
Ontology-based executable design decision template
representation and reuse

ZHENJUN MING,1 YAN YAN,1 GUOXIN WANG,1 JITESH H. PANCHAL,2 CHUNG-HYUN GOH,3

JANET K. ALLEN,4 AND FARROKH MISTREE5

1Beijing Institute of Technology, Beijing, China
2Purdue University, West Lafayette, Indiana, USA
3University of Texas at Tyler, Tyler, Texas, USA
4School of Industrial and System Engineering, University of Oklahoma, Norman, Oklahoma, USA
5School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma, USA

(RECEIVED October 1, 2015; ACCEPTED May 31, 2016)

Abstract

In decision-based design, the principal role of a designer is to make decisions. Decision support is crucial to augment this
role. In this paper, we present an ontology that provides decision support from both the “construct” and the “information”
perspectives that address the gap that existing research focus on these two perspectives separately and cannot provide ef-
fective decision support. The decision support construct in the ontology is the compromise decision support problem
(cDSP) that is used to make multiobjective design decisions. The information for decision making is archived as cDSP tem-
plates and represented using frame-based ontology for facilitating reuse, consistency maintaining, and rapid execution. In
order to facilitate designers’ effective reuse of the populated cDSP templates ontology instances, we identified three types of
modification that can be made when design consideration evolves. In our earlier work, part of the utilization (consistency
checking) of the ontology has been demonstrated through a thin-walled pressure vessel redesign example. In this paper, we
comprehensively present the ontology utilization including consistency checking, trade-off analysis, and design space
visualization based on the pressure vessel example.

Keywords: Compromise Decision Support Problem; Decision-Based Design; Ontology; Reuse; Template

1. INTRODUCTION

Engineering design is increasingly recognized as a decision-
making process (Mistree et al., 1990; Thurston, 1991; Hazel-
rigg, 1998; Lewis et al., 2006). Decision-based design is an
approach to engineering design that recognizes the substantial
role that decisions play in design (Lewis et al., 2006). Mistree
et al. (1990) point out that the principal role of a designer is to
make decisions, and decisions serve as markers to identify the
progression of a design from initiation to implementation to
termination. For augmenting human designers’ decision-
making ability, thus generating quality designs, providing rel-
evant decision support is of critical importance. Basically,
decision support can be contributed from two perspectives,
namely, the “construct” and “information” perspectives.
The construct perspective emphasizes providing an analytical
tool or approach in which decisions are mathematically for-

mulated and rationally made based on the available informa-
tion. Typical types of decision formulation include the utility-
based decision making (Hazelrigg, 1998), which is based on
objective rationality and seeks the best solution, and the deci-
sion support problem (DSP) Technique (Muster & Mistree,
1988), which is based on bounded rationality and seeks the
“satisficing” (good enough) solutions. Based on these two
types of decision formulations, researchers have developed
a variety of approaches for dealing with uncertainty (Vadde
et al., 1994; Resende et al., 2012), preferences (Fernandez
et al., 2005; Kulok & Lewis, 2007), distributed design (Lewis
& Mistree, 1998; Gu et al., 2002), and demand modeling
(Wassenaar et al., 2005; Williams et al., 2007), which
strengthen human designers’ ability of decision making in
the design process.

Having analytical decision-making tools and approaches is
not enough for making good decisions. The availability of
necessary information is another factor that influences quality
decision making, and it constitutes the information perspec-
tive for providing decision support. In most cases, much of

Reprint requests to: Janet K. Allen, School of Industrial and System
Engineering, University of Oklahoma, 202 West Boyd Street, Suite 116,
Norman, OK 73019, USA. E-mail: janet.allen@ou.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 390–405.
Cambridge University Press 2016 0890-0604/16
doi:10.1017/S0890060416000378

390

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

mailto:janet.allen@ou.edu
https://doi.org/10.1017/S0890060416000378

the information needed in current design decisions can be
found from previous decisions, especially in those redesign
(adaptive or variant) cases where the underlying design con-
cepts are the same (Pahl et al., 2007) and significant amounts
of information can be reused. Therefore, effectively organiz-
ing and reusing previous design decision knowledge is very
important. Ontologies, which are explicit formal specifica-
tions of terms and relations among them (Gruber, 1993),
are increasingly used for knowledge management in engi-
neering design. For example, Li et al. (2008) created an ontol-
ogy as a sophisticated indexing mechanism for structuring in-
formation repositories of unstructured documents in order to
retrieve information with high precision and recall; Liu et al.
(2013) modeled product family using ontology and suggested
a framework for faceted information retrieval; Witherell et al.
(2007) created an ontology for archiving and reusing optimi-
zation knowledge including assumptions, methods, and re-
sults; and Rockwell et al. (2008, 2009) documented the deci-
sion-related semantic information using ontology for sharing
and reuse. These ontology-based methods do provide some de-
gree of information-related support in decision making; how-
ever, the retrieved or instantiated information of the ontology
is not computationally formulated thus is usually used as refer-
ences that cannot be directly used to execute and generate a so-
lution. There is a need for an ontology that captures informa-
tion for decision making at the computational level that can
be executed rapidly and facilitates designers efficiently reusing
previous knowledge in decision making.

As to making decisions by reusing previous design knowl-
edge, inconsistency is an issue that cannot be ignored. In
many redesign (knowledge reuse) cases, partial modification
of previous design information is often needed to reflect the
changes, which may lead to inconsistency in the modified de-
cision model and bad decisions. Therefore, in addition to the
executability, the ontology should also support consistency
checking to determine if the executed information is orga-
nized in a consistent manner. Furthermore, postsolution anal-
ysis, such as trade-off analysis and design space visualization,
is also critical for rational decision making based on which
designers can gain insights of their decisions and make sure
that quality designs are eventually achieved.

To address these needs, we are developing a knowledge-
based platform for decision support in the design of engineer-
ing systems (PDSIDES; Ming et al., 2015). This platform is
supported by an ontology that incorporates both construct
and information for providing decision support. The construct
used in the platform is the compromise DSP (cDSP). The infor-
mation is categorized into two types, namely, procedural and
declarative information. The former is the meta-information
represented by the elements and relations within the modular
and executable cDSP template using ontology, while the latter
is the domain-specific information populated according to the
cDSP template ontology that can be reused in solving similar
design problems. In this paper, we focus on development of
the cDSP template ontology that serves as the core information
model to provide decision support on PDSIDES and utilization

of the ontology in practical engineering design, that is, identi-
fication of ways to reuse the populated template instances. The
remainder of this paper is organized as follows. The founda-
tions of this paper are discussed in Section 2, and the develop-
ment of the cDSP template ontology is presented in Section 3.
The cDSP model modification types are identified in Section 4
to facilitate the reuse of the populated template instances in fu-
ture design scenarios. Section 5 is an example to demonstrate
the usefulness of the ontology in practical engineering design.
Section 6 is the conclusion.

2. FOUNDATIONS

In this section, foundations of this paper are presented, which in-
clude the mathematical decision model used as the construct for
decision support, a “design for reuse” thinking of modeling de-
cisions as templates, an ontology that serves as the representation
scheme for organizing the information of decision templates.

2.1. Our fundamental decision model

In order to achieve rationality and obtain quality designs in
decision making, decisions needs to be rigorously formu-
lated. In this paper we adopt the DSP technique (Muster &
Mistree, 1988) as the formalism to formulate decisions en-
countered in engineering design. The DSP technique seeks
the bounded rationality and “satisficing” (good enough; Si-
mon, 1976) solutions. In the DSP technique, two types of
DSPs are identified: selection and compromise DSPs. Selec-
tion DSP deals with making a choice among a number of pos-
sibilities taking into account a number of measures of merit or
attributes (Fernandez et al., 2005). cDSP deals with the deter-
mination of the “right” values (or combination) of design
variables to describe the best satisficing system design with
respect to constraints and multiple goals (Mistree et al.,
1993). The cDSP has been adopted for solving many system
design problems such as ships (Mistree et al., 1990), aircraft
(Lewis & Mistree, 1995), materials (Seepersad et al., 2008),
and so on. In this paper, we use the cDSP as our fundamental
decision model for making decisions among multiple con-
flicting goals considering constraints.

The mathematical formulation of the cDSP is shown in
Figure 1a. The system descriptors, namely, design and devia-
tion variables, system constraints, system goals, bounds, and
the deviation function, are described in detail in Mistree et al.
(1993) and are therefore not repeated here. A two-dimen-
sional problem shown in Figure 1b is used as an example
to illustrate the features of the cDSP solution space. In the de-
sign space defined by variables (x1 and x2), feasible designs
are confined in the feasible design space bounded by linear
(C1 and C2), nonlinear (C3) constraints, and the bounds
(xlower

1 , etc.) on variables. Designers’ task is to explore the fea-
sible design space and find those designs that satisfy the multi-
ple goals (G1 2 G4) as much as possible, that is, to minimize the
deviation (e.g., dþ1 , d�1 referring to the over- and underdeviation

Executable decision template ontology 391

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

of the goal G1) of the goals. In practical engineering design,
the goals are usually conflicting (e.g., minimizing the weight
and maximizing the volume of a container), which leads to
the formation of the aspiration space (see the inner area
framed by G1 2 G4 where dþ1 , d�2 , d�3 , and d�4 are preferred).
When there is no overlap between the aspiration space and the
feasible design space, designers need to compromise, that is,
to find the shortest distance (represented by the deviation
function Z) between the two spaces. The adaptive linear pro-
graming algorithm (Mistree et al., 1993), which has been
implemented in the decision software DSIDES (Reddy
et al., 1996), is used to solve cDSPs.

2.2. Decision template

Design reuse, aiming at maximizing customer satisfaction
with minimal resources and cost and with minimal effort by
the reuse of successful past designs, in part and in whole (Si-
valoganathan & Shahin, 1999), has been well adopted in in-
dustry. Examples can be found in many product architectures
where the modular, standardized components are designed
once and reused in assemblies across products. Analogously
to product architectures, Panchal et al. (2004) extend the re-
usability to the design process by proposing the concept of
a modular, executable decision template from a decision-
centric perspective. The key idea is that in a computational
environment, design processes are composed by a series of
templates representing decisions that can be instantiated with

product-specific information and executed. Due to the modu-
larity, these templates can be easily reused in similar product
designs or product redesigns. The template is modeled based
on the cDSP construct and analogous to the architecture of a
printed wiring board with a number of electronic compo-
nents, as shown in Figure 2. The key feature is the separation
of “declarative” and “procedural” information: the former
stands for the elements of the cDSP, such as variables, param-
eters, and constraints, and is represented by “chips” in the fig-
ure; the latter stands for the algorithm that solves the cDSP
and is represented by the “wiring” and the “board.” The reu-
sability of the template extends to both the “declarative” and
the “procedural” information.

Although the implementation by Panchal et al. (2004) en-
ables greater reusability of information across design prob-
lems, the use of the extensible markup language (XML) as
its underlying representation scheme limits the application
of the cDSP template maintaining consistency. In many rede-
sign cases, partial modification of the design model (cDSP
template) is needed to reflect the evolution in the design con-
sideration, which often leads to inconsistency in the modified
model. These inconsistencies are even severe when the model
is highly complex (e.g., tens of variables, constraints or goals)
and the model modifier is not the original creator who has the
full knowledge about the model. XML fails to avoid inconsis-
tency because of the loose definition of items of the template
and the lack of reasoning mechanism to support consistency
checking; thus, XML is not suitable for representing the

Fig. 1. Mathematical form and a two-dimensional illustration of a compromise decision support problem.

Z. Ming et al.392

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

highly constrained cDSP model. In this paper, we adopt the
idea of modeling cDSPs as executable template, rerepresent
the templates using ontology, and demonstrate its consistency
maintaining ability when the templates are modified.

2.3. Ontology

Ontology, known as explicit specification of a conceptuali-
zation, has many obvious advantages such as sharing infor-
mation, integrating different applications, implementing in-
teroperability, and reusing knowledge (Yang et al., 2008).
Although the research on ontologies has its root in computer
science, ontologies have been widely used for information
modeling in engineering. Lee et al. (2012) proposed an ontol-
ogy-based multilevel product-modeling framework, which is
based on the Core Product Model 2 (Fenves et al., 2008) pro-
posed by the National Institute of Standards and Technology
(NIST), to address the requirement of semantic richness from
different stakeholders across the product lifecycle. Lu et al.
(2015) used ontology for capturing geometric constraint speci-
fications to facilitate data exchange between different product
development systems. Barbu et al. (2012) created OntoSTEP
based on an ontology that can transform digital models with
geometric information into semantically rich models that in-
clude function and behavior to facilitate manufacturing. Many
other ontologies have been created by researchers and engineers
based on their domain of interest. To systematically evaluate
these ontologies, Chandrasegaran et al. (2013) recommended
the establishment of a Global Center for Engineering Ontolo-
gies, similar to the National Center for Biomedical Ontologies
(http://www.bioontology.org/) in the United States.

A foreseeable consequence of the creating of these ontolo-
gies is that a huge amount of product- or problem-specific,

semantically rich information will be populated as instances
and accumulated in the associated knowledge bases. From
the perspective of design guidance, the primary requirement
is the availability of critical information when it is needed.
This need motivates a group of researchers to work on ontol-
ogy-based knowledge archival (Witherell et al., 2007) and
retrieval (Li et al., 2008; Liu et al., 2013), as mentioned in
Section 1. However, from the decision support point of
view, the retrieved information still cannot be effectively
and efficiently reused for quality decision making because
there is a lack of decision-making mechanism (construct) to
utilize the information and generate a solution. In this paper,
we create an ontology based on the cDSP construct and ar-
chive the information for decision making as templates that
are executable and reusable. In terms of the ontology formal-
ism, two popular paradigms exist: Web Ontology Language
and Frame (Wang et al., 2006). We choose the Frame para-
digm here because it is based on a closed-world assumption
where everything is prohibited until it is permitted, which is
suitable for modeling the highly constrained cDSP (Ming
et al., 2015). In the following section, the development of
the frame-based ontology for decisions is presented.

3. ONTOLOGY DEVELOPMENT FOR THE cDSP
TEMPLATE

A complete frame-based ontology includes the concepts, re-
lations among concepts, and consistency rules for keeping
the populated instances consistent to what they are defined
to be. In accordance with the cDSP construct, in this section
we identify the key concepts and formally define them as
classes, identify the relations among the concepts and for-
mally define them as slots, and identify consistency rules

Fig. 2. Compromise decision support problem template (Panchal et al., 2004).

Executable decision template ontology 393

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

http://www.bioontology.org/
http://www.bioontology.org/
https://doi.org/10.1017/S0890060416000378

and formally define them. Finally, the complete structure of
the cDSP template ontology is presented.

3.1. Concept identification

Concepts of a domain are often described by a vocabulary of
terms. Panchal et al. (2004) have identified a set of terms for
modeling the cDSP template, which include Constraint,
Goal, Parameter, Variable, Preference, Analysis, Driver,
and Response. These terms are adopted and reused here by
explicitly defining them as classes. Six additional classes, re-
ferred as Problem, cDSPTemplate, Behavior, History, Func-
tion, and Quantity, are introduced to capture the information
that adds to the semantic richness and integrity of the ontol-
ogy. The definitions of the classes are shown in Table 1.

3.2. Relation definition

The semantical relations among concepts are captured using
slots in an ontology. Generally, there are two types of slots:
data slots and object slots. Data slots are used to link concepts
to nonobject data of which the types include String, Float, Inte-
ger, Symbol, and so on. For example, concept Goal may need a
data slot to link itself to a target value with the type of Float. Ob-
jects slots are used to link concepts to object data of which the
type is restricted to Class instance. For example, concept Func-
tion may need an object slot to link itself to a list of Variable in-
stances. Based on the mathematical formulation of cDSP shown
in Figure 1, the data slots and object slots of the cDSP ontology
are defined as shown in Table 2 and Table 3, respectively.

3.3. Maintaining consistency

It is of critical importance for an ontology to restrict the pop-
ulated instance in the manner as they are defined to be, that is,

to keep consistency. As mentioned in Section 2.2, inconsis-
tency is prone to occur when design consideration evolves,
and the original cDSP template needs to be modified; for ex-
ample, some parameters, goals, or constraints are added or re-
moved (which is introduced in Section 4). Thus, detecting the
inconsistency and informing designers to fix the inconsis-
tency is very important. Rule-based reasoning is the method
used for consistency checking in ontologies. In this paper, the
rules for maintaining consistency in the cDSP template ontol-
ogy are identified as shown in Table 4. Java Expert System
Shell (Jess; Sandia National Laboratories, n.d.), a rule engine
for the Java platform, is adopted as the reasoner. In order to be
compatible with Jess, the rules are defined as the following
(taking Rule 6 as an example):

ðdefrule MAIN::rule 6ðobject ðis-a cDSPTemplateÞ

ðOBJECT ?yÞÞ ¼. ð foreach ?x ðslot-get ?y hasParameterÞ

ðif ðneq ðslot-get ?x lowerBoundÞðslot-get ?x upperBoundÞÞ

thenðprintout t WARNING 6crlf ÞÞÞÞ

It means that if any instance in the slot “hasParameter” has
unequal values in terms of lower bound and upper bound,
the reasoner will send a message about the inconsistency to
the designer who is working on that cDSP template.

3.4. The complete structure of the ontology

The complete structure of the cDSP template ontology is
shown in Figure 3. It is a network structure in which the
gray nodes represent the classes and the black nodes represent
the data. Different classes are linked by object slots that are
represented by the dashed-line arrows, and the classes are
linked to real data by data slots, which are solid-line arrows.

Table 1. Classes of the cDSP template ontology

Class Definition

Problem General information of a design problem such as the product to be designed and the functional requirements to be satisfied.

cDSPTemplate
Integrating all the template elements and the associated information, a formulation of a problem; a problem can be formulated as

multiple cDSP templates.

Behavior
Behavioral information of the decision model represented by the template, such as sensitivity to the variation of parameters and

converging tendencya

History
The evolution history of a template: (1) from which template this template is derived and (2) which template is developed based on

this template.
Function The general properties of a constraint and a goal
Quantity The general properties of a parameter and a variable
Constraint A function with a constant value that cannot be violated, subclass of function
Goal A function with a target value that can be violated, subclass of function
Parameter A quantity with a fixed value during the problem solving process
Variable A quantity with a variable value during the problem solving process
Preference Designers’ preferences regarding the satisfaction of the system goals
Analysis The information of inputs, outputs, and the associated analysis codes
Driver The interface to problem solvers that run the analysis codes
Response The actual response to a given specification of the template

aSee the information captured by ternary plot and scatterplot in Section 5.

Z. Ming et al.394

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

Hierarchical relations (e.g., the relation between classes Con-
straint and Function) among concepts are represented by arc
arrows. The ontology modeling process is facilitated using
the Protégé tool, developed by Stanford University (2013),
which provides an environment for creating and editing
ontologies as well as populating instances based on ontolo-
gies. The interface of Protégé and a cDSP template instance
example are shown in a later section. Protégé also enables

the development of plugins as extensions to the function of
ontology. JessTab (Eriksson, 2008) is a plugin that attaches
Jess to Protégé and is used for consistency checking in this
paper. To facilitate the execution of the populated cDSP tem-
plate instances, we also developed a plugin that link DSIDES
to Protégé using Java function call for generating design so-
lutions, which is not the main focus of this paper and thus
not described in detail here.

Table 2. Data slots of the cDSP template ontology

Slot Name Definition Type

name Name of an instance String
description Description of an instance String
quantityType Type of a Quantity (“SystemVariable,” “SystemParameter,” or “DeviationVariable”) Symbol
symbol Symbol of a Quantity String
value Value of a Quantity Float
unit Unit of a Quantity String
lowerBound Lower bound of a Quantity Float
upperbound Upper bound of a Quantity Float
expression Expression of a Function String
functionType Type of a Function (“SystemConstraint” or “SystemGoal”) Symbol
monotony Monotony of a Function (“Minimize,” Maximize,” or “Force”) Symbol
equality Equality of a constraint Function (“≤,” “≥,” or “¼”) Symbol
linearity Linearity of a Function (“linear” or “nonlinear”) Symbol
target Target of a Function Float
weight Weight of a Preference in an Archimedean form Float
level Level of a Preference in a preemptive form Symbol
numberOfSamples Number of samples for a Specific Preference in design experiments Float
problemSolver Problem solver that drives the template Symbol
codeFileLocation Storage path of the analysis code file String
result Result information of a Response String
behavioralInfo Behavioral information of a template String
modification Modification information of a template from its predecessor template String

Table 3. Object slots of the cDSP template ontology

Slot Name Definition Type

elementOf Link a Quantity to a set of Functions Instance
functionOf Link Function to a set of Quantities Instance
associatedGoal Link a Preference to a Goal Instance
input Link an Analysis to a set of Quantities as input Instance
output Link an Analysis to a set of Quantities as output Instance
hasVariable Link a cDSPTemplate to a set of Variables Instance
hasParameter Link a cDSPTemplate to a set of Parameters Instance
hasConstraint Link a cDSPTemplate to a set of Constraints Instance
hasGoal Link a cDSPTemplate to a set of Goals Instance
hasPreference Link a Goal to a Preference Instance
hasDriver Link a cDSPTemplate to a Driver Instance
hasAnalysis Link a cDSPTemplate to an Analysis Instance
hasResponse Link a cDSPTemplate to a Response Instance
hasTemplate Link a Problem to a set of cDSPTemplate Instance
applyTo Link a cDSPTemplate to a Problem Instance
hasHistory Link a cDSPTemplate to a History Instance
hasBehavior Link a cDSPTemplate to a set of Behaviors Instance
derivedFrom Link a cDSPTemplate to another cDSPTemplate Instance
evolveTo Link a cDSPTemplate to another cDSPTemplate Instance

Executable decision template ontology 395

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

4. cDSP MODEL MODIFICATION TYPES

In many design (e.g., adaptive and variant) cases, as we men-
tion in Section 1, a large part of information of previous de-
cisions can be reused for making the current design decisions
because the underlying design concepts are similar. In an
ontological environment, this means that most of the popu-

lated instances can be reused in future designs. To success-
fully reuse these instances, partial modification is needed
for the adapting to the design changes. The aim in this section
is to determine the types of modification of the cDSP model
that can be made in future design scenarios.

The cDSP construct (the “Given-Find-Satisfy-Minimize”
structure as shown in Figure 1a) provides designers with

Table 4. Consistency rules of the cDSP template ontology

Rule 1 Every instance in the slot “hasVariable” should be of type “SystemVariable.”
Rule 2 Every instance in the slot “hasParameter” should be of type “SystemParameter.”
Rule 3 Every instance in the slot “hasConstraint” should be of type “SystemConstraint.”
Rule 4 Every instance in the slot “hasGoal” should be of type “SystemGoal.”
Rule 5 Every instance in the slot “hasVariable” should comply to lowerBound ≤ value ≤ upperBound.
Rule 6 Every instance in the slot “hasParameter” should comply to lowerBound ¼ value ¼ upperBound.
Rule 7 Every instance in the slot “hasPreference” should comply to 0 ≤ weight ≤ 1.
Rule 8 Every Variable instance of type “DeviationVariable” should comply to value ≥ 0.
Rule 9 All the instances in the slot “hasPreference” should comply to

∑k

0
wi = 1.

Rule 10 Every Variable instance of type “DeviationVariable” should comply to d−
i × d+

i = 0.
Rule 11 All the Variable instance of type “DeviationVariable” should be included in the slot “output.”
Rule 12 All the Variable instance of type “SystemVariable” should be included in the slot “input.”

Fig. 3. Overview of the complete structure for the compromise decision support problem template ontology.

Z. Ming et al.396

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

high flexibility to modify their decision model for specific
problems. The main types of modification can be summarized
as: modifying the number of design variables, modifying the
values assigned to parameters, and modifying the number of
goals and constraints. Detailed description of these three types
of modification is given below, and the effects that each type of
modification has on the design space are captured in Figure 4.

Type I: Modifying the number of design variables. This
type of modification includes adding new variables and
removing existing variables. The former can be done by
introducing some existing parameters (with fixed value)
to be variables; for example, in Figure 4, x3 is previously
a parameter and is introduced to be a variable, which re-
sults in that the design space transforms from a two-di-
mensional space to a three-dimensional space. While
the latter can be done by assigning fixed value to existing
variables, as shown in Figure 4, the value of the previous
variable x3 is fixed and the design space transforms from
three dimensional to two dimensional.

Type II: Modifying the value assigned to parameters. This
type of modification includes the following: modifying
the values assigned to the weights of the goals (e.g.,
the value of wi in the deviation function is modified in
Fig. 4), which may have an influence on the achieve-
ments of the goals; modifying the values assigned to
the coefficients of the equations (e.g., the value of coef-
ficient a of goal G1 and the value of coefficient D of con-
straint C3 are modified in Fig. 4), which may result in the
changes of curve shapes that frame the aspiration space
and feasible design space; and modifying the values as-
signed to the bounds of the variables (e.g., the value of
xlower

1 is modified in Fig. 4), which may lead to the
shrinkage of the feasible design space.

Type III: Modifying the number of goals and constraints.
This type of modification includes adding new goals

as shown in Figure 4 where G5 is added, removing exist-
ing goals (e.g., G4 is removed from Fig. 4), adding new
constraints (e.g., C4 is added in Fig. 4), removing exist-
ing constraints (e.g., C2 is removed from Fig. 4), and
conversion between existing goals and constraints
(e.g., constraint C1 is converted to a goal in Fig. 4). Add-
ing new goals and converting existing constraints to
goals may result in shrinkage of the aspiration space. Re-
moving existing goals and converting exiting goals to
constraints may result in expansion of the aspiration
space. Adding new constraints and converting existing
goals to constraints may result in shrinkage of the feasi-
ble design space. Removing existing constraints and
converting existing constraints to goals may result in ex-
pansion of the feasible design space.

In practical engineering design, different types of modifica-
tions may be needed simultaneously according to specific re-
quirements. For example, in an adaptive design case, design-
ers may need to set a previously fixed parameter to a variable,
vary the bounds of some variables, and add new constraints to
the problem, and thus, all the three cDSP model modification
types may be needed simultaneously. In the ontological envi-
ronment, the modification is facilitated by editing the template
instances in terms of data slots and object slots.

5. EXAMPLE

In this section, a thin-walled pressure vessel design example
is discussed to illustrate the utilization of the cDSP template
ontology in terms of facilitating designers in making deci-
sions by reusing previous design information. The example
is an extension of the problem considered by Lewis and Mis-
tree (1998), who used it to illustrate collaborations in deci-
sion-based design. An instance is created using the original
design decision information in Section 5.1, and then three re-

Fig. 4. Three types of the compromise decision support problem model modification.

Executable decision template ontology 397

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

design scenarios are presented in Section 5.2 for demonstrat-
ing the utilization of the ontological method. Finally, a sum-
mary and discussion are given in Section 5.3.

5.1. Populating an original design instance

The pressure vessel design variables are the radius R, the
length L, and the thickness T , as shown in Figure 5. It is to
withstand a specified internal pressure P, and the material is
also specified. There are two objectives: to minimize the
weight and to maximize the volume of the cylinder, both sub-
ject to stress and geometry constraints. The nomenclature for
is example is presented in Table 5. The cDSP formulation is
shown below:

1. Given
2. † Weight: W(R, T , L)¼ r

"
4
3
p(Rþ T)3þp(Rþ T)2L

� 4
3
pR3 þ pR2L

� �#

3. † Volume: V(R, L) ¼ 4
3
pR3 þ pR2L

4. Find
5. † System variables: thickness T, radius, R, and length, L
6. † Overachievement deviation variable associated with

weight goal, dþw
7. † Underachievement deviation variable associated with

volume goal, d�v
8. Satisfy
9. † Stress constraint: c1 : scirc ¼

PR
T
� St

10. † Geometric constraints: c2 : 5T 2 R� 0
11. c3: Rþ T � 40 � 0
12. c4: Lþ 2Rþ 2T � 150 � 0
13. † Bounds: Tl � T� Tu

14. Rl � R� Ru

15. Ll � L � Lu

16. † Weight goal: W � dþw ¼ WTV

17. † Volume goal: V þ d�v ¼ VTV

18. Minimize
19. WVOLd�v þWWGTdþw

The specific input data for this problem is given in Ta-
ble 6. Based on all the prepared information, a cDSP tem-
plate instance for the design of the pressure vessel is instan-
tiated in Protégé as shown in Figure 6. In Figure 6, the

panel on the left-hand side is the class browser with all
the classes listed, the panel in the middle is the instance
browser listing all the instances associated with a selected
class, and the panel on the right-hand side is the instance
editor where a specific instance can be created and edited.
In this case, all the slots (including data and object slots,
e.g., “name,” “hasParameter,” “hasVariable”) of the pres-
sure vessel instance are created according to the structure
defined in Section 4 and the data of the problem itself.
When the instance is correctly created, the result is calcu-
lated using JAVA function calls that communicate with
the problem solver DSIDES. The result is (R, T, L) ¼ (36,
4, 70), (Weight, Volume)¼ (39457 lb., 480385 in.3) as shown
in the front window in Figure 6.

5.2. Facilitating decision making in redesign scenarios

5.2.1. Consistency checking

In this scenario, the original design variable R is assumed
to be fixed to 20 in. due to manufacturing limitations, and
thus modifications are required from the existing design to re-
flect the revised condition. The problem is closely related to

Fig. 5. Thin-walled pressure vessel with hemispherical ends.

Table 5. Nomenclature for the pressure vessel example

w Weight of the pressure vessel (lbs)
V Volume (in.3)
R Radius (in.)
T Thickness (in.)
L Length (in.)
P Pressure inside the cylinder (klb)
St Allowable tensile strength of the cylinder material (klb)
r Density of the cylinder material (lb/in.3)
scirc Circumferential stress (lb/in.2)
TV Target value for a goal
WVOL Weight associated with the weight goal
WWGT Weight associated with the volume goal

Table 6. Pressure
vessel input

P 3.89 klb
St 35.0 klb
r 0.283 lb/in.3

Li 0.1 in.
Lu 140.0 in.
Rl 0.1 in.
Ru 36.0 in.
Tl 0.5 in.
Tu 6 in.
WTV 0.1 lb
VTV 775,000 in.3

WVOL 0.5
WWGT 0.5

Z. Ming et al.398

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

the suitable choice of L and ; it transforms from a three-
dimensional (L 2 R 2 T) problem to a two-dimensional
(L 2 T) problem as shown in Figure 7. In Figure 7, the pre-
vious feasible set is a solid vertical box in the positive orthant.
One end of this vertical box is the polygon AJIH in the L¼ 0

plane, and the other end is formed by the inclined plane
passing through the points marked EFG. When the new lim-
itation is introduced, the previous feasible solution space is
sliced by a plane vertical to the R axis at R¼ 20, and the cross
section marked DBCK forms the new feasible solution space.

Fig. 6. Screenshot of the pressure vessel design compromise decision support problem template instance in Protégé ontology editor.

Fig. 7. Design space dimension change.

Executable decision template ontology 399

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

Facing the problem, designers need to properly adjust the ori-
ginal decision model to make a new decision. It is easy to
recognize that the adjustment maps to modification Type I de-
scribed in Section 4. In the ontology context, this adjustment
is facilitated by a consistency mechanism shown in Figure 8.
Specific steps of the process are as follows:

1. Convert a variable to a parameter: Move the previous
variable “vessel radius” from the slot “hasVariable” to
slot “hasParameter.”

2. Check consistency: Check the consistency of the mod-
ified cDSP template instance using the JESS rule
engine. A message pops up showing “Rule 6 is violat-
ed!—Parameter ‘vessel radius’ has unequal lower and
upper bounds!”

3. Reconfigure the parameter: Reconfigure the parameter
instance “vessel radius” as lower bound ¼ value ¼ up-
per bound ¼ 20 in.

4. Obtain the result: Problem solver DSIDES will calcu-
late and return the result according to the newly speci-
fied cDSP template configuration. The result is (T, L)
¼ (0.5, 53.9), (Weight, Volume) ¼ (1698.7 lb.,
101191.7 in.3), which will be documented as a new
instance.

5.2.2. Trade-off analysis

In this scenario, a new goal aimed at minimizing the cost is
assumed to be considered in the design of the pressure vessel.
The cost equation is derived from Sandgren (1990) as C(R, L,
T)¼ 0.6224RTLþ 1.7881R2Tþ 3.1611T 2Lþ 19.8621RT 2,
and the target cost is set to $0.1. In the new problem adjust-
ment needs to be made to the original decision model in in
terms of adding a new goal and modifying the value assigned
to the weights of the goals, which is the combination of mod-
ification Type II and III. We assume that this adjustment is
well facilitated by the consistency-checking mechanism dis-
cussed in the previous section and focus on how trade-off
analysis is facilitated under the ontological context in this sec-
tion. Here trade-off analysis means analyzing the effects of
different distribution of goal priorities on the actual perfor-
mance of goals, which helps designers understand about
the rationality of their decisions. A ternary plot (see Kulkarni
et al., 2015; Shukla et al., 2015) has been used as a trade-off
analysis tool for the three-goal cDSPs. The key idea is that the
sample of the weighted value sets for the goals is generated,
then based on the value sets the performance (represented as
normalized deviation) of each goal is calculated, and finally,
the relationship between the performance and the value sets is
shown using a triangle with a color-bar as shown in Figure 9.

Fig. 8. Decision model adjustment facilitated by consistency checking.

Z. Ming et al.400

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

The scales on the edges refer to the weights assigned to goals,
the points within the triangle stand for different sets of
weights [e.g., point S stands for set (0.2, 0.4, 0.4)], the color
denotes the deviation of the associated points, and the corre-
sponding values are indicated by the color bar. To perform
trade-off analysis, designers need to prepare a large enough
number of sample sets and run computing codes in DSIDES
using each of the sample sets to generate the result, and then
all the sample sets and the associated results are input to
MATLAB to generate a ternary plot. This is usually a time-con-
suming process and calls for automation- or platform-related
support in order to improve the efficiency.

In the ontology framework, the trade-off analysis includes
three procedures: sample generation, communication to
DSDIES for computing, and ternary plot generation. These
three procedurals are all supported by Java function calls pro-
vided by Protégé. Sample generation plays a critical role for
generating quality ternary plots. In the ontology, the sampling
procedural is controlled by the data slot “numberOfSamples”
(see Table 2), which defines the number of scales for the
weight of each goal. At the computational level, it is imple-
mented by a Java function that combines the scales to weight
sets under the rule that the sum of scales in each set is 1, as
shown in Figure 10a. The columns refer to goals, the numbers
attached to the points in each column refer to scales of
weights, and the colored lines that link the points stand for
the weight sets. Here the slot “numberOfSamples” is set to
three, and six sample sets are generated (“numberOfSam-
ples” can be set to a larger number to generate more sets).
Each sample set in Figure 10 is automatically sent to DSIDES
to compute a result. Based on the sample sets and results, the
ternary plot for the new goal “cost” is automatically generated
and captured by the object slot “hasBehavior,” as shown in
Figure 10b. The blue area of the ternary plot in the figure

means the preferred weight sets for minimizing the “cost”
goal. Plots for the other two goals (the “weight” goal and
the “volume” goal) are also captured for designers’ reference.

5.2.3. Design space visualization

The assumptions used in the previous section are followed
in this section to illustrate design space visualization. In the
previous section, the ternary plot offers designers a means to
analyze the trade-off among different goals by showing the re-
lationship between the weight sets and the deviation of the
goals. Trade-off analysis can lead designers to rational deci-
sions, but the resulting designs may not necessarily be accepta-
ble. For example, set point (WVOL ¼ 0, WWGT ¼ 0, WCOS ¼ 1),
which refers to preference for “cost” goal only, is located in the
blue area in the ternary plot for the “cost” goal. Designers may
choose it as the priority set for making the decision. However,
the corresponding design (R ¼ 2:5; T ¼ 0:5; L ¼ 0:16) may
be unacceptable due to the small size and the obviously small
volume. Therefore, informing designers about associated de-
signs under certain priority sets is also very important for facil-
itating decision making. We implement this using scatterplots
as shown in Figure 11. The three axes correspond to the three
variables of the problem, points refer to sample design specifi-
cations generated in the feasible design space, and the color of a
point denotes the deviation of the objective function (see Fig. 1)
for the associated design. Points in blue mean lower deviation,
and therefore are the superior designs desired by designers.
By the plot, designers can have an intuitive view of the
“outline” of superior designs based on where the blue points
locate. For example, in Figure 11, superior designs under set
point (WVOL ¼ 0:33;WWGT ¼ 0:33;WCOS ¼ 0:33), which is
an acceptable set in the ternary plot, are locating where the
associated size seems large and more acceptable. Based on

Fig. 9. Ternary plot for trade-off analysis.

Executable decision template ontology 401

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

visualization of the design space, designers will have more
confidence in the decisions they make.

In the ontology context, design space visualization is
implemented through Java function calls provided by Pro-
tégé. The function collects information in slots “hasVari-
able,” “hasParameter,” “hasConstraints,” “hasGoals,” and
“hasPreference,” and generates a scatter plot using samples
in the feasible design space. The plot is finally captured as
a behavior in the slot “hasBehavior” of a cDSP template in-
stance for designers’ reference, as the plot under priority set
(0,0,1) shown in Figure 12. Plots under other priority sets
such as (1,0,0), (0,1,0), and (.33,.33,.33) are also captured
by the slot “hasBehavior,” which are not shown in this paper.

5.3. Summary and discussion

Using the thin-walled pressure vessel example, we instanti-
ated a cDSP template instance using the original design deci-
sion information, modified the number of design variables

based on existing template instance for making new deci-
sions, modified the number of goals and the value assigned
to parameters (weights to goals) for making new decisions,
performed trade-off analysis to facilitate decision making,
and performed design space visualization to facilitate deci-
sion making. The reusability of the ontology-based cDSP
template is verified by the reuse and modification of pre-
viously created instance, and the executability is verified by
consistency checking, automatic generation of results, per-
forming trade-off analysis, and design space visualization.
From the results, we see that designers’ decision making is
facilitated in terms of

† editing the decision model (cDSP template instance)
with consistency ensured,

† making rapid decisions with the help of automatic ex-
ecution, and

† making rational decision supported by insightful infor-
mation displaying (ternary and scatterplots).

Fig. 10. Trade-off analysis in the ontology.

Fig. 11. Scatterplot.

Z. Ming et al.402

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

6. CONCLUSION

Engineering design is increasingly recognized as a decision-
making process, and the principal role of a designer is to make
decisions. To augment this role of a decision maker, provid-
ing relevant decision support is crucial. In this paper, we
represent the cDSP template using frame-based ontology
that can provide decision support from two perspectives:
the construct perspective and the information perspective.
Regarding the construct, cDSP acts as the mathematical
tool for formulating and making decisions among multiple
conflicting goals under multiple constraints, which is fre-
quently encountered in system designs. Regarding the infor-
mation, the ontological template based method offers a means
for archiving the critical decision-making information in an
executable, reusable, and consistency-maintainable manner
that facilitates rapid decision making. To facilitate designers’
reuse of the populated cDSP template instances in future de-
sign decisions, we identified three types of modifications that
can be made separately or in combination when design con-
sideration evolves. Through a thin-walled pressure vessel re-
design example, the efficacy of the approach proposed in this
paper is demonstrated. It is shown that this approach supports
designers in editing the decision model with consistency
ensured, making rapid and rational decisions with automatic

execution and insightful information visualization. The ad-
vantage of the ontology created in this paper over those se-
mantic-centric ontologies lies in that it not only captures
and documents the decision rationale that helps designers un-
derstand about how and why previous decisions are made but
also facilitates designers reusing (by modification) previous
information to effect new decisions when requirement
changes.

In this paper, we have demonstrated the usefulness of the
ontology-based decision template representation method
based on the cDSP construct, and developed some decision
support applications (graphical tools for information display-
ing) using the Java language. Due to the extensibility, comput-
er interpretability, and inference ability possessed by ontol-
ogy, the same idea can extend to the representation of other
decision-making constructs such as the selection DSP and
the utility-based approaches, the integration of other graphi-
cal information displaying tools, and the implementation in
other languages such as Cþþ. That is the direction our future
work (the platform PDSIDES) is targeting.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the China Scholarship Council
for providing support (Grants 201406030014 and 201406035008)
for carrying out this research. Janet K. Allen and Farrokh Mistree
gratefully acknowledge NSF Grant CMMI-1440457.

REFERENCES

Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S.,
& Sriram, R.D. (2012). OntoSTEP: enriching product model data using
ontologies. Computer-Aided Design 44(6), 575–590.

Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horvath, I., Bernard, A.,
Harik, R.F., & Gao, W. (2013). The evolution, challenges, and future
of knowledge representation in product design systems. Computer-Aided
Design 45(2), 204–228.

Eriksson, H. (2008). Jess Tab. Accessed at http://www.jessrules.com/jess-
wiki/view?JessTab on July 15, 2015.

Fenves, S.J., Foufou, S., Bock, C., & Sriram, R.D. (2008). CPM2: a core
model for product data. Journal of Computing and Information Science
in Engineering 8(1), 014501.

Fernandez, M.G., Seepersad, C.C., Rosen, D.W., Allen, J.K., & Mistree, F.
(2005). Decision support in concurrent engineering—the utility-based
selection decision support problem. Concurrent Engineering—Research
and Applications 13(1), 13–27.

Gruber, T.R. (1993). A translation approach to portable ontology specifica-
tions. Knowledge Acquisition 5(2), 199–220.

Gu, X.Y., Renaud, J.E., Ashe, L.M., Batill, S.M., Budhiraja, A.S., & Kra-
jewski, L.J. (2002). Decision-based collaborative optimization. Journal
of Mechanical Design 124(1), 1–13.

Hazelrigg, G.A. (1998). A framework for decision-based engineering design.
Journal of Mechanical Design 120(4), 653–658.

Kulkarni, N., Gautham, B., Zagade, P., Panchal, J., Allen, J.K., & Mistree, F.
(2015). Exploring the geometry and material space in gear design. Engi-
neering Optimization 47(4), 561–577.

Kulok, M., & Lewis, K. (2007). A method to ensure preference consistency
in multi-attribute selection decisions. Journal of Mechanical Design
129(10), 1002–1011.

Lee, J.H., Fenves, S.J., Bock, C., Suh, H.W., Rachuri, S., Fiorentini, X., &
Sriram, R.D. (2012). A semantic product modeling framework and its
application to behavior evaluation. IEEE Transactions on Automation
Science and Engineering 9(1), 110–123.

Fig. 12. Design space visualization in the ontology.

Executable decision template ontology 403

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

http://www.jessrules.com/jesswiki/view?JessTab
http://www.jessrules.com/jesswiki/view?JessTab
http://www.jessrules.com/jesswiki/view?JessTab
https://doi.org/10.1017/S0890060416000378

Lewis, K., & Mistree, F. (1995). Designing top-level aircraft specifications: a
decision-based approach to a multiobjective, highly constrained problem.
Proc. 36th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynam-
ics and Materials Conf., Paper No. AIAA-95-1431-CP, pp. 2393–2405.
New Orleans, LA, April 10–13.

Lewis, K., & Mistree, F. (1998). Collaborative, sequential, and isolated deci-
sions in design. Journal of Mechanical Design 120(4), 643–652.

Lewis, K.E., Chen, W., & Schmidt, L.C. (2006). Decision Making in Engi-
neering Design. New York: ASME Press.

Li, Z., Raskin, V., & Ramani, K. (2008). Developing engineering ontology
for information retrieval. Journal of Computing and Information Science
in Engineering 8(1), 011003.

Liu, Y., Lim, S.C.J., & Lee, W.B. (2013). Product family design through on-
tology-based faceted component analysis, selection, and optimization.
Journal of Mechanical Design 135(8), 081007.

Lu, W.L., Qin, Y.C., Liu, X.J., Huang, M.F., Zhou, L.P., & Jiang, X.Q.
(2015). Enriching the semantics of variational geometric constraint
data with ontology. Computer-Aided Design 63, 72–85.

Ming, Z., Yan, Y., Wang, G., Panchal, J.H., Goh, C.H., Allen, J.K., & Mis-
tree, F. (2015). Ontology-based executable design decision template rep-
resentation and reuse. Proc. ASME Computers and Information in Engi-
neering Conf., Paper No. DETC2015-46272, Boston, August 2–5.

Mistree, F., Hughes, O.F., & Bras, B.A. (1993). The compromise decision
support problem and the adaptive linear programming algorithm. In
Structural Optimization: Status and Promise (Kamat, M.P., Ed.), pp.
247–286. Washington, DC: AIAA.

Mistree, F., Smith, W., Bras, B., Allen, J., & Muster, D. (1990). Decision-
based design: a contemporary paradigm for ship design. Transactions,
Society of Naval Architects and Marine Engineers 98, 565–597.

Muster, D., & Mistree, F. (1988). The decision support problem technique in
engineering design. International Journal of Applied Engineering Edu-
cation 4(1), 23–33.

Pahl, G., Pahl, G., Wallace, K., & Blessing, L.T.M. (2007). Engineering De-
sign: A Systematic Approach. London: Springer.

Panchal, J.H., Fernández, M.G., Paredis, C.J.J., & Mistree, F. (2004). Re-
usable design processes via modular, executable, decision-centric tem-
plates. Proc. AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conf., Paper No. AIAA-2-4-4601, Albany, NY.

Reddy, R., Smith, W., Mistree, F., Bras, B., Chen, W., Malhotra, A., Badhri-
nath, K., Lautenschlager, U., Pakala, R., & Vadde, S. (1996). DSIDES
User Manual. Atlanta, GA: Georgia Institute of Technology, Woodruff
School of Mechanical Engineering, Systems Realization Laboratory.

Resende, C.B., Heckmann, C.G., & Michalek, J.J. (2012). Robust design for
profit maximization with aversion to downside risk from parametric
uncertainty in consumer choice models. Journal of Mechanical Design
134(10), 100901-1–100901-12.

Rockwell, J., Grosse, I.R., Krishnamurty, S., & Wileden, J.C. (2009). A de-
cision support ontology for collaborative decision making in engineering
design. Proc. Int Symp. Collaborative Technologies and Systems, Balti-
more, MD, May 18–22.

Rockwell, J.A., Witherell, P., Fernandes, R., Grosse, I.R., Krishnamurty, S.,
& Wileden, J.C. (2008). A Web-based environment for documentation
and sharing of engineering design knowledge. Proc. 28th Computers
and Information in Engineering Conf., Brooklyn, NY, August 3–6.

Sandgren, E. (1990). Nonlinear integer and discrete programming in mechan-
ical design optimization. Journal of Mechanical Design 112(2), 223–229.

Sandia National Laboratories. (n.d.). Jess@, the Rule Engine for the Java
TM

Platform. Accessed at http://herzberg.ca.sandia.gov/ on July 15, 2015.
Seepersad, C.C., Allen, J.K., McDowell, D.L., & Mistree, F. (2008). Multi-

functional topology design of cellular material structures. Journal of
Mechanical Design 130(3), 031404.

Shukla, R., Kulkarni, N., Gautham, B., Singh, A., Mistree, F., Allen, J., &
Panchal, J.H. (2015). Design exploration of engineered materials, pro-
ducts, and associated manufacturing processes. Journal of the Minerals,
Metals & Materials Society 67(1), 94–107.

Simon, H.A. (1976). Administrative Behavior: A Study of Decision-Making
Processes in Administrative Organization. New York: Free Press.

Sivaloganathan, S., & Shahin, T. (1999). Design reuse: an overview. Proc.
Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 213(7), 641–654.

Stanford University. (2013). Protégé 3.5 Release. Accessed at http://protege-
wiki.stanford.edu/wiki/Protege_3.5_Release_Notes on July 15, 2015.

Thurston, D.L. (1991). A formal method for subjective design evaluation
with multiple attributes. Research in Engineering Design 3(2), 105–122.

Vadde, S., Allen, J.K., & Mistree, F. (1994). The Bayesian compromise de-
cision-support problem for multilevel design involving uncertainty. Jour-
nal of Mechanical Design 116(2), 388–395.

Wang, H., Noy, N., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S.,
Tudorache, T., Drummond, N., & Horridge, M. (2006). Frames and OWL
Side by Side, p. 54. Available at http://protégé.stanford.edu/conference/
2006/submissions/slides/7.2wng_protege2006.pdf

Wassenaar, H.J., Chen, W., Cheng, J., & Sudjianto, A. (2005). Enhancing
discrete choice demand modeling for decision-based design. Journal of
Mechanical Design 127(4), 514–523.

Williams, C.B., Allen, J.K., Rosen, D.W., & Mistree, F. (2007). Designing
platforms for customizable products and processes in markets of non-uni-
form demand. Concurrent Engineering—Research and Applications
15(2), 201–216.

Witherell, P., Krishnamurty, S., & Grosse, I.R. (2007). Ontologies for sup-
porting engineering design optimization. Journal of Computing and
Information Science in Engineering 7(2), 141–150.

Yang, D., Dong, M., & Miao, R. (2008). Development of a product config-
uration system with an ontology-based approach. Computer-Aided
Design 40(8), 863–878.

Zhenjun Ming is a PhD candidate in the School of Mechan-
ical Engineering at Beijing Institute of Technology (BIT). He
is currently a Visiting Scholar at the School of Aerospace and
Mechanical Engineering at the University of Oklahoma on a
scholarship provided by the China Scholarship Council.
Zhenjun earned his Bachelor degree in industrial engineering
from BIT in 2011. His PhD dissertation is about designing a
knowledge-based platform for decision support in the design
of engineering systems. He has published one journal paper
and two conference papers and is a winner of the 2015
NSF/ASME Design Essay Competition.

Yan Yan is a Professor in the School of Mechanical Engi-
neering at BIT. She received her Bachelor and PhD from
BIT. She is a member of the Science and Technology Com-
mittee in the State Administration of Science, Technology
and Industry for National Defense (China). Professor Yan’s
research interests lie in knowledge-based engineering, infor-
mation modeling in design, and manufacturing. She has co-
authored two textbooks and over 60 peer-reviewed papers.

Guoxin Wang is an Associate Professor and the Vice Direc-
tor of the Industrial Engineering Institute at BIT. He is a Se-
nior Fellow of the Chinese Mechanical Engineering Society.
Dr. Wang directs and has accomplished 15 projects from the
National Nature Science Foundation of China, the National
High-Tech. R&D Program, the National Defense Basic Sci-
entific Research Foundation, and the National and Interna-
tional Enterprise Research Foundation. He has published
over 40 papers and a book. His research interests include sys-
tem modeling and simulation, knowledge-based engineering,
and reconfigurable manufacturing systems.

Jitesh Panchal is an Associate Professor in the School of
Mechanical Engineering at Purdue University. He received
his BTech (2000) from the Indian Institute of Technology
Guwahati and his MS and PhD in mechanical engineering
from the Georgia Institute of Technology. Dr. Panchal’s re-
search interests are in computational design of complex engi-
neering systems with focus on three areas: concurrent pro-

Z. Ming et al.404

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

http://herzberg.ca.sandia.gov/
http://herzberg.ca.sandia.gov/
http://protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes
http://protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes
http://protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes
http://protégé.stanford.edu/conference/2006/submissions/slides/7.2wng_protege2006.pdf
http://protégé.stanford.edu/conference/2006/submissions/slides/7.2wng_protege2006.pdf
http://protégé.stanford.edu/conference/2006/submissions/slides/7.2wng_protege2006.pdf
https://doi.org/10.1017/S0890060416000378

ducts and materials design, collective systems innovation,
and cyberphysical systems for design and manufacturing.
He is a coauthor of Integrated Design of Multiscale, Multi-
functional Materials and Products. He is a recipient of the
CAREER award from the National Science Foundation, the
Young Engineer Award, two best paper awards from the
ASME CIE division, and a university silver medal from the
Indian Institute of Technology Guwahati.

Chung-Hyun Goh is a member of the Mechanical Engineer-
ing Faculty of the University of Texas at Tyler. Prior to join-
ing the University of Texas at Tyler, he worked in the Systems
Realization Laboratory at the University of Oklahoma from
2012 to 2015. He worked for the Korean government after
he received his PhD at Georgia Institute of Technology. Dr.
Goh is a member of ASME, ASEE, TMS, and the board of
directors in the materials and fracture group in the Korean
Society of Mechanical Engineers. He has published a 24
peer-reviewed journal and proceedings papers as well as a co-
authored textbook.

Janet K. Allen holds the John and Mary Moore Chair and is
Professor of industrial and systems engineering at the Univer-
sity of Oklahoma. Janet’s research is in engineering design

and especially the management of uncertainty when making
design decisions. Her interest in managing uncertainty ex-
tends to robust design, uncertainty quantification, informa-
tion economics, and statistical and computational methods
to facilitate engineering design. She has an ongoing interest
in simulation and modeling in support of design decision
making with a particular interest in the design of complex sys-
tems. Dr. Allen is a Fellow of the ASME, a Senior Member of
the AIAA, and an Honorary Member of the Mechanical En-
gineering Honor Society Pi Tau Sigma.

Farrokh Mistree holds the L. A. Comp Chair in the School
of Aerospace and Mechanical Engineering at the University
of Oklahoma. Farrokh’s current research focus is model-
based realization of complex systems by managing uncer-
tainty and complexity. The key question he is investigating
is the principles underlying rapid and robust concept explora-
tion when the analysis models are incomplete and possibly
inaccurate. Dr. Mistree has coauthored two textbooks, one
monograph, and more than 400 technical papers dealing
with the design of material, mechanical, thermal, and struc-
tural systems; ships; and aircraft. Farrokh is a Fellow of
ASME and an Associate Fellow of AIAA.

Executable decision template ontology 405

https://doi.org/10.1017/S0890060416000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000378

	Ontology-based executable design decision template representation and reuse
	Abstract
	INTRODUCTION
	FOUNDATIONS
	Our fundamental decision model
	Decision template
	Ontology

	ONTOLOGY DEVELOPMENT FOR THE cDSP TEMPLATE
	Concept identification
	Relation definition
	Maintaining consistency
	The complete structure of the ontology

	cDSP MODEL MODIFICATION TYPES
	EXAMPLE
	Populating an original design instance
	Facilitating decision making in redesign scenarios
	Consistency checking
	Trade-off analysis
	Design space visualization

	Summary and discussion

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

