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Abstract
In this paper, forward/inverse dynamics of a continuum robotic arm is developed using a data-driven approach,
which could tackle uncertainties and extreme nonlinearities to obtain reliable solutions. By establishing a direct
mapping between the actuator and task spaces, the unnecessary mappings of actuator-to-configuration then
configuration-to-task are eliminated, to reduce extra computational cost. The proposed approach is validated
through simulation (based on Cosserat rod theory) and experimental tests on RoboArm. Next, path tracking in
the presence/absence of obstacles as well as load carrying maneuver are investigated. Finally, the obtained results
concerning repeatability, scalability, and disturbance rejection performance of the approach are discussed.

1. Introduction
In contrast to rigid-link robotic arms, continuum arms are flexible structures with the ability of continu-
ous bending along the backbone. These arms are inspired from intrinsic capabilities of natural organisms
like snakes, octopus arms, elephant trunks, and mammalian tongues. The unique features of these arms
like manipulating in unstructured environments, grasping unknown objects, safe operation as well as
dexterity make them a popular research area [1].

Obtaining dynamics (forward dynamics (FD) and inverse dynamics (ID)) and kinematics (forward
kinematics (FK) and inverse kinematics (IK)) in continuum manipulators encounter several challenges.
These challenges are originated from high nonlinearities, uncertainties, friction, shear, and so on,
which limit modeling accuracy and increase computation time. Modeling can be considered as the
first and most fundamental step regarding its influence in further applications, including path plan-
ning [2], optimization [3], grasping [4], and control [5]. Despite the extensive published papers in the
field of kinematics modeling, only a few investigations have been dedicated to dynamics modeling of
these manipulators considering high complexity, particularly in spatial motions. Most of the conducted
researches were based on the development of corresponding kinematics models, through which higher
errors would be generated [6]. Generally, prior investigations in modeling field can be categorized into
three groups of analytical, numerical, and data-driven approaches, which would be explained in the
following sections.

1.1. Analytical methods
These methods are referred to the methods, through which analytical solution can be obtained from
closed-form equations by assuming some simplifying assumptions. Among the most commonly used
simplifications, it can be mentioned to planar motion, constant curvature (CC), and neglection of
C© The Author(s), 2021. Published by Cambridge University Press
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nonlinear terms assumptions. Bamdad et al. [7] introduced an analytical procedure using modified
Denavit–Hartenberg (D–H) technique for obtaining FK of continuum manipulators with piecewise CC
assumption and used it for real-time control of manipulator. In another study by Neppalli [8], a closed-
form analytical solution was developed for a multi-section continuum manipulator by discretizing the
manipulator into several single-section manipulators. However, error propagation for multi-section case
was not addressed. Falkenhahn et al. [9] used a lumped-mass and CC assumptions along with the analyt-
ical derivatives in order to establish a balance between forces and energies. Both FD and ID models were
obtained; however, only planar case with neglecting torsional effects was studied. Generally, key advan-
tage of analytical approaches is the provision of closed-form solution, which can be implemented easily
in further applications, especially for control purposes. Nevertheless, problems resulted from simplify-
ing assumptions, including poor performance, deviation from experimental results, and incapability in
providing exact model can be considered as disadvantages.

1.2. Numerical methods
To solve the mentioned deficiencies and difficulties, numerical approaches have been suggested by many
researchers. In a research by Chikhaoui et al. [10], FK of a tendon-driven continuum manipulator with
extensible segments was determined numerically using two procedures of Cosserat rod theory and beam
theory. Despite the higher accuracy of former procedure, latter one provided lower computational cost.
Peyron et al. [11] obtained the kinematics model of a continuum manipulator by solving boundary
value problem. In this study, the manipulator was discretized along its backbone and obtained non-
linear equations for each section were solved numerically. Besides, experimental tests were executed
on a magnetic continuum manipulator for the sake of validation. However, no comparison was per-
formed to evaluate the effectiveness of the proposed approach with other numerical approaches. In a
study by Kang et al. [12], a pneumatically driven continuum manipulator was discretized to a num-
ber of serially connected parallel mechanisms and the kinematics/dynamics were derived with the help
of rigid body dynamics. Habibi et al. [13] introduced a lumped-mass model for flexible surfaces sub-
jected to large deflection as a result of actuating with two continuum manipulators. The equations of
motion for discretized masses were derived through general Newtonian principle. In another study, Kim
et al. [14] obtained the FK of three-section tendon-driven continuum manipulator through circular arcs
assumption. The derived equations from twist method were solved numerically and validated through
experimental tests. In refs. [15,16], Dehgani et al. presented a dynamic modeling approach for continuum
manipulator, which used Cosserat rod theory with some realistic simplifying assumptions to reduce com-
putational cost. In addition, a method for canceling the error of numerical integrations was introduced to
enhance the computations speed. In general, main advantage of numerical approach is the provision of
more exact model in which some nonlinearities and uncertainties can be considered. However, despite
the improvement in accuracy, system complexity and computational cost would be increased. Hence,
suitability of these approaches for online purposes would be weakened. Moreover, convergence is not
guaranteed in most of the numerical approaches, so the solutions are probable to be trapped in the local
solution.

1.3. Data-driven methods
Regarding the aforementioned challenges in previous approaches, recently, data-driven modeling
(DDM) has been proposed. This type of modeling can be defined as establishing a relation between
inputs and outputs of system without using explicit mathematical equations [17]. In a study by Li et
al. [18], a DDM procedure was applied to determine a mapping from actuator to position signals of
a pneumatically driven continuum manipulator. The estimation of online Jacobian was accomplished
using adaptive Kalman filter with the ability of capturing instantaneous changes in Jacobian. In another
research by Tan et al. [19], parameters of kinematics model were identified experimentally to cover
existing uncertainties in parameters and joint inputs. However, the proposed scheme was validated only
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for in-plane motions. Recently, Jackes et al. [20] proposed a recurrent neural network-based approach.
This approach avoided the complexity of mathematical modeling, while capturing the mechanical and
electrical nonlinear effects of the system. The proposed model related the actuation signals to the force
measurement; however, it was validated only for a single-segment three-tendon continuum manipulator.
In a study by Thuruthel et al. [6], a methodology was suggested for learning the FD of soft manipulator
with the use of model-free neural network-based approach for the first time. They declared that their
method provides easier implementation and improved accuracy compared to other dynamics models. It
should be noted that learning inverse model in redundant manipulators often encounters some problem
regarding the nonuniqueness of solutions. Several approaches have been proposed for overcoming this
problem, such as distal supervised learning [21], learning in velocity level [22], path-based sampling
approach (goal babbling) [23], and multiple local learning procedure [24]. Basically, the main benefit of
DDM is capturing the whole system behavior which was partially discarded in previous approaches. In
addition, adaptability to a wide range of manipulators, or in other words, robot-independent structure is
the other potential advantage. However, requirement for higher datasets to attain an appropriate model
may affect the computational time.

Inclusion of contact forces in modeling is an important issue that should be considered. Involved
forces can be classified to small-valued and large-valued forces in terms of their magnitude regarding
the stiffness of manipulator, inertia, velocity, duration, and location of contact [25]. In former group,
small undesired contact forces can be covered with small approximation error by neural networks [26].
However, addition of second-class forces imposes higher complexity in analytical and numerical proce-
dures; in this regard, some data-driven methods were presented [20, 25]. Thuruthel et al. [25] suggested
a data-driven technique using force data obtained from single load cell embedded on the end effector of
manipulator. With the help of gathered data, they established a neural network-based learning model for
predicting the force.

By reviewing the available literature, lack of a general framework for obtaining kinematics and
dynamics with applicability for different types/scales of continuum manipulators and capability of deal-
ing with uncertainties, nonlinearities, and load carrying is sensed. Moreover, in most of the conducted
researches, ID problem was mostly discarded considering its higher complexity. To overcome these
deficiencies, in this paper, a DDM approach is proposed to consider the dynamic motion of manipulator
using nonlinear autoregressive network with exogenous inputs (NARX) model.
The main contributions of the present paper can be summarized as follows:

• Proposing a general framework with maximal applicability for dynamics modeling (FD/ID) of
continuum manipulators, which can be also used for kinematics modeling (FK/IK).

• Eliminating the need for solving complex equations by the use of data-driven approach.
• Capturing existing nonlinearities and uncertainties in parameters and the structure of continuum

manipulator.
• Providing a simple and real-time solution with high consistency to real experimental setup in

spatial motions for further applications, especially control schemes.
• Proposing a straightforward algorithm for path tracking of continuum manipulator in the

presence and absence of obstacles as well as load carrying maneuver.
• Investigating the scalability of proposed procedure for manipulators with different numbers of

sections.
• Implementation of proposed procedure on experimental setup of RoboArm and simulation setup

based on Cosserat rod theory.

The rest of the paper is organized as follows: in Section 2, the problem is defined and the proposed
procedure for kinematics/dynamics modeling of continuum manipulator in three-dimensional space is
described. In the following section, the inverse problem is explored; additionally, path tracking and
load carrying features are evaluated. Section 4 is dedicated to the description of studied systems: sim-
ulation setup based on Cosserat rod theory and the experimental setup of RoboArm. The results of

https://doi.org/10.1017/S026357472100093X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472100093X


Robotica 1101

Figure 1. Schematic of a two-section continuum manipulator consisting of a backbone, six servomotors,
six tendons, and several spacers. The motor position [P] and tendon tension [T] are the system inputs
and the position of end effector [X] is the system output.

implementing the proposed procedure on both simulation and experimental setups are provided and
discussed in Section 5. Finally, main findings of this investigation are provided in the conclusion
section.

2. Problem Definition
The considered system in this study is a continuum manipulator representing a multi-input multi-output
(MIMO) system with n sections, r inputs, and m outputs. The schematic of a two-section continuum
manipulator is illustrated in Fig. 1. According to this figure, the system is consisted of a backbone,
tendons for actuating manipulator, and spacers for keeping tendons parallel with respect to the backbone.
The manipulator is a two-section system (n=2) and six servomotors (r=6) are used for positioning
the end effector (m=3). The inputs are motor position/tendon tension [P/T]j=1,2,...,n of jth section (j ∈
{1, . . . , n}), and the outputs are position/orientation of end effector, [X]. The goal is to develop the best
model (M∗) for a continuum manipulator among the candidate models as follows:

M∗ = {M (θ) |θ ∈ Dm} (1)

where M(θ ) is the model structure, which can be ARX, NARX, and ARMAX, etc., and should be
selected on the basis of an appropriate criterion. In addition, Dm is an index set of interest. To this aim,
a data-driven system identification (SI) procedure is proposed.

2.1. Data-driven identification procedure for modeling
The proposed procedure for modeling continuum manipulator is depicted in Fig. 2. According to this
flowchart, proposed SI contains four main steps. These steps are known as the determination of model
inputs/excitation signals, selecting model structure/parameters, identification procedure, and evaluation
steps, which are detailed in the following subsection (for more details, refer to refs. [27–29]).
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Figure 2. The main steps for modeling continuum manipulator through data-driven system identifica-
tion procedure for obtaining a validated model.

2.1.1. Inputs and excitation signals
Identification procedure is conducted based on processed input–output data, Ds = [(P/T)J , X], from
continuum manipulator. If reasonable and appropriate distribution is assumed for data, high-precision
model would be obtained with higher amount of training data. The overall real operating workspace of
manipulator should be covered during data acquisition process. In addition, sampling time should be
considered small enough to capture small changes in model output so that

for xm ∈ X: xm(k − i) � xm(k − i − 1) (2)

where xm(k − i) and xm(k − i − 1) are two subsequent outputs and k is the time sample. For n-section
manipulator with three tendons in each section, we have

[P/ T]j=1,2,...,n =
⎡
⎢⎣
(P/T)1

...

(P/T)j

⎤
⎥⎦=

⎡
⎢⎣
(P/T)1,1 (P/T)1,3 (P/T)1,5

...
...

...

(P/T)j,j (P/T)j,j+2 (P/T)j,j+4

⎤
⎥⎦ (3)

For simplicity, from now on, inputs are shown by [T] instead of [P/T]. In studied manipulator, which is
a two-section, six-tendon manipulator, input vector is defined as:

[T]j=1,2 =
[

T1

T2

]
=

[
T1,1 T1,3 T1,5

T2,2 T2,4 T2,6

]
(4)

Additionally, outputs vector is

X = [
xee yee zee

]
(5)

In the above equation, xee, yee and zee are the positions of end effector along X-, Y-, and Z-axis with respect
to the manipulator base, O = {x0, y0, z0}. Therefore, collected datasets for ndata independent points are
defined as

[
(T)j=1,2 X

]
l=1,2,...,ndata

. Different excitation signals can be used for identifying unknown sys-
tems. According to ref. [30], model identified with sine excitation has an excellent quality in the excited
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Figure 3. (a) Data gathering procedure of required dataset for learning and (b) three-dimensional
workspace of the continuum manipulator resulted from excitation signals.

frequencies. So, a combination of sine signals would be an appropriate selection for our continuum
manipulator as shown in Equation (6):

U(T)j = A1 Sin(ω1t) + A2 Sin(ω2t) + . . . =
p∑

i=1

Ap Sin(ωpt) (6)

where p is the number of sine signals, Ap and ωp are the corresponding amplitude and frequency of pth

signal, respectively. The workspace of excited manipulator besides data gathering procedure is shown
in Fig. 3.

2.1.2. Model structure
Choosing an appropriate structure for model has an important role in determining the number of required
parameters, convergence, and computational cost. The model can be described by a mapping M(Rr �→
R

m) from inputs space (Rr) to outputs space (Rm) as:

[X(k + 1)]m×1 = M
(

T(k), . . . , T(k − na),

X(k), . . .X(k − nb)

)
(m+r)×1

(7)

In the above equation,
[
X(k) . . . X(k − nb)

]
are current/previous outputs and[

T(k) . . . T(k − na)
]

represent current/previous inputs. In addition, na and nb are the respective
numbers of previous inputs and outputs. Among different structures that can be used for M, recurrent
dynamic network of NARX model, which is a nonlinear expansion of ARX model, is selected
considering the nonlinear and dynamic nature of the system. The ARX representation for single-input
single-output (SISO) system is defined as:

X̂(k) = b1T(k − 1) + . . . . + blT(k − na) − a1X(k − 1) − . . .− alX(k − nb) (8)

where X̂(k) is the estimation of model output in current time regarding previous information of T(k −
na) ∈R and x(k − nb) ∈R. Also, al and bl are respective constant coefficients for outputs and inputs
that should be specified through identification. By substituting the known linear function by a nonlinear
unknown function of f (.), NARX representation can be obtained as follows:

X̂(k) = f (ϕ(k)) (9)

where ϕ(k) is the regression vector and defined as:

ϕ(k) = [T(k − 1) . . . T(k − na) X(k − 1) . . . X(k − nb)]T (10)

https://doi.org/10.1017/S026357472100093X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472100093X


1104 Aida Parvaresh and S. Ali A. Moosavian

So, Equation (9) can be rewritten as:

X̂(k) = f (T(k − 1), . . . , T(k − na), X(k − 1), . . . , X(k − nb)) (11)

By extending this formula to r-input m-output MIMO system, we have[
X̂(k)

]
= f

(
T1(k − 1), . . . , T1(k − na), . . . , Tr(k − 1), . . . , Tr(k − na),

X1(k − 1), . . . .X1(k − nb), . . . , Xm(k − 1), . . . , Xm(k − nb)

)
(12)

where f(.) ∈R
m×r is a matrix of m × r nonlinear functions fromR

r →R
m. Equation (12), which is written

in scalar form, can be represented in a vector form for discrete-time nonlinear MIMO system as:[
X̂(k)

]
= f (T(k − 1), . . . , T(k − na), X(k − 1), . . . .X(k − nb)) (13)

where X and T are m × 1 and r × 1 vectors and defined as:
X(k) = [

x1(k) . . . xm(k)
]

m×1

T

T(k) = [
T1(k) . . . Tr(k)

]
r×1

T
(14)

So, in this case, instead of approximating al and bl coefficients for ARX model, nonlinear function of
f(.) should be approximated. The NARX model can be represented in more general form as:

X̂(k) = f
(

T(k − 1), �T(k − 1), . . . , �d1−1T(k − 1),

X(k − 1), �X(k − 1), . . . , �d2−1X(k − 1)

)
(15)

In this representation, d1 and d2 are the power orders of operation, and � is an operation and is defined
as:

�= 1 − q−1,�2 = (
1 − q−1

)2
, . . . ,�d = (

1 − q−1
)d (16)

For the second-order system, where d1,2 = 2, we have

X̂(k) = f
(

T(k − 1), T(k − 1) − T(k − 2),

X(k − 1), X(k − 1) − X(k − 2))

)
(17)

2.1.3. Identification procedure
NARX model is trained in series–parallel configuration by neural networks. Accordingly, inputs for a
neuron are multiplied by corresponding weights, then resulted products are summed together and applied
to a transfer function to produce output. This procedure can be stated as the following equation:

X̂ =
e∑

f =0

ψf�f

(
g∑

h=0

ψfhTf

)
(18)

In the above equation, ψf and ψfh are the corresponding weights of output and hidden layers and �f is
the bias function. Output weights are linear functions and are defined as ∂x/∂ψf =�f , while hidden
weights are nonlinear functions and updated as:

ψfh(k + 1) =ψfh(k) −�ψfh(k) =ψfh(k) − ηP(k)
∂J(k)

∂ψfh(k)
(19)

where�ψfh(k) denotes the increment of ψfh(k) and ηP(k) is the learning rate. J(k) is the training criteria

and defined as J(k) =
√

1/
k

k∑
k=1

(e(k))2. The network should be selected by comparing the performance of

different configurations with different numbers of neurons in hidden and output layers, different transfer
function, and various iterations. Levenberg–Marquardt algorithm is used for training, which profits the
speed convergence of Gauss–Newton algorithm besides the stability advantage of the steepest descent
method.
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2.1.4. Model evaluation
In this section, correctness of the model is evaluated in terms of different criteria. Firstly, validation
should be conducted with fresh datasets. The quality and performance of learned model can be evaluated
through error-based criteria, including, root mean square error (RMSE), mean absolute error (MAE),
error mean (Emean), and standard deviation (Std). These criteria are defined as:

RMSE =
√√√√(

ndata∑
k=1

∥∥∥(X(k) − X̂(k))
2
∥∥∥

2

)
/ndata MAE = 1

ndata

∑ndata

k=1

∣∣∣X(k) − X̂(k)
∣∣∣

Emean = 1

ndata

∑ndata

k=1

(
X(k) − X̂(k)

)
Std = 1

ndata

√∑ndata

k=1
(X(k) − Emean)

2 (20)

Training should be continued until achieving desired values which are determined according to the sys-
tem dynamics, proposed application, and required accuracy. Increasing model accuracy is accompanied
by higher computational cost which is not preferred in real-time applications. Hence, a balance between
computational cost and accuracy should be established. Additionally, for comprehending modeling error
in more realistic manner, normalized error is defined with respect to the length of manipulator (L) as:

enorm =
(

X − X̂
X

)/
L (21)

3. IK/ID and Path Tracking
The main contribution of this paper in the field of inverse modeling is to overcome the complexity of
solving nonlinear equations analytically and high computational cost of numerical method using an
algorithm for learning IK/ID. It is worth mentioning that real-time implementation is possible due to
the low computational cost of proposed method.

3.1. Inverse kinematics/dynamics
IK/ID of continuum manipulator is defined as obtaining required [T] for a given [X] through similar
data-driven approach as proposed in FK/FD. As mentioned before, learning inverse models in redun-
dant manipulators suffer from the nonuniqueness of solution. Accordingly, first, additional constraints
on tendon tensions and backbone curvature are considered. Through preliminary examination of trained
model with gathered data, it is observed that nonuniqueness problem was solved. However, for more
assurance, an optimization problem was defined to select desired solution by minimizing energy con-
sumption. It is worth mentioning that since in training procedure, previous values are also considered in
addition to current values of inputs and outputs, most of redundant solutions would be eliminated during
initial phase of training. The required dataset for inverse problem is

[
X T

]
. The inverse problem can

be solved through the following formulation in a vector form:

T̂(k) = f ′ (ϕ′(k)
)

(22)

where f ′ is the nonlinear function of [X] → [T] and ϕ′(k) is the regression vector and given as:

ϕ′(k) =
(

X1(k − 1), . . . .X1(k − nb), . . . , Xm(k − 1), . . . , Xm(k − nb)

T1(k − 1), . . . , T1(k − na), . . . , Tr(k − 1), . . . , Tr(k − na),

)
(23)

For studied system, which is a nonlinear three-input, six-output system, the estimation is defined as:

T(k) = f ′
(

X1(k − 1), . . . , X1(k − na), . . . , X3(k − 1), . . . , X3(k − nb),

T1(k − 1), . . . .T1(k − na), . . . , T6(k − 1), . . . , T6(k − na)

)
(24)
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Figure 4. The relation between actuation, joint, configuration, and task spaces for obtaining FK/IK
and FD/ID of a continuum robotic arm.

Forward/inverse mapping for modeling continuum manipulator is depicted in Fig. 4. According to this
figure, this approach provides a direct mapping between actuation and task spaces with the elimination of
additional mappings between actuator-to-joint, joint-to configuration, and configuration-to-task spaces.
So, the computational cost can be reduced significantly. Furthermore, application of this approach is
not limited to the special type of continuum manipulator and provides a general procedure; however, its
applicability in various types should be examined.

3.2. Path tracking
For more evaluation of proposed approach for inverse modeling, path tracking feature in the pres-
ence/absence of obstacles is investigated. Designing a proper path can play an important role in obstacle
avoidance feature of continuum robotic arm [31]. In this regard, after determining the desired path (set of
[X]), inverse modeling calculation is required for obtaining [T]j. The general methodology is described
in the flowchart of Fig. 5.

3.2.1. Path tracking in the absence of obstacles
In the absence of obstacles, desired path parameters such as starting point Si

(
xi yi zi

)
, target point

Sf

(
xf yf zf

)
, midpoints, shape (circular, square. . .), and corresponding parameters (origin, radius, cor-

ners, etc.) should be imported to the algorithm to generate a path. Then, the generated path is discretized
into several points (set of [X]) and corresponding [T]j is achieved through inverse procedure. After this
step, an appropriate command is sent to the microcontroller and fed to the servomotors to track the
desired path. Finally, the position of the end effector is collected using image processing technique.

3.2.2. Path tracking in the presence of obstacles
The problem is defined as steering the end effector from Si

(
xi yi zi

)
to Sf

(
xf yf zf

)
in the presence

of obstacles as depicted in Fig. 6. The related information of obstacles, including number of obstacles,
mob, center position of obstacles, Sob

(
xob yob zob

)
, diameter of obstacle, dob and desired safety index

(ε), are determined priorly.
Then, effective obstacles are defined as those which their safety zones intersect reference (desired)

path Pdes connecting Si

(
xi yi zi

)
to Sf

(
xf yf zf

)
, see Fig. 6. After that, a perpendicular line to the

desired path is plotted from the center of the effective obstacles, which intersects the safety zone at two
points, Cj,w(j = 1, 2, . . . , 2mob). Next, w points with the position of Scj,w

(
xcj,w ycj,w zcj,w

)
are selected

from Cj,w set. There are 2w choices for selecting control points. Hence, the path planning problem is
transformed to the planning of a polynomial path with midpoints.

Number of required conditions determines the polynomial degree. For w control points besides
known start and target points, polynomial with the degree of w+1 can be fitted as:

P(s) = a0 + a1t + a2t2 + . . .+ aw+1tw+1 (25)
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Figure 5. The proposed algorithm for generating the desired path in the presence/absence of obstacles
and obtaining the corresponding inputs through inverse problem.

The unknown coefficients can be determined by solving a set of linear algebraic equations. The most effi-
cient path can be selected considering different criteria such as the length of path, energy consumption,
smoothness of path, and other criteria. If the generated path is infeasible, w points should be divided into
two subsections and the algorithm should be continued considering the continuity condition in mutual
point. After the generation of the desired path,

(
Pgen

)
cont.

, it is discretized into several points,
{
Sp.gen

}
q
,

is required tendon tensions/motor positions, [P/T]j, and would be obtained through implementing the
inverse problem.

3.3. Load carrying maneuver
According to ref. [25], force estimation can be achieved through direct and indirect sensing approaches.
In former class, sensor is located in contact area. Despite the straightforward force estimation (inde-
pendent of studied system) in this approach, limitations in the utilized type of sensors and their
placement are the probable disadvantages. The latter approach is concerned with the estimation of
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Figure 6. Path tracking in the presence of obstacle located in Sob(xob yob zob) from the initial point
Si(xi yi zi) of to the final point of Sf(xf yf zf).

Figure 7. The proposed algorithm for detecting load carrying case for carrying unknown loads.

force on the basis of gathered data from other sensors, which facilitates the selection of sensor type
and placement. It should be noted that in the case of load carrying maneuver, different kinematics
and dynamics may be achieved compared to free motion [32]. Hence, the effect of force should be
involved.

In our proposed approach for detecting load carrying phase, only available sensory information,
including motor positions/tendon tensions and visual feedback of end effector position, would be used.
The proposed algorithm for this case can be seen in Fig. 7. According to this algorithm, real output
of manipulator, [X]real, should be compared with estimated output from the learned model,

[
X̂
]

est
,

for the same input of [T]ref . If the difference between these values exceeds the maximum allowable
value (

∣∣∣[X]real −
[
X̂
]

est

∣∣∣> εallowable), load carrying case is detected. The next step is performing the
inverse problem on [X]real and obtaining the corresponding [T]new. The difference between these inputs
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Figure 8. Schematic and real RoboArm: experimental setup of constructed continuum manipulator
with backbone, tendon, spacers, and guides.

([�T]req = [T]ref − [T]new) should be added to the unloaded input, and simulations should be continued
with modified values for the loaded condition ([T]load). The [�T]req is calculated once the load carrying
case is detected and added to [T]ref in subsequent steps without performing further calculations.

The same procedure can be used for the case of interacting with an unknown rigid obstacle in which,
regardless of inputs changes, [�T], displacement of manipulator end effector would be very insignif-
icant (�X ≈ 0). Hence, interaction with an undefined obstacle would be identified by comparing the
input/output datasets with corresponding free motion.

4. Description of Experimental and Simulation Setups
The proposed data-driven procedure for modeling would be verified on two datasets gathered from the
experimental setup of RoboArm and simulation setup based on Cosserat rod model. Descriptions of
these setups are provided in the following sections.

4.1. Experimental setup of RoboArm
RoboArm is a continuum manipulator that constructed in ARAS (Advanced Robotics and Automated
System) center [27, 28]. This manipulator is a tendon-driven two-section arm with flexible backbone
in which one end is clamped and the other end is free. Each section has three tendons that are kept
parallel with respect to each other and backbone by the use of several spacers. The schematic and real
RoboArm is depicted in Fig. 8. The whole constructed structure which includes RoboArm, actuation
system, and sensing system is represented in Fig. 9, and the associated properties are also provided in
Table I. Moreover, schematic of system components and their connection are illustrated in Fig. 10. In
this structure, tensions are applied by rolling up the tendons by servomotors. The tendons pass through
guiding pulleys and load cells so that their tensions can be measured. It is important to keep tendon
tensions in safe range. Higher tensions would lead to snap and generation of higher friction, while slack
resulted from lower tensions may lead to invalid measurement [20]. The prior problem is solved by
setting limits in actuation; besides, low-stiffness springs are embedded before the motors to generate an
insignificant pre-tensioning in tendons. Data are collected from two systems: image processing system
and load cells. Two A4-tech PK7 cameras in appropriate adjustable distances are implemented to capture
the three-dimensional position of RoboArm.
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Table I. Characteristics of RoboArm, actuation, and sensing systems.

Characteristic Value Characteristic Value
Robot type Tendon-driven Section length 295 mm
Type of actuation Externally Total length 590 mm
Number of sections 2 Backbone diameter 1 mm
Radial distance of tendons 120 degrees Motor type Dynamixel AX-12
Number of tendons in each

section
3 Distance between

spacers
30 mm

Total degrees of freedom
(actuation)

6 Backbone Elasticity
Modulus

203 Gpa

Dimensions of actuation box 500 × 500 × 300mm Camera type A4Tech PK7

Figure 9. The real setup of whole structure, including RoboArm, actuation system, power supply, and
sensing system along with the location of calibration LEDs.

4.1.1. Setup initialization
The home position is defined as the straight configuration of manipulator along the Z-axis from zero ref-
erence. In this configuration, no tension (except minimum insignificant pre-tension for slack prevention)
is generated in tendons and the positions of servo motors are set at 500. After initializing the manip-
ulator, the calibration of image processing system is conducted. As can be seen in Fig. 9, four LEDs
are implemented on image processing box (LEDs #1, 2, 3, and 4) and three LEDs (#5, 6, and 7) are
located on actuation box; in addition, one LED is also positioned on the end effector. The LEDs are
turned on one by one, and images are captured by two cameras and compared to correct the possible
deviations. This procedure is conducted before each run. In order to minimize the noise-induced errors
in data, some filters, including reducing exposure, RGB to B&W, reducing brightness, and increasing
contrast, are implemented in the internal setting of cameras to reduce the computational cost of image
processing. The other processing works, including box blur, finding object center, rotation correction,
lens distortion correction, and pixel to mm transformation, are done by the proposed image processing
algorithm.

4.1.2. Data gathering
The samples are gathered by generating excitation signal in the computer and transferring to PIC 32
microcontroller by RS 232 cable. After that, the signal is sent to servomotors to produce the motion. The
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Figure 10. Schematic of system specifications: cameras, servomotors, load cells, and their connection.

motion of end effector is then recorded by image processing system. Hence,
[
T X

]
l=1,2,...,ndata

dataset
is gathered. Totally, 6000 samples are collected; 90% (5400 samples) is employed for training and the
remaining (10%; 600 samples) is used for testing and validating. The samples are collected at certain
frequencies during continuous motion of manipulator. It is worth mentioning that no waiting time is
considered between motions and data gathering is conducted in dynamic manner. The sampling time is
considered to be 0.03 s regarding the limitations in image processing system (30 fps).

4.1.3. Repeatability of system
Repeatability can be expressed as the ability of robot to reach a specified point successively with
an acceptable closeness [16]. Different factors, including nonlinearity of structure, environmental
conditions, gear backlash, calibration and precision of measuring components, can affect repeatability.
In this paper, system repeatability is crucial for the reliability of data acquisition procedure according
to the requirement for numerous data which may be collected in several runs and different conditions.
For this purpose, the system was subjected to five similar inputs in different conditions (continuous run,
run after a day, run after stopping the system, run after system shut down, and run after several runs
with different inputs). Then, the obtained results for the position of end effector were compared and
repeatability of system was confirmed.

4.2. Simulation setup based on Cosserat rod theory
In order to gather required data for training a model through proposed data-driven procedure, a quasi-
static model developed by Dehghani et al. [16, 33] on the basis of Cosserat rod theory is explained. By
neglecting shear deformations and extensibility, this method provides a suitable approach for numerical
calculations. Free body diagram of a continuum manipulator is depicted in Fig. 11. Each point along the
rod is specified by s with Cartesian position of r(s) = [

x(s) y(s) z(s)
]T . It is assumed that the point force

of F and the torque of τ are applied on end effector. Additionally, f (s) and ψ(s) represent the distributed
forces and torques, respectively. The force and moment balances for an element of manipulator can be
written as: ⎧⎪⎪⎨

⎪⎪⎩
n(b) − n(a) +

b∫
a

f (s)ds = 0

m(b) − m(a) + r(b) × n(b) − r(a) × n(a) +
b∫

a

(r(s) × f (s) +ψ(s))ds = 0
(26)
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In the above equation, n and m are the summation of forces and moments, respectively. By using Hooke’s
law for pre-curved manipulator, m in local coordinate system can be defined as:

ml =
⎡
⎢⎣

EIxx 0 0

0 EIyy 0

0 0 GJ

⎤
⎥⎦ (
�l −�∗l

)= C
(
�l −�∗l

)
(27)

where� is the orientation variation and�∗l is the undeformed rate of rotation along the rod. Additionally,
Ixx and Iyy denote second moments of area and J represents polar second moment of area. Moreover, E
and G are elastic and shear modulus, respectively. For uniform rod assumption, C is a constant matrix.
In this paper, gravitational force is considered as distributed force, f (s) = ρAg. After solving Equations
(26), replacing resultant derivatives, and performing some operations, mathematical model of elastic
rod can be represented as follows:

(a) n = [
Fx Fy ρAgs − ρAgL + Fz

]T

(b)

⎧⎪⎪⎨
⎪⎪⎩
�l

′ = −C−1
[
�L

]×
C
(
�L −�∗L

)− C−1RT
(
− [

n×]× R
[

0 0 1
]T +ψ

)
+�∗l

′

R′ = R
[
�l

]×

r′ = R
[

0 0 1
]T

(28)

where R is the rotation matrix represented as R(s) = [
i(s) j(s) k(s)

]
, where i(s), j(s) and k(s) are the

unit vectors as depicted in Fig. 11. In order to solve Equation (28), numerical methods with appropriate
boundary conditions should be considered. Since the robot is fixed at its base, therefore position and
orientation are known at s = 0. Besides, force and moments are also known at the tip of manipulator
(s = sf ). Hence, the required boundary conditions are defined as follows:⎧⎪⎪⎨

⎪⎪⎩

r(0) = 
r0

R(0) = R0


�l
(sf ) = 
�∗l + C−1RT(sf )
τ

(29)

The common approach for solving these equations is shooting method, which starts with the selection
of an initial estimation for �̂l(0). The procedure continues by comparing ebv = �̂l(sf ) −�l(sf ) error;
as illustrated in Fig. 12. The above-mentioned equation sets are the general form of Cosserat model for
continuum manipulators with preferred actuation. For a tendon-driven manipulator, equations should be
modified. After establishing force and moment balances for an element with three tendons as depicted
in Fig. 13, overall mathematical model of tendon-driven manipulator would be obtained as:

(a) n = [
Fx Fy ρAgs − ρAgL + Fz

]T −∑
Tl

i

(b)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�l
′ = −C−1

[
�L

]×
C
(
�L −�∗L

)− C−1
(
−[

nl
]×

r
′
l +ψ

)
+�∗l

′ − . . .

. . .− C−1
[
�L

]×∑[
ρ l

i

]×
Tl

i − C−1 d
ds

(
−[
ρ l

i

]×
Tl

iψ
)

R′ = R
[
�l

]×

r′ = R
[

0 0 1
]T

(30)

In the above equations, Ti is the ith tendon tension. By solving Equation (30) along with the boundary
conditions in Equation (29), relation between tendon tensions and position of end effector can be real-
ized. For testing the proposed data-driven procedure, the excitation signal is imported as input and the
output would be collected.
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Figure 11. Free body diagram of the continuum robotic arm introduced in ref. [33].

Figure 12. Flowchart of used numerical procedure for obtaining the mathematical model of the
continuum arm.

Figure 13. Free body diagram for a slice of tendon-driven continuum manipulator.

5. Results and Discussions
This section provides the results of implementing proposed data-driven approach on the aforemen-
tioned experimental and simulation setups as well as investigating other features of algorithm, including
scalability, disturbance rejection, and load carrying maneuver.
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Figure 14. FK results for simulation setup based on Cosserat rod theory; first diagram provides a
comparison of estimated and real values, second diagram represents the prediction error, and third
diagram depicts error mean and Std for (a) X-e.e, (b) Y-e.e, and (c) Z-e.e.

5.1. Results of proposed data-driven approach for simulation setup based on Cosserat rod theory
5.1.1. FK modeling
The results of implementing the proposed data-driven approach on the data obtained from Cosserat
rod simulation setup were investigated in this section. The comparison of real results from simulation
setup and estimated results from learned model is provided in Fig. 14. According to this figure for
FK, acceptable estimation accuracy can be perceived which confirmed the appropriateness of proposed
method. In the first diagram of this figure, black line indicates real results obtained from simulation setup
and red line represents estimated values through proposed DDM approach. In the second diagram, the
deviation of estimated and real values was provided. This deviation can be characterized in terms of
RMSE which was very small in all directions (0.00148, 0.00154, and 0.00230 m for x, y, and z positions
of end effector). In the third diagram, error mean and standard deviation can be seen. The distribution
of error close to zero revealed the accuracy of estimation. In addition, MAE values for the end effector
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Figure 15. IK results for simulation setup based on Cosserat rod theory; first diagram provides a
comparison of estimated and real values, second diagram represents prediction error, and third diagram
depicts error mean and Std for (a) second tendon, (b) fourth tendon, and (c) sixth tendon.

position were 5.4, 4.1, and 3.0 mm, corresponding to the normalized error of 0.91, 0.69, and 0.50%.
Consequently, appropriate performance of the proposed model in obtaining FK can be realized.

5.1.2. IK modeling
As mentioned, obtaining analytical solution for IK of nonlinear and redundant manipulators is very
complex and high deviation from the real results was probable. Furthermore, in numerical approaches,
high computational time and trapping in local solution were the challenges that should be overcome.
Data-driven approaches also suffer from solution redundancy. The advantages of proposed procedure in
this paper are simplicity, low computational cost, and provision of unique solution. Results of IK through
proposed data-driven scheme are presented in Fig. 15. For the sake of brevity, results are provided only
for second, fourth and sixth tendons. As can be seen, there was a good agreement between real and
estimated values. The maximum errors in tensions of second, fourth, and sixth tendons were equal to
0.012, 0.018, and 0.004 N, respectively. Therefore, it can be concluded that IK of manipulator was fully
captured with an insignificant error. Hence, appropriateness of proposed model for obtaining IK can be
inferred.
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Figure 16. Tracking circular path by simulation setup: (a) defined and real path by proposed model,
(b) path tracking error in (mm), and (c) configuration of manipulator during tracking circular path.

5.1.3. Path tracking
First, tracking a circular path with a center of O = [

0 0 500
]
mm and radius of 300 mm in the

absence of obstacles was evaluated. After determining desired path as depicted by blue line in Fig. 16(a),
it was discretized into 100 points and required tendon tensions were specified through IK. Tensions
were imported as inputs to simulation setup, and real path was generated as green line. The errors
between these two paths are displayed in Fig. 16 (b). Accordingly, the capability of manipulator
in tracking defined path with insignificant normalized errors of 1.1, 0.5, and 0. 9% in X, Y, and
Z directions can be realized. The configuration of manipulator during path tracking is also repre-
sented in Fig. 16 (c). In the second step, the planning of an appropriate path from initial position of
Si(12 17 500)mm to final position of Sf (82 85 500) mm in the presence of a 10-mm diameter
obstacle in Sob(45 50 500)mm was studied. Width of safety zone was assumed as 12 mm. The con-
trol point was obtained as Sc(42 72 500)mm. Hence, a polynomial was fitted to initial, control, and
final points as depicted by blue line in Fig. 17, and discretized into 100 points. The corresponding tendon
tensions were obtained through IK and then applied to model to generate resultant path as green line.
According to this figure, good path tracking feature can be comprehended.
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Figure 17. Real and defined path of end effector in the presence of a circular obstacle in
Sob(45 50 500)mm.

5.2. Results of proposed data-driven approach for experimental setup of RoboArm
5.2.1. FD modeling
Experimental validation of proposed procedure for FD was performed using data gathered from
RoboArm. The provided results in Fig. 18 reveal that the model captured system dynamics with an
acceptable accuracy. The maximum error values were 22, 21, and 18 mm corresponding to normalized
errors of 3.72, 3.55, and 3.04%. Comparison of results for implementing proposed data-driven approach
for FD of experimental setup and FK of simulation setup is provided in Table II. Higher estimation errors
in the experimental setup were attributed to dynamic motion of RoboArm. The consequent unwanted
and uncontrolled vibrations resulted from slender structure of RoboArm affected the richness of col-
lected data. To enhance the quality of collected data, compensation of vibrations through appropriate
controllers was suggested. This model provided best fitted model since it was learned with real data of
RoboArm considering all effective parameters that were usually ignored in conventional methods.

5.2.2. ID modeling
Results for ID estimation of second, fourth, and sixth tendons are presented in Fig. 19. As it is obvi-
ous, proposed ID model for experimental setup of RoboArm provided an acceptable performance. The
existing small deviations between real and estimated values were attributed to the intrinsic vibrations
of RoboArm during dynamic motions. According to Fig. 19, maximum error in motor position was 50
units (approximately 1%). It should be noted that regarding the hysteresis nature of torque control in
these servomotors, proposed algorithm was implemented on motors position instead of tendons tension.

5.2.3. Path tracking
In this section, path tracking feature of RoboArm was evaluated for similar circular path as surveyed
in Section 5.1.3. The obtained result for tracking desired path by RoboArm is depicted in Fig. 20 (a).
Additionally, deviations between defined and real paths are also provided in Fig. 20 (b). According
to this figure, maximum normalized positioning errors in X, Y, and Z directions were 8.3, 7.1, and
1.5 %, respectively, with corresponding MAE values of 5.1, 4.1, and 1%. Furthermore, the comparison
of path tracking feature for simulation and experimental setups is provided in Table III. The long and
flexible structure besides sudden movements and rapid commands (by external or internal forces) in
continuum manipulators disposed them to both positioning errors and undesirable vibrations. These
errors are more prominent in dynamic motions owing to dominancy of friction and hysteresis [6, 34].
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Figure 18. FD for experimental setup of RoboArm; first diagram provides a comparison of estimated
and real values, second diagram represents prediction error, and third diagram depicts error mean and
Std for (a) X-e.e, (b) Y-e.e, and (c) Z-e.e.

Occurrence of undesired oscillatory motions is common in the fast point-to-point tracking which should
be suppressed to enhance the performance and accuracy [35, 36]. Accordingly, long motion cycles,
quasi-static motion, slow trajectories, and canceling vibrations have been proposed [37]. In ref. [38], a
controller was proposed to handle both path tracking and vibration suppression. In our study, further
improvement in path tracking feature can be achieved using an appropriate controller for undesired
vibrations.

It should be mentioned that as these manipulators are mainly used in medical operations, vibration
would not be problematic due to the damping of vibration in ttissue. Moreover, no closed-loop controller
was implemented in our study and the errors in previous steps may affect the subsequent points. Hence,
by a suitable closed-loop controller, error may be improved. For better understanding, the circular tra-
jectory of this work (radius of 300 mm) was compared with the circular trajectory of ref. [39] (radius
of 63 m). The tracking error in the latter case was 22.5 mm for open-loop state, which was reduced to
2.8 mm with closed-loop control scheme. The corresponding open-loop error in our study was equal to
50 mm (corresponding to normalized error of 8.3%), which is claimed to be improved with closed-loop
controller. It is worth mentioning that in continuous path tracking, regarding the discretization of path
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Table II. Comparison of modeling result for FK of simulation setup and FD of
experimental setup.

Simulation model (FK) Experimental model (FD)
Max error x (m) 4 × 10−3 (0.67%) 0.22 × 10−1 (3.72%)
Max error y (m) 1.8 × 10−3 (0.30%) 0.21 × 10−1 (3.55%)
Max error z (m) 5.2 × 10−3 (0.88%) 0.18 × 10−1 (3.04%)
Error mean x (m) 0.04 × 10−3 0.016 × 10−3

Error mean y (m) 0.92 × 10−3 0.015 × 10−3

Error mean z (m) 1.11 × 10−3 0.024 × 10−3

RMSE x (m) 1.48 × 10−3 8.59 × 10−1

RMSE y (m) 1.54 × 10−3 8.67 × 10−1

RMSE z (m) 2.30 × 10−3 8.32 × 10−1

(a) (b)

(c)

Figure 19. ID results for experimental setup of RoboArm; first diagram provides a comparison of
estimated and real values, second diagram represents prediction error, and third diagram depicts error
mean and Std for RoboArm (a) first tendon, (b) fourth tendon, and (c) sixth tendon.
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Table III. Error comparison of path tracking in both simulation and experimental setups.

Simulation model Experimental model
Path tracking error Max error x (m) 6.6 × 10−3 (1.10%) 50.0 × 10−3 (8.30%)

Max error y (m) 4.2 × 10−3 (0.50%) 43.0 × 10−3 (7.10%)
Max error z (m) 5.4 × 10−3 (0.90%) 9.0 × 10−3 (1.50 %)
MAE x (m) 4.0 × 10−3 (0.66%) 31.0 × 10−3 (5.10%)
MAE y (m) 3.2 × 10−3 (0.53%) 25.0 × 10−3 (4.10 %)
MAE z (m) 3.0 × 10−3 (0.50%) 6 × 10−3 (1.00%)

Table IV. Comparison of end effector error in different references for dynamics modeling.

Ref Type Length (m) Tip error (m) Tip error (%)
[6] Cable-driven 0.203 (0.70 − 1.80) × 10−2 3.44∗−8.66∗∗

[41] Cable-driven 0.418 3.10 × 10−2 7.30%
[42] Cable-driven 0.311 ≈1.50 × 10−2

≈5.00%
[43] Pneumatic 1.000 5.00 × 10−2 5.00%
Our study (simulation setup) Tendon-driven 0.590 0.52 × 10−2 0.88%
Our study (RoboArm) Tendon-driven 0.590 2.2 × 10−2 3.72%
∗For the environment with higher viscosity (water) in simulation
∗∗For the environment with lower viscosity (air) in simulation
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Figure 20. Tracking circular path by experimental setup of RoboArm: (a) defined and obtained path
by proposed approach and (b) tracking error of circular path.

into several points and considering the update of target in each step, higher errors would be generated
compared to single-point tracking case [40].

5.3. Error Discussion
The comparison of errors for dynamic model of the continuum manipulator with other available refer-
ences is provided in Table IV. According to this table, a very good accuracy of the proposed procedure
compared to other studies involving dynamic modeling can be inferred. As mentioned in ref. [2],
even more improved models can be achieved by increasing the training time in expense of increased
computational cost.
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Table V. Comparison of FK results in the presence and absence of external disturbances.

With disturbance Without disturbance
Max error Max error-X (m) 21.0 × 10−3 (3.55%) 4 × 10−3 (0.67%)

Max error-Y (m) 13.0 × 10−3(2.19%) 1.8 × 10−3 (0.30%)
Max error-Z (m) 10.0 × 10−3(1.69%) 5.2 × 10−3 (0.88%)

Error mean Error mean-X (m) −0.87 × 10−3 0.037 × 10−3

Error mean-Y (m) 0.44 × 10−3 0.92 × 10−3

Error mean-Z (m) 1.21 × 10−3 1.11 × 10−3

RMSE RMSE-X (m) 12.9 × 10−3 1.48 × 10−3

RMSE -Y (m) 3.9 × 10−3 1.54 × 10−3

RMSE -Z (m) 7.7 × 10−3 2.32 × 10−3

Table VI. Comparison of FK model for single, two, and three-section continuum manipulator.

MAE (m) RMSE (m) Error mean (m)
One-section continuum X-e.e 2.00 × 10−3 (0.33%) 0.33 × 10−3 −0.29 × 10−3

manipulator Y-e.e 0.90 × 10−3(0.15%) 0.11 × 10−3 0.26 × 10−3

Z-e.e 1.70 × 10−3(0.28%) 0.24 × 10−3 1.01 × 10−3

Two-section continuum X-e.e 5.40 × 10−3(0.91%) 1.48 × 10−3 0.04 × 10−3

manipulator Y-e.e 4.10 × 10−3(0.69%) 1.54 × 10−3 0.92 × 10−3

Z-e.e 3.00 × 10−3(0.50%) 2.30 × 10−3 1.11 × 10−3

Three-section continuum X-e.e 15.40 × 10−3(2.50%) 18.40 × 10−3 1.63 × 10−3

manipulator Y-e.e 14.70 × 10−3(2.40%) 17.80 × 10−3 1.20 × 10−3

Z-e.e 10.70 × 10−3(1.78%) 12.50 × 10−3 5.90 × 10−3

5.4. Performance in the presence of disturbances
The applicability of proposed procedure in the presence of disturbances was examined in this section.
In addition to the disturbances caused by environmental effects, small-valued contact forces can be
also considered as disturbances. To evaluate this feature, a random disturbance (ratio of maximum dis-
turbance amplitude to maximum input amplitude was equal to 11%) was added to the input data. The
provided results in Table V confirmed good estimation in the presence of disturbance. As can be seen, the
maximum errors in X, Y, and Z directions were equal to 8.9 × 10−3, 10.2 × 10−3 and 9.1 × 10−3m, corre-
sponding to normalized errors of 1.40, 1.70, and 1.51% with respect to the manipulator length. Hence, it
can be concluded that external disturbances can be compensated well by the proposed procedure, which
was expected regarding disturbance rejection feature of neural network structure.

5.5. Scalability
For generalizing the proposed procedure for manipulators with different number of sections, several
factors should be evaluated. According to ref. [10], error is generally amplified with increasing the
manipulator’s length regarding friction and coupling effects between sections. For data-driven proce-
dure, despite the strengthened effects by length increase, no significant error was expected according to
the inclusion of these effects in gathered data.

The procedure was implemented on single-section, two-section, and three-section manipulators in
simulation setup based on Cosserat rod theory. However, for experimental validation, a new setup should
be constructed. The provided results in Table VI disclosed better results for single-section manipulator.
For the two-section manipulator, the prediction error of end effector position was about 2.72 times of
the corresponding value for single-section counterpart. For the three-section manipulator, the mentioned
value was approximately 3.2 times of two-section counterpart. Accordingly, scalability of manipulator
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Figure 21. Performance of manipulator in unloaded and loaded case (addition of 10 g mass).

can be inferred. In this design, since the diameters of all sections were considered to be equal, only the
scalability of manipulator in terms of length was provided; however, the scalability was also assessed
for different diameters and almost similar results were obtained.

5.6. Load carrying maneuver
This section was dedicated to performance evaluation of proposed algorithm for load carrying maneu-
ver. Accordingly, outputs (estimated) and target values with load are depicted in Fig. 21 for some cases.
In the first case, output and target values of the end effector in unloaded free motion were shown, which
were almost coincident (normalized error of 0.01% with respect to manipulator length). Then, a mass
of 10 g was added and load carrying case was recognized by available sensory information. After that,
required input for compensating load was calculated and added to reference input. For the second case,
S1( 380 −180 585 )mm, estimated values of Ŝ1( 361−169 561 )mm were obtained in loaded condi-
tion, which were corresponding to normalized errors of 3.21, 1.86, and 4.07 %, respectively. Moreover,
estimated values by algorithm for reaching S1( −150 200 410 ) and S1( −250 100 290 ) points
revealed 2.9, 3.2, 3.7 and 3.2, 3.5, 3.8 % normalized error, respectively. For further compensation of
applied load, additional sensory information and appropriate controllers are required.

6. Conclusions
In this paper, the development of kinematics/dynamics models through data-driven identification algo-
rithm was addressed. Through the proposed procedure, a direct mapping was established between the
actuation and task spaces. Therefore, complexity and computational costs were reduced by eliminating
the additional actuator-to-configuration and configuration-to-task mappings. The proposed algorithm
was implemented on gathered data from two setups: simulation setup based on Cosserat rod theory and
experimental setup of RoboArm for validating its performance. According to the obtained results of
prior setup, superior estimation of data-driven FK was realized in which maximum normalized errors
for X, Y, and Z components of end effector were equal to 0.67, 0.30, and 0.88 %, respectively. The
corresponding results for FD estimation of experimental setup were the respective values of 3.72, 3.55,
and 3.04%. Higher estimation errors in latter setup were attributed to the consideration of dynamic
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motion instead of quasi-static motion in the simulation setup. Accordingly, unwanted and uncontrolled
vibrations affected the richness of collected data. To overcome this problem, compensation of vibrations
through an appropriate controller was suggested to enhance the quality of collected data. By addressing
the existing challenges in developing the inverse models for continuum manipulators, a data-driven pro-
cedure was proposed for inverse modeling problem, which was successfully implemented on simulation
and experimental setups.

The simplicity and confidence in obtaining FK/FD and IK/ID as well as accuracy of obtained models
are the advantageous features of proposed data-driven procedure. Capturing every details of real system,
including uncertainties, friction, backlash, and so on, is the other probable advantage which influences
the further applications, especially path planning and control schemes. Then, using the obtained model,
path tracking in the presence/absence of obstacles was examined on both setups. The maximum normal-
ized errors for X, Y, and Z components of end effector were 1.1, 0.5, and 0.9% for simulation setup and
8.3, 7.1, and 1.5% for experimental setup, respectively. Additionally, disturbance rejection was evalu-
ated, and well compensation of disturbances by proposed scheme was comprehended. Furthermore, the
generalization of procedure for continuum arms with lower and higher number of sections was stud-
ied in simulation. Despite the increased errors in higher number of sections originated from friction
and coupling effects, the developed model still provided good estimation. Moreover, the performance of
proposed algorithm in load carrying maneuver was assessed, and an acceptable prediction with the use
of only available sensory information was achieved.
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