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The present study aims to provide a statistical analysis of turbulence in the mixing layer
of a lock-exchange gravity current propagating over a 2 % slope based on large eddy
simulation using a Boussinesq code. The statistics are calculated from the ensemble and
spanwise averaging of 200 simulations for two time steps corresponding to the initial
constant velocity slumping phase and the decelerating inertial phase. The overall energy
balance and structure of the mixing layer are weakly influenced by the propagation time
following the lock release. Thereby, streamwise dominated turbulence is produced by the
positive buoyancy flux and subsequently converted into averaged flow through energy
backscatter in the nose, whereas the current’s interface takes the structure of a stratified
mixing layer unstable to Kelvin–Helmholtz instabilities in the rear of the head. The
dependency of the current head/body structure on the evolution of the turbulence kinetic
energy (TKE) along the mixing layer is also investigated. The transition from the head to
the body is associated with a peak of TKE and the flux Richardson number exceeding the
stability criterion Rif = 0.2. It is furthermore observed that the turbulence intensity in all
three spatial directions stabilises to satisfy 〈u′u′〉 = 2〈v′v′〉 = 2〈w′w′〉, where u′, v′ and w′

are respectively the streamwise, spanwise and vertical turbulent perturbations of velocity.
Finally, a region of statistically stationary TKE is identified once the gradient Richardson
number plateaus to a value dependent on the current’s propagation approximately 5.5 lock
heights backward from the front, where the depth-averaged TKE budget reduces to the
balance between the contributions due to shear (P), buoyancy (B) and viscous dissipation
(ε) as 〈P〉d + 〈B〉d − 〈ε〉d ≈ 0.

Key words: gravity currents, shear layer turbulence, stratified turbulence

1. Introduction

Unsteady gravity currents, or finite volume gravity currents, are a common type of
intermittent buoyancy-driven flow. They form when a finite volume of dense fluid suddenly
discharges into a lighter quiescent environment and propagates as an avalanche-like dense
wave. The density difference can be caused by either temperature gradients, compositional
concentration gradients or an inhomogeneous distribution of suspended sediment in the
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FIGURE 1. Schematic representation of the lock-exchange geometry (based on Wilson et al.
2017) and the induced gravity current. Dimensions: H = 0.3 m, Lx,l = 0.58 m, Lx,c = 5.58 m
and Lz = 0.4 m, with 2 % inclination.

case of turbidity currents. Notable types of unsteady gravity currents are underwater
reservoir discharges, river and estuary outflows and subaqueous landslides (Meiburg &
Kneller 2010).

Unsteady gravity currents have been the focus of much research, and are commonly
reproduced in a laboratory by the sudden release of a fixed volume of fluid into a
channel using the lock-exchange technique (Rottman & Simpson 1983; Härtel, Meiburg
& Necker 2000; Cantero et al. 2008; Fragoso, Patterson & Wettlaufer 2013; Nogueira
et al. 2014; Inghilesi et al. 2018; Kyrousi et al. 2018; Lombardi, Adduce & La Rocca
2018; Ottolenghi et al. 2018; Pelmard, Norris & Friedrich 2018; Pérez-Díaz et al. 2018a,b;
Wilson, Friedrich & Stevens 2018b; Zhao et al. 2018). The structure of gravity currents
can be divided into three parts: an active dense frontal head, followed by a long body
akin to a stratified shear layer and a decayed tail (Middleton 1966; Komar 1972; Kneller,
Bennett & McCaffrey 1999) (see figure 1). The three phases of the current’s propagation –
namely the initial slumping phase, the inertial phase and the buoyant–viscous phase –
are well understood and dimensional analysis and shallow-water models have permitted
the derivation of self-similar laws for the front velocity of the current (Benjamin 1968;
Bonnecaze, Huppert & Lister 1993; Shin, Dalziel & Linden 2004), which have been
validated against experimental and numerical datasets (Keulegan 1957; Middleton 1966;
Rottman & Simpson 1983; Marino, Thomas & Linden 2005; Cantero et al. 2007).

The interfacial dynamics of gravity currents is often modelled as stratified shear
layers. Shear not only triggers the growth of three-dimensional turbulence at high
Reynolds numbers, but also excites Kelvin–Helmholtz instabilities in the presence of
flow stratification. The amplification of the Kelvin–Helmholtz instabilities leads to the
roll up of the current’s interface into two-dimensional Kelvin–Helmholtz billows which
subsequently entrain ambient fluid into the current and drives the growth of an interfacial
mixing layer (Britter 1974; Hacker, Linden & Dalziel 1996; Hallworth et al. 1996; Härtel
et al. 2000; Ottolenghi et al. 2016a,b; Ottolenghi, Cenedese & Adduce 2017b).

Modelling approaches have aimed to specify the effect of shear induced mixing on
the evolution of the averaged flow quantities. One such quantity is the bulk Richardson
number, defined as the ratio of the density to the velocity difference at the sides of
the mixing layer (Ellison & Turner 1959; Turner 1986; Cenedese & Adduce 2010). The
evaluation of the turbulence kinetic energy (TKE) budget allows direct estimation of
turbulence suppression in the presence of stable stratification using the flux Richardson
number Rif , which quantifies the ratio of buoyant destruction to shear production of
turbulence (Ellison 1957; Britter 1974; Osborn 1980). However, in most experimental and
in situ flow studies, the second-order statistics necessary for the calculation of Rif are
not available and several attempts have been made to parameterise Rif in terms of the
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gradient Richardson number Rig across the interface of the mixing layer (Townsend 1958;
Britter 1974; Pacanowski & Philander 1981; Mellor & Yamada 1982; Strang & Fernando
2001; Odier, Chen & Ecke 2014). The validity of these models was notably shown to hold
for Rig smaller than the value Rig,c = 0.25, identified theoretically as the critical threshold
value below which the mixing layer starts being unstable to Kelvin–Helmholtz instabilities
(Thorpe 1968; Townsend 1980).

Most geophysical models assume the current to be steady and neglect the influence of
the head on the current dynamics. Whilst such assumptions are acceptable for field-scale
currents, such as oceanic overflows and atmospheric cold air waves that exhibit a large
length to height aspect ratio, their application to unsteady gravity currents is questionable.
Recent experimental observations (Hacker et al. 1996; Kneller et al. 1999; Thomas,
Dalziel & Marino 2003; Sher & Woods 2015) highlighted the central role of the flow
dynamics in the head on the development of the mixing layer. In particular, the TKE
budget in the mixing layer is expected to be significantly affected by the dilution of the
head and the subsequent loss of the buoyancy force driving the propagation of the current.
laser Doppler velocimetry (LDV) measurements of the flow in the head of a moderately
turbulent lock-exchange gravity current by Kneller et al. (1999) reported singular patchy
regions of negative vertical momentum fluxes in the front region, which contrasts with
the positive fluxes characteristic of stratified flows observed in the body. More recent
numerical studies show similar results for the density turbulence flux, which acts to confine
the dense fluid inside the current at the leading edge and leads to the intensification of
turbulence by buoyancy (Ottolenghi et al. 2016a; Bhaganagar 2017). However, a thorough
discussion of the dynamics of the flow at the front of the current is still lacking to the
authors’ knowledge.

1.1. Objectives
The present work is motivated by a lack of information on the spatial evolution of the
mixing layer of unsteady gravity currents, notably along the head and its direct wake.
Three-dimensional large eddy simulations (LES) of a fully turbulent lock-exchange gravity
current were performed. LES simulations have been shown to accurately predict the
behaviour of high Reynolds lock-exchange gravity currents at reasonable computational
costs (Bonometti & Balachandar 2008; Ooi, Constantinescu & Weber 2009; Özgökmen,
Iliescu & Fischer 2009; Tokyay, Constantinescu & Meiburg 2012, 2014; Meiburg,
Radhakrishnan & Nasr-Azadani 2015; Ottolenghi et al. 2016b, 2017a; Kyrousi et al.
2018; Pelmard et al. 2018). A two-dimensional description of the turbulence statistics is
generated by ensemble averaging 200 separate simulations and spanwise averaging (span
averaging) of the domain. The ensemble-averaged statistics are presented for two time
steps chosen to represent the slumping and inertial phases of the current’s propagation.
The numerical model and the averaging approaches used to compute the momentum and
transport fluxes are introduced in § 2. In § 3, the current’s propagation and the growth of
the mixing layer are characterised. Section 4 focuses on identifying the changes in the
turbulence dynamics of the mixing layer at the head to body transition. Finally, the TKE
budget is evaluated in § 5 and the flow dependency on the flux and gradient Richardson
numbers is assessed.

2. Numerical model and simulations

2.1. Analytical formulation
The physical configuration studied is shown in figure 1 and inspired by Wilson, Friedrich
& Stevens (2017). In their experiments, the lock on the left was initially filled with a fluid
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901 A7-4 J. Pelmard, S. Norris and H. Friedrich

of density ρ1 and the channel on the right was filled with an ambient fluid of lower density
ρ0. The current was triggered by suddenly releasing the dense fluid into the channel at
t = 0.

The fluid’s motion was studied by solving the three-dimensional LES form of the
incompressible Navier–Stokes equations, together with a transport equation for the local
density variations. Since the density varies by less than 8 %, closure between the transport
and density equations is assured by applying the Boussinesq approximation (Meiburg
& Kneller 2010). The equations were rendered dimensionless using the half-lock height
H/2, the buoyancy velocity ub = √

g′(H/2) with the reduced gravity g′ = g(ρ1 − ρ0)/ρ0
and t0 = (H/2)/ub as the length, velocity and time scales respectively. The dimensionless
density was defined as m = (ρ − ρ0)/(ρ1 − ρ0) and varies between 0 and 1. The physical
quantities are denoted with a tilde (i.e. φ̃) and their dimensionless counterparts without
(i.e. φ). Defining the overbar φ as the LES filtering operator, the LES set of equations
takes the form (Smagorinsky 1963)

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ ∂

∂xj

[
1

Re
∂ui

∂xj

]
− ∂τij

∂xj
+ meg

i , (2.2)

∂m
∂t

+ ∂uim
∂xi

= ∂

∂xi

[
1

Sc Re
∂m
∂xi

]
− ∂τm

i

∂xi
, (2.3)

with eg
i the unit gravity vector. The dimensionless quantities embodying the physical

properties of the flow are the Reynolds number Re = ub(H/2)/ν and the Schmidt number
Sc = ν/Γ , where ν is the kinematic viscosity and Γ is the density diffusivity. The
momentum and density residual stresses τij and τm

i correspond to the effects of the
unresolved turbulent structures smaller than the filter width. The momentum residual
stresses are modelled using the standard Smagorinsky model (Smagorinsky 1963); τij is
expressed as a function of the corresponding resolved strain tensor Sij and a numerical
subgrid-scale (SGS) viscosity νSGS.

τij = −2νSGSSij, (2.4)

νSGS = (CsΔ)2
√

SijSij, (2.5)

Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.6)

The Smagorinsky coefficient usually varies between 0.1 and 0.2 (Pope 2000) and was
set to Cs = 0.18 (Pelmard et al. 2018). The filter width is locally defined from the cell size
volume as Δ = V1/3. Similarly, the density residual stresses τm

i were modelled as diffusive
fluxes by introducing a SGS diffusivity ΓSGS calculated using a fixed SGS Schmidt number
ScSGS = νSGS/ΓSGS = 0.7 (Pelmard et al. 2018). A no-slip boundary condition was imposed
at the bottom wall, whereas symmetry conditions were chosen for the side walls and slip
walls at the backward and forward walls.

2.2. Numerical model
The simulations were carried out using the structured non-staggered Cartesian finite
volume SnS code (Norris 2000). The filtered equations were solved using a fractional-step
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method, with the advection terms discretised in time using an Adams–Bashforth scheme
and a Crank–Nicholson scheme for the diffusion terms. Second-order central differencing
was used for the spatial discretisation of the advection and diffusion terms. The time
step was varied to maintain the value of the Courant–Lewy–Friedrich number (CFL =
uΔt/Δx) in the range 0.15–0.25.

The fluid filling the channel was initially at rest and a random velocity perturbation
−0.45 < ui < 0.45 was imposed inside the lock to accelerate the development of
turbulence. This also mimicked the stirring of the dense fluid to homogenise the density
before opening the gate done by Wilson et al. (2017). The initial velocity field was
corrected to satisfy the divergence free condition imposed by the continuity equation (2.1).
In line with the experiments of Wilson et al. (2017), the Reynolds number was set to
Re = 60 000. This Reynolds number is large enough for the behaviour of the fluid to be
globally insensitive to the Schmidt number (Bonometti & Balachandar 2008) when Sc > 1
and its value is here set to Sc = 1 (Necker et al. 2002, 2005; Cantero et al. 2008; Ooi et al.
2009; Özgökmen et al. 2009; Nasr-Azadani & Meiburg 2011).

2.3. Statistical treatment of the current
The statistical treatment of turbulence is based on the Reynolds decomposition of
the physical quantities, which aims to dissociate the averaged behaviour of the flow
from the local variations due to turbulent perturbations. Introducing the Reynolds
ensemble-averaging operator 〈〉, each physical quantity φ is decomposed as φ = Φ + φ′,
in which the capital letter Φ = 〈φ〉 represent the averaged value of φ and φ′ is the turbulent
perturbation about this average. The averaged set of equations thus reads

∂Ui

∂xi
= 0, (2.7)

∂Ui

∂t
+ ∂UiUj

∂xj
= − ∂P

∂xi
+ ∂

∂xj

[
1

Re
∂Ui

∂xj

]
− ∂T ij

∂xj
− ∂〈u′

iu
′
j〉

∂xj
+ Meg

i , (2.8)

∂M
∂t

+ ∂UiM
∂xi

= ∂

∂xi

[
1

Sc Re
∂M
∂xi

]
− ∂Tm

i

∂xi
− ∂〈u′

im
′〉

∂xj
, (2.9)

with T ij = 〈τij〉 and Tm
i = 〈τm

i 〉. To simplify the presentation, the overbars are dropped in
the averaged equations, however, the variables still refer to the filtered physical quantities.

Lock-exchange gravity currents are inhomogeneous in space and transient in nature.
Therefore, the standard methods of calculating turbulent statistics by averaging in space or
time are inappropriate. Making use of the statistical two-dimensional nature of the flow, the
statistics are first computed from averaging over the Nz spanwise cells of the domain (span
averaging). Considering the limited width of the domain, span averaging only provides
a rough statistical description of the flow and a significantly higher number of cells
is required to achieve convergence of the Reynolds stresses. For comparison, Chang &
Lee (2017) required more than 10 000 individual frames recorded using particle image
velocimetry (PIV) measurements of a planar turbulent shear layer to reach satisfactory
statistics.

Consequently, a dataset was generated by ensemble averaging 200 separate simulation
results, together with span averaging of the flow. Data were computed at two time steps, t =
29.1 and t = 50 judged representative of the mixing layer’s behaviour during the slumping
and inertial phases of the current’s propagation, respectively. Each simulation was
initialised with different random velocity perturbations inside the lock. The simulations
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Nx × (Ny,w + Ny,d) × Nz Δy1 Δ Tsim Δ2/Δ1 Tsim,2/Tsim,1

M1 1742 × (60 + 62) × 125 0.00133 0.0214 3.24106 s 1.68 7.1
M2 1032 × (55 + 37) × 74 0.00133 0.0361 4.55105 s

TABLE 1. Characteristics of grids M1 and M2.

present similar evolution during the first instants of the current’s propagation. However,
they develop sufficiently different turbulence histories to provide a chaotic distribution
of the Kelvin–Helmholtz billows over the sample of simulations and allow the complete
smoothing of the averaged flow to represent the continuous decay of the Reynolds stresses
along the current once the mixing layer is fully formed.

2.4. Grid resolution
Two grid sets M1 and M2, based on the grid sensitivity study of Pelmard et al. (2018),
were used. Both meshes have a uniform grid Nx × (Ny,w + Ny,d) × Nz, corresponding to a
general mesh spacing Δ, except in the bottom near-wall region. To ensure y+ < 5 at the
bottom wall, the first vertical mesh spacing was set to Δy1 = 0.00133 for both M1 and
M2 and was progressively increased to Δy = Δ at y = 2/3 following a logarithmic law
over Ny,w cells to allow for an aspect ratio of below 1.1 between two consecutive cells. The
mesh spacing was kept constant over the remaining Ny,d cells (2/3 < y < 2).

The characteristics of M1 and M2 are detailed in table 1. The propagation of the
current and the time development of the mixing layer was first investigated using the
fine grid M1. To reduce the computational costs, the 200 simulations used to compute
the ensemble-averaged statistics were carried out on the coarser grid M2. Both meshes
were shown to provide similar predictions of the front velocity and bulk characteristics
of the current (Pelmard et al. 2018). Whilst providing a coarser representation of the
inner dynamics of the flow, M2 was shown to offer a good description of the turbulence
dynamics within the current while reducing the computational time Tsim by a factor of
approximately 7 when compared to M1 (Pelmard et al. 2018). The model was also shown
to predict a substantial part of the inertial subrange of the turbulence spectra, and thus the
velocity cross-correlations are considered qualitatively acceptable for the purpose of the
study.

The validity of the LES approach and the influence of the initial random velocity
perturbation on the development of the turbulence are further presented in appendix.

3. Prediction of the current

3.1. Front velocity
During a gravity current’s propagation, the mixing layer is expected to adjust in response
to the progressive dilution of the initial dense fluid released and the diminution of the
buoyancy force. The overall balance of forces acting upon the current is reflected on the
variations of the current’s front velocity uf (Benjamin 1968; Shin et al. 2004; Cantero et al.
2007). For the present configuration, Pelmard et al. (2018) showed a weak dependence
of the front velocity on the grid resolution and good qualitative prediction of uf during
the two main regimes of propagation – namely the slumping phase and the inertial
phase. The front velocity is here further compared to the analytical estimates proposed
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FIGURE 2. Evolution of the front Froude number Frf during the current’s propagation.

by Shin et al. (2004), and later validated numerically by Cantero et al. (2007) using
three-dimensional direct numerical simulation (DNS). A non-dimensional measure of
the front velocity is typically given using the front Froude number Frf = ũf /

√
g′H. The

time evolution of Frf obtained for grid M1 is presented in figure 2. The front velocity is
derived from the front position xf defined as the maximum streamwise position on the
density isoline m̄ = 0.1 using central differencing. The subscripts sl and i used hereafter
stem for the slumping phase and the inertial phase, respectively. During the slumping
phase, the front travels at a constant rate and Frf ,sl ≈ 0.46, in good agreement with the
experimental value Frf ,sl = 0.48 of Keulegan (1957) and the numerical results of Cantero
et al. (2007). The deceleration of the current during the inertial phase agrees well with
the scaling law Frf ,i ∼ 0.98((Lx,lH)/H2)1/3(t̃/

√
H/g′)−1/3 (Cantero et al. 2007), giving

Frf ,i ∼ 1.22(t̃/
√

H/g′)−1/3. The transition from the slumping phase to the inertial phase
occurs shortly after t = 30. An estimate of the instant when the transition occurs is
given by t̃sl,i/

√
H/g′ = 0.94((Lx,lH)/H2)/Frf ,sl (Cantero et al. 2007). The estimate gives

t̃sl,i/
√

H/g′ = 18.7 corresponding to tsl,i = 26.4 with the present non-dimensionalisation,
which agrees with the simulation prediction.

3.2. Current structure and mixing layer
Figure 3 presents the isosurfaces of density m̄ = 0.1 and the density field on the symmetry
plane z = 2.67 at four time steps corresponding to: (i) the formation of the current
(t = 8.1), (ii) the fully developed current during the slumping phase (t = 20.5), (iii) the
late stage of the slumping phase (t = 29.1) and (iv) the inertial phase (t = 50). The
simulations correctly predict the structure of the flow. Upon the gate opening, the dense
fluid starts slumping in the channel (figure 3a). The current remains compact, yet the two
flow instabilities characteristic of gravity currents – the Kelvin–Helmholtz instability at
the upper interface of the current and the lobe and cleft instability at the front – are clearly
developed at t = 8.1. The velocity perturbation imposed inside the lock leads to the rapid
development of three-dimensional turbulence immediately after the lock release, as shown
by the deformation of the density isosurface in figure 3(a). The growth of turbulence is
reflected by the accentuation of the density isosurface deformation at later time steps. As
the flow develops, the current takes its characteristic structure of a dense frontal head,
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FIGURE 3. Density isosurface m̄ = 0.1 shortly after the release of the lock (t = 8.1) (a), once
the current is fully formed during the slumping phase (t = 17.5) (b), at the late stage of the
slumping phase (t = 29.1) (c) and during the inertial phase (t = 50) (d). The distribution of
density is also plotted on the symmetry plane z = 2.67.

followed by a vertically stratified body. This is identified in figure 3(b) and maintained for
the rest of the simulation. After a certain time, a thin decayed tail is observed in the rear
of the body (figure 3c,d).

In response to the current’s propagation, ambient fluid is advected backward above the
current. The mixing layer forms in response to the shear induced by the velocity difference
at the interface of the current. Standard planar mixing layers are shear dominated flows,
where the velocity field at the sides of the mixing layer is perpendicular to the density
gradient. Therefore, the establishment of the mixing layer can be identified by tracking the
alignment of the velocity vectors with the density isolines at the interface of the mixing
layer. Figure 4 shows the velocity vectors in a reference frame moving with the front and
the density isolines in the head of the current at t = 29.1 with the horizontal coordinate
relative to the front position xf = 19.3. Two regions are distinguished. Firstly, the velocity
field is perpendicular to the density isolines at the front and progressively aligns with
them over a distance of approximately x̃f − x̃ ≈ H. Secondly, the velocity vectors align
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ỹ/H

(x̃f  – x̃) /H

FIGURE 4. Span-averaged velocity vectors in the head of the current superimposed with the
density isolines m̄ = 0.05, 0.25, 0.5, 0.75 and 0.95 at t = 29.1. The velocity vectors are presented
in a reference frame moving with the front.

with the density isolines for x̃f − x̃ > H. The structure of the mixing layer is considered
fully established once the ambient fluid is advected horizontally for x̃f − x̃ > 1.5H.

3.3. Turbulent mixing layer
The mixing layer is a region where shear, buoyancy and turbulence interact to generate
a complex three-dimensional flow. To identify the behaviour of the mixing layer, one
needs to define the mixing layer’s borders. Strictly speaking, the standard formulation
of the mixing layer’s borders as the cross-stream position where the streamwise velocity
component reaches 95 % of the outer flow is not directly applicable in the context of
gravity currents since no outer flow is imposed. Chang & Li (2011) propose an alternative
vorticity based formulation of the mixing layer. Dissociating the shear contribution of
vorticity – shear-induced vorticity – from the residual contribution added by the intrinsic
local rotation of turbulent structures as ωz = ωSH + ωres, the borders of the mixing layer
are identified as the position where the shear-induced vorticity equals 0. In the present
case, ω̄res is found to be more than one order of magnitude smaller than ω̄SH in the vicinity
of the mixing layer’s borders. The vorticity thus reduces to ω̄z ≈ ω̄SH and the mixing layer
is identified by ω̄z > 0. This definition is equivalent to the enstrophy formulation used by
Krug et al. (2015) to study the turbulent/non-turbulent interface of a continuously supplied
wall-bounded upward propagating gravity current. Inside the current, ω̄z is negative in the
near-wall region and positive in the mixing layer, thence the inner, or bottom, border is
easily identified as the height yb, where ω̄z changes sign. Above the current, ω̄z decays to
0 and the outer, or top, border is diffuse. The top border is thus chosen as the height yt,
where ω̄z reaches 5 % of the vorticity scale 0.05ub/(H/2) = 0.12, reduced to ω̄z = 0.1.

Figure 5 shows the distribution of the span-averaged TKE along the current as well as
the isoline ω̄z = 0.1 during the formation of the current (t = 8.1), once the current is fully
formed during the slumping phase (t = 14 and 20.9) shortly before the transition to the
inertial phase (t = 29.1) and during the inertial phase (t = 39.6, 50 and 64). The plots are
presented in a reference frame moving with the front and the origin is set at the current’s
front. The TKE is mainly confined in the mixing layer. As the current advances, the
width of the mixing layer remains approximately constant over the establishment region
x̃f − x̃ < H identified in figure 4 and expands horizontally similar to a wall-bounded jet
for x̃f − x̃ > H (Townsend 1980). In line with the formation of the head/body structure,
the turbulent mixing layer is still forming at t = 8.1 and the Kelvin–Helmholtz billows
are identified by the roll up of the mixing layer and local maxima of TKE at the centre
of the rolls. As the current advances, the growth of three-dimensional turbulence tends
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to partially hide the presence of the billows. At t = 20.9, the turbulent mixing layer is
considered established and the TKE displays a characteristic evolution trend along the
current: the TKE increases along the head and decays along the body. The structure of the
mixing layer at the front adjusts once the current enters the inertial phase, which is here
assumed to be a consequence of the dilution of the head during this phase of propagation.

The ensemble-averaged fields are also plotted at t = 29.1 and 50 for comparison.
The ensemble-averaged fields capture well the behaviour of the mixing layer during
the slumping and inertial phases. The ensemble-averaging process totally smooths the
Kelvin–Helmholtz billows and gives a continuous and diffuse TKE field.

Note that a region of high TKE is observed in the rear of the current, above the tail,
which is induced by a persistent stagnant circulation in the vicinity of the lock gate
position. Investigating the nature of this circulation is beyond the scope of this study and
is not discussed herein.

4. Statistical characterisation of the current structure

4.1. Definition of the head
The position xh where the head ends – referred to hereafter as the limit of the head – is
conventionally identified where the Kelvin–Helmholtz billows detach from the head. The
limit of the head xh is here defined as the streamwise position from the front where ‘the
first local meaningful minimum’ of the depth-averaged height of the current hc, defined by
(4.1), is obtained. The notion of ‘first local meaningful minimum’ is illustrated in figure 6
by the transition from the blue plain lines to the red dashed lines.

hc(x, t) = 1
H

∫ H

0
m dỹ. (4.1)

The depth-averaged height of the ensemble-averaged current Hc = 〈hc〉 as well as its
derivative ∂Hc/∂x are shown in figure 6 for t = 29.1 and 50 as thick lines. The profiles
of hc are also plotted for five runs to demonstrate the variation between runs. The front of
the current is found at x̃f = 9.66H and 16H relative to the lock gate at t = 29.1 and 50,
respectively. The limits of the head obtained from the instantaneous fields are represented
by the transition between the plain blue lines and dashed red lines. As observed by
Härtel et al. (2000), the position of the limit of the head is not fixed. Nogueira et al.
(2014) analysed experimentally the evolution of the head of lock-exchange currents for
Re varying from 40 000 and 60 000, using the present definition of Re. They observed a
periodic variation of the head’s length as a result of cycles of stretching and contraction of
the head.

The instantaneous values of x̃h are confined to the region 1.475H < x̃f − x̃h < 1.725H
of length H/4, represented in figure 6 by vertical dashed lines, and delimited by the
maxima of ∂Hc/∂x , at both t = 29.1 and 50. The predictions of xh agree well with the
results presented by Härtel et al. (2000, figure 14) and the division of the current as
presented by Cantero et al. (2008, figure 6). The limit of the head is taken as the right
border of the previously identified region and set to xh = 1.5H hereafter. It is important to
note that Härtel et al. (2000) have reported the limit of the head farther upstream from the
front, in the range 2.5H < x̃f − x̃h < 4H. Indeed, they defined the head as the position at
which the current reaches a quasi-constant minimum height, a state that cannot be achieved
in this study due to a significantly lower volume of released dense fluid. The maximum
height Hc = 0.18 is reached for x̃f − x̃h ≈ H, which compares well with the maximum
height hc ≈ 0.2H obtained at x̃f − x̃h ≈ H shown in Härtel et al. (2000).
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FIGURE 5. Span-averaged TKE along the current at t = 8.1, 14, 20.9, 29.1, 39.6, 50 and 64.
The contour lines correspond to the isoline ω̄z = 0.1 defining the mixing layer’s borders. The
plots correspond to the grid M1, and the ensemble-averaged data are shown at t = 29.1 and 50
for comparison.
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0

hc

Hc – t = 29.1

Hc – t = 50
dHc /dx – t = 29.1

dHc /dx – t = 50

0.3

3.5 3.0 2.5 2.0 1.5 1.0 0.5
–0.3

0.3

0
(x̃f  – x̃) /H

∂hc
∂x

FIGURE 6. Depth-averaged height of the current Hc along the current and the derivative
∂Hc/∂x . Also shown are five instantaneous profiles of hc (fine lines). Red dashed lines show
the head and blue lines show the wake of the head.

4.2. Turbulence anisotropy of the mixing layer
The transition of the head to the body is well represented by the evolution of the mixing
layer’s turbulence. Cantero et al. (2008) have provided valuable qualitative knowledge
on the nature of the turbulence structures composing the mixing layer of lock-exchange
gravity currents. They notably described the breakup of the two-dimensional coherent
Kelvin–Helmholtz billows into three-dimensional smaller-scale vortices due to turbulent
tilting and bending processes, as well as the evolution of the turbulence isotropy along
the head and its direct wake. Hence, this section focuses on quantifying the changes
experienced by the flow at the transition from the head to the body. The velocity
perturbations 〈u′

iu
′
i〉 and the dominant Reynolds stress 〈u′v′〉 are shown in figure 7.

Both time steps display similar features, thus only the data for t = 29.1 are presented
herein.

The turbulence is seen to switch from a mainly streamwise oriented turbulence in the
head to three-dimensional turbulence in the body, although the streamwise component
remains dominant. Indeed, whilst 〈u′u′〉 decreases with increasing distance from the
front, its counterparts 〈v′v′〉 and 〈w′w′〉 grow until they peak close to the limit of
the head. Thereafter, the three components decrease at the same rate. The TKE is
distributed with half to 〈u′u′〉 and a quarter to 〈v′v′〉 and 〈w′w′〉, and the Reynolds stresses
are proportioned 〈u′u′〉 ≈ 2〈v′v′〉 ≈ 2〈w′w′〉 in the body. This observation is of interest
since image and laser tracking velocimetry methods, such as PIV and LDV, offer a
two-dimensional representation of the flow and cannot determine the cross-stream flow
motion. Consequently, the cross-stream component of turbulence is typically estimated
using empirical and anisotropy theory deductions. For instance, Odier et al. (2014)
conducted LDV measurements of continuously released gravity currents propagating up a
smooth plate and computed the TKE by assuming 〈w′w′〉 = 〈v′v′〉, which agrees with the
present observation.

The local three-dimensionality of turbulence is directly quantifiable using the Reynolds
stress anisotropy invariants theory of Lumley & Newman (1977) (see Jovanovic 2013, for
a detailed review). Introducing the normalised anisotropy tensor aij and its two invariants
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FIGURE 7. Distribution of the Reynolds stresses 〈u′u′〉 (a), 〈v′v′〉 (b), 〈w′w′〉 (c) and 〈u′v′〉 (d)
at t = 29.1.

II and III as

aij = 〈u′
iu

′
j〉

2k
− δijn

3
, k = 1

2
〈u′

iu
′
i〉, (4.2)

II = aijaji, (4.3)

III = aijajkaki. (4.4)

Lumley & Newman (1977) proposed a simple parameterisation of the states of
turbulence using the parameter J = 1 − (0.5II − III) varying between 0 and 1. High
values of J correspond to three-dimensional turbulence, with J = 1 corresponding to
perfect isotropy. Fading of J indicates strong anisotropy, with J = 0 representing the state
of 1- or 2-component turbulence, achieved when a plane exists where one or two of the
Reynolds stress tensors equal zero. Figure 8(a,c) presents the distribution of J in the
mixing layer of the current for x̃f − x̃ < 7H at = 29.1 and 50. As previously observed,
turbulence is strongly anisotropic in the nose due to the dominance of streamwise
turbulence. The growth of three-dimensional turbulence leads to an overall increase of J
with distance from the front. This process is better illustrated in figure 8(b,d), which shows
point clouds of J against the distance from the front. Clear threshold between the head and
its rear are visible. The three-dimensionality of turbulence in the body is represented by
values of J higher than 0.5, with a peak at 0.8 in the centre of the mixing layer.

While the present work focuses on the mixing layer, we briefly discuss the near-wall
turbulence. Two notable regions worthy of note are found in the head and correlate
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ỹ/H
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FIGURE 8. Distribution of anisotropy invariants parameter J = 1 − (0.5II − III) in the mixing
layer and point cloud of J along the current at t = 29.1 (a,b) and t = 50 (c,d). The grey
portion of the point clouds corresponds to the head and the black portion corresponds
to the body.

well with the near-wall turbulence described by Cantero et al. (2008). Firstly, high
turbulence is observed in the nose. The associated local maximum k = 0.036 at t =
29.1 and k = 0.03 at t = 50 are in comparison ∼2 and 1.7 times smaller than the
corresponding maximum TKE in the mixing layer k = 0.069 at t = 29.1 and k = 0.051
at t = 50 (figure 5). The region of intense turbulence is found for x̃f − x̃ < 0.35H
which agrees well with the location of the rich array of turbulent structures identified
in the current’s front by Cantero et al. (2008, figure 6). The figure plotted by Cantero
et al. (2008) shows the presence of horizontal hairpin vortices in this region, which
are here reflected by the maximum near-wall 〈u′u′〉 ≈ 0.051 and 〈w′w′〉 ≈ 0.023 of the
same order of magnitude while 〈v′v′〉 ∼ 0. Secondly, a region of low turbulence is
observed for x̃f − x̃ > 0.35H, where the TKE becomes 5 to 8 times smaller than the
corresponding TKE maximum across the mixing layer. The quasi-streamwise vortices
identified by Cantero et al. (2008) are represented by 〈u′u′〉 being overall 5 times higher
than 〈w′w′〉.
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4.3. Reynolds stress 〈u′v′〉
The Reynolds stress 〈u′v′〉, shown in figure 7(d), presents an area of negative values at
the leading edge and is positive in the rear part of the head and the body. To discuss
the nature and role of the Reynolds stress on the motion of the current, the theoretical
behaviour of a parcel of fluid located at the interface of the current is considered.
A positive Reynolds stress, such as in the wake of the head, means the upward transport
of streamwise momentum, or the forward transport of vertical momentum. Since the inner
part of the current is by definition located backward and/or downward from the interface of
the current, the parcel of fluid tends to transfer momentum from the current to the ambient
fluid, therefore contributing to the ambient fluid’s inertia. The current and the ambient
fluid move in opposite directions, therefore, it is acceptable to assume for the velocity
gradient across the interface of the current to be negative. In this context, the net increase
(decrease) of momentum in the ambient fluid (current) leads to a net reduction of the
velocity difference between the two fluids – that is the velocity gradient at the interface,
hence reducing the shear in the mixing layer. In contrast, the negative 〈u′v′〉 at the leading
edge indicates the backward transport of vertical momentum or the downward transport
of streamwise momentum, which leads to a net increase (decrease) of momentum in the
current (ambient fluid) and causes the increase of shear at the interface of the current.

4.4. Turbulence scaling in the mixing layer
Figure 9 shows the profiles of streamwise velocity and TKE at different positions from
the front at both time steps. The data are presented using the vertical similarity coordinate
ξ = ( y − yb)/lω used to study shear flows (Townsend 1980); ξ is corrected to align the
origin with the bottom border of the mixing layer. The mixing layer’s length lω = yt − yb
is chosen as the characteristic length scale for the mixing layer (Chang & Li 2011; Chang
& Lee 2017), with yb and yt the bottom and top borders of the mixing layer introduced in
§ 3.3. The streamwise velocity is normalised by the velocity difference at the sides of the
mixing layer ΔU = U( yb) − U( yt) – i.e. the maximum velocity inside the current and the
constant ambient fluid velocity above the current. The TKE is normalised by its maximum
value across the mixing layer kmax(x).

Typical profiles of shear layers are obtained: the streamwise velocity shows an error
function-like distribution linking the top and bottom borders of the mixing layer, and the
TKE presents a Gaussian-like distribution peaking at the mixing layer’s centre, where
shearing is at a maximum (Townsend 1980; Vreman, Geurts & Kuerten 1997; Balaras,
Piomelli & Wallace 2001; Yang et al. 2004; Krug et al. 2013). In particular, the profiles
obtained for x̃f − x̃ > 3.4H compare well with experimental and numerical data reported
in the body of lock-exchange currents (Garcia 1994; Gray, Alexander & Leeder 2006;
Cantero, Balachandar & Parker 2009; Eggenhuisen & McCaffrey 2012) and unconfined
currents (Pérez-Díaz et al. 2018b; Wilson, Friedrich & Stevens 2018a). The velocity
gradient remains constant across the mixing layer, except inside the head where it grows
towards the centre of the mixing region.

The good superimposition of the normalised velocity and TKE profiles suggests the
potential existence of a self-similar regime describing the evolution of the mixing layer in
the wake of the head. Note that unlike t = 50, the profile of TKE in the head (x̃f − x̃1 =
H) at t = 29.1 slightly deviates from the other positions. This difference is attributed to
skewness on the calculation of ξ inherited from the increasing sensitivity of lω to the ratio
of the cell size to the thickness of the mixing layer Δ/lω when the mixing layer shrinks. To
qualify the existence of a self-similar regime in the mixing layer, the normalising quantities
ΔU and kmax are shown in figure 10. The head is characterised by the increase of ΔU and
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FIGURE 9. Vertical profiles of normalised streamwise velocity U/ΔU and TKE k/kmax at t =
29.1 (a,c) and t = 50 (b,d). The profiles have been extracted in the head (x̃f − x̃1 = H), at the
limit of the head (x̃f − x̃2 = 1.475H and x̃f − x̃3 = 1.725H), in the developing wake (x̃f − x̃4 =
3.4H) and in the developed body (x̃f − x̃5 = 7.15H)

kmax . The limit of the head is identified by the sudden change in the trend of ΔU and kmax .
In a strict sense, no self-similar regime could be identified, since no unique velocity scale
was found to describe both the decrease of ΔU and kmax at the same time. However, each
quantity follows individual scaling laws, therefore indicating specific similarity of U and
k in the body.

While ΔU appears to decrease linearly along the length of the body at both time steps
(figure 10a), the switch of decaying trend of the TKE from the apparent exponential scaling
exp[−3.7(x̃f − x̃)/Lc] at t = 29.1 to a power law scaling with (x/xf )

−1.1 at t = 50 in the
wake of the head suggests the existence of distinct turbulence regimes in the body of
the current at the two time steps. The development of different turbulence regimes is
likely to be the result of changes in the overall force balance acting upon the current
occurring at the transition from the slumping phase to the inertial phase as the dense
head starts being diluted. Analytical solutions for the evolution of turbulence in stratified
shear flows have been derived for instance by Rohr et al. (1988), following the initial
solution proposed by Tavoularis (1985) for non-stratified flows. In the present case, such
derivations are hindered by the non-satisfaction of several necessary conditions – among
others stationary flow conditions, constant eddy viscosity and eddy diffusivity across the
mixing layer and constant averaged streamwise velocity – which allow the simplification
and analytical resolution of the governing equations. Note that the fitted linear trend of
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FIGURE 10. Evolution of the velocity difference at the sides of the mixing layer ΔU (a) and
the maximum TKE over the depth of the mixing layer kmax (x) (b) along the current.

ΔU at t = 29.1 ends where the body collapses into the tail at approximately x̃f − x̃ ≈ 8H,
and is unlikely to have been influenced by the backward wall circulation identified in § 3.3
(figure 5).

At both time steps, the decay of kmax abruptly stops and plateaus over approximately
3H (figure 10b). The plateau kmax ≈ 0.019 is approximately 3.5 times lower than its
maximum at the limit of the head at t = 29.1, whereas its value kmax ≈ 0.0055 at t = 50 is
approximately 9 times lower than the corresponding maximum at the limit of the head. At
this stage, no conclusions can be made concerning the nature and evolution of the plateau
on the basis of the two time steps studied. However, it illustrates the existence of a regime
of horizontally homogeneous turbulence inside the body which would eventually allow
for the computation of meaningful statistics using streamwise and spanwise averaging
over part or all the length of the plateau. Such statistics would prove valuable for the
quantitative validation of LES and DNS simulations of unsteady gravity currents against
experimental datasets. The influence of the backward circulation on the existence of the
plateau needs, however, to be assessed.

5. Stratified turbulence balance

5.1. TKE budget
The change in the trend of the decay of TKE in the body between t = 29.1 and t = 50
observed in figure 10(b) suggests the rearrangement of the TKE production/dissipation
balance. This section presents and discusses the evolution of the TKE budget along the
current. The TKE budget (5.1) is derived from the combination of the instantaneous and
averaged flow equations (2.2) and (2.8) as 〈u′

i (2.2)–(2.8)〉.

Dk
Dt

= P + B − ε + T + D. (5.1)
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The term Dk/Dt = ∂k/∂t + Ui∂k/∂xi is the material/Lagrangian derivative describing
the rate of variation of TKE held by a parcel of fluid advected by the averaged flow.
The three first terms on the right-hand side of (5.1) correspond to the production and
destruction of turbulence; P = 〈u′

iu
′
j〉∂Ui/∂xj is the production of turbulence by shear

– i.e. the conversion of energy from the averaged flow to turbulent momentum; B =
〈u′

im
′〉eg

i is the buoyancy flux responsible for the production/destruction of turbulence
(positive/negative) due to buoyant mixing in stratified flows. The dissipation rate of
turbulence ε = (1/Re)〈(∂u′

i/∂xj)(∂u′
i/∂xj)〉 − 〈u′

i∂τ ′
ij/∂xj〉 comprises the combined effect

of the molecular dissipation and SGS diffusion. The last two terms of (5.1) stem from the
passive redistribution of TKE in the domain and have no impact on the total energy budget
integrated over the simulation domain. Thereby, T = −(1/2)∂〈u′

iu
′
iu

′
j〉/∂xj is the transport

of turbulence by the turbulent perturbations, also interpreted as a turbulent diffusive flux,
and D = ∂[−〈u′

jp
′〉 + (1/Re)∂k/∂xj]/∂xj is a cumulative diffusive flux, which includes

the pressure and viscous diffusion of turbulence.
To analyse the production/destruction balance and the energy exchanges along the

current, (5.1) is averaged over the depth of the domain. Depth averaging is denoted by
the operator 〈〉d and the depth-averaged quantities 〈P〉d, 〈B〉d, 〈−ε〉d, 〈T〉d and 〈D〉d are
shown in figure 11(a,b) at t = 29.1 and 50. The different terms of the energy budget
(figure 11a,b) present similar evolution trend at both time steps. The turbulent diffusion
flux 〈T〉d and diffusive flux 〈D〉d are negligible as compared to the three other terms
and can be neglected in (5.1). The TKE budget reduces then to the balance between the
production and destruction terms of TKE

D〈k〉d

Dt
≈ 〈P〉d + 〈B〉d − 〈ε〉d. (5.2)

The value of D〈k〉d/Dt is obtained by summing all the terms on the right-hand side of
(5.1) and is compared to 〈P〉d + 〈B〉d − 〈ε〉d in figure 11(c) at both time steps. The curves
superimpose well, thus confirming the validity of relation (5.2) and that there is negligible
redistribution of TKE in the streamwise direction. Small differences between the left and
right sides of relation (5.2) are observed in the head, where the diffusive flux 〈D〉d has a
noticeable influence on the TKE budget. This feature is particularly apparent at t = 50,
where 〈D〉d is of the same order of magnitude as 〈B〉d and −〈ε〉d. The local increase of
〈D〉d is mainly due to the increase of the pressure fluctuations at the limit of the head,
which results in enhanced velocity pressure cross-correlation gradients.

Closure models applied to model the Reynolds stresses and turbulenttransport fluxes in
shallow-water and Reynolds averaged Navier–Stokes (RANS) models commonly assume
equilibrium between turbulence production and dissipation, i.e. stationary flow conditions
with 〈P〉d + 〈B〉d − 〈ε〉d ≈ 0. Satisfaction of the stationary condition can be roughly
evaluated by tracking D〈k〉d/Dt along the current. The evolution of D〈k〉d/Dt reveals
two distinct regions in the body. Firstly, D〈k〉d/Dt decreases in the direct wake of the
head, referred to herein as a developing wake. Secondly, D〈k〉d/Dt falls to 0 and the body
becomes stationary in the region referred herein as a developed body. Note that D〈k〉d/Dt
keeps fluctuating in the developed body, however, the amplitudes of the fluctuations
are two orders of magnitude smaller than the maximum D〈k〉d/Dt in the head and are
considered negligible at both time steps.

A quantitative measure of the deviation from the stationary condition is given by the
TKE budget parameter α = (〈B〉d − 〈ε〉d)/〈P〉d shown in figure 12 (Strang & Fernando
2001). The parameter α increases along the developing wake. It stabilises over 0.85 in
the developed body, hence indicating that the TKE budget is well described by stationary
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FIGURE 11. Depth-averaged shear production of turbulence 〈P〉d, buoyant contribution to
turbulence 〈B〉d, dissipation −〈ε〉d, turbulent transport 〈T〉d and combined pressure and viscous
diffusion of turbulence 〈D〉d along the current at t = 29.1 (a) and 50 (b). The Lagrangian
derivative of TKE D〈k〉d/Dt and 〈P〉d + 〈B〉d − 〈ε〉d are shown in (c).

conditions in this region, and the developed body is found for x̃f − x̃ > 5.5H at both time
steps. The deviation from stationary conditions (α � 1) observed along the developing
wake has been discussed by Strang & Fernando (2001) using experimental datasets
obtained for stratified mixing layers formed by forced density and velocity gradients across
the surface to control the formation of the interfacial instabilities. They correlate it to the
presence of Kelvin–Helmholtz instabilities. Strang & Fernando (2001) notably infer that
the repetitive billowing and breakup of the Kelvin–Helmholtz billows results in interfacial
swelling events which, in turn, excites internal waves responsible for subsequent energy
leakage. The present observations tend to corroborate their conclusions, insofar as the
Kelvin–Helmholtz billows also become unnoticeable for x̃f − x̃ > 5.5H.

5.2. Turbulence production in the head
Inspection of each term of (5.2) (figure 11a,b) indicates that the TKE budget is in
continuous adjustment over the length of the head. At the front, the production of TKE
is dominated by positive buoyancy flux 〈B〉d with 〈P〉d being negative. Negative shear
contribution to the TKE budget 〈P〉d is characteristic of backscatter transfer of kinetic
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FIGURE 12. TKE budget parameter α and flux Richardson number Rif along the current at
t = 29.1 and 50.

energy – i.e. backward transfer of TKE from the small scales of turbulence towards the
averaged flow (Pope 2000). The energy backscatter at the front is a direct consequence of
the momentum transport implied by the negative 〈u′v′〉 presented in § 4.3. This observation
has two implications for the study of gravity currents. Firstly, it shows the feeding of the
averaged flow by buoyancy-induced turbulence at the front through energy backscatter.
Secondly, the existence of energy backscatter strongly questions the reliability of purely
dissipative eddy viscosity RANS and LES models that ignore backward transfer of energy
by definition. In particular, the Smagorinsky model used in this study is expected to
overestimate the dissipation −〈ε〉d and to underestimate the averaged kinetic energy at
the current’s front. Further analysis is required to quantify the significance of the error
introduced.

5.3. Richardson number dependency of the flow

5.3.1. Flux Richardson number
For turbulence to be maintained, it is necessary for the destabilising effect of shear to

overcome the stabilising effect of buoyant stratification. The flux Richardson number Rif ,
also known as the mixing efficiency, is typically used to qualify turbulence and irreversible
mixing in a large range of geophysical stratified flows

Rif = 〈B〉d

〈P〉d
. (5.3)

The evolution of Rif along the current is shown in figure 12. The plots are limited to
the region 〈B〉d > 0 where the mixing layer behaves as a stratified shear flow. The position
where 〈B〉d changes sign is here defined as the ‘no buoyancy point’ and is found at x̃f −
x̃ = 0.65H at t = 29.1 and x̃f − x̃ = 0.73H at t = 50. Close to these positions, Rif falls to
zero, indicating inefficient mixing which results in a sharp density gradient at the interface
of the current. At such low Rif , the flow is likely to be unstable to Kelvin–Helmholtz
instabilities, and the initial roll up of the current’s interface into Kelvin–Helmholtz billows
is expected to be triggered in the vicinity of the no buoyancy point. Close inspection of the
mixing layer on a limited set of simulations tends to confirm this assumption, however, a
thorough validation is needed. The formation of the billows substantially enhances mixing,
therefore leading to the rapid increase of Rif and the growth of the mixing layer.
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The Rif growth rate drastically decreases when approaching the limit of the head. In
steady state conditions, Osborn (1980) discussed the existence of a critical value of Rif
above which turbulence is suppressed, quoting the theoretical value Rif ,c = 0.15 estimated
by Ellison (1957), and the experimental measurements Rif ,c ∼ 0.18 − 0.2 of Britter (1974)
obtained for stratified shear flows. In the present study, the TKE starts decreasing close
to the limit of the head where Rif becomes larger than 0.2, in agreement with the critical
values reported by Britter (1974). Equilibrium between 〈B〉d and 〈P〉d is achieved shortly
after entering the body, with Rif fluctuating around 0.28 along the body; Rif eventually
diverges at the tail. Ocean models often assume a constant flux Richardson number of
0.17 (Osborn 1980), whereas Odier et al. (2014) obtain values close to 0.1 for laboratory
reproductions of continuously released oceanic overflows. The large variability of the
values taken by Rif demands further research to qualify its dependency to the initial flow
conditions.

The distribution of Rif along the current previously identified occurs at both time steps.
It therefore shows independence of Rif to the propagation time for the studied stages of the
current’s propagation.

5.3.2. Gradient Richardson number
Since Rif remains constant in the body, it is clear that it is not an appropriate parameter

to characterise the suppression of the Kelvin–Helmholtz billows. The nature and stability
of Kelvin–Helmholtz instabilities in stratified mixing layers are commonly described in
terms of the gradient Richardson number Rig, which quantifies the ratio of stratification to
the average flow shear.

Rig = ∂M/∂y

(∂U/∂y)2 . (5.4)

Practically, a characteristic Rig across the mixing layer is defined to characterise the
flow stability at a given streamwise position (Strang & Fernando 2001; Odier et al. 2014).
Thereby, Rig is used to refer to the value at the centre of the mixing layer, taken as the
height where U = 0.5(U( yb) + U( yt)). This value offers a good compromise between
the standard depth-averaged value used for developed mixing layers in which the density
and velocity gradients present little variation, as observed in the body, and the minimum
value across the layer used to represent developing mixing layers with sharp density and
velocity gradients, as found in the head.

Stratified shear flows have been theoretically and experimentally reported to be unstable
to Kelvin–Helmholtz instabilities when the gradient Richardson number is lower than a
critical value Rig,c = 0.25 (Thorpe 1968). Figure 13 shows the distribution of Rig along
the current at both time steps. Inside the head, the growth of the Kelvin–Helmholtz
instabilities is characterised by low Rig < 0.25, with minimum values of 0.105 and 0.185
at t = 29.1 and 50; Rig increases in the rear part of the head and the developing wake.
The critical Rig,c = 0.25 characterises the burst of Kelvin–Helmholtz instabilities when
Rig becomes smaller than 0.25. Therefore, existing instabilities are not expected to be
immediately erased once Rig rise above 0.25. Here, Rig exceeds 0.25 for x̃f − x̃ > 2.65H at
t = 29.1 and x̃f − x̃ > 2.26H at t = 50 and the Kelvin–Helmholtz billows persist further
backward from the front. The disappearance of the billows coincides with the stabilisation
of Rig to a plateau for x̃f − x̃ > 4.5H. It is thus inferred that the stabilisation of Rig is a
good indicator of the disappearance of the Kelvin–Helmholtz billows in the body.

In most laboratory- and field-scale experiments, 〈P〉d and 〈B〉d are not accessible.
Consequently, several empirical models have been developed to parameterise Rif in terms
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FIGURE 13. Gradient Richardson number Rig along the centre line of the mixing layer at
t = 29.1 and 50.

of Rig (Townsend 1958; Mellor & Yamada 1982) or using bulk properties of the current
through a bulk Richardson number (Ellison & Turner 1959; Cenedese & Adduce 2010).
Such parameterisation is particularly useful to represent the turbulent flux exchanges in
shallow-water and RANS numerical models. Using the datasets at the two time steps
reported here, no convincing parameterisation of Rif as function of Rig was identified.

6. Concluding discussion

Three-dimensional large-eddy simulations of an unsteady channel gravity current
propagating over a slope of 2 % of Reynolds number Re = 60 000 have been performed.
The simulations were designed to statistically investigate the structural development and
stability of the mixing layer developing in unsteady gravity currents. Both qualitative and
quantitative investigations were carried out at the scale of the whole current, which has
never been presented before. The flow was modelled by the sudden release of a finite
volume of dense fluid, in a channel filled with a lighter fluid through a lock-exchange
configuration. The front velocity of the current compares very well with analytical scaling
laws, as well as experimental and numerical results previously reported. Likewise, the
Kelvin–Helmholtz instabilities and the lobe and cleft instabilities at the front are correctly
predicted and the initial velocity perturbation leads to the expected rapid development of
turbulence.

Rough TKE estimates were computed from span averaging of the flow quantities to
investigate the time evolution of the mixing layer. After an initial period over which
the head/body structure of the current develops, the mixing layer was shown to behave
like a wall-bounded jet in the wake of the head and the distribution of TKE along the
current remains approximately constant with distance from the front during the slumping
phase. To investigate the spatial development of turbulence along the mixing layer, refined
datasets of turbulence statistics were calculated at two time steps characteristic of the
slumping and inertial phases from ensemble and span averaging 200 simulation results.

The results confirmed the standard assumption used in geophysical models stating that
the rate of variation of TKE over a cross-section of the mixing layer can be reduced to the
balance between shear production of TKE 〈P〉d, the dissipation −〈ε〉d and the buoyancy
contribution 〈B〉d. In particular, an important finding is the identification of a region
of statistically stationary turbulence independent of the propagation time in the body,
starting approximately 5.5 lock heights from the front, where the TKE budget reduces
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to 〈P〉d + 〈B〉d − 〈ε〉d ≈ 0. This region is well captured by the stabilisation of the gradient
Richardson number Rig to a plateau which value increases with the propagation time.

The mechanisms of production and destruction of turbulence at the front of the current
were also discussed. As to the authors’ knowledge, those mechanisms are discussed
quantitatively for the first time, due to the difficulty and numerical cost of generating
meaningful statistics for such unsteady and inhomogeneous flows. Unlike planar shear
layers where turbulence is produced by shear (〈P〉d > 0) and dissipated for a large part
by buoyancy (〈B〉d < 0), turbulence was found to be produced by buoyancy at the front
(〈B〉d > 0). A part of the produced turbulence feeds the average flow through energy
backscatter (〈P〉d < 0) which contributes to the intensification of the interfacial shear
at the front. This observation directly questions the ability of eddy viscosity models to
represent the flux exchanges in gravity currents since such models are purely diffusive
and do not account for the reversed transfer of energy from small-scale to large-scale
turbulence.

The structural evolution of the current was related to the dynamics and stability of
the mixing layer. The limit of the head was identified as the region where the velocity
difference at the sides of the mixing layer and the TKE becomes maximum before
decreasing in the body at approximately 1.5 lock heights from the front and coincides
well with the detachment of the Kelvin–Helmholtz billows from the head. The standard
closure assumption 〈u′u′〉 ≈ 2〈v′v′〉 ≈ 2〈w′w′〉 was shown to be satisfied in the body. No
convincing regime of spatial self-similarity of the mixing layer was, however, identified,
although the TKE and the streamwise velocity fields were individually seen to evolve
similarly along part or all the body. The detachment of the Kelvin–Helmholtz billows
from the head was found to be dependent on the flux Richardson number Rif exceeding the
critical stability criterion Rig,c = 0.2 reported by Britter (1974) for stratified shear flows.
The balance between 〈P〉d and 〈B〉d was found to reach an equilibrium independent on
the propagation time in the body characterised by a constant flux Richardson number
Rif ≈ 0.28.

It is important to stress that these observations hold only for currents propagating over
mild slopes, where B = 〈u′

im
′〉eg

i is dominated by the vertical density transport flux 〈v′m′〉.
Indeed, the horizontal and vertical turbulent transport fluxes 〈u′m′〉 and 〈v′m′〉 are of the
same sign and magnitude in the rear of the head (not shown), and their contributions to B
are opposite and vary according to the bed slope. Assuming these conditions to hold for
higher bed slopes, increasing the slope progressively increases the importance of 〈u′m′〉 in
B, until a critical inclination above which the stabilising effect of 〈v′m′〉 is overcome by
〈u′m′〉. Under such circumstances, B remains positive subsequently leading to an unstable
mixing layer and the suppression of ambient fluid entrainment within the current. Recent
studies confirm this hypothesis. Steenhauer, Tokyay & Constantinescu (2017) showed the
development of an intensified mixed vortex that captures the density released in the wake
of the head and prevents the backward development of the mixing layer at sufficiently
high bed slope. Likewise, Reeuwijk et al. (2019) have reported evidence of ambient fluid
entrainment suppression for currents propagating over steep slopes.

The presented findings are important to improve our understanding of how the TKE
budget can be assessed in order to advance the study of complex unsteady gravity currents
and investigate more complex configurations both experimentally and numerically. In
future works, the influence of geometrical parameters, such as the inclination and depth of
the channel, intrinsic properties of the flow, such as the Reynolds number, or the presence
of particles, in the case of turbidity currents is needed.
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Appendix A

A.1. LES approach verification
Pelmard et al. (2018) demonstrated that the grid resolution used for the calculation of
the turbulent statistics in this study resolves a substantial part of the inertial subrange
of the streamwise and spanwise turbulence spectra. Therefore, the Reynolds stresses
can be considered qualitatively acceptable, even though increasing the grid resolution
would improve their accuracy. The dataset generated for this study allows the a posteriori
verification of the local satisfaction of this. Local ensemble and spanwise spectra
computed in the mixing layer show that the energy is mainly stored in large-scale structures
and the spectra decay over approximately three orders of magnitude, before reaching the
filter cutoff wavelength (figure 14a). On the contrary, the spectra computed in the nose
(figure 14b) decay over a limited range of approximately one order of magnitude before
the cutoff wavelength. Consequently, it is possible that the filtered scales of turbulence still
hold a non-negligible portion of the kinetic energy. Ideally, using a refined mesh would
improve the quantitative value of the Reynolds stresses. However, the present study does
not aim to provide a precise quantitative prediction of the Reynolds stresses (for example
to evaluate the erosive potential of the flow, net local mixing rate, etc). The achieved level
of precision is estimated to be sufficient to discuss and qualify the mechanisms governing
the development of turbulence in the nose, as presented in this study.

A.2. Influence of the initial conditions
The turbulence history of each run was varied by randomly varying the initial velocity
field within the lock. To illustrate the impact on the current over the propagation,
figure 15 shows three simulation results obtained with two different initial velocity
perturbation in the lock (figure 15a–d) and no initial perturbation (figure 15e, f ). Whilst
the initial perturbation has minimal impact on the initial roll up of the interface
into Kelvin–Helmholtz billows after the lock release (see also figure 16a for a close
up during the first instants), the position of the billows predicted once turbulence
is fully developed varies. Indeed, each run predicts individual and independent local
turbulence, and subsequently, an independent local energy budget. Therefore, the local
imbalance between shear and stratification responsible for the excitation of the first
Kelvin–Helmholtz modes, and subsequently the position where the roll up of the current’s
interface into Kelvin–Helmholtz billows is triggered, is likely to occur chaotically at
distinctive positions along the leading edge for each run. In this study, the large
variability in predicting Kelvin–Helmholtz billows for different runs leads to a complete
smoothing of the Kelvin–Helmholtz billows after ensemble averaging and the resulting
mixing layer is akin to what is obtained from time averaging a spatially developing jet
(see § 3.3, figure 5).
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FIGURE 14. Spanwise power spectral densities at x = 15 and y = 0.68 (centre of the mixing
layer in the body) (a) and x = 18.8 and y = 0.0273 (nose) (b) at t = 29.1. Note that the extraction
point in the nose is located at y+ = 113 wall distance from the bottom wall.
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FIGURE 15. Density isosurface m = 0.1 and density field on the symmetry plane for two cases
initialised with distinct initial velocity perturbations inside the lock (a–d), and a third case with
no initial perturbation (e, f ). The plots are presented after the lock release at t = 8.1 (a,c,e) and
once the turbulence is fully developed at t = 29.1.

Figure 16(a) shows the streamwise velocity distribution in the centre plane after the
lock release, for a case with an initial random velocity perturbation inside the lock on the
left, and the case with no initial perturbation on the right. The intensity of the random
velocity distribution is seen to quickly fade after the lock release, and the perturbations
are completely washed by the current’s inner dynamics, once the first Kelvin–Helmholtz
billows are formed at t = 4.6. The impact of the initial random velocity perturbation
on the turbulence spectra is illustrated in figure 16(b), showing the spanwise spectra
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FIGURE 16. Streamwise velocity and density isolines following the lock release (a) for a case
with initial velocity perturbation (left) and no initial perturbation (right). Spanwise spectra of
streamwise velocity averaged over the streamwise and vertical directions following the lock
release (b).

of streamwise velocity averaged over the two remaining directions at four time steps
following the release of the lock (straight lines). The structure of the spectra stabilises
shortly after the lock release, therefore showing the quick fading of the non-physical initial
perturbation. Note that the fast growth of turbulence is highlighted by the rapid increase
of the spectrum amplitude. The turbulence at t = 4.64 is of the same order of magnitude
as observed at t = 29.1, when turbulence is fully developed. In comparison, the growth of
turbulence is delayed when the fluid is not perturbed (dashed lines), with the spectrum at
t = 4.64 being one order of magnitude smaller than when an initial velocity perturbation
is imposed. Similar turbulence intensities are observed once turbulence is fully developed
at t = 29.1 for both cases.
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