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ON THE CALCULATION OF THE SOLVENCY CAPITAL REQUIREMENT 
BASED ON NESTED SIMULATIONS*

BY

DANIEL BAUER, ANDREAS REUSS AND DANIELA SINGER 

ABSTRACT

Within the European Union, risk-based funding requirements for insurance 
companies are currently being revised as part of the Solvency II project. How-
ever, many life insurers struggle with the implementation, which to a large extent 
appears to be due to a lack of know-how regarding both, stochastic modeling 
and effi cient techniques for the numerical implementation.

The current paper addresses these problems by providing a mathematical 
framework for the derivation of  the required risk capital and by reviewing 
different alternatives for the numerical implementation based on nested simu-
lations. In particular, we seek to provide guidance for practitioners by illustrating 
and comparing the different techniques based on numerical experiments.
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1. INTRODUCTION

Within the European Union, risk-based funding requirements for insurance 
companies are currently being revised as part of  the Solvency II project. 
One key aspect of the new regulatory framework is the determination of the 
required risk capital for a one-year time horizon, i.e. the amount of capital
the company must hold against unforeseen losses during the following year.
In particular, the regulation allows for a company-specifi c calculation based 

* Parts of this paper are taken from an earlier paper called “Solvency II and Nested Simulations — a 
Least-Squares Monte Carlo Approach” and from the third author’s doctoral dissertation (cf. 
 Bergmann (2011)). The authors are grateful for helpful comments from an anonymous referee and 
seminar participants at the 2009 ARIA meeting, the 2009 CMA Workshop on Insurance Mathematics 
and Longevity Risk, the 2010 International Congress of Actuaries, Georgia State University, Humboldt 
University of Berlin, Ulm University, and the University of Duisburg-Essen. All remaining errors are 
ours.
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on a market-consistent valuation of assets and liabilities within a structural 
internal model. However, many life insurers struggle with the implementation, 
which to a large extent appears to be due to a lack of  know-how regarding 
both, the construction of  the underlying model and effi cient techniques for 
implementing the necessary calculations (see e.g. CEIOPS Internal Model 
Expert Group (2009), p. 23-25, CRO Forum (2009), p. 30, and SOA (2008), 
Section 2.5). As a consequence, many companies rely on approximations 
within the so-called standard model, which is usually not able to accurately 
refl ect an insurer’s risk situation and may lead to defi cient outcomes (see
e.g. Liebwein (2006), Pfeifer and Strassburger (2008), Ronkainen et al. (2007), 
or Sandström (2007)).

The current paper addresses these problems. More specifi cally, our objectives 
are twofold: On the one hand, we seek to shed light on the proper calculation 
of  the Solvency Capital Requirement (SCR) by presenting a concise mathe-
matical framework. On the other hand, to provide guidance for the practical 
implementation, we survey, extend, and adapt different advanced techniques 
for the calculation of the SCR based on nested simulations. For instance, we 
address the optimal allocation of computational resources within the simula-
tion, the construction of confi dence intervals for the SCR, the application of 
variance reduction techniques, and the use of screening procedures to increase 
the effi ciency of  the simulation approach. The drawbacks and advantages
of the different approaches and techniques are illustrated based on detailed 
numerical experiments using the model for a participating term-fi x contract 
introduced in Bauer et al. (2006).1 In particular, we demonstrate that the effi -
ciency of the computation can be increased considerably when relying on a 
suitable simulation design.

Several of the presented numerical techniques were originally proposed in 
the context of  nested simulations for portfolio risk measurement, and our 
contribution in this direction lies in the extension and adaptation of the under-
lying ideas to suit the insurance setting as well as their integration. In particular, 
we draw on results from Gordy and Juneja (2010), who analyze how to allo-
cate a fi xed computational budget to the inner and the outer simulation step 
within a nested simulation in order to minimize the mean square error when 
measuring the risk of a derivative portfolio. Furthermore, for the derivation of 
confi dence intervals for the SCR with and without screening procedures, we fol-
low ideas from Lan et al. (2007a,b, 2010), where similar problems were studied.

The remainder of the paper is structured as follows. Section 2 provides back-
ground information on the Solvency II requirements and gives precise defi ni-
tions of the quantities of interest. In Section 3, we introduce the mathematical 
framework underlying our considerations using a direct valuation of the insurer’s 

1 As pointed out by Kling et al. (2007), under the assumption that cash fl ows resulting from premi-
ums roughly compensate for death and surrender benefi ts, the evolution of a term-fi x contract can 
be considered as an approximation for the evolution of an entire life insurance company offering 
participating contracts.
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liabilities and describe the basic nested simulations approach for estimating 
the SCR. Aside from presenting the (point) estimation procedure, we address 
the determination of an optimal allocation of a fi xed computational budget 
and briefl y explain how a Jackknife procedure can be used to reduce the 
 inherent bias. In Section 4, we derive confi dence intervals for the resulting 
point estimator. The subsequent Section 5 describes methods to increase the 
effi ciency of the estimation by means of screening procedures. In Section 6, 
we illustrate the different methods based on detailed numerical experiments. 
In Section 7, we discuss an alternative estimator for the SCR based on an 
indirect valuation of the insurer’s liabilities. Finally, Section 8 summarizes our 
fi ndings and concludes.

2. THE SOLVENCY II CAPITAL REQUIREMENT

The quantitative assessment of the solvency position of a life insurer can be 
split into two components, namely the derivation of the Available Capital (AC) 
at the current point in time (t  =  0), and the derivation of the Solvency Capital 
Requirement (SCR) based on the Available Capital at the measurement time 
horizon (one year for Solvency II, t  =  1).

2.1. Available Capital

The Available Capital, which is also called “own funds” under Solvency II, 
corresponds to the amount of available fi nancial resources that can serve as a 
buffer against risks and absorb fi nancial losses. It is derived from a market-
consistent valuation approach as the difference between the market value of 
assets and the market value of liabilities. The market-consistent valuation of 
assets is usually quite straightforward for the typical investment portfolio of 
an insurance company since market values are either readily available (mark-to-
market, level 1) or can be derived from standard models with market-observable 
inputs (level 2). This is usually not the case for the liabilities of a life insurance 
company, and there are two different basic approaches for the calculation of 
the value, the direct and the indirect method (cf. Girard (2002)).

As suggested by its name, the direct method prescribes a direct valuation 
of the cash fl ows associated with an insurance liability, e.g. by determining their 
expected discounted value under some risk-neutral or risk-adjusted probability 
measure.2 In contrast, within the indirect method, the valuation is taken out 
from the shareholders’ perspective by considering the free cash fl ows generated 
by the insurance business. The market value of  liabilities is then equal to the 
difference between the market value of assets backing liabilities and the market 

2 To keep our focus and without loss of generality, we do not address methods to account for non-
fi nancial (non-hedgeable) risks in the current paper, but refer to Babbel et al. (2002), Klumpes and 
Morgan (2008), and references therein for this discussion.
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value of the cash fl ows from the shareholders’ perspective. While of course the 
quantity to be estimated is — or at least should be — the same for both pro-
cedures (see Girard (2002)), the two methods may well yield different estima-
tors for the AC and, hence, for the SCR. Since the conceptual results of our 
paper are not affected by the choice of the method and since the direct method 
is more in line with the QIS 5 Technical Specifi cations for Solvency II (see 
European Commission (2010)), we limit our technical exposition to the direct 
method. A more detailed discussion of the indirect method for the calculation 
of life insurance liabilities based on the Market Consistent Embedded Value 
(MCEV) principles issued by the CFO Forum (2009) is deferred to Section 7. 
In particular, our numerical experiments illustrate that the quality of the result-
ing estimates can differ signifi cantly.

In either case, due to the relatively complex fi nancial structure of life insur-
ance liabilities containing embedded options and guarantees, this calculation 
usually cannot be done in closed form. Therefore, insurance companies usually 
follow a mark-to-model approach that relies on Monte Carlo simulations. 
Once the market value of liabilities has been determined, the Available Capital 
at t  =  0 can be derived as the difference between the market value of assets 
(MVA0) and the market value of liabilities (MVL0) at t  =  0, i.e. we have 

 AC0   : =   MVA0   –  MVL0. (1)

2.2. The Solvency Capital Requirement

For deriving the SCR, the quantity of interest is the Available Capital at t  =  1, 
which can be described by 

 AC1   : =   MVA1   –  MVL1. (2)

Then intuitively, an insurance company is considered to be solvent under Sol-
vency II if  its AC at t  =  1 as seen from t  =  0 is positive with a probability of 
at least 99.5%, i.e. 

 0 | AC 99.5%xP
!

1 0$ $=AC .^ h

The SCR would then be defi ned as the smallest amount x satisfying this con-
dition. This is an implicit defi nition of the SCR ensuring that if  the Available 
Capital at t  =  0 is greater or equal to the Solvency Capital Requirement, then 
the probability of the Available Capital at t  =  1 being positive is at least 99.5%.

However, for practical applications, one usually relies on a simpler but 
approximately equivalent notion of the SCR, which avoids the implicit nature 
of the defi nition given above. For this purpose, we defi ne the one-year loss 
function evaluated at t  =  0 as 

 
+

: AC ( , )
AC

,s1 00
1D = - 1

https://doi.org/10.2143/AST.42.2.2182805 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.2.2182805


 ON THE CALCULATION OF THE SOLVENCY CAPITAL REQUIREMENT 457

where s (0,1) is the one-year risk-free rate over [0, 1], i.e. s (0,1)   : =   (P , )0 1
1    –  1 

with P(0,1) the price of  a one-year zero coupon bond at time zero. The SCR 
is then defi ned as the a-quantile of  D, where the security level a is set equal 
to 99.5%3:

 #x aSCR : AC ( , )
AC

1 .argmin s1 0 1x 0
1 2= -

+
-Pc m' 1  (3)

The probability that the loss over one year exceeds the SCR is less or equal
to 1  –   a, i.e. we need to calculate a one-year Value-at-Risk (VaR). The Excess 
Capital at t  =  0, on the other hand, is defi ned as AC0  –  SCR and satisfi es the 
following requirement:

 a( )
AC

AC SCR ;s1 1P 1
0$ $

+
-,0c m  (4)

thus, the probability (evaluated at t  =  0) that the Available Capital at t  =  1 is 
greater or equal to the Excess Capital is at least a (e.g. 99.5%).

Note that under this defi nition, the SCR depends on the actual amount of 
capital held at t  =  0. In particular, since all assets are included in the calcula-
tions, the risk arising from assets backing positive Excess Capital is also refl ected 
in the SCR. In case the Excess Capital is negative, it is implicitly assumed that 
it is invested in the one-year default-free bond, which can be illustrated by 
rewriting Equation (4) as follows:

 aAC AC ( ) 0s 1P 1 0 $ $ $+ - +SCR , .1 0_ ^a i h k

Based on this defi nition of  the SCR, the solvency ratio can be calculated as 
AC0 / SCR.

In the standard model, the SCR in Equation (3) is approximated via the 
so-called square-root formula based on a modular approach. However, this 
formula is usually not able to accurately refl ect the insurer’s risk situation and 
may lead to defi cient outcomes (see e.g. Pfeifer and Strassburger (2008) and 
Sandström (2007)). Therefore, in what follows, we describe how to determine 
the probability distribution of the loss function based on nested simulations 
in an internal model, which enables us to derive the SCR directly as defi ned in 
Equation (3).

3 These simplifi cations are analogous to the defi nition used for the Swiss Solvency Test (Federal Offi ce 
of Private Insurance (2006)). 
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3. NESTED SIMULATIONS APPROACH

3.1. Mathematical Framework

We assume that investors can trade continuously in a frictionless fi nancial 
market, and we let T be the maturity of the longest-term policy in the life insur-
er’s portfolio. Since insurance contracts are long-term investments, T will usually 
be in the range of 30-40 years or even longer. Let (W,  F,  P,  F  =  (Ft  )t  !  [0,T ]) be 
a complete fi ltered probability space on which all relevant quantities exist, 
where W denotes the space of all possible states of the fi nancial market and P 
is the physical probability measure. Ft represents all information about the 
fi nancial market up to time t, and the fi ltration F is assumed to satisfy the usual 
conditions.

The uncertainty with respect to the insurance company’s future liabilities 
from the in-force business4 arises from the uncertain development of a num-
ber of  infl uencing factors, such as equity returns, interest rates, or credit 
spreads. We introduce the d-dimensional, suffi ciently regular Markov process 
Y  =  (Yt) t  !  [0,T ]   =  (Yt,1,  …, Yt, d )t  !  [0,T ], the so-called state process, to model the 
uncertainty of the fi nancial market, i.e. all risky assets in the market can be 
expressed in terms of Y. Furthermore, we suppose the existence of a locally 
risk-free asset (B0 (t))t  !  [0,T ]  (the bank account) with B0 (t)  =  exp{ ur du

t
0
# }, 

where rt  =  r(Yt) is the instantaneous risk-free interest rate at time t. To ease 
notation, we defi ne Bs(t)  : =  ( )

( )
B
B t

s0

0   =  exp ( ur du
t

s# ). In this market, we take for 
granted the existence of a risk-neutral probability measure Q equivalent to P 
under which payment streams can be valued via their expected discounted 
values with respect to the numéraire process (B0 (t))t  !  [0,T ].5

Based on this market model, we assume that there exists a cash fl ow projec-
tion model of the insurance company, i.e. there exist functionals h1,  …,  hT that 
derive the insurer’s liability cash fl ows at time t from the development of  the 
fi nancial market up to time t, t  =  1, …, T. In particular, these cash fl ows include 
policyholder cash fl ows (benefi ts paid minus premiums earned), expenses (both 
internal and external), and tax payments, and the model refl ects legal and 
regulatory requirements, policyholder behavior, as well as management rules. 
Hence, we model the future liability cash fl ows from the in-force business as
a sequence of  random variables X  =  (X1, …, XT) where Xt  =  ht(Ys, s  !  [0, t ]), 
t  =  1, …, T.

In order to keep our presentation concise, as pointed out above, we abstract 
by limiting our focus to market risk, i.e. non-hedgeable risks as well as the 
corresponding cost-of-capital charges are ignored (cf. Footnote 2). However, 
non-fi nancial risk factors such as a mortality index could also be incorporated 
in the state process (see Zhu and Bauer (2011)). The corresponding cost-of-capital 

4 This means that cash fl ows from future new business are not included in the calculation.
5 Under some mild technical conditions, this assumption is equivalent to the absence of arbitrage in 

the fi nancial market. See e.g. Bingham and Kiesel (2004) for more details.
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charges as well as other frictional costs could then be considered by an appro-
priate choice of Q and ht, t  =  1, …, T.

3.2. Calculation of the SCR

According to the risk-neutral valuation formula, we can determine the market 
value of liabilities at time t  =  0 as the expectation of the sum of the discounted 
liability cash fl ows Xt, t  =  1, …, T, under the risk-neutral measure Q:

 Var( (
t t

t tMVL : ) with : ) .B
X

B
X

E
T

t

T

0
01

0
01

Q Q= =
=t

s
=

> >H H/ /

In most cases, MVL0 cannot be computed analytically due to the complexity 
of the interaction between the development of the fi nancial market variables 
Yt and the liability cash fl ows Xt. Thus, in general, we have to rely on numer-
ical methods to estimate MVL0.

A common approach is to use Monte Carlo simulations, i.e. independent 
sample paths (Yt

(k))t  !  [0,T ], k  =  1, …, K0, of the underlying state process Y gener-
ated under the risk-neutral measure Q. Based on these different scenarios for 
the fi nancial market, we fi rst derive the resulting cash fl ows Xt

(k) (t  =  1, …, T; 
k  =  1, …, K0) using the cash fl ow projection model. Then, we discount the cash fl ows 
with the appropriate discount factor, and average over all K0 sample paths, i.e.

 tMVL ( ) :
( )K B t

X1 Y

k

K

0
0 011

0

=
=

0 K (
t =

,)k

( )k
R //

where Bs
(k)(t)  : =  exp ( ur du(t )k

s# ) and ru
(k) denotes the instantaneous risk-free 

interest rate at time u in sample path k. By Equation (1) and since the market 
value of assets is usually readily available, an estimator for AC0 is given by 

( )AC0 K0
R   =  MVA0  –  MVL (0 K0)R . The sample version of the standard deviation 
is denoted by s0 (K0).

For the calculation of the Solvency Capital Requirement, in addition to the 
Available Capital at t  =  0, we need to assess the (physical) distribution of the 
Available Capital at t  =  1. Assuming that corresponding policyholder cash fl ows 
at time t  =  1 have already been settled but that shareholder cash fl ows have not 
been realized yet, we need to determine the P-distribution of the F1-measurable 
random variable (cf. Equations (1) and (2))

 t

(tAC : MVA ) .B
X

E

: MVL

t

T

1 1
12

1
Q

1

= -
=

=

F> H

1 2 34444 4444

/

We may now estimate the distribution of AC1 via the corresponding empirical 
distribution function: Given N  !  N independent and identically distributed 
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In addition, realizations for the market value of assets can easily be calculated 
for each of the N fi rst-year paths. Therefore, N realizations of AC1 are given 
by 

 AC : MVA MVL .( (i i
1 1 1= -
( ) )i)

Note that these F1-measurable random variables AC1
(i), i  =  1, …, N, are inde-

pendent and identically distributed as Monte Carlo realizations and thus may 
be used for the construction of an empirical distribution function.

However, just as at time zero, the valuation problem (5) generally cannot 
be solved analytically, and, again, we may rely on Monte Carlo simulations. 
As illustrated in Figure 1, based on the fi rst-year path of  the state process 
(Ys

(i))s  !  [0, 1] in scenario i  ! {1, …, N}, we simulate K1
(i)  ! N risk-neutral scenarios 

and denote them by (Ys
(i, k))s  !  (1,T ]. Then, for each fi rst-year path i ! {1,  …,  N}, 

by determining the resulting future liability cash fl ows Xt
(i, k) (t  =  2,  …,  T ; 

FIGURE 1: Illustration of the nested simulations approach.

(i.i.d.) sample paths (Ys
(i))s  !  [0, 1], i  =  1, …, N, for the development of the fi nancial 

market over the fi rst year under the real-world measure P, the market value 
of liabilities at t  =  1 conditional on the state of the fi nancial market in scenario 
i can be described by 

[s s
(i

1! , ] [ , ]s s0 1 0 1!

1

1
t)

( )tt 2=

MVL : with : Var ) .
X

Y V YE

:

( ( ) ( )
T

V

i
1

1

Q Qs= =

=

)B
i iP) )( (

(P i

(i

)

R

T

S
S
S
S

6

V

X

W
W
W
W

@

1 2 344 44

/  

 (5)

Note that the s1
(i) may differ signifi cantly for different scenarios i, i.e. the 

 discounted cash fl ows t 2=
T

( )B t
Xt

1
/  are usually not identically distributed for dif-

ferent realizations of the state process over the fi rst year.
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k  =  1,  …,  K1
(i)) and averaging over all K1

(i) sample paths, we obtain Monte Carlo 
estimates for MVL1

(i) via 

 

1

.t

1
(MVL :

( )
, { , , }K

K B t
X

i1 1
(i

t

TK

1 1
1 12

: PV

1

f=
==

=

N
)

k
)(i

(i

(

(

,

,

i

i

( , )i k

!
)

)

(i )

)

k

k

)

1 2 344 44

R //

The number of simulations in the i th real-world scenario may depend on i since 
for different standard deviations s1

(i), a different number of simulations may be 
necessary to obtain acceptable results. We obtain the following sample standard 
deviation for PV1

(i):

 11 (s ) : MVL ( ) .K
K

PV K
1

1 (i

k

K

1
1

1 1
1

1

= -
=

( )i )(
(

(i
i

i

(i
2) )

)

)
( , )i k

-
a kR/

Now, we can estimate N realizations of AC1 by 

 
(i

AC ( ) : MVA MVL ( ), 1, ,K K i( (i i
1 1 1 1 1 f= - =

) ) )( (i i .N) )R R

From Equation (3), it follows that the SCR is the a-quantile of the random 
variable D  =  AC0  –  .( , )

AC
s1 0 1

1
+  Since AC0 is approximated by the unbiased esti-

mator AC0
R (K0) and s(0,1) is known at t  =  0, the only remaining random com-

ponent is AC1 and the task is to estimate the a-quantile of – AC1.
Based on the N estimated realizations of  the random variable S  =   –  AC1 

with corresponding order statistics (S(1),  …, S(N)) and realization (s(1),  …,  s(N)), 
a simple approach for estimating the a-quantile sa is to rely on the corresponding 
empirical quantile, i.e. 

 sa   =   s(m),

where a . .m N 0 5$= +7 A  The SCR can then be estimated as 

 
(s

SCR AC ( ) ( , ) .K s1 0 1= +
+0

)m
0

R R  (6)

Alternatively, extreme value theory could be applied to derive a robust estimate 
of the quantile based on the given observations; see e.g. Embrechts et al. (1997) 
for details.

3.3. Quality of the Resulting Estimator and Choice of K0, K1, and N

Within our estimation process, we have three sources of error: (1) We estimate 
the Available Capital at t  =  0 with the help of (only) K0 sample paths; (2) we 

https://doi.org/10.2143/AST.42.2.2182805 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.2.2182805


462 D. BAUER, A. REUSS AND D. SINGER

only use N real-world scenarios to estimate the distribution function; and (3) 
the Available Capital at t  =  1 is estimated with the help of (only) K1 sample 
paths in every scenario.6 As a consequence, Equation (6) does not necessarily 
present an (unbiased) estimate for the quantile of the distribution function of 
the “true” F1-measurable loss

 AC ( , )
AC

AC ( , )
MVA MVL

s s1 0 1 1 0 10
1

0
1 1D = -

+
= -

+
-

,

but instead we actually consider the distribution of the estimated loss

 

t Y [ , ]s 0 1!s

D AC ( )

MVA
( )

( )

.K
K B t

X1
t

T

k

K

0

1
1 121

1

= -

-
==

( , )s1 0 1+0

( )

(

k

)k

f p

R
//

In particular, D is not F1-measurable due to the random sampling error result-
ing from the estimation of AC0 and the inner simulation.

Obviously, by the law of large numbers (LLN)

 D  "  D a.s.  as K0,  K1  "  3.

Nevertheless, we base our estimation of the SCR on distorted samples. To ana-
lyze the infl uence of this inaccuracy on our actual estimate SCRR , we follow 
Gordy and Juneja (2010) and decompose the mean square error (MSE) into 
the variance of our estimator and a bias7:

 MSE (SCR SCR) Var(SCR) (SCR) SCR .E E

bias

2= - = + -
2

8 <B F
1 2 34444 4444

R R R  (7)

Since AC0
R (K0) is an unbiased estimator of AC0 and since it is independent of 

s(m), Equation (7) simplifi es to 

ar ar
( ) ( )m ms s

AC ( ) ( , ) ( , ) ( , ) .K s s s
s

1 0 1 1 0 1 1 0 1V V E a
0MSE = +

+
+

+
-

+0

2

] e eg o o= GR

 (8)

Obviously, Var(AC0
R (K0))  =  0

K

2s
0
, and we will now focus on the second and third 

term in (8). Again following Gordy and Juneja (2010), let 

6 For the sake of simplicity, for the remainder of this section we let K1
(i )  =  K1 for all i ! {1,  …,  N}.

7 In what follows, probabilities and expectations are calculated under the so-called process distribution. 
More specifi cally, since the joint distributions of the random process governing our problem are given 
by the simulation procedure, Kolmogorov’s construction yields a probability measure, the so-called 
process distribution, which for simplicity is also denoted by P (see Gray (2009) for details).
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denote the difference between the estimated loss and its “true” value under the 
assumption that AC0

R (K0) is exact. Furthermore, defi ne gK1
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distribution function of D and KZ : .ZK K
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Then, with Proposition 2 from Gordy and Juneja (2010), under some reg-

ularity conditions, we obtain 

 a( )ms
( , ) ( , )s s

s
1 0 1 1 0 1E

+
-

+
= G  (9)

 (1/NK K(1a /K +( ) ) ) (1) (1/ ),K f o o NSCR N N
1

11 1$
q

= + +O O

and  1( /
2

( ) N1
)

(
+

a
1

f N /N o
( )m as
( ) ( ( )

( )
) ),s N

O O1 1Var
SCR K N

2
1+

=
-

+
1

,0 +2
d n  (10)

where f (·) denotes the density function of D and 
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The sign of  qa — and, hence, the direction of  the bias — will eventually be 
determined by the sign of K ( , .uu 12

2 g )z  Since the SCR is located in the right-
hand tail of  the distribution and since 

3
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, )g u z

K

K

1

1

3
( , )g l z dl#  is a (conditional) density

function, ( | SCRu K u12
2

=,ug )z  will in general be negative. Thus, we expect to
overestimate the SCR, i.e. the probability that the company is solvent is on 
average slightly higher than a  =  99.5%.

Equations (8), (9), and (10) can now be readily applied to devise an optimal 
allocation of  computational resources in the sense that the optimal triplet
(K0, N, K1) minimizes the mean square error for a given computational budget:

Proposition 3.1. Consider the computational budget constraint 

 G   =   c  ·  K0  +  N  ·  K1. (12)

Then for an optimal triplet that minimizes the mean square error (7) subject to 
a budget constraint of the form (12), we have asymptotically for large K1:
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A proof is provided in the Appendix. Proposition 3.1 extends a corresponding 
result in Gordy and Juneja (2010) by additionally considering the infl uence
of the simulation error within the computation of AC0 on the overall error. 
Its signifi cance in our setting is that given the number of inner simulations K1, 
it provides guidance on how to (asymptotically) optimally choose the number of 
outer simulations and time-zero simulations in order to minimize the mean square 
error. Here, typically one would choose c  /  1 since the sample paths for the esti-
mation of AC0 are only one period longer than those for the estimation of AC1 
and since T usually is relatively large. Similarly, the budget constraint disregards 
the cost for the generation of the N sample paths in the fi rst period since this 
effort is small relative to the effort for the nested simulations when T is large.

In practical applications, f, s0, and qa are unknown but may be estimated 
in a pilot simulation with only a small number of sample paths. However, the 
estimation of  qa generally will be quite inaccurate for large a because it is 
necessary to estimate a derivative in the very tail of the distribution.

3.4. Bias Reduction via the Jackknife

As a means to reduce the bias within the estimation of large loss probabilities 
based on nested simulations, Gordy and Juneja (2010) introduce a Jackknife 
procedure to correct the output from the inner simulation step for the inherent 
bias. While the method does not fi nd immediate application for the estima-
tion of the Value-at-Risk since the inner-simulation output does not enter the 
estimate of the SCR linearly, we can follow similar ideas to obtain a bias-cor-
rected estimate. The primary difference is the interpretation of “a sample” as the 
combination of K0 fi xed time-zero simulations, N fi xed outer simulations, and one 
inner simulation for each of the given N outer realizations. Our estimation of the 
SCR is then based on K1 independent and identically distributed samples with 
coinciding time-zero and outer, but varying inner realizations, say y1,  y2,  …,  yK1

.
Taking this point of  view, we can then divide these samples into I non-

overlapping sections {yk, k  =  ( )
I

K1 1$i -   +  1, ( )
I

i K1 1$-   +  2,  …,  I
i 1$K }, i  =  1, 2,  …,  I, 

of  size I
K1 , where we assume I

K1  is integer-valued. Denoting the estimate of 
the SCR based on all samples except for those from section i by SCR-i

R , the 
Jackknife estimate

=
+ ( 1)
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then has the property that it eliminates the OK1
(1/K1) bias term from the bias 

decomposition (9) (see e.g. Miller (1974)).
With only higher order terms left in the expression for the bias, Gordy and 

Juneja (2010) conclude that within an optimal allocation, the number of inner 
steps can even be further reduced relative to the outer simulations for the jackknife 
estimator.
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4. CONFIDENCE INTERVAL FOR THE SCR

The practical usefulness of the estimator for the SCR from the previous section 
clearly depends on its accuracy, which may be described by a confi dence inter-
val. This section not only describes how to derive a confi dence interval for the 
SCR based on the ideas by Lan et al. (2007a), but also addresses the allocation 
of the computational budget to obtain results as accurate as possible.

4.1. Derivation of a Confi dence Interval for the SCR

When constructing a confi dence interval for the SCR, we have to take into 
account the same three sources of uncertainty as described in the beginning 
of Section 3.3. To derive confi dence intervals for estimates based on nested 
simulations, Lan et al. (2007a) propose a two step procedure: First, derive a 
confi dence interval under the assumption that no inner simulations are neces-
sary; then consider the uncertainty arising from the estimation in the inner 
simulation. However, they do not consider any uncertainty at t  =  0 which — in 
our setup — comes into play due to the estimation of AC0. Thus, in what fol-
lows, we extend their approach to derive a confi dence interval for the SCR.

If  the losses D(i), 1  #  i  #  N, are known explicitly, the estimation error is 
solely due to the fact that the SCR is estimated via the empirical distribution 
function rather than the “true distribution”. We are then looking to determine 
a lower bound LB as well as an upper bound UB such that 

 P(SCR  !  [LB;  UB ])  $  1  –  aout,

where aout is the error resulting from the outer simulation. The derivation of such 
a confi dence interval for the SCR is straightforward since (i

#
)i 1= { SCR}D1N/

is Binomially distributed with parameters N and a  =  P(D  #  SCR) (see e.g. 
Glasserman (2004), p. 491). More specifi cally, we have for n  !  N
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where D(n) denotes the nth order statistic of the losses (i)D i 1
N
=^ h . Therefore, in 

order to determine a (1  –  aout)-confi dence interval for the SCR, it suffi ces to 
determine c , c  !  N such that 

 a
i

a
-

i a( ) 1 1SCRP ) ( ) out
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i N
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and to set LB   :=   )D c(  and UB   :=   )D c( . Clearly, the choice of c  and c  is not 
unique and the specifi cation depends on the modeler’s objective, for example the 
question of whether one- or two-sided confi dence intervals are more appropriate 
for the application in view. In what follows, we assume that c  and c  are chosen 
at the beginning of the procedure, and that they remain fi xed subsequently.

Within most applications, there exist no closed-form solution for the losses, 
i.e. they have to be estimated numerically. Therefore, we are looking for bounds 

BL\  and UB\  that can be derived from our nested simulations such that 
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Hence, B;LB U5 ?\ \  is an asymptotic confi dence interval for the SCR.
In order to determine LB\  and BU\ , we fi rst observe that when determining 

the loss in the ith real-world scenario, we have two sources of error: the estima-
tion of  AC0 and the estimation of  AC1

(i). Let aAC0
 be the error due to the 

estimation of AC0 and aAC1
 be the error due to the estimation of AC1 in all 

real-world scenarios. To simplify notation, we defi ne 
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where � denotes the cartesian product. If PV0
(k) and PV1

(i, k) are Normally dis-
tributed, we directly obtain
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i.e. C is a confi dence region for (D
(1),  …,  D(N) ) with level (1  –  ain). While gener-

ally, PV0
(k) and PV1

(i, k) will not be Normal, the confi dence interval is still asymp-
totically valid by the central limit theorem (CLT). In order to combine the two 
confi dence intervals for the inner and the outer simulation, let 

(K 1 ,( (K K( (i i $

i
1: andarg minLB { ) ) }x z z x( ) ( )

AC AC
i i

1 00 1

=
#D - -)) ) cN% /M\ /  (17)
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i.e. the c th and c th order statistic of ( (( ,K KKAC AC
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)) N)M  respectively. Then 
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for , , Kf1 1K (N{ (i }min )
" 3)  by (16), so that (15) yields that BLB U,5 ?\ \  is an 

asymptotic confi dence interval for the SCR with level (1  –  aout  –  ain ). The fol-
lowing proposition summarizes the foregoing:

Proposition 4.1. The confi dence interval BLB U,5 ?\ \  for the SCR, where LB\  and 
UB\  are defi ned in (17) and (18), has an asymptotic confi dence level of (1  –  aout  –  ain ).

It is necessary to note, however, that this confi dence interval will in general be 
very conservative since there are several steps where we underestimate the “true” 
confi dence level. More specifi cally, on the one hand, the outer confi dence level 

) )1#( )SCRP ( (D D cc  may be strictly greater than (1  –  aout) due to the dis-
creteness of the binomial distribution. On the other hand, the inequalities in 
(15), (16), and (19) will generally not be tight. Hence, our actual confi dence 
level in many cases will be considerably higher than (1  –  aout  –  ain ).

4.2. Choice of Parameters

Clearly, the length of  the confi dence interval depends on the choice of  the 
parameters, and our aim is to fi nd the shortest confi dence interval for the SCR 
given a fi xed computational budget G  =  c  ·  K0  +  K1  ·  N. For the sake of simplic-
ity, we fi x aout, ain, and aAC0

 although they could easily be included in the 
optimization process.

Let iLB be the index such that (K AC (( ( ) ) , )LB K z z KAC
(i i

1 0 1
LB LB

0 1
D= - -

) N)M\ ,
and let iUB be the index such that (K ACB (( ( ) ) , )U K z z KAC

(i i
1 0 1

UB UB
0 1

D= + +
) N)M\ . Then 

the length of the confi dence interval is given by
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(K ) (z AC+( ) ( ) 2 , ) .UB LB K K z K N( (
AC AC

( (i i i i
1 1 0 1 1

UB LB UB LB
0 1 1

$D D- = - + +( , )z K N) ) ) )M M\ \

In order to obtain an estimate for this length based on a pilot simulation, we 
fi x K0 sample paths for the estimation of AC0, N real-world scenarios, and K1 
inner simulations. We derive the corresponding confi dence interval as described 
in the fi rst part of this section and denote the lower and upper limit by LBpilot\  
and UBpilot\ , respectively, where iLB, pilot and iUB, pilot denote the corresponding 
indices.

For our approximation of the length of the confi dence interval, similarly 
to Lan et al. (2007b), we make the following assumptions:

1. Sample standard deviations can be approximated by the pilot simulation.

2. K0 and K1 are suffi ciently large so that the quantiles of the t-distribution 
can be approximated by those of the standard Normal distribution.

3. The (approximate) length of the outer confi dence interval for N real-world 
scenarios can be derived from the pilot simulation by 

 ( (( (N K K( ) ( ) ) ) .K K N
( ( )i i i i

1 1 1 1
, ,pilot pilotUB LB UB LB

.D D D D- -
) ) )

_ iM M M M

Assumption 3 can be motivated by assuming that the D(i) are i.i.d. Normally 
distributed with known variance; in this case the length of a confi dence inter-
val for the SCR based on N1 samples could be derived as N

N1

1  times the length 
of the confi dence interval based on N1 samples. While of course in general the 
samples will not be i.i.d. Normal and the variance will be unknown, Assump-
tion 3 may still deliver a reasonable approximation and, thus, provide some 
guidance on how to choose the simulation parameters.

Based on these assumptions, the length of the confi dence interval can be 
approximated by
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where za denotes the a-quantile of the standard Normal distribution, and the 
optimization problem is to minimize this length subject to the budget restric-
tion G  =  c  ·  K0  +  K1  ·  N. While it cannot be solved in closed form, from the 
fi rst order condition with respect to K1 we obtain 
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where 

 1 1( (s s
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Hence, for fi xed G and N, the optimal K1 is given by (20) and since K0  =  c
N K1$G-  

the dimension of our optimization problem is reduced to one. Then, numerical 
methods can be applied to solve the univariate problem for the optimal N.

5. SCREENING PROCEDURES

As pointed out in the previous section, the confi dence interval for the SCR 
may be relatively wide due to several inequalities in its derivation. Screening 
procedure present a way to increase the effi ciency of the simulation approach.

5.1. Confi dence Intervals with Screening

The basic idea behind this method is splitting up the estimation process into 
two parts: Based on a fi rst run of nested simulations, we “screen” out those 
scenarios that are not likely to belong to the tail of the distribution. After-
wards, we discard all inner simulations of the fi rst run (this is referred to as 
“restarting”) and generate new inner simulations for those scenarios that 
 survived the screening process. The objective is to screen out as many scenarios 
as possible, so that we can perform many more inner simulations per real-world 
scenario in the second run, and, this way, obtain more reliable results. How-
ever, when using screening procedures, we have an additional source of error in 
our computations because we potentially screen out scenarios belonging to the 
tail.

We follow Lan et al. (2010), who describe a screening procedure for expected 
shortfall based on nested simulations. Given N1 real-world scenarios, we simu-
late a certain number K1, 1 of inner sample paths for each scenario. The estimated 

loss in real-world scenario i is denoted by (i ( )K (K)D )AC, ( , )
AC ( )

s
K

1 1 0 0 1 0 1

(
,

i
1 1 1
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Based on this fi rst run of inner simulations, we would now like to screen out 
all scenarios with a “small” loss, i.e. which do not belong to the tail of  the 
a  ·  N1 largest losses. In doing so, we defi ne an “error probability” ascreen and keep 
all scenarios in the set 
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where r : a

( ) )1 11
= + -c cN - (

screen , c  is defi ned by Equation (14), and f ( ,it r,j -) 1  is the 
(1  –  r)-quantile of the t-distribution with f (i, j) degrees of freedom. Here,
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which is a consequence of  the Welch-Satterthwaite equation. The specifi c 
choice of r is required for the proof of the confi dence level in Proposition 5.2. 
Thus, we screen out all scenarios where we can fi nd at least N1  –  c   +  1 other 
realizations yielding a higher loss with a certain predetermined probability. 
The number of “surviving” scenarios is denoted by N2  =  |I |.

Of course, one may also consider screening out scenarios in which the 
losses are too large, i.e. where we can fi nd at most N1  –  c   –  1 other scenarios 
where the loss is higher with a predetermined probability. However, since we 
estimate a quantile in the far right tail of the distribution, there will only be 
very few scenarios that can be screened out in this way. Hence, in most cases 
this procedure will not be very effi cient and thus, it will not be worth the addi-
tional computational effort.

In order to limit the number of  necessary comparisons, we further use
a pre-screening procedure before we start the screening process.8 Specifi cally,
let p1(·) be a permutation of the indices such that (i( ))pD 1  is non-decreasing in i, 
and defi ne
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i.e. we pre-screen based on a stricter test using the maximal quantile and the 
maximal variance in the tail. The great advantage of pre-screening is that actu-
ally many scenarios can be screened out by only one comparison, which saves 
a lot of computational time. Those scenarios that survive pre-screening are 
screened afterwards. The following proposition shows that screening with and 
without pre-screening leads to the same result. A proof can be found in the 
Appendix.

8 Pre-screening is suggested by Lan et al. (2010) but is not included in their convergence proofs.
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Proposition 5.1. Let I denote the set of scenarios that survive pre-screening, i.e.

 2
( ( ))p +

(
( (s s

D DI : ( ) )
( ( , ))

( )) ( ))
.i K K t

s K

K K

1 0 1r
(

, , ,
,

(
, ,

max
maxi

i

1 1 1 1 1
1 1

1 1 1
2

1 1
2

1
$= -

+
-

)
)

c
* 4

Then I  3   I. Thus, the pre-screening procedure does not screen out scenarios that 
would survive screening.

Having screened out the irrelevant scenarios, we discard all inner simulations 
and generate ,1 2K (i)  new inner simulations for each i  !  I. The corresponding
loss estimates and standard deviations are denoted by ,( )K(i

1 2
)D (i)  and ,( )K1 2 ,s(i) (i)

respectively, i  =  1,  …,  N2.
We use two different approaches to determine ,1 2K (i) . In the fi rst approach, 

we allocate the remaining computational budget equally to all scenarios, i.e. 
,1 2K (i)   =  K1, 2; within the second allocation, we divide the budget proportional to 

the variance in the remaining scenarios, i.e.

 ,

1

1
1 2
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To derive a confi dence interval, we proceed just like in the previous section. 
More precisely, we defi ne
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where, as before, aAC0
 denotes the error resulting from the estimation of AC0 

and aAC1
 denotes the error resulting from the estimation of the AC1

(i), i  !  I. 
Now choose LB\  and UB\  as the (c   –  (N1  –  N2))th order statistic of  ,( )K(i

1 2
)D (i)   –

zAC0
(K0)  – ( , ,K1 2 )zAC

( )i
21

N(i)  and the (c   –  (N1  –  N2))th order statistic of ,( )K(i
1 2

)D (i)   +
zAC0

(K0)  +  ( , ,K1 2 )zAC
( )i

21
N(i) , i  !  I, respectively. Then, we have the following 

result:

Proposition 5.2. [LB\ ,UB\ ] is an asymptotically valid confi dence interval for the 
SCR with confi dence level (1  –  aout  –  ain) as K0 " 3, K1,1 " 3, and ,1 2K (i)  " 3, 
where 

 a aaa : .1 1 1 1in screen AC AC0 1
= - - - -^ _ _h i i  (23)
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A proof of the proposition is provided in the Appendix. Note that this confi dence 
interval again will generally be very conservative due to the many inequalities 
used in the derivation.

Aside from a confi dence interval, we may also compute a point estimate 
SCRscreenR  for the SCR, which is given by the (m  –  (N1  –  N2))th order statistic 
of ,( )K(i

1 2
)D ,(i)  i  !  I, where 0.5= am 1 $ +N6 @. Clearly, this estimate is based on 

the assumption that if  we had also computed the losses ,( )K(i
1 2

)D (i)  for those 
real-world scenarios that were screened out, they would have been smaller than 
the (m  –  (N1  –  N2))th order statistic of ,( )K(i

1 2
)D (i) , i  !  I. Under this assumption,

the (m  –  (N1  –  N2)) th order statistic of  ,( )K(i
1 2

)D (i) , i  !  I, coincides with the
mth order statistic of ,( )K(i

1 2
)D (i) , 1  #  i  #  N1, i.e. this estimate for the SCR is the 

same as the point estimator from the basic nested simulations approach with 
N1 real-world scenarios and ,1 2K (i )  inner simulations. Hence, if  ,1 2 1K K2 ,( (i i) )  
where 1K (i)  denotes the number of inner simulations in the basic nested simu-
lations approach with N1 real-world scenarios and the same computational 
budget G, the point estimate resulting from the screening procedure will be 
more precise than the point estimator from the basic nested simulations approach 
because of the higher number of inner simulations. However, in general the 
assumption that all estimated losses in those scenarios that have been screened 
out would be smaller is problematic because we may have screening mistakes. 
More specifi cally, it is possible that we have screened out a scenario where 

,( )K(i
1 2

)D (i)  is greater than the (m  –  (N1  –  N2))th order statistic of ,( )K(i
1 2

)D (i) , i  !  I. 
Hence, screening introduces an additional type of bias in our point estimate. 
This bias will be negative, since we may have replaced one of the tail scenarios 
by a scenario with a smaller loss, i.e. it will generally lead to an underestima-
tion of the SCR. Note, however, that we have a positive bias originating from 
the uncertainty associated with the inner simulation (cf. Section 3.3), so that 
the two biases may potentially offset each other.

If  we only aim for a good point estimator for the SCR, we may further 
adapt the approach from Liu et al. (2010) to our problem. Here, the authors 
use multiple stages of screening to estimate the expected shortfall. However, 
they note that their “procedure does not provide confi dence intervals nor guar-
antees a minimum probability of correctly identifying the tail.” Moreover, an 
alternative screening algorithm and a heuristic approach to optimize the 
budget allocation is presented by Broadie et al. (2011). Here, the authors seek 
to sequentially allocate the computational budget within the inner simulations 
such that the marginal impact of  one additional inner scenario is maximal. 
While this algorithm could be adapted to our setting, we leave the further 
exploration for future research.

5.2. Effi cient Use of Screening Procedures

For a fi xed computational budget, the effi ciency of the screening procedure 
described in the previous subsection obviously depends on the choice of K0, 
K1,1, and N1. If  we allocate too much of our budget to the screening procedure, 
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there is only a small budget left for the second run. However, choosing the 
budget for the screening procedure “too small” results in a high number of 
survivors and thus, the remaining budget for the second run has to be divided 
between “too many” scenarios. In this section, we describe a procedure how 
to choose N1 approximately optimal to minimize the length of the confi dence 
interval for fi xed K1,1 and K0, and a given computational budget G  =  cK0  +
N1 K1, 1  +  N2 K1, 2. The approach again uses the basic ideas from the adaptive 
procedure in Lan et al. (2007b).

We fi rst consider the case where the remaining budget is allocated equally 
to all survivors in the second run. Furthermore, we fi x aout, ain, aAC0

, and ascreen. 
aAC1

 can then be derived from these values as (cf. Equation (23)):

 
a

a
a a

1 (1 ) (1
(1 )

.AC
screen AC

in
1

0
$

= -
- -

-
)  (24)

Akin to the optimization approach for confi dence intervals without screening 
(cf. Section 4.2), let iLB be the index such that D ( ) ( )LB K z K( )
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Our objective is now to predict this length for different choices of N1 based 
on a pilot simulation with N1 real-world scenarios, K1, 1 inner simulations, and 
K0 sample paths for the estimation of AC0.9 Within the pilot simulation, we 
perform the fi rst run and compute the resulting confi dence interval as described 
in Section 4.1, the only difference being that we use aAC1

 from Equation (24). 
The resulting confi dence interval is denoted by [ ]LB UBpilot pilot;\ \  with corres-
ponding indices iLB, pilot and iUB, pilot, respectively. Subsequently, we apply the 
screening procedure to the results from the fi rst run of the pilot simulation.

Similar to Lan et al. (2007b) and Section 4.2, we make the following assump-
tions:

1. For fi xed K0 and K1, 1, the fraction of  scenarios that survive screening does 
not depend on the number of real-world scenarios N1, i.e.

 
  

1

2 2

N
N

,N
N

1
.

 where N2 is the number of  scenarios that survive screening in the pilot 
simulation.

9 Note that once N1, K1, 1, and K0 are specifi ed, the number of survivors N2 and the number of inner 
simulations in the second run K1, 2 result from the screening procedure and the budget constraint.
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2. The sample standard deviations can be approximated by the pilot simulation.

3. The length of the outer confi dence interval for N1 real-world scenarios can 
be approximated from the length for N1 scenarios by 

 
1

1D D D D
N

( ) ( ) ( ) ( ) .K K N K K(
,

(
,

(
,

(
,

i i i i
1 2 1 2 1 1 1 1

, ,pilot pilotUB LB UB LB
.- -) ) ) )

` j

Based on these assumptions, the length of  the confi dence interval can be 
approximated by
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where 2a: ( )1 1 NAC

1

1
e = - -  with 2

1
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N

N N12=
$  being the estimated number of

survivors. ,1
1( 1
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N K c K
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,
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=

$

$ $ $G- -8 B is the estimated number of inner simu-

lations in the second run. Then, the task is to minimize this length which may 
be carried out numerically.

If  we allocate the remaining budget for the second run proportionally to 
the variance in the fi rst run, we need to add one more assumption (cf. Lan et al. 
(2007b)):

(iv) The average variance in a scenario that survives screening does not depend 
on the original number N1 of real-world scenarios, i.e.
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 where Ipilot denotes the set of scenarios that survives screening in the pilot 
simulation.

Then we obtain the following expression for the number of inner simulations 
in the second run:
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(i )  is derived analogously. Subsequently, we proceed as in the case of  a 
constant allocation.
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6. APPLICATION

6.1. Asset and Liability Model

As an example framework for our considerations, we use the model for a sin-
gle participating term-fi x contract introduced in Bauer et al. (2006).

6.1.1. General Setup

A simplifi ed balance sheet is employed to represent the insurance company’s 
fi nancial situation (see Table 1). Here At denotes the market value of the insur-
er’s asset portfolio, Lt is the policyholder’s statutory account balance, and 
Rt  =  At  –  Lt are the free funds (also referred to as “reserve”) at time t.

TABLE 1

SIMPLIFIED BALANCE SHEET.

Assets Liabilities

At Lt 
Rt 

At At

 

Disregarding debt fi nancing, the total assets A0 at time zero derive from two 
components, the policyholder’s account balance (“liabilities”) and the share-
holders’ capital contribution (“equity”). Ignoring charges as well as unrealized 
gains or losses, these components are equal to the single up-front premium L0 
and the reserve at time zero, R0, respectively.

For the bonus distribution scheme, i.e. for modeling the evolution of  the 
liabilities, we rely on the so-called MUST-case from Bauer et al. (2006). This 
distribution mechanism describes what insurers are obligated to pass on to 
policyholders according to German regulatory and legal requirements: On the 
one hand, companies are obligated to guarantee a minimum rate of interest g 
on the policyholder’s account; on the other hand, according to the regulation 
about minimum premium refunds in German life insurance, a minimum par-
ticipation rate d of  the earnings on book values has to be credited to the 
policyholder’s account.10 Since earnings on book values usually do not coin-
cide with earnings on market values due to accounting rules, we assume that 
earnings on book values amount to a portion y of  the latter.

In case the asset returns are so poor that crediting the guaranteed rate g to 
the policyholder’s account will result in a negative reserve Rt, the insurer will 
default due to the shareholders’ limited liability (cf. the notion of a “shortfall” 

10 These earnings refl ect the investment income on all assets, including the assets backing shareholders’ 
equity Rt ; this reduces the shareholders’ return on investment.
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in Kling et al. (2007)). However, under Solvency II the market value of liabil-
ities should be calculated under the supposition that shareholders cover any 
defi cit. In accordance with this requirement, we assume that the company 
obtains an additional contribution ct from its shareholders in case of such a 
shortfall. To compensate them for the adopted risk, dividends dt may be paid 
to the shareholders each period.

Therefore, the earnings on market values equal to 1
-
t t -A A- + , where -

tA  
and tt tA A d ct= - ++ -  describe the market value of the asset portfolio imme-
diately before and after the dividend payments dt and capital contributions ct 
at time t  !  N, respectively. Moreover, we have 

 ,t 1,t1 =t 1-g , .L L y A g1t t t1 fd= + + --
- +

-
+LA T-] ]g g5 ?

Assuming that the remaining part of earnings on book values is paid out as 
dividends, we obtain
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Obviously, dividend payments equal zero whenever a capital contribution is 
required. Therefore, the capital contribution at time t can be described as 

 , .At 0}ct t -
-{= Lmax

For more details on the contract model we refer to Bauer et al. (2006).

6.1.2. Relevant Quantities

Since we have a lump sum premium payment and since we did not model any 
expenses or tax payments, the only liability cash fl ow for the contract model 
specifi ed above is the benefi t LT paid to the policyholder at time t  =  T. There-
fore, the Available Capital at time t  =  0 can be described as follows:

 ( ) .A A B T
L

AC MVL E T
0 0 0 0

0

Q= - = - : D

Analogously, we can determine the Available Capital at t  =  1 as 

 1 ( )T .A
L

AC E T
1

1
1

Q= --

B F: D

6.1.3. Asset Model

For the evolution of  the fi nancial market, similarly to Zaglauer and Bauer 
(2008), we assume a generalized Black-Scholes model with stochastic interest 
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rates (Vasicek model). The asset process and the short rate process evolve 
according to the stochastic differential equations

 
A

r t

0 and

, 0,

d dt A dZ A

dr r

1t t A t t A t t

t t r

0

0

2

2

m r r

k s

= + + -

= - +

2 ,A A ,

dtz

dW

dW

s s

] g

respectively, where r  !  [ – 1,1] describes their correlation, m  !  R, sA, k, z,
sr >  0, and W and Z are two independent Brownian motions under the real-
world measure P. Hence, the market value of the assets at t  =  1 can be expressed 
as 

 A
1 ,expA A Z2 1A A0 1 1

s
r= - + -- 2

2

m + r W ssc m

and for the short rate process, we have 

 s .k-k k-r r
1
s-r e e e dWt s

1 0 0
z= + -1 - +] ]g g#

Moreover, we assume that the market price of interest rate risk is constant and 
denote it by l. Then, we obtain the following dynamics under the risk-neutral 
measure Q:

 
AA dA

r r
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where z  =  z  –  r
k

ls , and W and Z are two independent Brownian motions under Q. 
Hence, under Q, we have
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which can be conveniently used in Monte Carlo algorithms since tlog
A

A

t 1-
+

-

a k, 
rt | rt  –  1, and s1

t
t -

r# ds | rt  –  1 follow a joint Normal distribution (cf. Zaglauer and 
Bauer (2008)).

We estimate the parameters for our asset model from German data from 
June 1998 to June 2008 using a Kalman fi lter. The parameters for the asset 
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FIGURE 2: Empirical density function for different choices of K1; N  =  100,000, K0  =  250,000.

portfolio are calibrated to an index consisting of 80% REXP (a total return 
index of the German bond market) and 20% DAX (a total return index of the 
German stock market). For the estimation of the short rate process, we use 
interest rates for government bonds with maturities of 3 months, 1, 3, 5, and 
10 years. We obtain the following results: The drift of  the asset process is 
m  =  4.25%, and its volatility is sA  =  4.28%. For the short rate process we have 
k  =  14.49%, z  =  3.64%, and sr  =  0.6%. The initial value of the short rate is 
r0  =  4.19%. The estimated correlation is r  =  – 0.0597 and the market price of 
risk is l  =  – 0.5061.

For the insurance contract, similarly to Bauer et al. (2006), we assume a 
guaranteed minimum interest rate of g  =  3.5%, a minimum participation rate of 
d  =  90%, an initial premium of L0  =  10,000, and a maturity of T  =  10. More-
over, we assume that y  =  50% of earnings on market values are declared as 
earnings on book values and that the initial reserve quota equals x0  =  R0 /L0  =
10%, i.e. R0  =  x0  ·  L0  =  1,000.

6.2. Results

In Sections 3 to 5, we introduced different methods on how to estimate the 
SCR and corresponding confi dence intervals. In what follows, we implement 
them in the setup described in Section 6.1. In particular, we focus on the opti-
mal parameter choice for the different methods in view.

6.2.1. Nested Simulations Approach

As indicated in Section 3.3, the estimation of the SCR using nested simulations 
is biased. In order to develop an idea for the magnitude of this bias, we analyze 
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the results for different numbers of  inner simulations. We fi x K0  =  250,000 
sample paths for the estimation of AC0, N  =  100,000 realizations for the sim-
ulation over the fi rst year, and choose 1 .K K i N1 1 6 # #=

(i)

In Figure 2, the empirical density function of the loss D is plotted for differ-
ent choices of K1. As expected, the distribution is more dispersed for small K1, 
which has a tremendous impact on our problem of  estimating a quantile in 
the tail: We signifi cantly overestimate the SCR for small choices of K1. This is 
further documented in Table 2, where the estimated SCR for different choices 
of K1 is displayed.

TABLE 2

ESTIMATED SCR AND ESTIMATED SOLVENCY RATIO FOR DIFFERENT CHOICES

OF K1; K0  =  250,000, N  =  100,000

K1 SCRR /AC SCR0
R R

1 1,994.0  94%

5 1,404.7 134%

10 1,332.7 141% 

100 1,261.2 149% 

1,000 1,246.3 151%

 

The above results show that a proper allocation of numerical resources, i.e. a 
careful choice of K0, K1, and N, is inevitable in order to obtain accurate results. 
In order to fi nd (approximately) optimal combinations of  K0, K1, and N,
we estimate the unknown quantities s0, f, and qa from a pilot simulation with 
K0  =  250,000 sample paths for the estimation of AC0, N  =  100,000 real-world 
scenarios, and K1  =  200 inner simulations11. Based on these scenarios, we 
 calculate the empirical variances 1s K( )1

2(i)
] g  for each real-world scenario

i, i  =  1, …,  N, and estimate the expected conditional variance via a regression 
analysis, where we assume 

 .2
[s!Y , ]0 1Var | ( ) |E 0 1 2

Q 1 b b bD D D+ +s
KZ .` j8 B  (25)

We obtain b0  .  307,280 (131.68), b1  .  – 21.186 (0.29457), b2  .  0.012066 
(0.00045348) for the parameters with the corresponding standard errors in 
parentheses. R2 is approximately 5%. However, note that the low coeffi cient of 
determination can be attributed to us regressing D directly on the 1s K( )1

2(i)
] g , 

rather than on [s!Y , ]0 1Var | ( ) | ,EQ 1 Ds
KZ_ i7 A  i.e. we have an additional noise 

term on the left hand side of  Equation (25). If  we instead partition the fi rst 

11 In practical applications, it may be necessary to determine the SCR on a regular basis. In this case, 
it might be possible to reduce the computational effort by using the previous period’s simulation as the 
pilot simulation if both the portfolio composition and the capital market parameters remain fairly stable.
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year realizations to buckets that yield a similar value of D and then calculate 
the average variances for the regression, the regression function changes only 
slightly whereas the R2 increases considerably, although of course this approach 
comes with an additional source of  error due to the choice of  the partition. 
Thus, the low R2 results from our regression approach rather than a problem 
with the specifi cation. In particular, sensitivity analyses with respect to the 
regression function show that the optimal choice of  K0, K1, and N is rather 
insensitive when additionally including higher order terms.

In a second step, we derive the empirical density function and approximate 
its derivative by the average of left- and right-sided fi nite differences. In this 
case, sensitivity analyses indicate that the obtained results are not very exact due 
to the rather small number of observations in the tail. Nevertheless, our esti-
mates provide a rough idea of the optimal ratio. Based on these preliminary 
calculations and Equation (11), we obtain an estimate for qa which is given by 
qa  .  0.027. s0 is approximated by the empirical standard deviation.

In order to obtain an accurate estimate of the 99.5% quantile based on the 
empirical distribution function, we choose a relatively large number of inner 
simulations, namely K1  =  300. Then, we fi nd that a choice of approximately 
N  =  320,000 and K0  =  1,500,000 is optimal, which results in a total budget of 
G  =  97,500,000 simulations. In this setting, we obtain SCRR   =  1,249.7 and a 
solvency ratio of 150%. At fi rst sight, it might be surprising that K0 should be 
chosen relatively large compared to the two other parameters. However, reduc-
ing the variance of AC0

R (K0) is relatively “cheap” compared to reducing the 
variance of 

s
( , )s1 0 1

(

+
)m  because whenever we increase N, we automatically have 

to perform K1 inner simulations for every additional real-world scenario. 
Therefore, it is rather intuitive to allocate a rather large budget to the estima-
tion of AC0

R (K0).
To demonstrate that, given a total budget of G  =  97,500,000, this choice is 

roughly adequate, we estimate the SCR 150 times for fi xed K0 and different 
combinations of N and K1, where each combination corresponds to a total
budget of 97,500,000 simulations. We estimate the bias by aq

f SCRK1 $ ( )R , where qa 

and f denote the averages of the estimates resulting from the 150 estimation 
procedures as explained above. This allows us to correct the mean by the estimated 

TABLE 3

RESULTS FOR DIFFERENT CHOICES OF N AND K1; 150 RUNS, K0  =  1,500,000.

N K1 Mean
( SCRR )

Empirical 
Variance

Estimated 
Bias

Estimated 
MSE

Corrected 
Mean 

160,000 600 1,247.7 24.6  1.4  26.6 1,246.3 

320,000 300 1,249.3 15.8  2.9  24.0 1,246.4 

640,000 150 1,251.3  7.9  5.7  40.6 1,245.6 

1,500,00  64 1,259.5  3.2 13.2 178.0 1,246.3
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FIGURE 3: 150 runs for different choices of N and K1; K0  =  1,500,000.

bias. The MSE is then estimated by the sum of the empirical variance and the 
squared estimated bias. Figure 3 and Table 3 show our results.

As expected, the mean of the estimated SCRs increases as K1 decreases due 
to the increased bias. In contrast, the empirical variance obviously decreases 
as N increases. Furthermore, we fi nd that our choice of N and K1 yields the 
smallest estimated MSE from the combinations given in Table 3. Therefore, 
our choice appears reasonable within our framework. Moreover, it is worth 
pointing out that if  we correct the means in Table 3 by the corresponding 
estimated bias, the difference between the results for the different combinations 
is almost negligible.

Therefore, we will use N  =  320,000 and K1  =  300 in the remaining part of 
this paper if  not stated otherwise, and we refer to this parameter combination 
as the base case. With this parameter combination, it takes about 16 minutes 
to carry out one run with our C++ implementation12.

6.2.2. Jackknife Approach

In Section 3.4, we introduced a Jackknife procedure to eliminate the bias 
resulting from the fi nite number of inner simulations. For our implementation 
of this approach, we rely on I  =  2 non-overlapping sections as advocated by 
Gordy and Juneja (2010) since — according to them — beyond computational 
advantages, this choice eliminates nearly all the bias at little cost to variance. 

12 The simulations were carried out on a Windows machine with Intel Core 2 Duo CPU T7500, 2.20GHz, 
and 2048 MB RAM. Of course, the computational time depends on our particular implementation; 
optimizations of the code may be possible.
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Table 4 displays our results for the Jackknife estimator relative to those for the 
simple nested simulations estimator. Here, we rely on the same parameter com-
binations as in Table 3.

As might be expected, our results indicate that the Jackknife estimator 
eliminates most of the bias at the cost of a higher variance. Comparing the 
ensuing mean square errors, for relatively small choices of K1, the Jackknife 
estimator appears far superior to the simple nested simulations estimator due 
to the reduction in bias, whereas for relatively large choices of K1, the simple 
estimator dominates due to the reduction in variance. This documents the 
conclusion from Gordy and Juneja (2010) that within an optimal allocation, the 
number of inner steps can even be further reduced for the jackknife estimator 
as already noted in Section 3.4. However, to determine such an (asymptotically) 
optimal computational allocation for the Jackknife estimator in analogy to 
Section 3.3 for the basic estimator, it would be necessary to estimate even more 
complex terms based on the pilot simulations (see Gordy and Juneja (2010) 
for details).

Within our application, the MSE for the Jackknife estimator is reduced even 
for the optimal parameter combination for the simple estimator with K1  =  300. 
However, of course we may correct the result from the simple estimator for 
the estimated bias, which may change the precedence. Furthermore, aside from 
the additional computational complexity, the direction of the increased sample 
error within the Jackknife estimation is unknown whereas we generally know 
the direction of  the bias for the basic estimator. Nonetheless, our results 
unambiguously support the application of the Jackknife estimator when there 
is no reliable bias estimate available for the simple nested simulations estimator 
and the number of inner simulations is small.

6.2.3. Confi dence Intervals

Having analyzed the basic point estimator, we now proceed with the derivation 
of confi dence intervals for the SCR as described in Section 4. Within our numer-
ical experiments, we aim for a total confi dence level of 90%. In a fi rst step, we 

TABLE 4

RESULTS FOR DIFFERENT CHOICES OF N AND K1; JACKKNIFE ESTIMATOR, 150 RUNS, K0  =  1,500,000.

Jackknife Estimator Nested Simulations Estimator

N K1 Mean
+)(SCRR

Empirical 
Variance

Mean
( SCRR )

Empirical 
Variance

Corrected 
Mean 

160,000 600 1,246.3 30.0 1,247.7 24.6 1,246.3 

320,000 300 1,246.5 19.2 1,249.3 15.8 1,246.4 

640,000 150 1,245.6  9.3 1,251.3  7.9 1,245.6 

1,500,000  64 1,246.4  4.9 1,259.5  3.2 1,246.3
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determine confi dence intervals for the base case from the previous subsection. 
We derive a two-sided confi dence interval and choose the indices c  and c  (cf. 
Equation (14)) such that they are symmetric around a 0.5m 1= +$ N5 ?, which 
corresponds to the order statistic of the estimated SCR.

Of course, our results depend on the choice of  the error levels aout and 
aAC0

13. However, based on sensitivity analyses we found that the infl uence of 
this choice on the length of the confi dence interval is not very pronounced. 
Since in our base case the uncertainty arising from the inner simulation 
 dominates the uncertainty arising from the outer simulation and since the 
estimation error for AC0

R (K 0) is signifi cantly smaller than that for AC
(i
1

)R (K1), 
i  =  1,  …,  N, ain  =  8% and aAC0

  =  0.1% seem to be reasonable choices.
In this case, we obtain a confi dence interval of [1,073.4;  1,427.6]. Hence, 

we have a length of 354.2, which corresponds to about 28% of the point esti-
mate SCRR . However, when analyzing the result in more detail, we fi nd that the 
c th and c th order statistics of the estimated losses are given by Dc   =  1,241.6 
and Dc   =  1,259.4. Thus, a large portion of the length of the confi dence inter-
val has to be attributed to the uncertainty arising from the inner simulation as 
well as to the lack of precision in its derivation. More specifi cally, as already 
pointed out at the end of Section 4.1, the inequalities (14), (16), and (19) gen-
erally will not be very tight, so that the inner confi dence level will be very 
conservative. In particular, note that for large N, the allowed error level in all 
inner simulations e  =  1  –  a C( )A

N
1

1

-1  is extremely small. Hence, large choices 
of N are heavily penalized although it is not strictly necessary for the validity 
of the confi dence interval for all D(i) to be in the confi dence region with prob-
ability (1  –  ain), but only for Dc  and Dc .

This is also refl ected in the “optimal” parameter choice described in Sec-
tion 4.2: For the sake of  simplicity, we use the same pilot simulation as in 
Section 6.2.1, although we found that already pilot simulations with about 
N  =  10,000 yield suitable estimates. We obtain the following approximately 
optimal parameters: N  .  20,000, K1  .  4,732, K0  .  2,860,000. Thus, as expected, 
in comparison to the base case, the number of inner simulations and the num-
ber of sample paths for the estimation of AC0 increase whereas the number 
of  real-world scenarios decreases. Based on these parameters, we obtain a 
confi dence interval of [1,179.9;  1,329.2]. This translates into a solvency ratio 
between 141% and 159%. The length of the confi dence interval is given by 
149.3 which corresponds to approximately 12% of SCRR .

To demonstrate that this choice of  parameters is roughly adequate for 
minimizing the length of the confi dence interval, we also compute the length 
of the confi dence interval for other numbers of real-world scenarios N, where 
for each N we calculate the approximately optimal choice of K0 and K1. Figure 4 
shows our results. The shortest confi dence interval with a length of 148.7 is 
obtained for N  =  30,000. Nevertheless, we fi nd that our choice resulting from 

13 Note that ain and aAC1 are defi ned by aout and aAC0 and the total confi dence level of 90%.
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FIGURE 4: 90% Confi dence intervals for different N (left), length of confi dence interval as percentage
of SCRR  (right); G  =  97,500,000.

the optimization algorithm is roughly optimal in the sense that it lies within a 
range of  N where the length of  the confi dence interval is close to minimal. 
Compared to our base case with N  =  320,000, the length of the confi dence 
interval with parameters as derived by the optimization approach is decreased 
to less than 50% of the original length. However, it is important to keep in 
mind that “optimality” in this case corresponds to the specifi cs — particularly 
the rather crude construction — of the confi dence interval, whereas optimality 
with respect to the MSE as for our base case parameters directly pertains the 
nested simulations estimator. Hence, if  we are interested in an accurate point 
estimate, the MSE certainly appears to be the more satisfactory optimality 
criterion.

6.2.4. Screening Procedures

In the previous subsections, we used a rather large computational budget of 
G  =  97,500,000 for our calculations. However, within practical applications, due 
to the complexity of the projection models, it is in general impossible to deter-
mine the SCR based on so many sample paths. Therefore, we now apply the 
screening procedure described in Section 5. This method enables us to either 
obtain a higher accuracy with the same computational budget or to derive a 
similar accuracy based on a lower computational budget.

We start by analyzing the infl uence of screening on our point estimator. In 
Table 5, we show our results for the base case from Section 6.2.1 (N  =  320,000, 
K0  =  1,500,000), ascreen  =  4%, and different choices of K1,1, i.e. the number of 
inner simulations within the screening procedure, where we perform 150 runs 
for each choice of K1,1. We fi nd that for all choices, screening improves the 
results considerably. More precisely, comparing the results to those for the basic 
estimator from Table 3, we fi nd that screening eliminates most of the bias.

Of course, when comparing the results, we need to keep in mind that the 
computation takes longer when screening is applied due to the increased number 
of operations. However, in practical applications, the effort for the projection 
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of the insurer’s assets and liabilities will in general be the primary source of 
the numerical complexity such that the additional effort for screening will be 
negligible. Moreover, our analyses indicate that pre-screening is very effi cient. 
We fi nd that in most cases more than 90% of the real-world scenarios are pre-
screened out, whereas the subsequent screening procedure only eliminates a few 
additional percentage points. Only for the relatively small choice of K1,1  =  50 
we see a signifi cant effi ciency gain by screening in comparison to pre-screening.

Hence, a large part of the total number of scenarios that are screened out 
is already eliminated by pre-screening, which saves much computational time 
because pre-screening is much faster than screening. In particular, this implies 
that for practical applications, it may be possible to solely rely on pre-screening.

Since the number of inner simulations for determining the quantile (K1,2) 
now increases relative to the basic estimator, choosing a higher number of 
outer simulations N than within our base case may further improve the effi -
ciency of  the estimate as measured by the mean square error. For instance,
if  we choose N  =  480,000 and K1,1  =  100, 150 runs yield a mean SCRscreenR  of 
1,247.2 with an empirical variance of 10.9. The average number of inner sim-
ulations in the second run is 1,228. Hence, the reduction in variance outweighs 
the increase in bias relative to the results in Table 5 for N  =  320,000. Therefore, 
with respect to a suitable choice of the simulation parameters, our results suggest 
that an increase of  the number of  outer simulations and a “medium” choice 
of K1,1 relative to the optimal budget for the basic estimator are advisable.

Next, we analyze the infl uence of screening on the length of our confi dence 
interval. As before, we aim for two-sided 90%-confi dence intervals for the 
SCR. In a fi rst step, we analyze the results of the screening procedure for our 
base case (N  =  320,000, K0  =  1,500,000, G  =  97,500,000). As before, we choose 
ain  =  8%, aAC0

  =  0.1%, and ascreen  =  4%. Numerical experiments show that at 
least in our case different choices of ascreen do not have a signifi cant impact on 
the results. Thus, we choose ascreen such that the error due to screening is 
similar to the error arising from the estimation of AC1

(i). The remaining budget 
in the second run is allocated equally to all surviving scenarios. To obtain a 

TABLE 5

EFFICIENCY OF (PRE-)SCREENING FOR DIFFERENT CHOICES OF K1,1;
150 RUNS, N  =  320,000, K0  =  1,500,000.

K1,1 Mean
screen

( )SCRR
Empirical 
Variance

Avg. 
Pre-screened 

out

Avg.
Total screened 

out

Avg. #
inner simulations 

2nd run

 50 1,247.0 15.5 64% 80% 1,270

100 1,246.6 15.4 89% 92% 2,552

150 1,246.7 15.1 94% 95% 2,984

200 1,246.7 15.6 95% 96% 2,616

250 1,246.8 15.7 96% 97% 1,583

https://doi.org/10.2143/AST.42.2.2182805 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.2.2182805


486 D. BAUER, A. REUSS AND D. SINGER

FIGURE 5: 90%-confi dence intervals with screening for different N1 (left), length of confi dence interval
as percentage of SCRR  (right); K0  =  1,500,000, K1,1  =  150, G  =  97,500,000.

fi rst estimate, we set K1,1  =  150, i.e. we use half of the maximal number of inner 
simulations for the fi rst run. In this case, the resulting confi dence interval is 
given by [1,191.5;  1,305.9] and the length corresponds to 9% of the point 
estimate SCRscreenR   =  1,247.8.

In order to optimize the length of the confi dence interval as a function of 
N1 for given K0  =  1,500,000 and K1,1  =  150, we rely on a pilot simulation with 
N1  =  10,000 samples. We fi nd that N1  .  75,000 is optimal. In this case, we 
obtain the confi dence interval [1,212.2;  1,281.0]. Thus, we have a length of 
68.8, which corresponds to 6% of the point estimate SCRscreenR   =  1,243.8. To 
show that this choice is approximately adequate, we also derive confi dence 
intervals for other choices of N1, fi xed K0  =  1,500,000, and K1,1  =  150. Figure 5 
shows our results. Again, we fi nd that our optimizations approach provides 
parameters such that the resulting length of the confi dence interval is close to 
minimal. Furthermore, in comparison to the case without screening, the length 
of the confi dence interval is reduced by approximately 50%.

Again, we fi nd that pre-screening is very effi cient. More precisely, in all 
analyzed cases for K1,1  =  150, at least 92% of the real-world scenarios are pre-
screened out. The subsequent screening procedure eliminates no more than 
2 additional percentage points. With respect to the choice of K1,1, our sensitivity 
analyses show that the impact is not very pronounced, i.e. unless K1,1 is chosen 
“too small,” we can fi nd an appropriate N1 such that the confi dence interval 
is close to minimal. Furthermore, we carried out some numerical experiments 
for an allocation proportional to the variance in the fi rst run. However, at least 
for our example contract, we found that there is hardly any difference between 
the two methods.

6.3. Variance Reduction Techniques

Variance reduction techniques present means to further increase the effi ciency 
of our calculations. As an example, we consider the use of antithetic variates 
although there exists a wide array of different alternatives. We refer to Glasserman 
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(2004) for more details on variance reduction techniques in general and to 
Bergmann (2011) for the use of control variates in our context.

The basic idea behind antithetic variates (AV) is to reduce the variance
by introducing a negative dependence between pairs of  realizations when 
 estimating expected values. In the present context, this means instead of using 
independent sample paths within the inner simulation step and within the esti-
mation of AC0, we employ samples of pairs of paths generated based on per-
fectly negatively correlated Normal random variables.

More precisely, let Z be the vector of standard Normally distributed ran-
dom variables that is used to derive one sample path of the evolution of our 
capital market for the estimation of AC0. Then, a second sample path of the 
evolution of  the capital market can be derived by using – Z. The resulting 
liability cash fl ows and the resulting money market account are denoted by
Xt and B0(t), t  =  1,  …,  T, respectively. Then, the antithetic variates estimator 
for the market value of liabilities based on K0

AV independent pairs of sample 
paths is given by 
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where rAV is the correlation of  the sum of  the discounted liability cash fl ows 
in the two antithetic sample paths. Thus, in case the negative correlation of 
the inputs leads to a negative correlation of the outputs, the use of antithetic 
variates may signifi cantly reduce the variance of  the estimator. Within our 
calculations, we do not only use antithetic variates for AC0, but also within each 
inner simulation.

Table 6 shows our results with and without antithetic variates. We use
=K V K

0 2
0A   =  125,000 and =K V K

21
1A  pairs of sample paths in our comparison. 

TABLE 6

COMPARISON OF ESTIMATED SCR AND ESTIMATED SOLVENCY RATIO

WITH AND WITHOUT ANTITHETIC VARIATES.

K1 K1
AV VASCRR VA/ SCRAC0

VAR R SCRR /AC SCR0
R R

4 2 1,286.3 146% 1,436.5 131%

10 5 1,261.7 149% 1,332.7 141% 

100 50 1,253.1 150% 1,261.2 149%

1,000 500 1,253.5 150% 1,246.3 151%
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We notice that the use of antithetic variates clearly improves the estimate sig-
nifi cantly indicating considerable gains in the effi ciency of the estimation. These 
fi ndings are further illustrated by Table 7, where different optimal parameter 
combinations in the sense of Section 3.3 are displayed. We observe that for a 
fi xed computational budget of G  =  97,500,000, the use of antithetic variates 
reduces the MSE by about 70%. In particular, with antithetic variates, only a 
budget of 15,760,000 is necessary in order to obtain results of a similar accu-
racy as for the basic estimator as measured by the MSE.

When applying antithetic variates to the derivation of confi dence intervals 
based on the screening procedure as described in Section 5, and using a com-
putational budget of G  =  97,500,000 as in Section 6.2.4, our pilot simulation 
suggests that for K0

AV  =  750,000 and K ,
V

1 1
A   =  75, N1  =   200,000 is approximately 

optimal in order to minimize its length. The resulting confi dence interval is 
given by [1,222.7;  1,257.0], which corresponds to about 3% of .SCRscreenR

Considering our “fi rst” confi dence interval from Section 6.2.3 with a length 
of approximately 28% of SCRR , this effi ciency gain by relying on more advanced 
techniques is remarkable, especially when considering that the confi dence inter-
val is very conservative (cf. Section 6.2.3). While of course it is necessary to 
point out that these effi ciency gains — particularly the glaring improvements 
due to antithetic variates — are closely bound to our example application, our 
results at the very least should serve as evidence that a suitable simulation 
design may yield considerable effi ciency gains.

7. ESTIMATOR BASED ON THE INDIRECT METHOD

As mentioned in Section 2.1, the market-consistent value of insurance liabilities 
and thus the Available Capital can be derived based on two approaches — the 
direct and the indirect approach. While our technical considerations apply to 
both methods, so far we have focussed on the direct approach in our exposition. 
Hence, in what follows, we briefl y introduce the indirect method based on the 
MCEV principles issued by the CFO Forum (2009), adapt it to our example 
application, and repeat some of the calculations from the previous section. In 
particular, we show that the quality of the two estimators can differ signifi cantly.

TABLE 7

COMPARISON OF NESTED SIMULATIONS APPROACH WITH AND WITHOUT ANTITHETIC VARIATES

FOR DIFFERENT PARAMETERS.

N K1, K1
AV K0

Mean 
VA )( ,SCR SCRR R

Emp. 
Var

Est. 
Bias

Est. 
MSE

Corrected 
Mean 

with AV 1,070,000  45 600,000 1,247.7 4.4 1.7 7.2 1,246.0 

with AV 310,000  25 130,000 1,248.8 13.8 3.0 23.1 1,245.7

w/o AV 320,000 300 1,500,000 1,249.3 15.8 2.9 24.0 1,246.4
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7.1. Available Capital

Within the indirect method (IDM), the Available Capital is derived from the 
free cash fl ows generated by the insurance business. Thus, the derivation of the 
Available Capital is very closely related to the concept of Market-Consistent 
Embedded Value (MCEV). More precisely, the MCEV corresponds to the pre-
sent value of shareholders’ interest in the earnings distributable from assets 
backing the life insurance business, after allowance for the aggregate risks in 
the life insurance portfolio. Here, it is important to note that the MCEV shall not 
refl ect the shareholders’ default put option resulting from their limited liability. 
Consequently, the Available Capital derived under Solvency II principles is usu-
ally very similar to the MCEV, so that for the purpose of this paper, we assume 
that the two quantities coincide14.

According to the CFO Forum (2009), the MCEV is defi ned as the sum of 
the Adjusted Net Asset Value (ANAV) and the Present Value of Future Profi ts 
(PVFP) less a Cost-of-Capital charge (CoC):

 MCEV   : =   ANAV  +  PVFP  –  CoC. (26)

The ANAV is derived from the (statutory) Net Asset Value (NAV)15 and includes 
adjustments for intangible assets, unrealized gains and losses on assets etc.
It consists of two parts, the free surplus and required capital (cf. Principles 4 
and 5 in CFO Forum (2009)). In most cases, the ANAV can be calculated from 
statutory balance sheet fi gures and the market value of assets; hence, the calcu-
lation does not require simulations. The PVFP corresponds to the present value 
of post-taxation shareholder cash fl ows from the in-force business and the assets 
backing the associated (statutory) liabilities. In particular, it also includes the 
time value of fi nancial options and guarantees (cf. Principles 6 and 7 in CFO 
Forum (2009)), so that its calculation presents the primary computational chal-
lenge. The CoC is the sum of the frictional cost of required capital and the cost 
of residual non-hedgeable risks (cf. Principles 8 and 9 in CFO Forum (2009)).

Consequently, we have 

 : .AC MCEV0 0=IDM

Assuming that the profi t for the fi rst year (denoted by X1
IDM) has not been paid 

to shareholders yet, the Available Capital at t  =  1 can be described by 

 1 1: XAC MCEV1 = +IDM ,IDM

14 More specifi cally, there exist slight differences between the MCEV cost-of-capital and the risk mar-
gin under Solvency II, and in the eligibility of certain capital components (e.g. subordinated loans).

15 For an insurance company, the NAV is defi ned as the value of its assets less the value of its liabili-
ties based on the statutory balance sheet, and therefore roughly coincides with the statutory equity 
capital.
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where MCEV1 and X1
IDM denote the MCEV and the shareholder cash fl ow at 

time 1.

7.2. Application

Since within our example application introduced in Section 6.1 we ignore 
 unrealized gains and losses on assets as well as other adjustments, here we have 
ANAV0  =  NAV0  =  R0, where Rt denotes the free funds in the statutory balance 
sheet at time t (see Section 6.1.1 for details). As described above, for the PVFP 
we have to consider all cash in- and outfl ows paid to or by the shareholder, 
respectively. Obviously, this includes all dividend payments dt and capital injec-
tions ct. Moreover, shareholders may benefi t from a favorable evolution of
the company in that the market value of their capital contribution increases. 
More specifi cally, they may realize ROIT  :=  RT  –  B0(T )  ·  R0 as their (time value 
adjusted) return on investment at the end of the projection period (also referred 
to as “maturity”) T. Thus, disregarding any capital charges, the Available 
Capital at time t  =  0 can be described as follows:
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Similarly, we obtain

 t

( 1) .t
X

XAC E
t

T

1
12

1
Q=

=
B +

IDM
F

IDM
IDM

= G/

The corresponding nested simulations estimator can be derived in analogy to 
the estimator based on the direct method (cf. Section 3.2). Furthermore, the 
optimization procedure described in Section 3.3 as well as the considerations 
from Section 4 and 5 can easily be adapted for the estimators based on the 
indirect method.

7.3. Results

Similarly to the estimator derived via the direct method (DM), we analyze the 
bias of our estimator by calculating the SCR for a fi xed number of sample paths 
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FIGURE 6: Empirical density function for different choices of K1 for the estimator based
on the indirect method; N  =  100,000, K0  =  250,000.

for the estimation of AC0 (K0  =  250,000), a fi xed number of outer scenarios 
(N  =  100,000), and varying numbers of inner simulations K1. Our results are 
displayed in Figure 6 and Table 8, where for comparison purposes we also 
include the corresponding results from Section 6.2. We observe that similar to 
the estimator derived via the direct method, the distributions are more dis-
persed for smaller K1 resulting in a higher estimated SCR. However, when 
comparing the density functions for the two estimators for the same K1 in 
Figures 2 and 6, we fi nd that the density function corresponding to the estima-
tor based on the indirect method is even more dispersed.

In line with this result, further analyses show that in our setting, the estima-
tor based on the direct method is superior in most cases. In particular, this 
highlights that for practical applications, the choice of the estimator for the 

TABLE 8

ESTIMATED SCR AND ESTIMATED SOLVENCY RATIO FOR DIFFERENT CHOICES OF K1;
K0  =  250,000, N  =  100,000.

K1

indirect method direct method

SCRR /AC SCR0
R R SCRR /AC SCR0

R R

1 3,432.5  55% 1,994.0  94%

5 1,874.6 100% 1,404.7 134%

10 1,606.5 117% 1,332.7 141%

100 1,279.1 147% 1,261.2 149%

1,000 1,254.6 149% 1,246.3 151%
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Available Capital may play an important role for the reliability of the estimate, 
although of course the order of the comparison depends on the application 
in view. The superiority of  the estimate based on the direct method in our 
setting may be an artifact of the sheer number of stochastic quantities included 
in the estimation process. More specifi cally, while for the direct calculation of 
the Available Capital it is suffi cient to simulate LT (cf. Section 6.1.2), for the 
indirect method all quantities RT, ct, dt, 1  #  t  #  T, enter the expected value 
calculation.

Similarly as for the direct method, we also carry out some numerical exper-
iments with the use of antithetic variates based on the IDM estimator. As before, 
we use =K V K

0 2
0A   =  125,000 and =K V K

21
1A  pairs of sample paths in our com-

parison. Our results are displayed in Table 9. We fi nd that similar to the direct 
method, the use of antithetic variates clearly improves the estimate signifi cantly.

TABLE 9

COMPARISON OF ESTIMATED SCR AND ESTIMATED SOLVENCY RATIO

WITH AND WITHOUT ANTITHETIC VARIATES (IDM).

K1 K1
AV VASCRR VA/ SCRAC0

VAR R SCRR /AC SCR0
R R

4 2 1,275.3 147% 2,024.3  93%

10 5 1,258.7 149% 1,606.5 117% 

100 50 1,251.4 150% 1,279.1 147%

1,000 500 1,252.6 150% 1,254.6 149%

TABLE 10

COMPARISON OF NESTED SIMULATIONS APPROACH WITH AND WITHOUT ANTITHETIC VARIATES

FOR DIFFERENT PARAMETERS (IDM).

N K1, K1
AV K0 Mean 

VA )( ,SCR SCRR R
Emp. 
Var

Est. 
Bias

Est. 
MSE

Corrected 
Mean

with AV 1,375,000 35 625,000 1,247.5  4.8 1.5  7.0 1,246.0 

with AV 115,000 10  26,000 1,250.9 46.0 5.3 73.7 1,245.7 

w/o AV 105,000 920 900,000 1,250.4 48.7 4.4 68.4 1,246.0

Table 10 shows the analog of Table 7 for the indirect method. We observe 
that for a fi xed computational budget of G  =  97,500,000, the reduction in the 
MSE due to the use of  antithetic variates is even more pronounced for the 
indirect method. Here, the MSE is reduced by almost 90%. In particular, with 
antithetic variates, only a budget of 2,352,000 is necessary in order to obtain 
results of a similar accuracy — in terms of MSE — as for the basic estimator. 
Furthermore, we fi nd that the estimator based on the indirect method is 
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slightly superior. This is in contrast to the analysis without variance reduction, 
where the estimator based on the direct method generally performs better.

8. CONCLUSION

In this paper, we provide a detailed discussion of how to determine the Sol-
vency Capital Requirement within the Solvency II framework based on nested 
simulations. In particular, we extend and adapt several advanced techniques 
from the literature on portfolio risk measurement to suit the insurance setting, 
and we illustrate their potential for application in this context based on numer-
ical experiments.

A fi rst practically important fi nding is that the allocation of the computa-
tional budget signifi cantly affects the results. More precisely, a small number 
of inner simulations may yield a severe overestimation of the capital require-
ment due to a bias in the estimation, whereas an increased empirical variance 
may render the results useless if  the number of  outer simulations is small.
A pilot simulation based on a small number of outer scenarios can be used to 
determine an approximately optimal allocation.

In order to analyze the reliability of the estimates, we discuss the construc-
tion of confi dence intervals for the SCR. However, it turns out that these con-
fi dence intervals are very conservative so that they are very wide even if compu-
tational resources are suitably allocated. In order to increase the effi ciency, aside 
from conventional variance reduction techniques, so-called screening proce-
dures can be applied, which screen out scenarios that are not likely to belong 
to the tail of the distribution. These screening procedures — particularly when 
combined with conventional variance reduction techniques — are able to 
increase the effi ciency tremendously: Our experiments show that within our 
example application, the length of the confi dence interval may be decreased 
by more than a factor of ten, so that even these very conservative intervals 
may become practicable.

Of course, the complexity of real-world asset-liability models by far exceeds 
our example setup so that our quantitative results have limited practical rele-
vance, although of course the computational resources are not on a par either. 
However, the qualitative insight that a proper allocation of  computational 
resources, screening, and bias/variance reduction techniques can tremendously 
increase the effi ciency of the simulation should also pertain to practical appli-
cations. Thus, all in all, our results provide some positive evidence that a 
nested simulations approach — when properly designed — may be able to 
provide viable estimates for the SCR with controlled error bounds.
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APPENDIX

Proof of Proposition 3.1:

From Equations (8), (9), and (10) together with the budget constraint, we 
obtain the following optimization problem in K0, K1, and N:
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which is a contradiction.
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Proof of Proposition 5.2:

Following Lan et al. (2010), we assume that PV0
(k) and PV1

(i, k) are Normally 
distributed. While this assumption may not be suitable for small samples, the 
CLT ascertains that it asymptotically holds for large samples. We denote by
P ( .| (Ys

(1), …, (N1))s  !  [0,1]) the probability measure conditional on the event that 
(Ys

(1), …, Ys
(N1))s  !  [0,1] are the simulated real-world scenarios in the fi rst step.

(a) Screening
 Let g denote the set of the “true” N1  –  c   +  1 tail scenarios. In a fi rst step, 

we show that the probability of  correct screening, i.e. the probability of 
g  3  I, is greater or equal to 1  –  ascreen, where we follow the proof for correct 
screening in Lan et al. (2010).
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 The fi rst equality is a simple consequence of the t-test, where the degrees 
of freedom are calculated by the Welch-Satterthwaite equation.
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(b) Inner Simulation
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