, as the transition boundary for the AR = 0.1 case occurs, to a very good
approximation, at a fixed value of βA ' 3 for all calculated values of KC, suggesting
that the dependence on c is not significant for this case.

Consistent evidence that the small aspect ratio flow is different can also be gained
from consideration of the vorticity contours shown in figure 11 for the flow around
the elliptical foil with AR= 0.1 on the asymmetrical side of the transition boundary
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FIGURE 10. (Colour online) Location of transition boundaries as a function of Keulegan–
Carpenter parameter KC and amplitude Stokes number βA=β(KC)2 as defined in (2.3) for
different aspect ratios, AR= 1.0 (solid line); AR= 0.5 (dashed line); AR= 0.1 (dash-dotted
line). The marked freezing zone approximates the location of transition between QP-type
and S-type asymmetries. Parameter values associated with symmetric flow as obtained by
our two-dimensional simulations are marked byA, while parameter values associated with
asymmetric flow are marked by@.

(a) (b) (c) (d)

FIGURE 11. (Colour online) Twenty-two evenly spaced contours of vorticity between
−100 (blue) and +100 (red) on the asymmetrical side of the transition boundary for an
elliptical purely oscillating foil with AR= 0.1 when the centre of the foil is at y=−A, its
largest magnitude negative displacement for flows with a: (a) QPL-type asymmetry with
KC= 1.51, β= 60; (b) QPL-type asymmetry with KC= 1.88, β= 34; (c) S-type asymmetry
with KC= 3.14, β = 14; (d) S-type asymmetry with KC= 4.39, β = 8.

for QPL-type flows, i.e. quasi-periodic asymmetrical flows around sufficiently low
aspect-ratio foils (panels a,b) and S-type flows (panels c,d). Considering the S-type
flows first, by comparison with equivalent figures 3 and 6 for the other two foils, the
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(a) (b)

FIGURE 12. Computed positions of massless particles advected from close to the
elliptical foil with AR = 0.1 in flows with parameters (a) KC = 1.51, β = 60
(QPL-type asymmetry) after a release during the interval [540T0, 640T0]; and (b) KC =
4.39, β= 8 (S-type asymmetry) after a release during the interval [130T0, 170T0] following
the start of pure oscillation with period T0. Blue particles are released continuously from
the right of the equator of the circle, and red particles are released continuously from the
left of the equator of the circle.

induced vortices appear not to be as elongated, and are more strongly localized in
the vicinity of the oscillating foil. However, the dynamics is still synchronous and
the time history of the horizontal force is still dominated completely by the expected
frequency, twice the primary frequency of the oscillating foil i.e. 2f0 = 2β.

There is a much more marked and qualitative difference in the structure of the
QPL-type asymmetry shown in panels (a,b). Rather than a dipolar structure in the far
field, the vorticity structure appears appreciably more complex, with a very marked
asymmetry between the flow either side of the foil, suggesting that the structure of
this QPL-type flow is markedly different for foils with low aspect ratios. The lack of
observed interaction between the two sides suggests that the up and down strokes of
the foil may well play distinct and different roles in the development of asymmetry
within this flow, which would imply that the characteristic close frequencies which
lead to the observed quasi-periodicity should be centred around the primary frequency
of oscillation f0 = β rather than its first harmonic 2f0, as observed for the foils with
larger aspect ratio.

This suggestion is confirmed by consideration of the Lagrangian evolution of
massless particles for the flows shown in figure 11(a,d). We plot in figure 12(a,b)
the particle distributions after release once the flow is in quasi-steady state during the
time intervals [540T0, 640T0] and [60T0, 88T0], respectively. Both these patterns are
markedly different from the equivalent patterns for the larger aspect-ratio foils shown
in figures 4 and 7. The S-type pattern is still synchronous but is, as expected, much
more localized in the vicinity of the foil, and strongly asymmetric between the two
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FIGURE 13. Pressure profiles over the foil surface at the time-instant corresponding
respectively to the QPL-type flow shown in figure 11(a) (solid line, normalized by
its maximum value 2.272), and the S-type flow shown in figure 11(d) (dashed line,
normalized by its maximum value 0.138).

ends of the elliptical foil. The distribution of particles is also much wider, indicative
of the different aspect ratios of the dominant vortices which develop around the
flapping foil.

The difference for the QPL-type asymmetry is once again more marked, and the
flow is so different that we believe that this is a distinct new type of quasi-periodic
asymmetry. There is much less evidence of a dipolar vortex street developing away
from the oscillating foil, but even more noticeable is the marked left–right asymmetry.
Unlike all the other cases considered, there is virtually no communication between the
fluid in the vicinity of either side of the equator of the flapping foil. Virtually all the
blue massless particles released to the right of the foil remain there, and only the red
particles released on the left of the foil are propagated any significant distance away
from the oscillating foil, though at a substantially shallower angle than the (essentially
vertical) propagation observed for the flows induced by the other two aspect ratio foils.

The different physical response is also evident in the normalized integrated pressure
distribution over the surface of the foils plotted in figure 13 for the QPL-type flow
with KC= 1.51, β= 60 (solid line) and the S-type flow with KC= 4.39, β= 8 (dashed
line) at the same time instants, as shown in figure 11. The pressure distribution is both
more closely (though not completely) symmetric and substantially higher in amplitude
for the QPL-type asymmetry flow. Interestingly, and perhaps counter-intuitively, this
relatively symmetric and strong pressure distribution suppresses the communication
between the induced vortices at either tip of the foil, thus leading to the marked
separation between the evolving dynamics at either tip, as is particularly evident in
the massless particle distributions shown in figure 12(a). Since there is virtually no
coupling between the vortices at either tip, the symmetry breaking leads to one set
of massless particles (those on the left) being advected away from the foil due to the
broken symmetry. Conversely, the small in magnitude, yet highly asymmetric pressure
distribution evident for the flow with S-type asymmetry leads to the curling over the
foil of the slightly stronger (negative) vortex shed from the left tip of the foil apparent
in figure 11(d), which interacts strongly with the positive vortex at the right tip of the
foil, thus leading to the distinctive intermingled particle distribution curving over the
foil shown in figure 12(b).
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FIGURE 14. Time dependence of the horizontal force on the purely oscillating elliptical
foil with aspect ratio AR = 0.1 at KC = 1.51, β = 60, representing QP-type asymmetry.
Time is scaled with the period of the primary oscillation T0 = 1/β.
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FIGURE 15. Horizontal force power spectrum for the flow with a purely oscillating
elliptical foil with AR = 0.1 and KC = 1.51, β = 60 with QPL-type asymmetry for the
time interval [600T0, 900T0]. Frequencies are scaled with the non-dimensional frequency
of the primary oscillation f0 = β = 1/T0.

The qualitatively different, and yet still inherently quasi-periodic, character of the
QPL-type asymmetric flow is confirmed by consideration of the spectral properties
of the time history of the horizontal force on the foil. For the flow shown in
figure 11(a), we plot the time history of the horizontal force on the foil in figure 14.
The time history shows an extremely long transient behaviour, although quasi-periodic
beating is apparent from very early on in the flow evolution. Eventually, a clear, yet
long secondary period Ts ' 23T emerges. We analyse the spectral properties of
the horizontal force once this periodic oscillation saturates, and the flow reaches a
quasi-steady state, calculating the power spectrum for the horizontal force time history
over the interval [600T0, 900T0] as plotted in figure 15.

The power spectrum is qualitatively different from the power spectrum for the
QPH-type asymmetric flow for an elliptical foil with AR=0.5, as plotted in figure 9(a).
There still remains an (unsplit) component at twice the primary oscillation frequency
2f0, but quasi-periodicity is here due to two closely separated frequencies either
side of the primary oscillation frequency itself, i.e. either side of f0 = β. This is
consistent with the lack of communication between the two ends of the foil seen
in the vortical contours and the Lagrangian massless particle distributions. The fact
that vortex interaction leading to quasi-periodicity appears to occur only on one side
implies that the dominant quasi-periodic frequencies will be close to the primary
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oscillation frequency f0, not its harmonic 2f0 (which would be characteristic of tip–tip
interaction), exactly as observed. Therefore, as already mentioned in the introduction,
we refer to this type of asymmetry as a ‘primary’ QPL-type asymmetry.

3.4. Mathematical analysis of QPH-type and QPL-type asymmetric flows
Further evidence that there are two distinct types of quasi-periodic asymmetries
depending on the aspect ratio of the foil can be gained by considering quantitatively
the Floquet stability of the oscillating base (symmetric) flows. Floquet stability
analysis examines the behaviour of a perturbation, u′, compared to a T-periodic (limit
cycle) base flow, U, to determine whether the perturbation grows or decays from cycle
to cycle. The evolution equations for the perturbation flow are the Navier–Stokes
equations linearized about the base, (in this case symmetric) flow around the foil.
Perturbation solutions can be written as a sum of components ũ(t0)eσ(t−t0) where
ũ(t0) is a T-periodic Floquet eigenfunction, evaluated at arbitrary phase t0 and σ is
a Floquet exponent. In general, a Floquet multiplier is defined by µ = eσT where
T is the period of the base periodic flow. The exponents σ and the multipliers µ
can either be real, or occur in complex-conjugate pairs. Instability occurs when a
multiplier leaves the unit circle, |µ| > 1, or equivalently when the real part of a
Floquet exponent becomes positive.

The technique we use for Floquet stability analysis is a Krylov subspace method
that examines the stability of the linearized Poincaré map for the perturbation flow,
and is detailed in Elston et al. (2004, 2006) who, as already mentioned, considered
the Floquet stability of the flow around a circle with AR= 1. The reflection symmetry
of the base flow is enforced by solving in a half domain (see figure 2), with symmetry
boundary conditions along the x= 0 boundary. The base flow is integrated in time for
30 cycles, when it reaches a periodic state. It is then projected onto the full domain,
and stored for Fourier time interpolation. We store 64 time slices, equi-spaced in time
over the base flow period T , for reconstruction of the base flow. It should be noted
that for two-dimensional Floquet analysis in the current problem, there is difficulty
resolving stable modes, |µ|< 1, while unstable modes are resolved without difficulty,
and the location of marginal stability can be estimated by extrapolation to |µ| = 1
(Elston et al. 2004).

As pointed out by Elston et al. (2004) for an oscillating circular cylinder at
sufficiently high β, where the symmetry breaking is observed to be of QP-type,
the first multipliers to cross the unit circle occur in complex-conjugate pairs, i.e.
µ = e±iθ , so the (supercritical) bifurcation is of Neimark–Sacker type. We plot the
Floquet results at β = 60 for AR = 1.0, AR = 0.5 and AR = 0.1 in figures 16–18
respectively. In Elston et al. (2004) they showed by comparison to two-dimensional
direct numerical simulation results that the simple relationship Ts/T ' 2π/θ held
very close to transition for the specific value of β = 44.2. As is apparent from
careful consideration of figures 3 and 9 of Elston et al. (2004), that particular choice
of β shows excellent agreement between the results of the numerical simulations
and Floquet analysis, whereas there is some relatively small quantitative difference
between the Floquet analysis and the numerical simulations at β = 60. We observe
a similar slight numerical mismatch, with the critical value of KC predicted by
Floquet analysis for AR= 1 being KCc= 4.114, compared to the numerical simulation
indicating that KCc ∈ [4.27, 4.39] and for AR= 0.5 being KCc = 2.751, compared to
the numerical simulation indicating that KCc ∈ [2.89, 3.01].

Figures 16(c) and 17(c) show the ratios Ts/T derived from the assumed corres-
pondence (as presented by Elston et al. (2004, 2006)) with the Floquet multipliers
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FIGURE 16. (Colour online) Floquet results at β = 60 for AR= 1.0. (a) The variation of
|µ| with KC: solid circles represent multipliers for the mode of marginal stability, while
open circles show magnitude for a complex-conjugate pair of multipliers that cross the unit
circle at KC = 4.114. (b) The phase angle for the complex-conjugate pair of multipliers.
(c) The secondary periods computed from Ts= 2πT/θ , with a dashed line showing inverse
square-root behaviour (Ts/T = 1.633+ 3.362/

√
4.319−KC).

calculated for AR = 1.0 and AR = 0.5, respectively. For both flows, as KC→ KC∞,
(KC∞= 4.319 for AR= 1 and KC∞= 3.121 for AR= 0.5) Ts/T ∼

√
KC∞ −KC→∞.

Such a square-root scaling is indicative of a ‘saddle node on an invariant circle’
or ‘SNIC’ bifurcation (see e.g. Lopez, Rubio & Marques (2006), Rubio, Lopez &
MArques (2008) for a detailed discussion) although care must be taken in drawing any
conclusions from the inherently linear and two-dimensional Floquet stability analysis
for values of KC far, in some sense, from the transition boundary to asymmetry.
However, it is at least plausible that as β is reduced along the transition boundary,
with KC increasing towards the freezing zone where the QPH-type asymmetry
disappears as Ts→∞, this divergence in the secondary period will also be consistent
with a SNIC bifurcation.

Irrespective of this speculation, the Floquet stability results for AR = 0.1 show
a totally different behaviour compared to the higher aspect ratio counterparts, i.e.
AR = 1.0 and AR = 0.5. As shown in figure 18, the first Floquet multiplier to cross
the unit circle occurs with a single real value. Though we have clearly shown in
figures 12 and 14 that a secondary period emerges for AR = 0.1 in the higher β
region, it appears that this quasi-periodic behaviour for low aspect ratios cannot be
predicted by a conventional linear Floquet stability analysis.

Furthermore, consideration of phase portraits and appropriate Poincaré maps based
around iterates of the horizontal force and its derivatives demonstrate qualitative
differences between the QPH-type asymmetry and the QPL-type asymmetry. In
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FIGURE 17. (Colour online) Floquet results at β = 60 for AR= 0.5. (a) The variation of
|µ| with KC: solid circles represent multipliers for the mode of marginal stability, while
open circles show magnitude for a complex-conjugate pair of multipliers that cross the unit
circle at KC = 2.751. (b) The phase angle for the complex-conjugate pair of multipliers.
(c) The secondary periods computed from Ts' 2πT/θ , with a dashed line showing inverse
square-root behaviour (Ts/T = 4.546+ 4.245/

√
3.121−KC).
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FIGURE 18. Floquet results at β = 60 for AR = 0.1. Note that all calculated Floquet
multipliers are real.

figure 19(a,c) we plot a phase portrait of the dynamics during time intervals when
the flow has settled into quasi-periodic behaviour, showing the variation of dFx/dt
against Fx for the QPH-type asymmetry in the flow with AR = 0.5, KC = 3.01,
β = 60 and the QPL-type asymmetry in the flow with AR= 0.1, KC = 1.51, β = 60.
The QPH-type asymmetry in figure 19(a) shows a relatively simple quasi-periodicity
involving two similar loops, with relatively slow rate of change of Fx occurring
when Fx '±(1–1.5), interspersed with much faster variation away from these points.
This picture is reinforced by the Poincaré map shown in figure 19(b). Once per
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FIGURE 19. (Colour online) Phase portraits plotting the time rate of change dFx/dt of
the horizontal force against Fx for a flow with: (a) AR = 0.5, KC = 3.01, β = 60 as
shown in figure 8(a) exhibiting QPH-type asymmetry over the time interval t/T0= 60–100;
(c) AR=0.1, KC=1.51, β=60 as shown in figure 14 exhibiting QPL-type asymmetry over
the time interval t/T0=400–540, covering approximately 6 secondary periods in each case.
Panels (b) and (d) are reconstructed phase portraits using delays of five primary periods,
for the flows corresponding to (a) and (c) respectively. For clarity, a single iterate per
primary period is plotted on the Poincaré map.

primary period we plot Fx against its value five primary periods earlier, and there
is a collection of points in the vicinity of Fx ' ±(1–1.5), reinforcing the slow–fast
character of this quasi-periodic asymmetry, and its connection to a SNIC bifurcation
(cf. figure 11 of Rubio et al. (2008)).

On the other hand, the phase portrait and Poincaré map shown in figure 19(b,d)
for the flow with AR = 0.1, KC = 1.51, β = 60 exhibiting QPL-type asymmetry is
qualitatively different, and much more complex. Both figures show that the horizontal
force wanders over phase space, with a more significant lower frequency component
than the flow exhibiting QPH-type asymmetry, and in particular there is no real
evidence of any slow–fast dynamics.

In conclusion, we have identified what we believe to be a new ‘primary’ QPL-type
of quasi-periodic asymmetric flow for small aspect ratio foils undergoing ‘pure’
oscillation, which is associated with the primary frequency of oscillation in the
horizontal force time history. It is clear that an extensive parametric study would be
needed to clarify all aspects of the transition to this QPL-type of asymmetry from
the previously identified QPH-type asymmetry, a simple generalization of the QP-type
asymmetry for circular cylinders to moderate aspect ratios, associated with twice the
primary frequency of oscillation in the horizontal force time history. Such a study

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.661


38 J. Deng and C. P. Caulfield

KC KC
1 2 3 4 5 60

2

4

6

8

10 Symmetric pts for pure oscillation
Asymmetric pts for pure oscillation
Transition boundary for pure oscillation
Symmetric pts allowing horizontal motion
Asymmetric pts allowing horizontal motion
Transition boundary allowing horizontal motion

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100(a) (b)

(c) (d)

FIGURE 20. (Colour online) Location of transition boundaries as a function of
Keulegan–Carpenter parameter KC and Stokes number β as defined in (1.1) for flows
associated with purely oscillating foils (solid lines) and flying oscillating foils (dashed
lines) with: (a) aspect ratio AR= 1.0; (b) aspect ratio AR= 0.5; (c) aspect ratio AR= 0.1.
(d) Location of transition boundaries as a function of Keulegan–Carpenter parameter KC
and Stokes number βA as defined in (2.3) for flows associated with purely oscillating foils
(solid lines) and flying oscillating foils (dashed lines) with aspect ratio AR=0.1. Parameter
values associated with symmetric flow as obtained by our two-dimensional simulations are
marked by small filled squares for pure oscillations and by large open squares for flying
oscillations, while parameter values associated with asymmetric flow are marked by small
filled circles for pure oscillations and by large open circles for flying oscillations.

is beyond the scope of this paper, where we now turn our attention to consideration
of how the transition boundary properties are modified for the class of flying
oscillations where the foil is free to move horizontally. We are particularly interested
in investigating whether these two different QP-type asymmetries occur for foils
which are allowed to move horizontally, as it is not clear whether the quasi-periodicity
growth mechanisms rely inherently on the foil being fixed horizontally.

4. Symmetry breaking of ‘flying’ oscillations
In figure 20, we plot the transition boundaries in KC–β space for both pure

oscillations (with a solid line) and flying oscillations (with a dashed line) for
flows associated with the three different aspect ratio oscillating foils which we
have considered. For the elliptical foil, with aspect ratio AR = 0.1, we also plot in
figure 20(d) the transition boundaries in KC–βA space, where the amplitude Stokes
number βA is as defined in (2.3) showing how the pure oscillations exhibit a critical
value of βA ' 3 for all values of KC.

In all cases, the transition boundaries have certain points of similarity. There are
two systematic, though typically slight, differences for the foils with AR = 1 and
AR= 0.5, which occur either side of the freezing point. At low values of β < βc, the
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(a) (b)

FIGURE 21. (Colour online) Twenty-two evenly spaced contours of vorticity between −60
(blue) and +60 (red) for a circular oscillating foil with parameters AR= 1.0, KC = 6.91
and β = 16 when the centre of the foil is at y = −A, its largest magnitude negative
displacement for flows subject to (a) a pure oscillation and (b) a flying oscillation.

transition boundary for flying oscillations is typically above the transition boundary
for pure oscillations, suggesting that the onset of S-type asymmetry is somewhat
suppressed if the foil is free to move horizontally. Conversely, at higher values of
β, the transition boundary for flying oscillations is below the transition boundary
for pure oscillations, suggesting that the onset of QPH-type asymmetry is actually
encouraged by allowing the foil to oscillate. The behaviour is somewhat different for
the foil with smallest aspect ratio AR = 0.1, with the transition to asymmetry being
particularly encouraged at high values of β or equivalently small values of KC. This
is the part of the transition boundary where the new primary QPL-type flow occurs
for purely oscillating foils, suggesting that allowing the foil to move horizontally
modifies the properties of this type of asymmetry non-trivially.

4.1. Suppression of synchronous asymmetry for flying oscillations
As shown in figure 20(a), for flow round a circular cylinder with KC= 6.91, β = 16,
synchronous S-type asymmetry develops for pure oscillation, while symmetry actually
continues to persist at the same point in parameter space for flying oscillation. The
vorticity contours for the pure oscillation, also shown in figure 3(a), are replotted close
to the cylinder in figure 21(a) for comparison with the vorticity contours from the
flying oscillation shown in figure 21(b), at the same instant in the flow evolution when
the oscillating cylinder is at its greatest (negative) displacement.

There is a marked difference between the two flow structures, which is also
consistent with the difference of the horizontal force on the oscillating cylinder, as
shown in figure 22 where the force is three orders of magnitude larger for the pure
oscillation flow than for the flying oscillation flow. Spectral analysis of these time
histories, as shown in figure 23, shows a very strong synchronous frequency (at
twice the primary frequency) for the flow with pure oscillation, indicative of the
strong asymmetry visible in the flow. There is an appreciably weaker synchronous
frequency also apparent in the power spectrum for the flying oscillation case shown
in figure 21(b), and there is some very weak asymmetry apparent in the vorticity field
shown in figure 21(b). Therefore, it seems appropriate to state that flying oscillations

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.661


40 J. Deng and C. P. Caulfield

–10

–5

0

5

10

–16

–8

0

8

16
15

(a) (b)

0 20 40 60 80 100

Fo
rc

e 
co

ef
fi

ci
en

t

0 20 40 60 80 100

FIGURE 22. Time dependence of the horizontal force on a circular cylinder with
parameters AR = 1.0, KC = 6.91 and β = 16, subject to (a) a pure oscillation and
(b) a flying oscillation. Time is scaled with the period of the primary oscillation T0= 1/β.
Note the relative size of the vertical axes.
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FIGURE 23. Horizontal force power spectra for the flow with a circular cylinder with
parameters AR = 1.0, KC = 6.91 and β = 16 subject to (a) a pure oscillation and (b) a
flying oscillation, corresponding to figure 22(a,b) respectively. Frequencies are scaled with
the non-dimensional frequency of the primary oscillation f0 = β.

suppress rather than eliminate synchronous asymmetry near the transition boundary
on the S-type asymmetry side of the freezing point.

To gain physical insight into how this suppression occurs, we consider another
pair of flows close to the S-type asymmetry transition boundary, where the purely
oscillating foil is associated with a strong synchronous asymmetric flow, while the
flying oscillating foil is associated with a (very close to) symmetric flow. As shown
in figure 20(b), particular flow parameters with the required properties are those for
an elliptical foil with AR = 0.5, KC = 8.16 and β = 5, and the purely oscillating
flow has been discussed in detail in § 3.2, and aspects of this flow are shown in
figures 6(d), 7(b), 8(b) and 9(b). Here, we impose a pure oscillation so that the foil
has a fixed horizontal location until it converges to an essentially steady state. We
assess this convergence by considering the time history of the horizontal force on
the foil, as shown in figure 24. The envelope of the horizontal force grows, and
then saturates, after approximately 70 primary oscillation periods. At this stage, the
synchronous asymmetry in the flow is well established, and there is a clear bias
towards a negative horizontal force on the elliptical foil. We then release the fixed
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FIGURE 24. Time dependence of the horizontal force on an elliptical foil with parameters
AR= 0.5, KC= 8.16 and β = 5, for an initially ‘pure’ oscillation for 06 t/T0 6 80 which
is then released to execute flying oscillations for t> 80T0, where T0 = 1/β is the period
of the primary oscillation.

(a) (b) (c) (d) (e) (g) (h) (i) ( j) (l)(k)( f )

FIGURE 25. (Colour online) (a–k) Twenty-two evenly spaced contours of vorticity
between −60 (blue) and +60 (red) at evenly spaced time intervals during the first
primary period after the foil is released to ‘fly’ for the flow around an elliptical foil with
parameters AR = 0.5, KC = 8.16 and β = 5; (l) 22 evenly spaced contours of vorticity
between −60 (blue) and +60 (red) for the flow five periods after the release of the foil
to move horizontally.

horizontal location of the foil, allowing it to ‘fly’ after 80 primary oscillation periods.
The effect on the horizontal force is dramatic, and instantaneous, as it drops very
rapidly, and essentially exponentially, and after a slight overshoot relaxes back to
extremely small values, of the order of the initial numerical fluctuations.

The mechanism by which this rapid return to (close to) symmetric flow occurs can
be understood by considering the vorticity contours shown in figure 25(a–k), which
show the vorticity at 11 evenly spaced time intervals directly after the foil is released
in panels. The left–right asymmetry associated with this flow is clearly apparent. On
both the upward and downward strokes the induced vortex to the left of the foil
dominates the vortex to the right, in that it is more elongated, slightly stronger and
angled towards the right, leading to the strong (and tilted to the right) asymmetry
observed in the Lagrangian particle distributions shown in figure 7(b). Significantly,
as the slightly stronger vortex is shed from the left side of the foil, it imposes a
slightly weaker force on the foil than the vortex to the right, since it induces a slightly
lower pressure on the left. Since the foil is now free to move, the foil moves to
the left. This is in response to the negative (on average) horizontal forces, shown in
figure 24. This leftward motion has two key components. First, it tends to weaken
the subsequent vortex generation to the left, and strengthen the vortex generation to
the right, thus exerting a stabilizing influence on the asymmetry growth mechanism.
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(a) (b)

FIGURE 26. (Colour online) Twenty-two evenly spaced contours of vorticity between −60
(blue) and +60 (red) for flow around an elliptical foil with aspect ratio AR= 0.5 when
the foil is at its minimum vertical location for flows with parameters KC = 3.2, β = 40
subject to (a) a pure oscillation and (b) a flying oscillation.

Second, and very importantly, this stabilizing influence is in turn synchronous with
the primary oscillation of the foil and with the asymmetry, and so is precisely tuned
to symmetrise the flow, as is apparent in figure 25(l), where the vorticity contours are
plotted 5 periods after the foil is released. This leftward motion of the foil actually
‘overshoots’ before the symmetry of the flow has been completely restored, leading to
the weak net positive horizontal force on the foil, which causes the foil ultimately to
move (very slowly) rightwards with a velocity approximately 0.1 % of the maximum
vertical velocity associated with the primary oscillation. This slight drift appears to
control the flow very close to symmetry for long periods.

4.2. Encouragement of quasi-periodic asymmetry for flying oscillations
For the two larger aspect ratios which we have considered, the situation is qualitatively
different for flows with parameters to the left of the freezing point, where the
asymmetry, when it onsets, is of QPH-type. In this region of parameter space,
by consideration of figure 20, allowing the oscillating foil to move horizontally,
actually encourages the onset of quasi-periodic asymmetry. To investigate the physical
mechanisms underlying this phenomenon, we consider the flow around an elliptical
foil with AR= 0.5, with β = 40. As is shown in figure 20(b), when KC= 3.2, if the
elliptical foil is free to move horizontally, we observe high-aspect ratio quasi-periodic
QPH-type asymmetry. However, if we fix the horizontal location of the foil, the
flow rapidly returns to symmetry, and QPH-type asymmetry only arises when KC is
increased to 3.32.

In figure 26(a), we plot vorticity contours around the purely oscillating foil with
aspect ratio AR = 0.5, when it is at its minimum vertical location, for a flow with
β = 40 and KC = 3.2. The contours are close to symmetric, unlike the equivalent
contours for the flying oscillation shown in figure 26(b), which exhibit a marked
QPH-type asymmetry. The time histories of the corresponding horizontal forces
for these pure and flying oscillations are shown in figure 27(a,b), respectively.
Unsurprisingly, the forces associated with the pure oscillation remain at very low
values throughout the whole time history, although there is some complicated spectral
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FIGURE 27. Time dependence of the horizontal force on an elliptical foil with aspect ratio
AR= 0.5 in a flow with parameters KC= 3.2, β = 40 subject to (a) a pure oscillation and
(b) a flying oscillation. Time is scaled with the primary oscillation period T0= 1/f0= 1/β.
Note the relative size of the vertical axes.
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FIGURE 28. Horizontal force power spectra for the flow around an elliptical foil with
aspect ratio AR = 0.5 with parameters KC = 3.2 and β = 40 subject to: (a) a pure
oscillation; and (b) a flying oscillation, corresponding to figure 27(a,b) respectively.
Frequencies are scaled with the non-dimensional frequency of the primary oscillation
f0 = β.

structure manifest as beating of the very small-amplitude signal, while for the flying
oscillation, the horizontal force increases rapidly after an initial transient to large
quasi-periodic values, implying a significant symmetry breaking process eventually
arising with no specific forcing (apart from numerical round-off error).

Considering the spectral properties of these horizontal force time histories, as
plotted in figure 28, it is clear the ‘symmetric’ flow does indeed contain frequencies
either side of the primary oscillation frequency, leading to a further, much smaller,
beating frequency. Nevertheless, the primary frequency is still strongly dominant, and
it is appropriate to consider the flow to be (at least close to) symmetric. On the other
hand, there is clear evidence of dominant frequency splitting either side of (twice) the
primary oscillation frequency for the flying oscillation shown in figure 28(b), with a
strong long secondary period, as is also evident in the time history of the horizontal
force plotted in figure 27(b). This is entirely consistent with the QPH-type asymmetry
for purely oscillating foils with sufficiently high aspect ratio as discussed above.

The physical interpretation of this encouragement of the onset of QPH-type
asymmetry for flying foils has several aspects. At high β, the period of the primary
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FIGURE 29. (a) Time dependence of the x-coordinate of the centre of mass of the
elliptical foil with aspect ratio AR = 0.5 undergoing a flying oscillation with parameters
KC= 3.2 and β= 40 as shown in figure 27(b). (b) Horizontal trajectory of the mass centre
at t/T0= 80–100. Some specific time instants are marked with various symbols on the two
panels.

oscillation is short, and so it is possible for complex interactions between the vortices
associated with different primary oscillations to occur. If the foil is free to move,
these interactions can lead to the foil being displaced from its equilibrium position
(J. Zhang, 2012, private communication). Furthermore, such a displacement can
encourage the development of slight perturbations to the frequencies with which the
vortices are shed, leading to the possibility of the development of a long secondary
period through beating between two close, but different, frequencies of the induced
flow, exactly as is observed for the flying oscillation.

Therefore, distinct from the low β case discussed above, the horizontal force
perturbations on the oscillating foil are not synchronous with the primary oscillation,
and so actually feed back positively on perturbations in the foil’s horizontal location,
leading to substantial quasi-periodic movement of the flying oscillating foil. In
figure 29 we plot the trajectory of the flying foil, showing just such a non-trivial
quasi-periodic horizontal motion. Fundamentally, due to the high frequency of
oscillation when β is large, and thus the potential for multiple, close frequencies due
to vortex–vortex interaction to exist, freedom to move horizontally actually encourages
loss of symmetry, making the symmetric flow around intermediate aspect ratio foils
less stable in a very real sense. Conversely, at lower frequencies of oscillation, (i.e.
smaller β to the right of the freezing point) the synchronization of oscillation, shed
vortices and horizontal forces cause freedom of the foil to move horizontally actually
to stabilize strongly synchronous asymmetry, through a locked mechanism of negative
feedback.

4.3. Suppression of primary QPL-type asymmetry for flying oscillations
As is apparent in figure 20(c,d), allowing a foil of aspect ratio AR = 0.1 to move
horizontally markedly changes the transition boundary in the region of parameter
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(a) (b)

FIGURE 30. (Colour online) Twenty-two evenly spaced contours of vorticity between
−500 (blue) and +500 (red) for flow around an elliptical foil with aspect ratio AR= 0.1
when the foil is at its minimum vertical location for flows with parameters KC= 1.26, β=
60 subject to (a) a pure oscillation and (b) a flying oscillation.
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FIGURE 31. Time dependence of the horizontal force on an oscillating elliptical foil with
parameters AR= 0.1, KC = 1.26 and β = 60 for: (a) a pure oscillation; and (b) a flying
oscillation. Time is scaled with the period of the primary oscillation T0 = 1/β. Note the
relative size of the vertical axes.

space where the new primary QPL-type asymmetry, as discussed in § 3.3, occurs. To
investigate how this type of asymmetry is modified by allowing the foil to fly, we
consider the flow with parameters AR = 0.1, KC = 1.26 and β = 60. As is shown
in figure 20(c), the flow with these parameters is symmetric when the foil is purely
oscillating, but is asymmetric when the foil is allowed to fly. In figure 30, we plot
vorticity contours for these two flows when the foil is at its minimum vertical location.
The flying oscillation flow shown in figure 30(b) is undoubtedly asymmetric, but by
comparison with figure 11, it bears much more qualitative resemblance to the S-type
asymmetry flows shown in figure 11(c,d) than to the primary QPL-type asymmetry
flows shown in figure 11(a,b).

This qualitative resemblance can be made more quantitative by considering the
time dependence of the horizontal force on the foil, as shown in figure 31. The
horizontal force on the foil with asymmetric flow exhibits an initial transient, which
overshoots somewhat before settling back to its final, still significant quasi-steady
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FIGURE 32. Horizontal force power spectra for the flow with a purely oscillating elliptical
foil with parameters AR= 0.1, KC= 1.26 and β = 60 for: (a) a pure oscillation; and (b) a
flying oscillation corresponding to figure 31(a,b) respectively. Frequencies are scaled with
the non-dimensional frequency of the primary oscillation f0 = β.

state, as shown in figure 31. Although the force undoubtedly oscillates, there is
no evidence of ‘beating’ in its amplitude. The power spectrum of the horizontal
force time history, as shown in figure 32(b), is completely dominated by twice the
frequency of the primary oscillation frequency 2f0 = 2β.

Therefore, all the evidence points towards the primary QPL-type asymmetry of the
purely oscillating low aspect ratio foil being suppressed when the foil is allowed to
move. Indeed, the transient in the horizontal force in this flow is associated with
the foil accelerating to a constant speed of horizontal locomotion. It appears for this
aspect ratio that the onset of asymmetry for flying oscillations inevitably leads to
locomotion. Forcing the foil to remain at a fixed location leads to the primary QPL-
type of asymmetry for high values of β, but once the foil is free to move, the growth
mechanism for this type of asymmetry is completely removed.

On the other hand, unsurprisingly for the essentially symmetric purely oscillating
foil, as shown in figure 31(a), the horizontal force is very small in magnitude, and is
clearly highly periodic. That periodicity corresponds closely to the primary frequency
of the oscillating foil, as shown by the power spectrum plotted in figure 32(a).
We have considered flows associated with other parameter combinations along the
transition boundary for flying oscillations of foils with AR= 0.1, and, once asymmetry
onsets, the asymmetry is always of S-type. We find that the foil always flies at an
eventually close to constant speed and we have been unable to identify a parameter
combination which leads to primary QPL-type asymmetry for flying oscillations.

5. Conclusions

In this paper, we have numerically studied both ‘pure’ (i.e. fixed horizontally) and
‘flying’ (i.e. free to move horizontally) oscillations for elliptical foils with aspect ratios
of AR= 1.0, AR= 0.5 and AR= 0.1 for a range of non-dimensional frequencies and
amplitudes of oscillation, searching through KC–β space, as defined in (2.1). We have
focussed on determining the symmetry-to-asymmetry transition boundaries in KC–β
space for both pure and flying oscillations, as well as the (two-dimensional) flow
behaviours immediately after symmetry breaking.

For pure oscillations, our consideration of elliptical foils with aspect ratio AR < 1
has led to three main observations. First, the transition boundary shifts to smaller
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KC for given β as AR is reduced, indicating that symmetry breaking is encouraged
for elliptical foils, while the previously identified two types of asymmetry, namely
quasi-periodic (‘QP-type’) asymmetry at high β, small KC, and synchronous (‘S-type’)
asymmetry at low β, high KC continue to appear either side of a ‘freezing point’
on the transition boundary. Second, for the smallest aspect ratio we have considered,
the transition boundary effectively occurs at a fixed value of the ‘amplitude’ Stokes
number βA = 4π2fA2/ν ' 3, independently of the major axis c of the foil for all
values of KC. Third, we find that the low aspect ratio foil exhibits a qualitatively
different form of quasi-periodic asymmetry, (which we refer to as ‘primary QPL-type’)
from the other foils, and in particular, from the previously considered cylinder with
AR= 1.0. Primary QPL-type asymmetry is characterised by the flow in the vicinity of
the two ends of the foil effectively evolving independently, and the horizontal force
time history being dominated by two close frequencies either side of the primary
frequency of oscillation f0, as opposed to either side of twice the primary frequency, as
occurs for the quasi-periodic (which we refer to as QPH-type asymmetry) flow around
the cylinder and the elliptical foil with higher aspect ratio. We demonstrate, following
Elston et al. (2004, 2006), that the QPH-type asymmetry is well predicted by a Floquet
stability analysis, but interestingly the QPL-type asymmetry is not.

When the foils are allowed to ‘fly’, we have found that the effect on the transition
boundary is qualitatively different for the regions susceptible to synchronous
asymmetry from the regions susceptible to quasi-periodic asymmetry. S-type
asymmetry is actually stabilized by freedom to move horizontally, due to the fact that
horizontal motions at the same frequency preferentially damp the stronger vortex shed
from the oscillating foil. Conversely, when the spectral content of the horizontal forces
on the foil is richer at higher values of β, effectively due to interactions between
the vortices shed during successive oscillation cycles, freedom to move actually
encourages the onset of QPH-type asymmetry around the foil. Multiple frequencies
effectively buffet the foil at sufficiently high aspect ratio, leading to a quasi-periodic
trajectory of the foil when it can ‘fly’ for parameters where a fixed foil maintains a
very close to symmetric flow.

However, for the smallest aspect ratio (AR= 0.1) foils which are allowed to move
horizontally, the primary QPL-type asymmetry is suppressed. For sufficiently thin foils,
the tendency actually to fly at a close to constant speed appears to be so attractive
once a symmetry-breaking bifurcation occurs that it is not possible to maintain the
subtle balance required to lead to quasi-periodicity and erratic motions in the flow.
It is important to appreciate that we have focussed on parameter choices which are
very close to the transition boundary, where our two-dimensional analysis is most
likely to be relevant. It would undoubtedly be of interest to connect our results
with investigations of symmetry breaking leading to propulsive vortex streets driving
unidirectional swimming (see e.g. Godoy-Diana et al. 2009).

However, in this paper, for clarity we have considered only a single density ratio,
and we have deliberately avoided parameter values where strong and unidirectional
flying is expected, where inherently three-dimensional motions are likely to be
significant or indeed where the flapping foil itself is three-dimensional. It is
undoubtedly of natural interest to investigate the influence of density ratio on our
results, and also whether our two-dimensional results concerning the suppression or
encouragement of different types of asymmetry for freely flying foils carries over
into three-dimensional motions, and we intend to report on the results of just such
investigations in due course.
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