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Abstract We give a complete computation of the Bieri–Neumann–Strebel–Renz invariants Σm(Hn)
of the Houghton groups Hn. Partial results were previously obtained by the author, with a conjecture
about the full picture, which we now confirm. The proof involves covering relevant subcomplexes of an
associated CAT(0) cube complex by their intersections with certain locally convex subcomplexes, and
then applying a strong form of the Nerve Lemma. A consequence of the full computation is that for each
1 ≤ m ≤ n − 1, Hn admits a map onto Z whose kernel is of type Fm−1 but not Fm; moreover, no such
kernel is ever of type Fn−1.
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Introduction

The Bieri–Neumann–Strebel–Renz (BNSR) invariants Σm(G) (m ∈ N) of a group G are
a sequence of geometric invariants, introduced in [2,4], that reveal a breadth of informa-
tion about certain subgroups of G. They are notoriously difficult to compute, and a full
computation has been done for only a handful of relevant groups. Most prominently, the
BNSR-invariants have been fully computed for all right-angled Artin groups [8,15]. In
[20], we computed the BNSR-invariants of the generalized Thompson groups Fn,∞ and
obtained partial results for the Houghton groups Hn. In this paper we finish the com-
putation of the BNSR-invariants of the Houghton groups. Our main result is as follows
(with the notation m(χ) explained in § 2).

Theorems 2.2 and 2.3. For any 0 �= χ ∈ Hom(Hn,R) we have [χ] ∈ Σm(χ)−1(Hn) \
Σm(χ)(Hn).

The statement [χ] ∈ Σm(χ)−1(Hn) was proved in [20] and is cited as Theorem 2.2 here;
the new result is Theorem 2.3, that [χ] �∈ Σm(χ)(Hn). Since we always have Σm(G) ⊆
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2 M. C. B. Zaremsky

Σm−1(G) for all m and G, Theorems 2.2 and 2.3 provide a complete computation of the
BNSR-invariants of the Houghton groups.

The proof makes use of the CAT(0) structure of a natural cube complex on which
Hn acts. We exhibit a family of combinatorially convex subcomplexes called ‘blankets’
(Definition 3.1) that cover a relevant χ-superlevel complex, and use a strong form of the
Nerve Lemma to conclude that the χ-superlevel complex is not (m(χ) − 1)-connected.
This then leads reasonably quickly to the result. The geometry of the complex is crucial
for getting the regions covered by the blankets to be highly connected enough to apply
the Strong Nerve Lemma. We believe that this covering approach could be useful in the
future for understanding BNSR-invariants of other groups acting naturally on CAT(0)
cube complexes, and possibly for approaching the Σm-conjecture (see Conjecture 1.5) for
(certain classes of) metabelian groups.

This paper is organized as follows. In § 1 we recall some general background. In § 2 we
recall some specific background from [20] and state our main result, Theorem 2.3. In § 3
we recall the CAT(0) cube complex Xn on which Hn acts, and introduce an important
family of subcomplexes called ‘blankets’ in Xn. Finally, in § 4 we prove Theorem 2.3.

1. Background

In this section we collect some background on Houghton groups, Morse theory and BNSR-
invariants.

1.1. Houghton groups

Let [n] := {1, . . . , n}. The Houghton group Hn, introduced in [11], is the subgroup of
Symm([n] × N) consisting of those elements η such that for each 1 ≤ i ≤ n there exists
mi ∈ Z and Ni ∈ N such that (i, x)η = (i, x+mi) for all x ≥ Ni (we will always write
elements of Symm([n] × N) to the right of their arguments, to sync with the notation in
[20]). Intuitively such an η acts as an ‘eventual translation’ on each {i} × N. It is known
that Hn is of type Fn−1 but not Fn [6, Theorem 5.1]. Higher-dimensional versions of the
Houghton groups, due to Bieri and Sach [3,17], have also been developed.

1.2. BNSR-invariants

A group is of type Fm if it admits a proper cocompact action on an (m− 1)-connected
CW-complex. Given a group G, call a homomorphism χ : G→ R a character, and call two
characters equivalent if they are positive scalar multiples of each other. The equivalence
classes [χ] of non-trivial characters form the character sphere Σ(G). The BNSR-invariants
Σm(G) (m ∈ N) of a group G are certain subspaces of Σ(G), defined whenever G is of
type Fm. They were introduced for m = 1 in [4] and m ≥ 2 in [2]. The definition is as
follows.

Definition 1.1 (BNSR-invariant). Let G be a group acting properly cocompactly
on an (m− 1)-connected CW-complex Y , so in particular G is of type Fm. For any
0 �= χ ∈ Hom(G,R) there exists a character height function hχ : Y → R, that is, a map
satisfying hχ(g.y) = χ(g) + hχ(y) for all g ∈ G and y ∈ Y . The mth BNSR invariant
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Σm(G) is

Σm(G) := {[χ] ∈ Σ(G) | (Y t≤hχ)t∈R is essentially (m− 1)-connected}.

Here Y t≤hχ is the full subcomplex of Y supported on those v ∈ Y (0) with t ≤ hχ(v).
Recall that (Y t≤hχ)t∈R being essentially (m− 1)-connected means that for all t ∈ R there
exists s ≤ t such that the inclusion Y t≤hχ → Y s≤hχ induces the trivial map in πk for all
k ≤ m− 1.

As is standard, we will write Σm(G)c for the complement Σ(G) \ Σm(G). Note that
Σ1(G) ⊇ Σ2(G) ⊇ · · · . There are also homological BNSR-invariants Σm(G; Z), analogous
to the homological finiteness properties FPm, though we will not discuss the homological
case much here.

Remark 1.2 (Erratum to [7, 20]). Definition 1.1 is almost identical to [20,
Definition 1.1], except that there the condition on stabilizers was that each p-cell stabi-
lizer be of type Fm−p, whereas here we just assume a proper action (so finite stabilizers).
The reason for this change is that in order for hχ to exist, the cell stabilizers need to
lie in ker(χ), and assuming a proper action is an easy way to assure this. This condi-
tion on χ killing the stabilizers was accidentally omitted in [20, Definition 1.1] (and in [7,
Definition 8.1], which [20, Definition 1.1] followed), though since in practice it was always
applied to situations with finite stabilizers, this error was irrelevant. Also note that one
can always choose Y so that the action of G is proper (even free), it is just sometimes
convenient (in situations other than our present one) to deal with spaces with infinite
stabilizers.

The BNSR-invariants of G form a sort of catalogue describing the precise finiteness
properties of subgroups of G containing the commutator subgroup [G,G], namely the
following.

Citation 1.3 (see [5, Theorem 1.1]). Let G be a group of type Fm and let [G,G] ≤
H ≤ G. Then H is of type Fm if and only if for every [χ] ∈ Σ(G) such that χ(H) = 0 we
have [χ] ∈ Σm(G).

In our computation of Σm(Hn) for the Houghton groups Hn, it turns out that the
structure is such that the invariant Σ1(Hn) already determines all the Σm(Hn) in a
natural, ‘polyhedral’ way. We describe this phenomenon in the following definition.

Definition 1.4 (Bieri Σ-property). For a finitely generated group G and a subset
S of Σ(G), denote by conv≤m S the union of convex hulls in Σ(G) of all subsets of at
most m non-antipodal elements in S. Now suppose G is of type Fm and suppose that

Σm(G)c = conv≤m Σ1(G)c.

Then we say G has the Bieri Σm-property. If G has the Bieri Σm-property for all m such
that G is of type Fm then we say G has the Bieri Σ-property.

Every finitely generated group trivially has the Bieri Σ1-property, but finitely presented
groups need not have the Bieri Σ2-property; in fact, Kochloukova found a solvable (even
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nilpotent-by-abelian) counterexample [12, Theorem B]. The well-known Σm-conjecture,
which seems to originally be due to Bieri though perhaps was first stated in this form by
Meinert, can be phrased (in homotopical form) as follows.

Conjecture 1.5 (Σm-conjecture). Every metabelian group of type Fm has the Bieri
Σm-property.

One can state the Σm-conjecture simultaneously for all m as the ‘Σ-conjecture’ that
every metabelian group has the Bieri Σ-property. As seen in Corollary 2.7, our results
here imply that the Houghton groups have the Bieri Σ-property. Meinert proved that
the Σ-conjecture holds for metabelian groups of finite Prüfer rank [16], and Harlander–
Kochloukova proved the Σ2-conjecture in general [10]. In addition to the Houghton
groups, some other non-metabelian groups whose BNSR-invariants are fully computed,
revealing that they have the Bieri Σ-property, include Thompson’s group F [5], its rel-
atives Fn,∞ [13,20] and its braided version [21]. The most prominent family of groups
whose BNSR-invariants are fully computed is the family of right-angled Artin groups
[8,15], and from the computation one can see that generally speaking ‘most’ right-angled
Artin groups do not have the Bieri Σ-property. This is essentially because it is easy for a
collection of subsets of vertices of a flag complex to individually induce disconnected sub-
complexes but have their union induce a highly connected (e.g. contractible) subcomplex.
On the other hand, free groups and free abelian groups do have the Bieri Σ-property for
trivial reasons. We leave a precise classification of which right-angled Artin groups have
the Bieri Σ-property as an exercise for the reader.

1.3. Morse theory

We will use the definition of Morse function and the statement of the Morse Lemma
from [18,20]. We recall these now; see [18,20] for any details we leave out here. Fix an
affine cell complex Y in this subsection.

Definition 1.6 (Morse function). Let (h, s) : Y → R × R be a map such that h
and s restrict to affine functions on cells. We call (h, s) a Morse function provided that
|s(Y (0))| <∞ and there exists ε > 0 such that whenever v and w are adjacent 0-cells in
Y , either |h(v) − h(w)| ≥ ε, or h(v) = h(w) and s(v) �= s(w).

We view (h, s) as a height function via the lexicographic order on R × R, and the
conditions ensure that adjacent 0-cells have different heights. Along a given cell, (h, s)
achieves its minimum and maximum values at unique 0-faces. If a 0-cell v is a 0-face of
a cell at which (h, s) achieves its minimum (maximum) on that cell, that cell belongs
to the ascending (descending) star of v. The ascending (descending) link of v, denoted
lk↑v (lk↓v) is the link of v in its ascending (descending) star. Write Y p≤h≤q for the full
subcomplex of Y supported on those 0-cells v with p ≤ h(v) ≤ q.

The following is essentially [20, Lemma 1.4], phrased slightly differently.

Lemma 1.7 (Morse Lemma). Suppose that for each 0-cell v with p ≤ h(v) < q
(q < h(v) ≤ r) the ascending (descending) link lk↑v (lk↓v) is (m− 1)-connected. Then
the inclusion Y q≤h → Y p≤h (Y h≤q → Y h≤r) induces an isomorphism in πk for each k ≤
m− 1 and a surjection in πm.
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As a remark, if s is constant and h(Y (0)) is discrete in R, then this definition of Morse
function reduces to the original one introduced by Bestvina and Brady in [1].

We will need one more topological tool, namely the following strong version of the
classical Nerve Lemma.

Citation 1.8 (see [19, Proposition 1.21]). Let X be a CW-complex covered by
subcomplexes (Xi)i∈I and let L be the nerve of the cover. Let n ≥ 1. Suppose that any
non-empty intersectionXi1 ∩ · · · ∩Xir

for 1 ≤ r ≤ n is (n− r)-connected. ThenHk(X) ∼=
Hk(L) for all k ≤ n− 1, and Hn(X) surjects onto Hn(L).

This was not phrased exactly this way in [19, Proposition 1.21], but it is straightforward
to see that this is an equivalent formulation. Note that being not n-acyclic implies being
not n-connected.

2. Characters of Houghton groups and statement of results

In [20] a partial computation of Σm(Hn) was obtained. Before stating the result, we need
some notation and background from [20] regarding characters of Hn. For each 1 ≤ i ≤ n
the function η �→ mi, with mi as in the definition of the Houghton groups, defines an
epimorphism χi : Hn → Z, and χ1, . . . , χn span Hom(Hn,R). Since elements of Hn are
bijective we have m1 + · · · +mn = 0 for each η and hence χ1 + · · · + χn = 0. In fact,
Hom(Hn,R) ∼= R

n−1 with basis {χ1, . . . , χn−1}, so Σ(Hn) ∼= Sn−2. This also implies that
for an arbitrary character χ of Hn, written as χ = a1χ1 + · · · + anχn for ai ∈ R, the
coefficients (a1, . . . , an) are uniquely determined up to shifting by constants (a, . . . , a).
The number

m(χ) := |{i | ai < max{a1, . . . , an}}|
is therefore well defined. This measurement will turn out to determine which BNSR-
invariants contain [χ].

It is sometimes convenient to express characters in a ‘standard form’ with respect to
the characters χi.

Definition 2.1 ((ascending) standard form). If χ = a1χ1 + · · · + anχn we call
this expression for χ a standard form if max{ai}n

i=1 = 0. We call it an ascending standard
form if a1 ≤ · · · ≤ an = 0.

Up to shifting by χ1 + · · · + χn = 0 any χ can be put in standard form. Up to auto-
morphisms of Hn, every χ is equivalent to one in ascending standard form. In particular,
when trying to determine which BNSR-invariants contain a given character class, with-
out loss of generality it can be expressed in ascending standard form. For χ in ascending
standard form, m(χ) equals the largest i such that ai �= 0.

2.1. Statement of results

The partial results obtained in [20] are as follows.

Theorem 2.2 (see [20]). For any 0 �= χ ∈ Hom(Hn,R) we have [χ] ∈ Σm(χ)−1(Hn).
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6 M. C. B. Zaremsky

It was conjectured in [20] that, moreover, [χ] �∈ Σm(χ)(Hn); and this is our main result
here.

Theorem 2.3. For any 0 �= χ ∈ Hom(Hn,R) we have [χ] �∈ Σm(χ)(Hn).

We will prove Theorem 2.3 in § 4.

2.2. Consequences

In this subsection we collect some easy consequences of the computation of Σm(Hn).
First we have some results on finiteness properties of kernels of characters.

Corollary 2.4. For any χ : Hn � Z with m = min{m(χ),m(−χ)}, the kernel of χ is
of type Fm−1 but not Fm.

Proof. This follows immediately from the computation of Σm(Hn) together with
Citation 1.3. �

Corollary 2.5. For each 1 ≤ m ≤ n− 1, Hn admits a map to Z whose kernel is of
type Fm−1 but not Fm.

Proof. Choose any χ : Hn � Z with m = min{m(χ),m(−χ)}; for example, take χ =
χ1 + · · · + χm(χ)−1 + 2χm, so m(χ) = n− 1 and m(−χ) = m, and then Corollary 2.4
gives the result. �

We can also conclude the following result about arbitrary normal subgroups.

Corollary 2.6. A non-trivial normal subgroup of Hn is of type Fn−1 if and only if it
has finite index in Hn.

Proof. The thing to prove is that if N is a non-trivial normal subgroup of Hn with
infinite index, then N is not of type Fn−1. As explained at the end of [20], N must
contain the second derived subgroup of Hn, which is the finite-support alternating group
on [n] × N. Up to replacing N with a finite index supergroup, we can assume it contains
the derived subgroup of Hn, which is the finite-support symmetric group on [n] × N.
Being an infinite index subgroup of Hn containing the commutator subgroup, N lies
in the kernel of a character χ : Hn � Z and, since [χ] �∈ Σn−1(Hn) (as the computation
shows Σn−1(Hn) = ∅), Citation 1.3 says that N is not of type Fn−1. �

Another consequence of our computation is that the Houghton groups all have the Bieri
Σ-property (Definition 1.4).

Corollary 2.7. Every Hn has the Bieri Σ-property.

Proof. We know that Σ1(Hn)c = {[−χ1], . . . , [−χn]} (this was already known in [6,
Proposition 8.3]). Hence, thanks to standard forms, conv≤m Σ1(Hn)c equals the set of [χ]
with m(χ) ≤ m. By Theorems 2.2 and 2.3, it is also the case that [χ] ∈ Σm(Hn)c if and
only if m(χ) ≤ m. �
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BNSR-invariants of Houghton groups, concluded 7

From the computation it is also clear that we can triangulate Σ(Hn) into the boundary
of an (n− 1)-simplex in such a way that Σm(Hn)c is precisely the (m− 1)-skeleton of this
simplex. This is an example of the ‘polyhedral’ behaviour we indicated before defining
the Bieri Σ-property.

3. Complexes

In this section we recall the CAT(0) cube complex on which Hn acts, and define an
important family of CAT(0) subcomplexes called blankets (Definition 3.1).

3.1. Cube complex

There is a natural cube complex Xn on which Hn acts, which we recall now. Everything
in this subsection is taken from [20]. First, define Mn to be the monoid of injections
φ : [n] × N → [n] × N that are eventual translations (i.e. satisfy the same condition as
elements ofHn except they need not be surjective), soHn consists precisely of the bijective
elements of Mn. The 0-skeleton of Xn is defined to be Mn.

To define the 1-skeleton of Xn we need to recall some important elements, ti of Mn.
For each 1 ≤ i ≤ n, define ti ∈Mn to be

ti : (j, x) �→
{

(j, x) if j �= i,

(j, x+ 1) if j = i.

Now declare that two 0-cubes φ, ψ in Xn (i.e. elements of Mn) span a 1-cube whenever
φ = ti ◦ ψ or ψ = ti ◦ φ for some 1 ≤ i ≤ n. Such a 1-cube is labelled by ti. (Since our maps
act from the right, ti ◦ φ means precompose with ti.) We define the higher-dimensional
cubes of Xn by declaring that for every φ ∈Mn and every K ⊆ [n] there is a |K|-cube
spanned by {(∏

i∈I

ti

)
◦ φ

∣∣∣∣I ⊆ K

}
.

Note that the ti all commute with each other, so specifying an order in the product is
unnecessary. Since more subscripts and superscripts will soon appear, we will now write
X for Xn, and there should be no risk of ambiguity.

It is known that X is a CAT(0) cube complex. The group Hn acts on Mn from the
right via (φ)η := φ ◦ η, and this extends to an action of Hn on X. Each cube stabilizer is
finite. There is an Hn-invariant Morse function f : X → R defined on X(0) by

f(φ) := |([n] × N) \ image(φ)|.
Each sublevel set Xf≤q is Hn-cocompact. Note that Xf≤0 (that is, Xf=0) is precisely
Hn.

Since elements of Mn are eventual translations just like elements of Hn, any character
χ : Hn → R naturally extends to a monoid homomorphism χ : Mn → R given by the
same definition as on Hn. Then, viewing Mn as X(0), any χ extends to a continuous map
χ : X → R. The lexicographically ordered function (χ, f) is a Morse function in the sense
of Definition 1.6 on any Xf≤q.
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3.2. Blankets

Blankets are certain subcomplexes of X that we will use later to cover the complex
X0≤χ. The definition is as follows.

Definition 3.1 (blanket). For K ⊆ [n] consider the subcomplex
⋂

i∈K
Xχi≤0 of X.

We will call any connected component of such a subcomplex a K-blanket, and generally
refer to K-blankets for arbitrary K as blankets.

Recall that a subcomplex Z of a CAT(0) cube complex Y is locally combinatorially
convex if every link in Z of a 0-cube z ∈ Z is a full subcomplex of the link of z in Y , and
combinatorially convex if it is connected and locally combinatorially convex. It is well
known (for example, see [9, Lemma 2.12]) that combinatorially convex subcomplexes are
themselves CAT(0), and hence contractible. In particular, each connected component of
a locally combinatorially convex subcomplex is contractible.

Lemma 3.2 (blankets are CAT(0)). For any K,
⋂

i∈K
Xχi≤0 is locally combinato-

rially convex. In particular, blankets are combinatorially convex in X, and hence CAT(0)
and contractible.

Proof. It is enough to show that each Xχi≤0 is locally combinatorially convex. Note
that if φ, ψ are adjacent 0-cubes in X, say with ψ = tj ◦ φ, then χi(ψ) − χi(φ) is 0 if
i �= j and 1 if i = j. Thus if we have a cube C containing φ, and ψ1, . . . , ψr are the
0-faces of C adjacent to φ, then the maximum and minimum values of χi on C lie in
{χi(φ), χi(ψ1), . . . , χi(ψr)}. In particular, if φ ∈ Xχi≤0 and these ψi lie in the link of φ
in Xχi≤0, then all of C lies in Xχi≤0. This shows that the link of φ in Xχi≤0 is a full
subcomplex of the link of φ in X. �

Corollary 3.3 (intersections of blankets are blankets). Let Z1, . . . , Zr be blan-
kets, say with Zi a Ki-blanket. Then if Z1 ∩ · · · ∩ Zr is non-empty it is contractible and
in fact is a (K1 ∪ · · · ∪Kr)-blanket.

Proof. Since each Zi is combinatorially convex, any non-empty Z1 ∩ · · · ∩ Zr is combi-
natorially convex, and hence contractible. Moreover, as a (contractible hence) connected
subcomplex of

⋂
i∈K1∪···∪Kr

Xχi≤0 we know it lies in a (K1 ∪ · · · ∪Kr)-blanket. It also

contains a (K1 ∪ · · · ∪Kr)-blanket for trivial (general topological) reasons, and hence it
must equal a (K1 ∪ · · · ∪Kr)-blanket. �

4. The proof

In this section we will use blankets and the Morse function (χ, f) to prove our main result,
Theorem 2.3. Without loss of generality, χ = a1χ1 + · · · + anχn is in ascending standard
form, so a1 ≤ · · · ≤ an = 0. Let us write Xf≤k for Xf≤k and Xt≤χ

f≤k for Xf≤k ∩Xt≤χ. As a
remark, in what follows we may occasionally implicitly assume n ≥ 2; the only character
of H1 is 0, so while our main results are (vacuously) true for n = 1, some of the arguments
used in this section may not literally be true for n = 1.
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Lemma 4.1. If X0≤χ
f≤3n−3 is not (m(χ) − 1)-connected then [χ] ∈ Σm(χ)(Hn)c.

Proof. We proceed by contrapositive. If [χ] ∈ Σm(χ)(Hn), then since Xf≤3n−3 is
Hn-cocompact we know that the filtration (Xt≤χ

f≤3n−3)t∈R is essentially (m(χ) − 1)-
connected. By [20, Proposition 6.6], every ascending link with respect to (χ, f) of a 0-cube
inXf≤3n−3 is (m(χ) − 2)-connected, so by Lemma 1.7 the inclusionXt≤χ

f≤3n−3 → Xs≤χ
f≤3n−3

(for any s ≤ t) induces an isomorphism in πk for all k ≤ m(χ) − 2 and a surjection in
πm(χ)−1. We are assuming that for all t there exists s ≤ t such that this inclusion induces
the trivial map in πk for all k ≤ m(χ) − 1, so in fact for such s the complex Xs≤χ

f≤3n−3 is
(m(χ) − 1)-connected. Without loss of generality, s ∈ χ(Hn) and so after translating by
an element of Hn we get Xs≤χ

f≤3n−3
∼= X0≤χ

f≤3n−3, so X0≤χ
f≤3n−3 is (m(χ) − 1)-connected. �

Our goal now is to prove that X0≤χ
f≤3n−3 is not (m(χ) − 1)-connected. We will cover

it with its intersection with certain blankets and apply the Strong Nerve Lemma. For
each 1 ≤ i ≤ n, let (Zα

i )α∈Ii
be the collection of {i}-blankets in X (so the connected

components of Xχi≤0) and set

Y α
i := Zα

i ∩X0≤χ
f≤3n−3.

Here, Ii is just an appropriate indexing set.

Lemma 4.2. The Y α
i for 1 ≤ i ≤ m(χ) cover X0≤χ

f≤3n−3.

Proof. It suffices to show that

X0≤χ ⊆
m(χ)⋃
i=1

Xχi≤0.

First, note that since χ = a1χ1 + · · · + am(χ)χm(χ) with ai < 0 for all i, any 0-cube v in
X satisfying χ(v) ≥ 0 must satisfy χi(v) ≤ 0 for some i. This proves that the inclusion
is true on the 0-skeleton. Now take an arbitrary cube in X0≤χ and let v be its 0-face at
which f is maximized. Then all 0-faces w of the cube satisfy χi(w) ≤ χi(v), and hence as
soon as v lies in Xχi≤0 so does the cube. �

Lemma 4.3. Any non-empty intersection of any number of subcomplexes of the form
Y α

i (with 1 ≤ i ≤ m(χ)) is (m(χ) − 2)-connected.

Proof. For such an intersection to be non-empty, it must feature at most one term of
the form Y α

i for each i, so without loss of generality it is Y α1
i1

∩ · · · ∩ Y αr
ir

, with the ij
pairwise distinct (here αj ∈ Iij

). Call this intersection Y , and let Z be Zα1
i1

∩ · · · ∩ Zαr
ir

,
so Y = Z ∩X0≤χ

f≤3n−3. To understand Y we will now apply Morse theoretic techniques to
Z, similar to those applied to X in [20]. The first step is to get from Z to Zf≤3n−3. By
Corollary 3.3, Z is contractible. If φ and ψ are 0-cubes of X with φ = ti ◦ ψ and φ ∈ Z
then ψ ∈ Z. Hence, for any 0-cube φ in Z, the f -descending link of φ in X lies in Z.
Since this is (n− 2)-connected for f(φ) > 2n− 1 [20, Citation 6.4], [14, Lemma 3.52],
we see that Zf≤3n−3 is (n− 2)-connected, and hence (m(χ) − 2)-connected (here we are
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just using f as a standard Morse function as in [1]). Now we need to get from Zf≤3n−3 to
Y = Z0≤χ

f≤3n−3, and to do this we will use the Morse function (in the sense of Definition 1.6)
(χ, f). For φ a 0-cube in Zf≤3n−3, as in [20], the (χ, f)-ascending link of φ in Xf≤3n−3

is the join of an f -ascending part and an f -descending part. The f -descending part lies
in Z for the same reasons as above. The f -ascending part lies in Z since it consists of
directions labelled by tk for m(χ) < k ≤ n, and each χij

is constant in those directions.
Hence the ascending link of φ in Zf≤3n−3 equals the ascending link of φ in Xf≤3n−3, and
this is (m(χ) − 2)-connected by [20, Proposition 6.6]. Now the Morse Lemma 1.7 tells us
that Y = Z0≤χ

f≤3n−3 is (m(χ) − 2)-connected. �

Let L be the nerve of the covering of X0≤χ
f≤3n−3 by the Y α

i . Since [χ] ∈ Σm(χ)−1(Hn) by
Theorem 2.2, we know from Lemma 4.1 that X0≤χ

f≤3n−3 is (m(χ) − 2)-connected, so the
Strong Nerve Lemma (Citation 1.8), which applies by Lemma 4.3, says that L is also
(m(χ) − 2)-connected. To prove Theorem 2.3, the last result we need is that L is not
(m(χ) − 1)-acyclic.

Lemma 4.4. The nerve L is not (m(χ) − 1)-acyclic.

Proof. Each vertex of L has a type in [m(χ)], given by declaring that the vertex
corresponding to Y α

i has type i. Vertices of the same type cannot be adjacent, so L is
(m(χ) − 1) dimensional. Thus it suffices to exhibit a non-trivial (m(χ) − 1)-cycle. For
this we will find, for each 1 ≤ i ≤ m(χ), a pair of distinct vertices Y 1

i and Y 2
i of type

i, such that Y ε1
1 ∩ · · · ∩ Y εm(χ)

m(χ) �= ∅ for every choice of εj ∈ {1, 2}. This will then yield
an embedded (m(χ) − 1)-sphere in L, which must be homologically non-trivial since L
is (m(χ) − 1) dimensional. For each i take Y 1

i to be the component Y α
i containing the

identity element of Hn, and take Y 2
i to be the Y α

i containing the transposition τi in Hn

that swaps (i, 1) and (i, 2). By construction, Y ε1
1 ∩ · · · ∩ Y εm(χ)

m(χ) �= ∅ for every choice of
εj ∈ {1, 2}, for instance, this intersection contains the element of Hn that is the product
of those τi with εi = 2. It remains to show that for each i we have Y 1

i �= Y 2
i . It is enough

to show that Z1
i �= Z2

i . If Z1
i = Z2

i (call it Z) then we can connect the identity to τi via
an edge path in Z, and since Z is combinatorially convex, without loss of generality this
edge path consists of a path along which f strictly increases followed by a path along
which f strictly decreases (see [14, Figure 3.8] for some intuition). Since the path lies in
Z, χi is non-positive on the whole path. Since χi(id) = χi(τi) = 0, none of the edges in
the path can be labelled by ti. In particular, adjacent vertices in the path must restrict
to identical permutations on {i} × N, and hence all vertices on the path must restrict to
the same permutation on {i} × N. Since id and τi do not, we have a contradiction. �

Proof of Theorem 2.3. By Lemma 4.3, the Strong Nerve Lemma (Citation 1.8)
applies. The Strong Nerve Lemma together with Lemma 4.4 says that X0≤χ

f≤3n−3 is not
(m(χ) − 1)-acyclic. Now Lemma 4.1 implies [χ] ∈ Σm(χ)(Hn)c. �
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