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Abstract The notions of chaos and frequent hypercyclicity enjoy an intimate relationship in linear
dynamics. Indeed, after a series of partial results, it was shown by Bayart and Ruzsa in 2015 that for
backward weighted shifts on �p(Z), the notions of chaos and frequent hypercyclicity coincide. It is with
some effort that one shows that these two notions are distinct. Bayart and Grivaux in 2007 constructed a
non-chaotic frequently hypercyclic weighted shift on c0. It was only in 2017 that Menet settled negatively
whether every chaotic operator is frequently hypercylic. In this article, we show that for a large class of
composition operators on Lp-spaces, the notions of chaos and frequent hypercyclicity coincide. Moreover,
in this particular class, an invertible operator is frequently hypercyclic if and only if its inverse is frequently
hypercyclic. This is in contrast to a very recent result of Menet where an invertible operator frequently
hypercyclic on �1 whose inverse is not frequently hypercyclic is constructed.
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1. Introduction

Let H be a separable Banach space and T : H → H a continuous linear operator. T is
chaotic if T has a dense orbit and the set of periodic points of T is dense in X. Chaotic
operators are well studied in linear dynamics and well understood. For example, Grosse-
Erdmann in [12] gave a complete characterization of backward weighted shifts which are
chaotic.

The notion of frequent hypercyclicity is a quantitative version of hypercyclicity. It
was introduced by Bayart and Grivaux in [3] in the linear setting, but it also makes
sense for Polish dynamical systems. Although such a notion is purely topological, it is
related to measure-theoretical features of the topological dynamical system (H, T ). More

© The Author(s) 2021. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society

513

https://doi.org/10.1017/S0013091521000286 Published online by Cambridge University Press

mailto:ubdarj01@gmail.com
mailto:benito@usp.br
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091521000286&domain=pdf
https://doi.org/10.1017/S0013091521000286


514 U. B. Darji and B. Pires

specifically by Birkhoff’s Pointwise Ergodic Theorem, it follows that if T admits an invari-
ant ergodic Borel probability measure with full support, then T is frequently hypercyclic.
Conversely, Grivaux and Matheron showed in [11] that if H is a reflexive Banach space,
then any frequently hypercyclic operator T on H admits a continuous invariant Borel
probability measure with full support. The notion of frequent hypercyclicity is tricky: in
fact, it took a span of 10 years between the pioneer partial works [3, 13] and the full
characterization of frequently hypercyclic backward weighted shifts obtained in [5].

An important problem in linear dynamics is distinguishing between chaotic operators
and frequently hypercyclic operators. Bayart and Grivaux constructed in [4] a frequently
hypercyclic continuous linear operator that is not chaotic while Menet showed in [16]
that there exist chaotic continuous linear operators that are not frequently hypercyclic.
However, for many natural classes of operators such as backward weighted shifts on �p(Z),
these two notions coincide.

Another important problem concerning frequently hypercyclic operators is whether
the inverse of every invertible frequently hypercyclic operator is frequently hypercyclic.
This was solved in the negative very recently by Menet [17]. However, again for natural
classes of operators such as backward weighted shifts on �p(Z), the inverse of an invertible
frequently hypercyclic operator is frequently hypercyclic.

Our aim in this article is to give a very large class of composition operators for which the
notions of chaos and frequent hypercyclicity coincide (see Theorem 3.7 and Corollary 3.9).
Moreover, as the inverse of an invertible chaotic operator is chaotic, we also obtain that
in our class, the inverse of a frequently hypercyclic operator is also frequently hypercyclic
(see Corollary 3.8).

A powerful method for constructing frequently hypercyclic operator is to apply the
Frequent Hypercyclicity Criterion (FHC). This criterion was introduced by Bayart and
Grivaux in [3] and strengthened by Bonilla and Grosse-Erdmann in [12]. We also explore
the relationship between operators satisfying (FHC) and chaotic operators. Theorem 3.1
and Theorem 3.2 imply that in our setting, chaotic operators satisfy (FHC). Moreover,
we prove the partial converse for composition operators on Lp(X), p ≥ 2.

We specifically study composition operators on Lp(X) where (X, B, μ) is a σ-finite
measure space and f : X → X is a bijective, bimeasurable, nonsingular transformation
satisfying μ(f−1(B)) ≤ cμ(B) for all B ∈ B and some c > 0. The continuous linear opera-
tor Tf : Lp(X) → Lp(X) defined by ϕ �→ ϕ ◦ f is called the composition operator induced
by f . In such a general setting, hypercyclic composition operators and topologically mix-
ing composition operators on Lp-spaces were completely characterized in a joint work
of the authors with Bayart in [2]. Li–Yorke chaotic composition operators on Lp-spaces
were completely characterized in a joint work of the authors with Bernardes Jr. in [6].
Recently, generalized hyperbolicity among composition operators was characterized by
the first author, D’Aniello and Maiuriello in [10].

We would also like to point out that in a very different direction, Charpentier, Grosse-
Erdmann and Menet [9] give conditions under which backward weighted shifts on Köthe
sequence spaces have the property that the notions of chaos and frequent hypercyclicity
coincide.

The article is organized as follows: In §2, we give definitions and background results.
In §3, we state the main results and their consequences. Section 4 consists of examples,
§5 of proofs and §6 of open problems.
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2. Definitions and background results

2.1. Topological dynamics of linear operators

Let T : H → H be a continuous linear operator acting on a separable Banach space H.

Definition 2.1. The operator T is topologically transitive (or hypercyclic) if for any
pair of non-empty open sets U, V ⊆ H, there is k > 0 such that T k(U) ∩ V 
= ∅. If, in
addition, the set of periodic points of T is dense in H, then T is said to be chaotic.

We recall that in the setting of Banach spaces, T is topologically transitive if and only
if T admits a hypercyclic vector ϕ, i.e., ϕ ∈ H such that the orbit {ϕ, Tϕ, T 2ϕ . . .} is
dense in H.

Definition 2.2. The operator T is topologically mixing if for any pair of non-empty
open sets U, V ⊆ H, there exists k0 ≥ 0 such that T k(U) ∩ V 
= ∅ for all k ≥ k0.

Definition 2.3. A vector ϕ ∈ H is called frequently hypercyclic if for each non-empty
open set U ⊆ H, the set of integers N (ϕ, U) = {n ∈ N : Tnϕ ∈ U} has positive lower
density, that is,

lim inf
N→∞

1
N

# {1 ≤ n ≤ N : Tnϕ ∈ U} > 0·

The operator T is called frequently hypercyclic if it admits a frequently hypercyclic vector.

The following Frequently Hypercyclic Criterion was provided by Bonilla and Grosse-
Erdmann in [8, theorem 2.1]. It is a strengthened version of the original criterion obtained
by Bayart and Grivaux in [3, theorem 2.1]. Its simplified reformulation is stated below in
the context that we use.

Theorem 2.4 (FHC). Let (H, ‖ · ‖) be a separable Banach space and let T : H → H
be a continuous linear operator. Assume there exists a dense subset H0 of H and a map
S : H0 → H0 such that, for any ϕ ∈ H0,

(a) The series
∑

n≥1 T
n(ϕ) converges unconditionally;

(b) The series
∑

n≥1 S
n(ϕ) converges unconditionally;

(c) TS(ϕ) = ϕ.

Then, T is frequently hypercyclic, chaotic and topologically mixing.

2.2. Measurable dynamics

Definition 2.5. A transformation f : X → X on the measure space (X, B, μ) is

(a) bimeasurable if f(B) ∈ B and f−1(B) ∈ B for all B ∈ B;

(b) nonsingular if μ(f−1(B)) = 0 if and only if μ(B) = 0.
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Definition 2.6. A measurable system is a tuple (X, B, μ, f), where

(1) (X, B, μ) is a σ-finite measure space with μ(X) > 0;

(2) f : X → X is a bijective bimeasurable nonsingular transformation;

(3) there is c > 0 such that

μ(f−1(B)) ≤ cμ(B) for every B ∈ B. (∗)
If both f and f−1 satisfy (∗), then we say that the measurable system is invertible.

Definition 2.7. Let p ≥ 1. The composition operator Tf induced by a measurable
system (X, B, μ, f) is the map Tf : Lp(X) → Lp(X) defined by

Tf : ϕ→ ϕ ◦ f.
It is well known that (*) guarantees that Tf is a continuous linear operator. We refer

the reader to [19] for a detailed exposition on compositions operators.

Definition 2.8. A measurable transformation f : X → X on the measure space
(X, B, μ) is

(a) conservative if for each measurable set B of positive μ-measure, there is n ≥ 1 such
that μ(B ∩ f−n(B)) > 0;

(b) dissipative if there exists W ∈ B such that fn(W ), n ∈ Z, are pairwise disjoint and
X =

⋃
n∈Z

fn(W ).

The measurable system (X, B, μ, f) is called conservative (respectively, dissipative) if
f is conservative (respectively, dissipative).

We say that a set A ⊆ X is f-invariant if f−1(A) = A.

Theorem 2.9 (Hopf [1, 15]). Let (X, B, μ, f) be a measurable system. Then, X
is the union of two disjoint f -invariant sets C(f) and D(f), called the conservative and
the dissipative parts of f , respectively, such that f |C(f) is conservative and f |D(f) is
dissipative.

Definition 2.10. Let (X, B, μ, f) be a measurable system. A measurable set W ⊆ X
is a wandering set if the sets fn(W ), n ∈ Z, are pairwise disjoint. The system (X, B, μ, f)
is said to be generated by a wandering set W if X =

⋃
n∈Z

fn(W ).

In the sequel, we let B(W ) = {B ∩W : B ∈ B}.
Definition 2.11. We say that a dissipative system (X, B, μ, f) is of bounded distortion

if there exist a wandering set W of finite positive μ-measure and K > 0 such that

(i) W generates (X, B, μ, f), i.e, X =
⋃

n∈Z
fn(W );

(ii) For all n ∈ Z and C ∈ B(W ) with positive μ-measure,

1
K

μ(fn(W ))
μ(W )

≤ μ(fn(C))
μ(C)

≤ K
μ(fn(W ))
μ(W )

.
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Notice that in the definition of dissipative system (see Definition 2.8), we do not require
that W has finite measure.

3. Statement of the main results

In this section, we introduce a condition called Summability Condition or simply Condi-
tion (SC) that is useful for constructing composition operators that are simultaneously
chaotic, topologically mixing and frequently hypercyclic. We split our results into two
subsections. In the first subsection, we introduce Condition (SC) and we explore its rela-
tion to the FHC. In particular, we show that if we add the hypothesis that f is dissipative,
then we obtain that Condition (SC) is equivalent to Tf being chaotic. In the second sub-
section, we show that if f is a dissipative transformation of bounded distortion, then
Condition (SC) is equivalent to Tf being frequently hypercyclic.

3.1. The summability condition and the frequent hypercyclicity criterion

Let (X, B, μ, f) be a measurable system. We say that f satisfies the Summability
Condition (SC) if for each ε > 0 and B ∈ B with μ(B) <∞, there exists a measurable
set B′ ⊆ B such that

μ
(
B\B′) < ε and

∑
n∈Z

μ
(
fn(B′)

)
<∞. (SC)

The following result shows that the Summability Condition (SC) is the natural translation
of the FHC to the composition operator framework.

Theorem 3.1. Let (X, B, μ, f) be a measurable system. For all p ≥ 1, (SC) implies
(FHC). Moreover, (SC) and (FHC) are equivalent for all p ≥ 2.

Now we will provide a list of results that show how Condition (SC) is useful to char-
acterize when a transformation f is dissipative and when the composition operator Tf is
frequently hypercyclic or chaotic. The results below are true for all p ≥ 1.

Theorem 3.2 ((SC) Characterization, General Case). Let (X, B, μ, f) be a
measurable system and Tf : Lp(X) → Lp(X) be the associated composition operator.
The following statements are equivalent.

(a) f satisfies Condition (SC);

(b) f is dissipative and Tf has a dense set of periodic points.

Moreover, any of the above implies that Tf is chaotic, topologically mixing and
frequently hypercyclic.

Theorem 3.3 ((SC) Characterization, µ(X) < ∞). Let (X, B, μ, f) be a mea-
surable system with μ(X) <∞ and Tf : Lp(X) → Lp(X) be the associated composition
operator. Then, the following statements are equivalent.
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(a) f satisfies Condition (SC);

(b) f is dissipative.

Moreover, any of the above implies that Tf is chaotic, topologically mixing and
frequently hypercyclic.

In the sequel, we will need the following definition. Let X be a metric space and
f : X → X be a map. We say that x ∈ X is recurrent (for f) if for every open set U
containing x, there exists an integer n ≥ 1 such that fn(x) ∈ U .

Corollary 3.4. Let (X, B, μ, f) be a measurable system where X is a metric space
and μ is a Borel finite measure. Let Tf : Lp(X) → Lp(X) be the associated composition
operator. If the set of recurrent points of f has μ-measure zero, then f satisfies Condition
(SC) and hence Tf is chaotic, topologically mixing and frequently hypercyclic.

Corollary 3.5 ((SC) Characterization, f dissipative). Let (X, B, μ, f) be a dis-
sipative system and Tf : Lp(X) → Lp(X) be the associated composition operator. Then,
the following statements are equivalent.

(a) f satisfies Condition (SC);

(b) Tf is chaotic;

(c) Tf has dense set of periodic points.

Proof. That (a) implies (b) follows from Theorem 3.2. That (b) implies (c) is simply
the definition. That (c) implies (a) follows from Theorem 3.2. �

3.2. Bounded distortion and frequent hypercyclicity

Theorem 3.6 (Necessary condition for frequent hypercyclicity). Let
(X, B, μ, f) be a measurable system with associated composition operator Tf frequently
hypercyclic. Then for every wandering set W with positive finite μ-measure, the following
inequality holds

∑
n∈Z

∥∥∥∥∥ dμ
d
(
μ ◦ fn

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
<∞·

Theorem 3.7 (Frequent Hypercyclicity Characterization). Let (X, B, μ, f) be
a dissipative system of bounded distortion and Tf : Lp(X) → Lp(X) be the associated
composition operator. Then, the following statements are equivalent.

(a) f satisfies Condition (SC);

(b) Tf is frequently hypercyclic;

(c) Tf is chaotic.
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Corollary 3.8. Let (X, B, μ, f) be an invertible dissipative system of bounded dis-
tortion and Tf , Tf−1 : Lp(X) → Lp(X) be the associated composition operators. Then,
Tf is frequently hypercyclic (respectively, chaotic) if and only if (Tf )−1 is.

Proof. This follows from the fact that (Tf )−1 = Tf−1 . �

We say that f is ergodic if every f -invariant setA ∈ B satisfies μ(A) = 0 or μ(X\A) = 0.

Corollary 3.9. Let (X, B, μ, f) be a dissipative system with a purely atomic measure
μ. Furthermore, assume that f is ergodic. Then the following statements are equivalent.

(a) Tf is frequently hypercyclic;

(b) Tf is chaotic;

(c) μ is finite.

Proof. (a) =⇒ (c) Assume that Tf is frequently hypercyclic. Let x ∈ X be an atom
of μ. Since f is dissipative and ergodic, we have that W = {x} is a wandering set that
generates X, thus μ(X) =

∑
n∈Z

μ(fn(W )). Applying Theorem 3.6 and using the fact
that dμ/d(μ ◦ fn) on W is equal to the constant μ(W )/μ(fn(W )), we obtain that

μ(X)
μ(W )

=
∑
n∈Z

μ
(
fn(W )

)
μ(W )

=
∑
n∈Z

∥∥∥∥∥ dμ
d
(
μ ◦ fn

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
<∞,

implying that μ is finite.
(c) =⇒ (b) It follows from Theorem 3.3 that f satisfies Condition (SC) and hence it

is chaotic.
(b) =⇒ (a) As f is dissipative and Tf chaotic, by Corollary 3.5, we have that f satisfies

Condition (SC) and hence it is frequently hypercyclic. �

4. Applications and examples

In this section, we give some applications of our main theorems. We also give some
examples which show that our theorems are sharp.

The first result is an application of Corollary 3.4. It shows that a large class of natural,
simple maps f on R

d yields complex behaviour of Tf . We recall that a linear isomorphism
L : R

d → R
d is hyperbolic if L has no eigenvalue of modulus 1.

Theorem 4.1. Consider a measurable system (Rd, B, μ, f) where μ is a Borel measure
on R

d, μ(Rd) <∞, μ({0}) = 0 and f is a hyperbolic linear isomorphism. Then, Tf is
chaotic, topologically mixing and frequently hypercyclic.

Proof. By [18, Propositions 2.9, 2.10], there exist f -invariant subspaces Es and Eu

of R
d with R

d = Es
⊕
Eu and an adapted norm ‖ · ‖1 on R

d with respect to which the
map fs = f |Es is a contraction and the map fu = f |Eu is a dilation (thus its inverse is a
contraction). In this way, if x ∈ R

d then either limn→∞ ‖fn(x)‖ = 0 or limn→∞ ‖fn(x)‖ =
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∞ (with respect to any norm ‖ · ‖). Hence, the set of recurrent points of f equals {0},
which has μ-measure 0 by hypothesis. Hence, by Corollary 3.4, the proof follows. �

The following is a concrete application of Corollary 3.4.

Example 4.2. Let f : R → R be a non-identity affine map of the form x �→ ax+ b,
0 < |a| ≤ 1. Let μ be the probability measure on R defined by μ(J) = 1

2

∫
J
e−|t|dt for all

interval J ⊆ R. Then, Tf is chaotic, topologically mixing and frequently hypercyclic.

Proof. We first show that (X, B, μ, f) is a measurable system, i.e., that Condition
(*) in Definition 2.6 holds. Indeed, such is the case:

μ
(
f(J)

)
μ(J)

=
1
2

∫
f(J)

e−|t|dt
1
2

∫
J
e−|t|dt

=
|a| ∫

J
e−|at+b| dt∫

J
e−|t| dt

≥ |a|e−|b| ∫
J
e−|at| dt∫

J
e−|t| dt

≥ |a|e−|b|,

where the last inequality follows from the fact 0 < |a| ≤ 1 implies that e−|at| ≥ e−|t| for
all t.

The transformation f has no recurrent points when a = 1 as, in this case, b 
= 0 and
fn(x) = x+ nb for all x ∈ R and n ∈ N. For a 
= 1, some elementary computation shows
that f has exactly one recurrent point, namely the fixed point of f , x = b/(1 − a). In
either case, as μ is non-atomic, the set of recurrent points has measure zero. By Corollary
3.4, we have that Tf is chaotic, topologically mixing and frequently hypercyclic. �

The next example shows that Corollary 3.5 is sharp in the sense that the hypothesis
of dissipativity cannot be removed.

Example 4.3. There exists a measurable system (X, B, μ, f) such that Tf : Lp(X) →
Lp(X) is chaotic but f does not satisfy Condition (SC).

Proof. We use an example from our earlier work [2]. In particular, our X is an
odometer and f is the +1-map.

For i ≥ 1, we let Zi = {0, . . . , i− 1} be integers modulo i. We let X = Π∞
i=1Ai, where

Ai = Z2 for i even and Ai = Z2i for i odd. We put the discrete topology on Ai and the
associated product topology on X. Endowed with this topology, X is homeomorphic to
the Cantor space.

We let B be the collection of Borel subsets of X. We define a product measure μ on X
by defining a probability measure μi on Ai as follows:

μi(0) = μi(1) =
1
2
, if i is even

and

μi(j) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 2−i

i
for j ∈ {0, . . . , i− 1}

2−i

i
for j ∈ {i, . . . , 2i− 1}

, if i is odd.

Hence, X = (X, B, μ) becomes a topological Borel probability space.
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The map f : X → X is simply the +1-map with carryover. It was shown in [2] that
Tf is a well-defined continuous linear operator which is topologically transitive but not
topologically mixing. We will show that Tf has a dense set of periodic points, implying
that Tf is chaotic. As Tf is not topologically mixing, by Theorem 3.2 we have that f
does satisfy Condition (SC).

We recall that the open subsets of X are countable unions of disjoint basic cylinders,
i.e., sets of the form

[a1, . . . , ai] := {(x1, . . . , xi, xi+1, . . .) ∈ X : x1 = a1, . . . , xi = ai} .
We claim that χ[a1,...,ai] is a periodic point of Tf . In fact, if N = |A1| · |A2| · · · |Ai|, where
|Aj | denotes the cardinality of Aj , and x = (x1, x2, . . .) ∈ [a1, . . . , ai], then fN (x) =
(x1, x2, . . . , xi, yi+1, . . .), that is, fN (x) ∈ [a1, . . . , ai]. Hence, f−N ([a1, . . . , ai]) =
[a1, . . . , ai]. In this way,

TN
f χ[a1,...,ai] = χ

f−N
(
[a1,...,ai]

) = χ[a1,...,ai],

implying that χ[a1,...,ai] is a periodic point of Tf .
Now it is easy to verify that the characteristic function of the finite union of cylinders

is also a periodic point. From this, one can easily show that the collection of simple
functions of the form

∑m
i=1 ai · χCi

, where Ci is the finite union of cylinders, is dense in
Lp(X), completing the proof. �

The following example shows that there are simple situations where the full strength
of Theorem 3.2 is realized. It also shows that the hypothesis of ergodicity is necessary in
Corollary 3.9.

Example 4.4. There exists a dissipative system (X, B, μ, f) with a purely atomic
measure μ such that μ(X) = ∞ and Tf satisfies Condition (SC).

Proof. Let X = Z × Z and f : X → X defined by f((i, j)) = (i, j + 1), i, j ∈ Z. Let
B = 2X be the discrete σ-algebra and μ : B → [0, ∞] be the σ-finite measure defined by
μ({(i, j)}) = 2−|j|. Clearly, μ(X) = ∞.

Now let us verify Condition (SC). Let B ∈ B and ε > 0 with μ(B) <∞. As μ(B) <
∞, there is L ≥ 1 such that μ(B\([−L, L] × [−L, L])) < ε. Let B′ = B ∩ ([−L, L] ×
[−L, L]). Clearly, μ(B\B′) < ε. Next, we observe that for any (i, j) ∈ X, we have
that

∑
n∈Z

μ(fn(i, j)) = 3. As B′ ⊆ [−L, L] × [−L, L], we have that
∑

n∈Z
μ(fn(B′)) ≤

3 · (2L+ 1)2. �

5. Proofs of the main results

Lemma 5.1 (Orlicz [14, Theorem 4.2.1]). Let (X, B, μ) be a σ-finite measure
space. Let the series

∑
n∈N

ϕn of elements of Lp(X) converge unconditionally. Then for
each 1 ≤ p ≤ 2, the series

∑
n∈N

‖ϕn‖2
p converges, and for each 2 ≤ p <∞, the series∑

n∈N
‖ϕn‖p

p converges.

Lemma 5.2. Let (X, B, μ, f) be a measurable system. If f satisfies Condition (SC),
then f is dissipative.
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Proof. By the Hopf Decomposition Theorem, we may write X = C(f) ∪ D(f) as the
union of the conservative and the dissipative parts of f , respectively. We will prove that
μ(C(f)) = 0. By way of contradiction, suppose that B ⊆ C(f) is a measurable set with
0 < μ(B) <∞.

We claim that there exist W ⊆ B and N ∈ N such that μ(W ) > 0 and fn(W ) ∩W = ∅
for all n ∈ N satisfying |n| ≥ N . By Condition (SC), there exist a measurable set B′ ⊆ B
and N ∈ N such that

μ(B\B′) <
μ(B)

4
and

∑
|n|≥N

μ
(
fn(B′)

)
<
μ(B)

4
.

Let W = B′∖⋃
|n|≥N fn(B′). Notice that

μ(B′\W ) ≤
∑

|n|≥N

μ
(
fn(B′)

)
<
μ(B)

4
.

In this way, μ(B\W ) < μ(B)/2, which yields μ(W ) > 0. Moreover, fn(W ) ∩W = ∅ for
all n ∈ Z satisfying |n| ≥ N . This proves the claim.

Now let A = {x ∈W : fn(x) 
∈W, ∀n ≥ 1}. Since A ⊆ C(f), we have that μ(A) = 0.
Hence, the set W ′ = W\⋃n∈Z

fn(A) has positive μ-measure. Moreover, if x ∈W ′, then
fn(x) ∈W for infinitely many positive n, contradicting the claim. Therefore, μ(C(f)) = 0
and f is dissipative. �

5.1. Proof of Theorem 3.1

Proof of (SC) =⇒ (FHC). Assume that f satisfies (SC). We will show that Tf

satisfies (FHC). By Lemma 5.2, f is dissipative. Let W be a wandering set such that
X =

⋃
n∈Z

fn(W ). Let H = Lp(X) and H0 ⊆ H be defined as follows: ϕ ∈ H0 if and only
if there exist m ≥ 1, a1, . . . , am ∈ R, k1, . . . , km ∈ Z, and pairwise disjoint measurable
sets B1, . . . , Bm such that ϕ =

∑m
i=1 aiχBi

and, for each 1 ≤ i ≤ m, Bi ⊆ fki(W ) and∑
n∈Z

μ(fn(Bi)) <∞.
We will now show that H0 is dense in H. Given ε > 0 and ψ ∈ H, let ϕ =

∑r
j=1 ajχDj

∈
H\{0} be such that D1, . . . , Dr are pairwise disjoint measurable sets with finite positive
μ-measures and ‖ϕ− ψ‖p < ε/2. Set M = max{|aj | : 1 ≤ j ≤ r}, then M > 0. As f satis-
fies Condition (SC) and X =

⋃
n∈Z

fn(W ), there exist an integer N > 0 and measurable
sets C1, . . . , Cr such that, for each 1 ≤ j ≤ r, Cj ⊆ Dj ∩

⋃
|n|≤N fn(W ),

μ(Dj\Cj) <
( ε

2rM

)p

and
∑
n∈Z

μ
(
fn(Cj)

)
<∞.

Let ϕ′ =
∑r

j=1 ajχCj
. Since Cj ⊆ ⋃|n|≤N fn(W ), we have that each Cj is the union of

finitely many pairwise disjoint sets Bi satisfying Bi ⊆ fki(W ) for some −N ≤ ki ≤ N . In
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this way, ϕ′ ∈ H0. Moreover,

‖ϕ− ϕ′‖p =

∥∥∥∥∥∥
r∑

j=1

aj

(
χDj

− χCj

)∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
r∑

j=1

ajχDj\Cj

∥∥∥∥∥∥
p

≤M
r∑

j=1

[μ(Dj\Cj)]
1/p

<
ε

2
.

In this way, ‖ϕ′ − ψ‖p < ε, completing the proof of the denseness of H0.
We next show that

∑
n≥1 T

n
f ϕ is unconditionally convergent for all ϕ =

∑m
i=1 aiχBi

∈
H0. Since Bi ⊆ fki(W ), we have that the sets fn(Bi), n ∈ Z, are pairwise disjoint. Hence,
for each sequence of integers 1 ≤ n1 < n2 < . . ., we have that

∑
j≥1

T
nj

f ϕ =
m∑

i=1

ai

∑
j≥1

χf−nj (Bi)
=

m∑
i=1

aiχ⋃
j≥1 f−nj (Bi)

. (1)

Since
∑

n∈Z
μ(fn(Bi)) <∞ for all 1 ≤ i ≤ m, we have that χ⋃

j≥1 f−nj (Bi)
∈ Lp(X).

Thus,
∑

j≥1 T
nj

f ϕ converges for each sequence of integers 1 ≤ n1 < n2 < . . . . Therefore,∑
n≥1 T

n
f ϕ is unconditionally convergent and Condition (a) in Theorem 2.4 is true.

Given ϕ =
∑m

i=1 aiχBi
∈ H0, let Sϕ =

∑m
i=1 aiχf(Bi). Since f is bijective, bimeasurable

and non-singular, we have that Sϕ ∈ H0 and S : ϕ→ Sϕ is a self-map on H0. Moreover,
TSϕ =

∑m
i=1 aiχf−1(f(Bi)) = ϕ, showing that Condition (c) in Theorem 2.4 is true. By

proceeding as in (5.1), we can show that
∑

n≥1 S
nϕ is unconditionally convergent for all

ϕ ∈ H0. We have proved that Tf satisfies (FHC).
Proof of (FHC) =⇒ (SC) when p ≥ 2. Assume the hypothesis, i.e., Tf satisfies the

FHC. Let H0 ⊆ Lp(X) be as in the statement of (FHC). Let 0 < ε < 1
2 and B ∈ B with

μ(B) <∞. By the denseness of H0, there is ϕ ∈ H0 such that

‖ϕ− χB‖p < ε(1+(1/p)).

Let

B′ = {x ∈ B : |ϕ(x) − 1| ≤ ε} .

Then,

ε [μ(B\B′)]1/p ≤
(∫

B\B′
|ϕ− 1|p dμ

)1/p

=
(∫

B\B′
|ϕ− χB |p dμ

)1/p

≤ ‖ϕ− χB‖p < ε(1+(1/p)),

showing that μ(B\B′) < ε.
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We next show that
∑

n≥1 μ(f−n(B′)) <∞. Proceeding as earlier we have that for any
n ≥ 1,

(1 − ε)
[
μ
(
f−n(B′)

)]1/p ≤
(∫

f−n(B′)
|ϕ ◦ fn|p dμ

)1/p

implying that

∑
n≥1

μ
(
f−n(B′)

)
< 2p

∑
n≥1

(∫
f−n(B′)

|ϕ ◦ fn|p dμ

)
≤ 2p

∑
n≥1

‖Tn
f ϕ‖p

p.

Since
∑

n≥1 T
n
f ϕ converges unconditionally and p ≥ 2, by Theorem 5.1 we have that

∑
n≥1

μ
(
f−n(B′)

)
<∞.

We next show that
∑

n≥1 μ(fn(B′)) <∞. As {ϕ, Sϕ, . . . , Snϕ} ⊂ H0 and TfS is the
identity map on H0, we have that Tn

f S
n(ϕ) = ϕ for all n ≥ 1. Since f is bijective,

bimeasurable and non-singular, we have that

[
Tn

f S
n(ϕ)|B = ϕ|B

]
=⇒ [Sn(ϕ) ◦ fn|B = ϕ|B ] =⇒ [

Sn(ϕ)|fn(B) = ϕ ◦ f−n|fn(B)

]
.

Using this we have that

(1 − ε)
[
μ
(
fn(B′)

)]1/p ≤
(∫

fn(B′)

∣∣ϕ ◦ f−n
∣∣p dμ

)1/p

=

(∫
fn(B′)

|Sn(ϕ)|p dμ

)1/p

≤ ‖Snϕ‖p .

Since
∑

n≥1 S
n
f ϕ converges unconditionally and p ≥ 2, by Lemma 5.1 we have that

∑
n≥1

μ
(
fn(B′)

) ≤ 2p
∑
n≥1

‖Sn(ϕ)‖p
p <∞,

which completes the proof.

5.2. Proof of Theorem 3.2

Proof of (a) =⇒ (b). Suppose that f satisfies Condition (SC). Then, by Lemma
5.2, f is dissipative. By Theorem 3.1, Tf satisfies (FHC). Hence, by Theorem 2.4, Tf is
frequently hypercyclic, topologically mixing and chaotic. In particular, Tf has a dense
set of periodic points.

Proof of (b) =⇒ (a). Since f is dissipative, there exist a wandering setW ∈ B of positive
μ-measure such that X =

⋃
n∈Z

fn(W ). Let ε > 0 and B ∈ B with μ(B) <∞. Let n0 ∈ N
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be such that if

B0 = B ∩
⋃

|k|≤n0

fk(W ), then μ(B\B0) <
ε

2
.

By hypothesis, there exists a periodic point ϕ ∈ Lp(X) of Tf such that

‖ϕ− χB0‖p
p ≤ 1

4p
· ε
2
.

For B′ = {x ∈ B0 : |ϕ(x)| > 3/4}, we have that μ(B0\B′) ≤ ε/2 because

1
4p
μ(B0\B′) ≤

∫
B0\B′

|ϕ− 1|p dμ ≤ ‖ϕ− χB0‖p
p ≤ 1

4p
· ε
2
, implying μ

(
B0\B′) ≤ ε

2
.

In this way,

μ(B\B′) = μ(B\B0) + μ(B0\B′) < ε.

Let N ≥ 2n0 + 1 be such that TN
f ϕ = ϕ ◦ fN = ϕ μ-a.e. Hence, since f is bijective, we

have that ϕ ◦ fkN = ϕ μ-a.e. for all k ∈ Z. Because B′ ⊆ B0 and N ≥ 2n0 + 1, we have
that the sets in the family {fkN (B′) : k ∈ Z} are pairwise disjoint. Moreover,

(
3
4

)p∑
k∈Z

μ
(
fkN (B′)

) ≤∑
k∈Z

∫
fkN (B′)

|ϕ ◦ f−kN |pdμ =
∑
k∈Z

∫
fkN (B′)

|ϕ|pdμ

=
∫
⋃

k∈Z
fkN (B′)

|ϕ|pdμ ≤
∫

|ϕ|pdμ,

showing that
∑

k∈Z
μ(fkN (B′)) <∞. By (*), we have that

∑
n∈Z

μ(fn(B′)) =
N−1∑
i=0

∑
k∈Z

μ(fkN−i(B′)) ≤ N max {1, c, . . . , c(N−1)} ·
∑
k∈Z

μ
(
fkN (B′)

)
<∞.

This proves that Condition (SC) is true, which concludes the proof of (b) =⇒ (a).

5.3. Proof of Theorem 3.3

Proof of (a) =⇒ (b). This is Lemma 5.2.
Proof of (b) =⇒ (a). Assume f is dissipative and μ(X) <∞. Then, there exists a

wandering set W such that X =
⋃

n∈Z
fn(W ). Let ε > 0 and B ∈ B with μ(B) <∞ be

given. Let us verify Condition (SC). Let N ∈ N be such that μ(B\⋃|n|≤N fn(W )) < ε.
Then B′ = B ∩⋃|n|≤N fn(W ) verifies Condition (SC) because μ(B\B′) < ε and by the
dissipativity of f , we have that∑

n∈Z

μ
(
fn(B′)

) ≤ (2N + 1)μ(X) <∞,

which concludes the proof.
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5.4. Proof of corollary 3.4

The proof consists in verifying Condition (SC). Hence, to begin with, let ε > 0 and
B ∈ B with 0 < μ(B) <∞ be given. We may assume that B has no recurrent points. For
each n ≥ 1, set

An =
{
x ∈ B : {f(x), f2(x), . . .} ∩B

(
x,

1
n

)
= ∅
}
,

where B(x, 1/n) = {y ∈ X : d(y, x) < 1/n}, where d is the metric onX. Notice that A1 ⊆
A2 ⊆ . . . and B =

⋃∞
n=1An. In this way, there exist N large enough so that μ(B\AN ) <

ε/4. Let K be a compact subset of AN such that μ(AN\K) < ε/4. Let U1, U2, . . . , Ur be
a finite collection of balls of radius 1/2N such that K ⊆ ⋃r

i=1 Ui. Since Ui ∩K ⊆ AN , we
have that if x ∈ Ui ∩K, then {f(x), f2(x), . . .} ∩ Ui = ∅. In particular, if Ki = Ui ∩K,
then the following statements are true:

(a) K =
⋃r

i=1Ki;

(b) fn(Ki) ∩Ki = ∅ for all n ≥ 1.

The bijectivity of f and (b) imply that W is a wandering set. Hence,
∑
n∈Z

μ
(
fn(Ki)

) ≤ μ(X).

In this way,

μ(B\K) < ε and
∑
n∈Z

μ
(
fn(K)

) ≤ rμ(X) <∞.

Thus, Condition (SC) is true, which concludes the proof.

5.5. Proof of Theorem 3.6

Throughout this section, (X, B, μ, f) will denote a measurable system. Given a mea-
surable setW ⊆ X with finite positive μ-measure, let (dn(W ))n∈Z be the sequence defined
by

dn(W ) =

∥∥∥∥∥ dμ
d
(
μ ◦ fn

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
, (2)

where we set 1/∞ = 0 so that dn(W ) is well defined even in the case in which∥∥∥∥dμ/d(μ ◦ fn)
∣∣∣∣
W

∥∥∥∥
∞

= ∞.

Lemma 5.3. Let c > 0 be as in (�) and let W be a measurable set with finite positive
μ-measure. Then, dn+1(W ) ≥ c−1dn(W ) for all n ∈ Z.

Proof. By (�), μ(fn(B)) ≤ cμ(fn+1(B)) for all B ∈ B and n ∈ Z. Hence, the Radon–
Nikodym derivatives d(μ ◦ fn)/d(μ ◦ fn+1), n ∈ Z, are bounded by c at μ ◦ fn+1-almost
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every point, and therefore, μ-a.e. In this way, for all n ∈ Z,

dμ
d
(
μ ◦ fn+1

) =
dμ

d
(
μ ◦ fn

) · d
(
μ ◦ fn

)
d
(
μ ◦ fn+1

) ≤ c
dμ

d
(
μ ◦ fn

) μ-a.e. (3)

Therefore, for all n ∈ Z, we have that

1
dn+1(W )

=

∥∥∥∥∥ dμ
d
(
μ ◦ fn+1

) ∣∣∣∣
W

∥∥∥∥∥
∞

≤ c

∥∥∥∥∥ dμ
d
(
μ ◦ fn

) ∣∣∣∣
W

∥∥∥∥∥
∞

= c
1

dn(W )
, (4)

showing that dn+1(W ) ≥ c−1dn(W ) for all n ∈ Z. �

Lemma 5.4. Suppose that Tf is frequently hypercyclic. If W is a wandering set with
finite positive μ-measure, then there exists a set A ⊂ N with positive lower density such
that for each n ∈ A, ∑

m∈A

dm−n(W ) < 2.

Proof. Let ϕ ∈ Lp(X) be a frequently hypercyclic vector for Tf and let W be a
wandering set with finite positive μ-measure. Let

A =
{
n ∈ N :

∥∥Tn
f ϕ− χW

∥∥p

p
<

1
2p
μ(W )

}
, (5)

then A has positive lower density.
By combining the definition of A with the fact that W is a wandering set, we obtain

for each n ∈ A,∫
W

|ϕ ◦ fn − 1|p dμ+
∑
m �=0

∫
fm(W )

|ϕ ◦ fn|p dμ ≤ ∥∥Tn
f ϕ− χW

∥∥p

p
<

1
2p
μ(W ). (6)

In particular, the second term of (5.6) satisfies the following inequality for each n ∈ A,

∑
m �=0

∫
fm(W )

|ϕ ◦ fn|p dμ <
1
2p
μ(W ). (7)

Applying the triangle inequality to the first term of (5.6) yields for each n ∈ A,

[μ(W )]1/p −
(∫

W

|ϕ ◦ fn|p dμ
)1/p

≤
(∫

W

|ϕ ◦ fn − 1|p dμ
)1/p

<
1
2

[μ(W )]1/p
. (8)

Therefore, renaming n by k in (5.8) yields∫
W

∣∣ϕ ◦ fk
∣∣p dμ >

1
2p
μ(W ), ∀k ∈ A. (9)

In what follows, keep n ∈ A fixed and let m ∈ A− n be arbitrary. Setting k = n+m
in (5.9) yields

∫
W

|ϕ ◦ fn+m|p dμ > 1/2pμ(W ). By combining this with (5.7), we arrive
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at

∑
m∈A−n

m �=0

∫
fm(W )

|ϕ ◦ fn|p dμ∫
W

∣∣ϕ ◦ fn+m
∣∣p dμ

< 1. (10)

By the Change of Variables Formula, for all m ∈ A− n,∫
fm(W )

|ϕ ◦ fn|p dμ =
∫

fm(W )

∣∣ϕ ◦ fn+m ◦ f−m
∣∣p dμ =

∫
W

∣∣ϕ ◦ fn+m
∣∣p d(μ ◦ fm

)
. (11)

Replacing (5.11) in (5.10) yields

∑
m∈A−n

m �=0

∫
W

|ϕ ◦ fn+m|p d(μ ◦ fm
)

∫
W

∣∣ϕ ◦ fn+m
∣∣p dμ

d
(
μ ◦ fm

)d(μ ◦ fm
) < 1. (12)

For all m ∈ A− n,

∫
W

∣∣ϕ ◦ fn+m
∣∣p dμ

d
(
μ ◦ fm

)d(μ ◦ fm
) ≤

∥∥∥∥∥ dμ
d
(
μ ◦ fm

) ∣∣∣∣
W

∥∥∥∥∥
∞

·
∫

W

∣∣ϕ ◦ fn+m
∣∣p d
(
μ ◦ fm

)
.

(13)
Replacing (5.13) in (5.12) and cancelling out the nonzero term

∫
W

|ϕ ◦ fn+m|p d(μ ◦ fm)
yields

∑
m∈A−n

m �=0

∥∥∥∥∥ dμ
d
(
μ ◦ fm

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
< 1.

Therefore, after renaming variables, we obtain

∑
m∈A

dm−n(W ) =
∑
m∈A

∥∥∥∥∥ dμ
d
(
μ ◦ fm−n

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
= 1 +

∑
m∈A−n

m �=0

∥∥∥∥∥ dμ
d
(
μ ◦ fm

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
< 2.

�

Lemma 5.5 (Bayart-Ruzsa [5, Corollary 9]). Let (αn)n∈Z be a sequence of non-
negative real numbers such there exists C > 0 such that either αn+1 ≥ Cαn for all n ∈ Z,
or αn ≥ Cαn+1 for all n ∈ Z. Suppose that for some set A ⊂ Z with positive upper density
the sequence (βn)n∈A defined by βn =

∑
m∈A αm−n is bounded. Then

∑
n∈Z

αn <∞.

5.6. Proof of Theorem 3.6

Set αn = dn(W ) for all n ∈ Z. By Lemma 5.3, we have that αn+1 ≥ c−1αn for all n ∈ Z.
Let A be as in Lemma 5.4 and let (βn)n∈A be defined by βn =

∑
m∈A αm−n. Then, by
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Lemma 5.4, for each n ∈ A,

βn =
∑
m∈A

αm−n =
∑
m∈A

dm−n(W ) < 2.

Hence, (βn)n∈A is bounded. By Lemma 5.5,∑
n∈Z

dn(W ) =
∑
n∈Z

αn <∞.

5.7. Proof of Theorem 3.7

Proof of (a) =⇒ (b). This follows immediately from Theorem 3.2.
Proof of (b) =⇒ (a). Let B ∈ B with μ(B) <∞ and ε > 0 be given. We will verify

Condition (SC). Let W be a wandering set of finite positive μ-measure satisfying the
bounded distortion Conditions (i) and (ii) in Definition 2.11. For each i ∈ Z, set Wi =
f i(W ). By (i), there exists N ∈ N such that if B′ = B ∩⋃|i|≤N f i(W ), then μ(B\B′) < ε.
We claim that there existsK > 0 such that for each integer −N ≤ i ≤ N , eachD ∈ B(Wi)
with positive μ-measure and each n ∈ Z,

μ(D)
μ
(
fn(D)

) ≤ K2 μ(Wi)
μ
(
fn(Wi)

) .
In fact, since f is bijective, bimeasurable and non-singular, any set D ∈ B(Wi) has pos-
itive μ-measure if and only if D = f i(C), where C ∈ B(W ) has positive μ-measure. By
Condition (ii) in Definition 2.11, we have that

μ
(
Wi

)
μ
(
fn(Wi)

) =
μ
(
f i(W )

)
μ
(
fn+i(W )

)
=
μ
(
f i(W )

)
μ(W )

· μ(W )
μ
(
fn+i(W )

)
≥ 1
K2

μ
(
f i(C)

)
μ(C)

μ(C)
μ
(
fn+i(C)

)
=

1
K2

μ(D)
μ
(
fn(D)

) .
which proves the claim.

Hence, since D ∈ B(Wi) is an arbitrary measurable set of positive μ-measure, we obtain

μ(Wi)
μ
(
fn(Wi)

) ≥ 1
K2

dμ
d
(
μ ◦ fn

) (x), for μ− almost every x ∈Wi.

Therefore, since Wi is a wandering set and Tf is frequently hypercyclic, by Theorem 3.6
we arrive at ∑

n∈Z

μ
(
fn(Wi)

)
μ(Wi)

≤ K2
∑
n∈Z

∥∥∥∥∥ dμ
d
(
μ ◦ fn

) ∣∣∣∣
Wi

∥∥∥∥∥
−1

∞
<∞.
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In this way,

∑
n∈Z

μ
(
fn(B′)

) ≤∑
n∈Z

∑
|i|≤N

μ
(
fn(Wi)

)
=
∑
|i|≤N

μ(Wi)
∑
n∈Z

μ
(
fn(Wi)

)
μ(Wi)

<∞.

Proof of (a) ⇐⇒ (c). This follows immediately from Corollary 3.5.

6. Problems and final comments

Below we list some problems related to our work.

Problem 6.1. In Theorem 3.1, we show that (FHC) implies (SC) for p ≥ 2. What
happens for 1 ≤ p < 2?

Problem 6.2. Is the condition of bounded distortion necessary in Theorem 3.7?

Problem 6.3. In Example 4.3 is Tf frequently hypercyclic? If not, this would give an
alternative solution to a result of Menet [16].

Problem 6.4. We have thoroughly studied the case when the measurable system is
dissipative. What happens in the case when the measurable system is conservative? In
particular, what can be said when X is an odometer endowed with the product measure?
Characterizations of hypercyclic and topologically mixing operators of such type were
given in [7].

Concerning the extension of our results to the non-bijective case, a slight variation of
the proof of Theorem 3.6 leads to the result stated below. We recall that a measurable
set W ⊆ X is a forward wandering set if W, f(W ), f2(W ), . . . are pairwise disjoint.

Theorem 6.1 (Necessary condition for frequent hypercyclicity). Let (X, B, μ)
be a σ-finite measure space and f : X → X be an injective bimeasurable map satisfy-
ing (�) with associated composition operator Tf frequently hypercyclic. Then for every
forward wandering set W with positive finite μ-measure, the following inequality holds

∑
n∈N

∥∥∥∥∥ dμ
d
(
μ ◦ fn

) ∣∣∣∣
W

∥∥∥∥∥
−1

∞
<∞·

Let w = (wi)i∈N be a bounded sequence of positive real numbers and Bw be the back-
ward weighted shift on �p(N). By considering X = N, B = P(N) (the power set of N),
f : i ∈ N → i+ 1 ∈ N, W = {0} and μ({i}) = 1/(w0 · · ·wi)p in Theorem 6.5, we obtain
the implication (i) =⇒ (iii) in [5, Theorem 4], which leads to the known conclusion that
frequently hypercyclic backward weighted shifts on �p(N) are chaotic. Likewise, by means
of Corollary 3.9, we obtain the equivalence (i) ⇐⇒ (iii) in [5, Theorem 3] and we arrive
at the known conclusion that a backward weighted shift on �p(Z) is frequently hypercyclic
if and only if it is chaotic.

Apart from Theorem 6.5, we do not know if the other results can be generalized to
the non-bijective case. Note that we use the hypothesis that f is bijective in the Hopf
Decomposition Theorem.
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