
Parasitology

cambridge.org/par

Review

Cite this article: Stensvold CR (2019). Pinning
down the role of common luminal intestinal
parasitic protists in human health and disease
– status and challenges. Parasitology 146,
695–701. https://doi.org/10.1017/
S0031182019000039

Received: 16 August 2018
Revised: 2 January 2019
Accepted: 3 January 2019
First published online: 8 February 2019

Key words:
Intestinal parasites; public health; diagnosis;
DNA; NGS; taxonomy; eukaryome;
microbiome; microbiota

Author for correspondence:
Christen Rune Stensvold, E-mail: run@ssi.dk

© Cambridge University Press 2019

Pinning down the role of common luminal
intestinal parasitic protists in human health
and disease – status and challenges

Christen Rune Stensvold

Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK–
2300 Copenhagen S, Denmark

Abstract

While some single-celled intestinal parasites are direct causes of diarrhoea and other types of
intestinal pathology, the impact of other gut micro-eukaryotes on human health remains elu-
sive. The fact that some common luminal intestinal parasitic protists (CLIPPs) have lately
been found more often in healthy than in diseased individuals has fuelled the hypothesis
that some parasites might in fact be protective against disease. To this end, the use of new
DNA technologies has helped us investigate trans-kingdom relationships in the gut.
However, research into these relationships is currently hampered by the limited data available
on the genetic diversity within the CLIPPs genera, which results in limited efficacy of publicly
available DNA sequence databases for taxonomic annotation of sequences belonging to the
eukaryotic component of the gut microbiota. In this paper, I give a brief overview of the status
on CLIPPs in human health and disease and challenges related to the mapping of intestinal
eukaryotic diversity of the human gut.

Introduction

Recent research into the human gut microbiome has vastly increased our understanding of the
relationship between gut microbes and human health and disease. For instance, we now know
that in adults, a low-diversity microbiota with increases in proportions of facultative anaerobes
is linked to acute diarrhoea, inflammatory bowel disease, Clostridium difficile infection, meta-
bolic syndrome and liver disease, just to mention a couple of conditions (Cani, 2018; Kriss
et al., 2018). Although most gut microbiome research has focussed on prokaryotic diversity,
we have also gained significant insight into the micro-eukaryotic diversity of the human
gut. DNA-based methods have been instrumental to this advancement. Three important
points have emerged: (1) For some common luminal intestinal parasitic protists (CLIPPs),
genetic diversity is surprisingly high; still, DNA sequence data available in publicly available
databases such as the NCBI database is rudimentary, hence not reflecting this amount of diver-
sity (Stensvold et al., 2011c, 2012, 2018; Royer et al., 2012; Poulsen and Stensvold, 2016). (2)
We have come to realize that some CLIPPs are very common and often more common in
gut-healthy individuals than in those with functional and inflammatory bowel diseases, con-
trary to previous general belief (Petersen et al., 2013; Andersen et al., 2015; Krogsgaard et al.,
2015, 2018; Rossen et al., 2015; Beghini et al., 2017; Jokelainen et al., 2017; Mirjalali et al.,
2017). (3) Robust links between CLIPPs and gut bacteria have been identified by several
research teams (Stensvold and van der Giezen, 2018).

These three points currently stimulate interdisciplinary research across the fields of parasit-
ology, clinical microbiology, gastroenterology and ecology. Nevertheless, compared with
advances within e.g. bacteriology and virology, progress in the research into CLIPPs and
their role in human health and disease is still reflected mostly in simple stool microscopy-
based surveys of parasites in selected populations, and is therefore still facing some major chal-
lenges. In the following, I will try to detail the status of the three above-mentioned points, and
highlight some of the limitations and challenges to the work ahead that aims to identify the
significance of CLIPPs in human health and disease.

Which are the most common luminal intestinal parasitic protists?

Intestinal eukaryotes that need a host to complete their life cycles (i.e. organisms that are
referred to as ‘parasites’) include both helminths and protists. More typically, the distinction
is made between ‘helminths’ and ‘protozoa’, but from a taxonomical point of view, the group
of organisms referred to as protozoa does not include one of the most common micro-
eukaryotes, namely Blastocystis, and so, the term ‘protists’ appears more relevant and ap-
plicable than ‘protozoa’ in this context. Moreover, while some parasitic intestinal protists
are invasive (e.g. sporozoa) or adhere to the mucosal lining (e.g. Giardia), quite a few genera
appear to be confined mainly to the gut lumen. These include Blastocystis, Dientamoeba,
Endolimax, Iodamoeba and most species of Entamoeba, and given their prevalence, they
could be referred to as CLIPPs.
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Contrary to the situation in developing countries, the number
of carriers of helminth infestations other than those attributable
to pinworm (Enterobius vermicularis) appears to be rapidly
plummeting in human populations in the Western world
(Verweij and van Lieshout, 2011; Verweij, 2014), and also in
some parts of the developing world, which would probably reflect
improved hygienic standards. Still, and for incompletely known
reasons, a substantial proportion of the population is colonized
by CLIPPs, especially Blastocystis and Dientamoeba (Verweij and
van Lieshout, 2011; Roser et al., 2013; Krogsgaard et al., 2015,
2018; Jokelainen et al., 2017) and, to a lesser extent, by one or
more of the Amoebozoa, e.g. Entamoeba coli (Bruijnesteijn van
Coppenraet et al., 2009; Krogsgaard et al., 2018; Stensvold and
Nielsen, 2012; ten Hove et al., 2007); these organisms will be
introduced briefly below.

Blastocystis
Blastocystis is a genus comprising a perplexing variety of riboso-
mal lineages that are arguably separate species, judging from the
amount of genetic diversity across complete nuclear ribosomal
genes. So far, at least 17 ribosomal lineages, the so-called ‘sub-
types’, have been acknowledged in humans, non-human primates,
other mammals and birds (Alfellani et al., 2013b; Clark et al.,
2013; Stensvold and Clark, 2016). Also reptiles, amphibia and
insects have been identified as hosts for various species of
Blastocystis (Yoshikawa et al., 2016). While this parasite appears
to be a rare or at least not so common finding in strict or mod-
erately strict carnivores such as cats, dogs and hyenas (Ruaux
and Stang, 2014; Wang et al., 2014; Heitlinger et al., 2017;
Cociancic et al., 2018; Moura et al., 2018; Udonsom et al.,
2018), it may be more common in omni- and herbivores, includ-
ing pigs, cows and sheep (Pakandl, 1991; Navarro et al., 2008;
Ramirez et al., 2014; Masuda et al., 2018; Moura et al., 2018;
Udonsom et al., 2018). Nine distinct ribosomal lineages, the
so-called ‘subtypes’, have been isolated from humans, with sub-
types 1–4 predominating. Some subtypes even exhibit extensive
within-subtype diversity that to some degree is host-specific; e.g.
ST3 (Alfellani et al., 2013a). Colonization is common in older
children and adults than in infants and young children (El
Safadi et al., 2014; Scanlan et al., 2014; Poulsen et al., 2016;
Salehi et al., 2017; Scanlan et al., 2018), with prevalence rates
reaching 100% in developing countries (El Safadi et al., 2014).
Moreover, Blastocystis may colonize the human gut for several
years (Scanlan et al., 2014).

Dientamoeba fragilis
DNA-based methods helped overcome the diagnostic challenges
related to the detection of Dientamoeba fragilis, a non-flagellated
flagellate for which a cyst stage was reported only very recently
(Munasinghe et al., 2013; Stark et al., 2014). Dientamoeba fragilis
is the only known species in the genus. The first DNA-based
detection methods for D. fragilis appeared in the mid-00s (Peek
et al., 2004; Stark et al., 2005a, 2005b, 2006; Verweij et al.,
2007). Since then, such methods have helped us to realize that
this parasite is very common in some populations, especially in
Northern Europe (Röser et al., 2013; de Jong et al., 2014; Ögren
et al., 2015; Holtman et al., 2017; Jokelainen et al., 2017). In
Denmark, D. fragilis is almost an obligate finding in children
(Röser et al., 2013; Jokelainen et al., 2017). In other regions
where methods of high sensitivity are also used, such as
Australia, the parasite appears to be a lot less common (Stark
et al., 2016); however, studies involving screening of asymptom-
atic individuals for D. fragilis are very rare, and so the prevalence
of the parasite in individuals without symptoms in most parts of
the world remains largely unknown. Apart from humans, D. fra-
gilis has been found in non-human primates and pigs (Stark et al.,

2008; Cacciò et al., 2012). The diversity within the species appears
very limited, and most cases of D. fragilis colonization are attribut-
able to one of only two acknowledged genotypes (Genotype 1), no
matter where sampling is performed (Stark et al., 2005a, 2005b;
Stensvold et al., 2013; Cacciò et al., 2016; Greigert et al., 2018).

Entamoeba
A number of Entamoeba species can colonize the human intestine.
Infections due to the potentially highly pathogenic Entamoeba histo-
lytica are relatively rare compared with colonization by Entamoeba
dispar, Entamoeba hartmanni, and, especially, Entamoeba coli,
which has been found to colonise between 20 and 30% of indivi-
duals in surveyed populations in Brazil (Aguiar et al., 2007;
Neres-Norberg et al., 2014; Higa et al., 2017; Jeske et al., 2018).
Substantial genetic variation has been detected within E. coli,
with E. coli subtype 1 and subtype 2 differing by 13%
(Stensvold et al., 2011c). Overall, the genetic diversity within octo-
nucleated Entamoebas appears vast and still largely unaccounted
for (Jacob et al., 2016; Elsheikha et al., 2018). Entamoeba polecki
rarely infects humans; nevertheless, four subtypes have been
detected with quite varying geographical distribution and host
reservoirs (Stensvold et al., 2011c, 2018); all four subtypes have
been found in humans (Verweij et al., 2001; Stensvold et al.,
2018).

It is currently unclear to which extent non-histolytica Entamoebas
contribute to the development of intestinal symptoms.

Some other protists show up in stool every now and then
(often accompanied by other CLIPPs) and these include parasites
belonging to ciliates and the Amoebozoa. Although the amount of
documentation is scarce, it is clear that for some of these para-
sites, especially Iodamoeba and Endolimax, the intra-generic
diversity is vast, with a maximum genetic divergence of at least
31% (Stensvold et al., 2012; Constenla et al., 2014; Poulsen and
Stensvold, 2016). Endolimax nana was recently shown to colonize
28.8% of 3245 individuals attending the Evandro Chagas National
Institute of Infectious Diseases, Rio de Janeiro, Brazil (Faria et al.,
2017). To date, no complete, annotated nuclear genome sequences
have been published for CLIPPs other than Blastocystis and
Entamoeba dispar.

The extensive genetic diversity documented so far within these
CLIPPs has informed the taxonomic terminology, and so,
depending on the availability of morphology data and genetic
diversity and SSU rDNA sequence coverage, sequences are anno-
tated to species, subtypes, ribosomal lineage, or conditional lin-
eage (Jacob et al., 2016). Importantly, it appears that specific
taxonomic terminologies are being developed for individual
genera; these are based first and foremost on a pragmatic basis.

CLIPPs in a gut ecology setting

In addition to exploring parasite diversity in the gut, it could be
important to try and look to gut microbial and ecological relation-
ships in non-human hosts and in the environment, respectively,
to better understand the role of CLIPPs in human health and dis-
ease. In the field of ecology, protists have been identified as
important components of terrestrial and aquatic environments
where they are integral constituents of trophic chains and nutrient
cycles (Bates et al., 2013; Maritz et al., 2017). In geothermal
springs, protist diversity appears to rely on pH and temperature
(Oliverio et al., 2018). The introduction of Acanthamoeba into
the rhizosphere of Arabidopsis thaliana leads to rapid changes
in associated bacterial communities due to the grazing of the
amoeba (Rosenberg et al., 2009). Gut flagellates and ciliates assist
termites and ruminants in metabolizing/fermenting carbohy-
drates (Veira, 1986; Ohkuma, 2008; Moon-van der Staay et al.,
2014); examples are endless. The presence of protists in various
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niches therefore appears to be driven by a variety of host- and
environment-derived factors and may in turn have a number of
vital or less vital consequences for the associated microbiome,
be it the host-associated gut microbiome, plant rhizosphere or
terrestrial and aquatic biomes. This understanding has to a
large extent failed to resonate with professionals in clinical micro-
biology and related medical fields, where CLIPPs are generally
seen as ‘intruders’ and (potential) pathogens, despite the fact
that most of these are most probably non-invasive and may
have unknown functions of potential benefit (Parfrey et al.,
2011; Lukeš et al., 2015; Andersen and Stensvold, 2016).

Nevertheless, the concept of certain gut parasitic protists as
‘ecosystem engineers’ also in humans is sinking in, and studies
on trans-kingdom relationships are emerging. For instance,
Laforest-Lapointe and Arriet (2018) recently proposed a model
for the ecological role of Blastocystis in the human gut microbiota.
They suggested that Blastocystis by predation on abundant bacter-
ial taxa lowers the competition for nutrients and space, leading to
an increase in bacterial richness and community evenness. And
indeed, carriers of Blastocysts and other CLIPPs have been
shown to have gut bacterial microbiomes that differ significantly
from those who do not carry these parasites in several recent stud-
ies, the findings of which were recently summarized by Stensvold
and van der Giezen (2018). In fact, higher diversity and higher
richness are typically observed in CLIPPs-positive individuals
than in those who are negative. What is more is the fact that obser-
vations from a recent meta-analysis of metagenomics data indi-
cated that Blastocystis carriage is linked to low body mass index
(Andersen et al., 2015; Beghini et al., 2017), which again lends sup-
port to specific links to gut bacterial diversity. However, it remains
to be identified, to which extent Blastocystis is actively driving this
difference as proposed by Laforest-Lapointe and Arrieta, or
whether Blastocystis is merely an indicator or specific bacterial
community patterns. Stensvold and van der Giezen (2018) recently
hypothesized that the increased intestinal oxygen concentrations
observed during gut dysbiosis may prevent Blastocystis from estab-
lishing in the gut, which would suggest a role for Blastocystis as an
indicator organism.

Experimental models, such as that recently proposed by
Pomajbikova and colleagues (Růžková et al., 2018), could be
used to develop longitudinal studies on bacterial community
changes after the establishment of Blastocystis colonization.
Blastocystis is one the few parasites that is readily established in
culture (Clark and Stensvold, 2016), and cysts induced in cultures
or obtained from donor material, isolated from stool by gradient
centrifugation, can be used for inoculation in order not to
co-introduce bacteria that would lead to experimental bias
(Rene et al., 2009). Here, the use of both eubiotic and dysbiotic
animals could be used to study potential differences in coloniza-
tion success rate.

The fact that some hosts (e.g. cats and dogs) are not so prone
to harbouring a parasite such like Blastocystis while others (e.g.
humans and artiodactyls) in the same habitat are much more
likely hosts, should also be explored in detail, to identify whether
this boils down to diet, behaviour (exposure), and/or other fac-
tors. If all the subtypes of the parasite are globally pervasive
and the overall colonization pressure of Blastocystis strong, differ-
ences in intestinal colonization between hosts may rely – at least
in part – on differences in gut microbiota composition.

It is intriguing that not only Blastocystis, but also other
CLIPPs have been shown to be linked to specific microbiota pat-
terns (Stensvold and van der Giezen, 2018). Studying gut micro-
biomes of rural Africans, Morton et al. (2015) could predict the
presence/absence of Entamoeba by 79% accuracy, based on the
composition of any individual’s gut microbiota. To this end,
Xiong et al. (2018) identified that shrimp health status could

be predicted with 92.4% accuracy based on eukaryotic taxon
profiling.

Nucleated life within the human intestine also include fungi.
Common genera found in stool include Candida, Saccharomyces,
Malassezia, Pichia and Aspergillus (Laforest-Lapointe and Arrieta,
2018); however, our understanding of the extent to which these
genera in fact colonize the human intestinal tract or merely reflect
dietary components is incomplete, and recent evidence appears to
suggest that fungal colonization of the intestinal tract of healthy
individuals is minimal (Auchtung et al., 2018).

The faecal eukaryome – mapping of eukaryotic diversity in
vertebrate stool

As observed by e.g. Hamad et al. (2018), differences in observed
microbiome profiles may reflect differences in DNA extraction
protocols, DNA amplification and sequencing technologies, plus
queried databases (SILVA, Greengenes, RDP, NCBI, self-curated
databases, etc.). So far, mapping of eukaryotic diversity in
human and non-human stool samples has used mainly one of
two approaches: Shotgun sequencing or amplicon-based sequen-
cing of genomic DNA extracted from stool (Cristescu, 2014). The
applicability of shotgun sequencing in terms of detecting and dif-
ferentiating CLIPPs is hampered by the fact that relatively few
CLIPPs genomes are available for reference. Amplicon-based
sequencing has typically used nuclear small subunit ribosomal
DNA (18S) as the target. However, some variation in amplicon-
based approaches is seen, mostly in terms of the choice of tar-
get(s) and DNA sequence data processing. The most informative
regions of the 18S appear to be the V3, V4, V5 and the V9 regions
(Maritz et al., 2017; Krogsgaard et al., 2018). As an example,
Krogsgaard and colleagues used three different primer sets for
eukaryotic DNA (G3F1/G3R1 and G6F1/G6R1 targeting the
V3–V4 region of the 18S rRNA gene and G4F1/G4R1 targeting
the V3–V5 region) and one set of primers for prokaryotic DNA
[341F/806R (Yu et al., 2005)] (Krogsgaard et al., 2018).
Sequences were mapped using BION (http://box.com/bion), a
newly developed k-mer-based analytical semi-commercial open-
source package which allows annotation to species level.
Prokaryotic DNA sequences were mapped against the RDP 11.04
reference database, while eukaryotic DNA sequences were mapped
using SILVA version 123 reference database with an improved
in-house seven-tier taxonomy for eukaryotes, similar to the tiers
defined for prokaryotes (phylum, class, order, family, genus, spe-
cies and sequence levels).

Published data on differences in the eukaryome across verte-
brate populations and links between bactieral and eukaryotic sig-
natures are still scarce.

Krogsgaard et al. (2015) found that CLIPPs diversity was
higher in healthy individuals compared with patients with irrit-
able bowel syndrome and also observed that individuals colonized
by CLIPPs typically had a higher bacterial richness and diversity
than those without (Krogsgaard et al., 2018).

Heitlinger et al. (2017) used 4 16S and 44 18S primers in a
Fluidigm-based approach, followed by taxonomic analysis using
dada2 to map eukaryotic diversity in spotted hyenas. While no
differences were found in eukaryome richness, diversity, evenness
or genus abundance across age groups in a population of spotted
hyenas, a more diverse eukaryome was identified in high-ranking
than in low-ranking animals (Heitlinger et al., 2017).

Maritz et al. (2017) recently developed and evaluated an 18S
rRNA assay employing ILLUMINA-based sequencing and anno-
tation of sequence data using locally curated as well as QIIME for-
matted SILVA databases with a view to detecting and
differentiating protists in sewage with special emphasis on tricho-
monads. The team used vertebrate blocking primers to increase
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protist data yield (Maritz et al., 2017). Choice of primers is critical
too as evidenced by the differing outcomes in terms of e.g.
Amoebozoan data obtained by Moreno et al., 2010 and Matsunaga
et al. (2014), who both aimed at mapping eukaryotic diversity
in wastewater/sludge.

The extent to which primate gut eukaryotic diversity is only
rudimentarily reflected in reference databases can be exemplified
by the following: In a metabarcoding study of non-human
primate gut eukaryomes, only 0.01% of all SSU rDNA reads
matched sequences in the Silva 123 database at a 100% threshold
(Wilcox and Hollocher, 2018). In that study, de novo operational
taxonomic unit (OTU) assignment revealed 4293 eukaryotic
OTUs at a 97%-identity level, and reference-based taxonomy
assignment matched sequences to 2021 unique eukaryotic genera.
Investigating the sewage eukaryome of sludge digesters in Japan,
Matsubayashi et al. (2017) found that 85% of the clones obtained
by 18S rRNA gene clone library construction showed less than
97.0% sequence identity to what they termed as ‘described eukar-
yotes’, indicating most of the eukaryotes in anaerobic sludge
digesters are largely unknown.

Advancing the mapping of intestinal eukaryotic diversity:
Wastewater and new sequencing technologies–the way
forward?

In summary, the characterization of nuclear small subunit (SSU)
ribosomal RNA genes has been the backbone of DNA-mapping
the tree of life. In the field of clinical microbiology, taxon-specific
genetic variation across nuclear SSU ribosomal RNA genes has
been instrumental to the development of a vast variety of targeted
DNA-based diagnostic methods over the past few decades
(Verweij and Stensvold, 2014); however, the development and
use of such diagnostics are limited by the DNA sequence data
available in NCBI (Stensvold et al., 2011b).

The SSU rRNA gene has proved useful for the detection and
differentiation of several species of parasites. For helminths, how-
ever, this gene generally appears very conserved, and mitochon-
drial genes or ITS data are taxonomically more informative.
Likewise, ITS data appear more relevant for differentiating
between non-parasitic eukaryotic organisms often found in the
gut, such as yeasts and molds, and so the genes providing most
taxonomic resolution differ and depend on the type of organism.

The presence of large intra-generic diversity in some parasites
has spurred hypotheses on differences in pathogenicity being
associated with species/subtype/genotype, and so our ability to
detect and differentiate not only genera and species but also sub-
types, ribosomal lineages, etc., is important. Again, while the 18S
has proved particularly useful in differentiating between
Blastocystis subtypes and even subtype alleles (Stensvold et al.,
2011a), this marker provides very little resolution within the spe-
cies of for instance D. fragilis. For other parasites, such as a couple
of genera belonging to the Amoebozoa, namely Entamoeba,
Endolimax and Iodamoeba, we are only beginning to appreciate
the vast extent of genetic diversity (Silberman et al., 1999;
Clark, 2000; Verweij et al., 2001; Stensvold et al., 2010, 2011c;
Royer et al., 2012; Jacob et al., 2016; Elsheikha et al., 2018). The
work and methodological limitations involved in mapping the
intra-generic diversity in these organisms have led to issues
related to resolving the phylogeny among this group of organisms
and left some ‘dark holes’ in publicly available databases. Briefly,
the largest limitations here are as follows: although hypervariable
regions within 18S, ITS or 28S may prove useful for studies into
eukaryotic diversity, robust analysis of phylogenetic relationships,
including the very delineation of novel ribosomal lineages, and
optimal yield of analysis of sequence data from metagenomics
or other amplicon-based sequencing studies requires sequencing

of complete, or near-complete ribosomal genes. When genomic
DNA extracted directly from e.g. stool is used, the application
of general primers with a view to amplifying near-complete ribo-
somal genes often results in preferential amplification of some
organisms over other. As an example, individuals colonized by
Iodamoeba and/or Endolimax are typically co-colonised with
Blastocystis, and because the length of the SSU rRNA gene is
only 1.8 kbp in Blastocystis while 2.5 kbp or more in Iodamoeba
and Endolimax, Blastocystis ribosomal genes are more likely to be
amplified from faecal genomic DNA due to the shorter DNA
sequence. Another limitation is related to intra-cellular variation
(hypervariable regions), which makes Sanger sequencing of poly-
merase chain reaction (PCR) products of some sequence stretches
unsuitable, e.g. due to the presence of sequence variation within
homo-polymers. TA cloning of PCR products has been tried
with some success, but this is relatively expensive, time-consuming
and laborious (Stensvold et al., 2012). Even next-generation
sequencing methods such as ILLUMINA do not provide much bet-
ter solutions to overcoming this issue. Clearly, alternative ways to
effectively obtain data are needed.

Meanwhile, Pacific Biosciences (PacBio) RS II, considered a
third-generation sequencer, uses single-molecule real-time tech-
nology and can be used for sequencing of single DNA molecules
in real-time without prior amplification steps, enabling direct
observation of DNA synthesis by DNA polymerase (Nakano
et al., 2017). Importantly, this technology enables the production
of long reads (typically >20 kbp with a maximum of 60 kbp) at
relatively low costs (Nakano et al., 2017). Orr and colleagues
used culturing and targeted PacBio RS II amplicon sequencing
to expand on data on the diversity within the class of
Diphyllatea, a group of protists that may represent one of the
earliest diverging eukaryotic lineages (Orr et al., 2018). By obtain-
ing near full-length 18S rRNA sequences in addition to mining
publicly available databases, they were able to resolve the phyl-
ogeny within the class and better map the distribution of mem-
bers of the class. The technology was also recently used for
characterizing and quantifying protistan sequences from environ-
mental samples (Jones and Kustka, 2017), and in terms of gut
microbial diversity, one of the few studies using it so far is that
by Myer et al. (2016) to generate data for phylogenetic analysis
of rumen bacterial communities.

A limit to this technology is the relatively high rate of
sequencing-related introduced errors; however, there are several
ways to reduce or completely eliminate these errors using software
tools and by decreasing the time the machine is used. Moreover,
PacBio appears to be better at overcoming the issues related to the
sequencing of hypervariable regions that e.g. ILLUMINA sequen-
cing may have problems with. Critics of PacBio might argue that
the use of this technology should rather be seen as an adjunctive,
supportive and possibly exploratory tool that may provide a scaf-
fold that could inform and guide more sophisticated and precise
analyses. Such analyses could include Illumina-based sequencing
of overlapping 300–400-bp amplicons using sequence-specific
primers. Nevertheless, complete and accurate de novo assemblies
of Escherichia coli strains could be accomplished using data gen-
erated solely from the PacBio RS II (Powers et al., 2013). The team
found that addition of other sequencing technology data obtained
by Ion Torrent and MiSeq offered no improvements over the use
of PacBio data alone (Powers et al., 2013).

Apart from identifying the best possible technological and data
processing pipelines, it is also worthwhile considering types of
material for studying diversity. For instance, untreated sewage
may be particularly useful in terms of detecting and mapping
micro-eukaryotic diversity, since this material reflects pooled fae-
cal samples from a large population of humans with some spill-
over of material from non-human sources.
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Chouari et al. (2017) investigated eukaryotic diversity in waste-
water using 18S sequencing, and of 1519 analysed sequences, 160
operational taxonomic units were identified. No less than 56.9%
of the phylotypes were assigned to novel phylogenetic molecular
species, showing <97% sequence similarity with their nearest
affiliated representative within public databases. Similarly,
Matsunaga et al. (2014) observed that 60% of their 18S rRNA
gene clones obtained from DNA extracted from municipal waste-
water had <97% sequence identity to described eukaryotes. In
both studies, data on Blastocystis and Amoebozoa were observed.
These studies highlight not only the vast DNA data gap in the
eukaryotic tree of life, but also the relevance of using sewage as
study material for investigations into eukaryotic diversity.

In conclusion, DNA mapping of nucleated life within the
intestine and exploring it in ecological contexts are critical to fur-
ther our understanding of gut microbial diversity and its role in
health and disease. Application of more detailed reference data
will allow for subtle and robust trans-kingdom analyses of gut
microbes and will moreover expand our knowledge on host spe-
cificity, transmission patterns and links to clinical phenotypes.
The use of genomic DNA from the pooled stool, as e.g. repre-
sented by sewage and amplicon-based third-generation sequen-
cing may be a way to ensure the acquisition of quick and
robust data to uncover the missing branches of the gut microbial
eukaryotic tree.
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