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Abstract

Development of a detonation wave due to α heating following short pulse laser irradiation in pre-compressed
deuterium–tritium (DT) plasma is considered. The laser parameters required for development of a detonation wave are
calculated. We find that a laser irradiance and energy of IL= 1.75 × 1023 W/cm2 and 12.8 kJ accordingly during 1.0 ps
in a pre-compressed target at 900 g/cm3 creates an α heating fusion detonation wave. In this case, the nuclear fusion
ignition conditions for the pre-compressed DT plasma are achieved along the detonation wave orbit.
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1. INTRODUCTION

The physics of inertial confinement fusion (ICF) is based on
compressing and igniting the plasma fuel (Nuckolls et al.,
1972; Atzeni & Meyer-Ter-Vehn, 2004; Velarde &
Carpintero-Santamaria, 2007). In order to ignite the fuel
with less energy, it was suggested to separate the drivers
that compress and ignite the target (Basov et al., 1992;
Tabak et al., 1994). This idea is called fast ignition. Many
schemes have been suggested to solve this issue (Guskov,
2013).
We suggested recently a novel shock wave ignition

scheme (Eliezer et al., 2014a; Eliezer et al., 2015), where
the ignition shock wave is generated in a pre-compressed
target by the ponderomotive force (Hora, 1991; Eliezer,
2002) of a high-irradiance laser pulse. The shock wave ve-
locity in this scheme is in the intermediate domain between
the relativistic (Taub, 1948; Landau & Lifshitz, 1987) and
non-relativistic (Zeldovich & Raizer, 1966; Fortov & Lo-
monosov, 2010) hydrodynamics. This shock wave is de-
scribed in the literature as a “piston model” (Esirkepov
et al., 2004; Naumova et al., 2009; Eliezer et al., 2014b,
c). In this domain of laser intensities, the ponderomotive
force forms a double layer which acts as a piston driving
a shock wave moving in the unperturbed plasma. This
model is supported in the literature by particle-in-cell sim-
ulation (Esirkepov et al., 2004; Naumova et al., 2009) and

independently by hydrodynamic two fluid simulations
(Hora et al., 1984; Lalousis et al., 2012; Lalousis et al.,
2013).

Here we consider a self-sustained one-dimensional (1D)
detonation wave due to heating by α-particles generated in
the laser-induced ignitor. This detonation wave should sus-
tain ignition in the remaining part of the target. The fusion
energy released in the shocked material at the end of the
laser pulse is calculated and compared with an analytical
model of detonation. Section 2 describes the ignitor in-
duced by the high-irradiance laser pulse, Section 3 presents
the detonation wave requirements, and the conclusion
with a possible application for fast ignition is described
in Section 4.

2. THE IGNITOR

In this paper, the ignitor is a pre-compressed deuterium–

tritium (DT) plasma mixture with equal density numbers
for deuterium (nD) and tritium (nT). The electron density ne
and the ion density ni= nD+ nT for nD= nT are related to
the ignitor density ρ and the proton mass mp by

ne(cm−3) = ni(cm−3) = ρ

2.5mp

( )
= 2.39 × 1023ρ. (1)

The α-particles (α) created in the nuclear fusion reactions

D+ T � n+ α+ 17, 589 keV (2)
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supply the ignitor energy density rate Wf

Wf = nDnT〈σv〉DTEα

= 8.07 × 1040〈σv〉DTρ
2 erg
cm3 · s
[ ]

,
(3)

where σ is the DT fusion cross-section, v is the relative DT
velocity, and 〈σv〉 is the relevant average for the process
under consideration. This velocity is achieved by a high-
intensity laser-induced shock wave. 〈σv〉DT, the reactivity
of the DT reaction fitted in the domain of ion temperatures
1 keV <Ti< 100 keV, is given by (Bosch & Hale, 1992)

〈σv〉DT
cm3

s

[ ]
= 6.4341 × 10−14ζ−5/6 6.661

Ti1/3

( )2

× exp −19.983
ζ

Ti

( )1/3
[ ]

ζ = 1− 15.136Ti + 4.6064Ti2 − 0.10675Ti3

1000+ 75.189Ti + 13.5Ti2 + 0.01366Ti3
,

Ti in keV.

(4)

The ignitor performance can be analyzed by an energy bal-
ance, dependent on the ions and electrons temperatures Ti
and Te (Chu, 1972; Eliezer & MartinezVal, 1998; Eliezer
et al., 2015)

3
2

( )
d

dt
(nekBTe) = ηdWd +Wie −WB + fαηfWf

3
2

( )
d

dt
(nikBTi) = (1− ηd)Wd −Wie + fα(1− ηf)Wf,

(5)

kB is the Boltzmann constant. Wd [erg/(cm
3·s)] is the power

density deposited by the driver (induced by the laser–piston
in our case), ηd equals the fraction of the driver energy depos-
ited in the electrons inside the shocked volume, 1 – ηd gives
the fraction of the driver energy deposited in the ions inside
the shocked volume.Wie [erg/(cm

3·s)] is the ion–electron ex-
change power density, whereas WB [erg/(cm3·s)] describe
the electron bremsstrahlung power density losses. As de-
scribed above,Wf [erg/(cm

3·s)] equals the fusion power den-
sity created in the shocked volume, where fα gives the
fraction of the α-particles energy deposited inside the
shocked volume with ηf equals the energy fraction that is de-
posited in the electrons by the α-particles and (1− ηf) is the
energy fraction that is deposited in the ions by the α-particles.
The shock wave velocity (us) and the flow particle velocity

(up) in this scheme are in the intermediate domain between
the relativistic and non-relativistic values (see the Appendix).
The shock wave driver considered here is a laser-piston,
which pushes the DT plasma to move with velocity up. The
deposition power density Wd in this piston model with a
constant laser irradiance IL[W/cm2] and laser pulse duration

τL is given by

Wd
erg

cm3 · s
[ ]

= 1
τL

1
2
ρup

2

( )
. (6)

The fraction of the driver energy deposition into the electrons
ηd can be estimated as function of λi and λe, the appropriate
mean-free paths of the ions and electrons in plasma:

ηd =
λi

λi + λe
,

λi[cm] = 3 × 1023

ni

( )
mp

mi

( )
Ei[MeV],

λe[cm] = 5 × 1022

ne lnΛ

( )
Te[keV]3/2Ei[MeV],

Ei = 1
2
miup

2 = 1250(MeV) up
c

( )2
,

(7)

where the ion mass in our case ismi= 2.5 mp, the ion density
ni is defined in Eq. (1) and the plasma logarithmic term lnΛ is

lnΛ = 24− ln
ne[cm−3]1/2

Te(eV)

[ ]
. (8)

It is important to mention that although λi and λe can in ge-
neral be larger than the time-dependent shocked domain up·t,
the charged particles that heat the shocked region have a ve-
locity up and therefore are not moving faster than the shock
wave since us> up. Thus, the shock wave moves into a
cold domain not yet heated by the driver energy.
The ion–electron exchange power density is given by

Wie
erg

cm3 · s
[ ]

= 3
2

( )
kB(Ti − Te)

τeq
,

τeq = 3memi

8
���
2π

√
nie4lnΛ

kBTe
me

+ kBTi
mi

( )3/2

.

(9)

The bremsstrahlung power density losses WB are given by

WB
erg

cm3 · s
[ ]

= 8.58 × 1021ρ2Te(eV)0.5 1+ 2Te(eV)
0.511 × 106

( )
. (10)

The α fusion energy is defined in Eq. (3). However, not all of
the α fusion energy is deposited into the ignitor; fα is the frac-
tion of the α-particles created and deposited into the ignitor
domain, while (1–fα) is the escape fraction to the surrounding
cold fuel. The value of fα is (Guskov & Rozanov, 1993)

fα =
3
2
xα − 4

5
xα

2, xα <
1
2
,

1− 1
4xα

+ 1
160xα3

, xα ≥ 1
2
,

⎧⎪⎨
⎪⎩

xα(τ) = R

Rα
.

(11)
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The ignitor dimension R in our model is taken to be the
length of the shocked cylinder

R = ls = (us−up)τL, (12)

and the α range Rα is approximated (Atzeni &
Meyer-Ter-Vehn, 2004) by:

Rα[cm] = 1
κρ0

1.5 × 10−2Te(keV)5/4
1+ 8.2 × 10−3Te(keV)5/4

[ ]
. (13)

The initial density of the pre-compressed target is ρ0 and κ is
the shock wave compression.
The fusion energy fraction deposited in the electrons by

the α-particles is ηf and (1− ηf ) describes the energy fraction
that is deposited in the ions. The function ηf for DT fusion is
(Chu, 1972):

ηf =
32

32+ Te(keV) . (14)

The time-dependent temperatures in Eq. (5) are coupled to
equations for the number densities of the ions species. For
DT these equations in our case (nD= nT) are:

dnD
dt

= dnT
dt

= − dnα
dt

= −nDnT〈σv〉DT, (15)

where nD, nT, and nα are number densities of the deuterons,
tritium, and α-particles accordingly and 〈σv〉DT is given in
Eq. (4).
We solve Eqs. (5) and (15) numerically and the calculated

electron and ion temperatures are given in Figure 1, while the
number densities of deuterium, tritium, and α are specified in
Figure 2. Our input data for these calculations are:

1. A pre-compressed target of DT with initial density ρ0
and shocked density ρ= 3600 g/cm3 and initial tem-
perature (in energy units) of Te= Ti= 1 keV.

2. The ratio of heat capacity at constant pressure to heat
capacity at constant volume Γ in the laser-induced
shock wave is either 3 or 5/3 and Γ= 3 for the detona-
tion wave (Landau & Stanyukovich, 1945) as described
in the next section. Therefore, the compression κ=
(Γ+ 1)/(Γ− 1) is either 2 or 4 (see the Appendix),
equivalent to pre-compressed density ρ0, 1800 or
900 g/cm3 accordingly. As the released fusion energy
is dependent on the shocked region density, to compare
the ignitor performance corresponding to the above two
values of Γ, we choose similar value for the shocked
density.

3. For both the values of Γ that we consider, we have a
particle flow velocity up in the shock wave that
equals to 0.010c, where c is the speed of light. As
shown in the Appendix, the value of laser intensity par-
ticle IL (W/cm2), the initial density ρ0 and the

equation-of-state (EOS) parameter Γ determines the
particle flow velocity and the shock wave velocity as
well as the compression (which depends only on Γ in
the domain discussed here). The laser pulse duration
was adjusted to obtain the required fusion energy Q
(see Section 3) for the development of detonation
wave at the end of the laser pulse. Assuming a laser
spot radius RL= 1.5 ls [see Eq. (12) and the Appendix],
the required laser energy can be estimated by

WL = πRL
2ILτL. (16)

The values of the laser parameters leading to detonation
development at the end of the laser pulse for the two
values of Γ are given in Table 1.

From the solution of the time-dependent equations for the
particles number density and temperatures, the fusion energy

Fig. 1. Electrons and ions temperatures as a function of time for a shock
wave induced by (a) a laser irradiance and energy of IL= 5.25 × 1023 W/
cm2 and 149 kJ accordingly during 0.75 ps assuming Γ= 3, in a pre-
compressed target with density 1800 g/cm3, (b) a laser irradiance and
energy of IL= 1.75 × 1023 W/cm2 and 12.8 kJ accordingly during 1.0 ps as-
suming Γ= 5/3, in a pre-compressed target with density 900 g/cm3.
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Q per unit mass released in the forward direction (defined by
the shock front) by the end of the laser pulse duration is cal-
culated. In our 1D piston model, fα is the fraction of the
α-particles deposited into the ignitor domain, while (1–fα)/2
is the escape fraction into the forward cold fuel. The α mean-
free path Rα (front) in the front of the shock wave, with Te=
1 keV from the pre-compressed conditions, is according to
Eq. (13)

Rα(front) = 1.50 × 10−2

κρ0
[cm]. (17)

For a pre-compressed density of 1800 g/cm3, one gets Rα

(front)= 0.08/κ μm. Since this mean-free path is extremely
small, we can assume that by the end of the laser pulse dura-
tion we have in the forward direction of the ignitor a fraction
[ fα+ (1–fα/2)] of the fusion created α-particles each with an
energy Eα= 3.52 MeV. Thus, the α energy per unit mass Q
given by

Q
J
kg

[ ]
= Eα

ρ

( )∫t=τL

0
dt

dnα
dt

( )
1
2
(1+ fα),

= 5.63 × 10−10

ρ[g/cm3]
( )∫t

0
dt

dnα[cm−3]
dt

( )
1
2
(1+ fα).

(18)

Our solutions for fα and Q are given in Figures 3 and 4
accordingly.

Table 1. Laser and shocked region parameters enabling the
development of detonation at the end of the laser pulse for particle
velocity up= 0.01c.

Γ κ ρ0 (g/cm
3) IL (W/cm2) τL (ps) ls (μm) 2RL (μm) WL (kJ)

3 2 1800 5.25 × 1023 0.75 2.3 6.8 149
5/3 4 900 1.75 × 1023 1 1.0 3.0 12.8

Fig. 3. The fusion energy fraction fα deposited in the shocked volume as a
function of time in the shocked volume considered in Figure 1 for (a) Γ= 3,
and (b) Γ= 5/3.

Fig. 2. The number densities of deuterium (nD), tritium (nT= nD), and α
(nα) particles as a function of time in the shocked volume considered in
Figure 1 for (a) Γ= 3, and (b) Γ= 5/3.
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3. THE DETONATION WAVE

At the end of the ignitor laser operation, we have chosen a
particle velocity behind the shock front of 1.0% the speed
of light. Now we will examine the conditions needed to sup-
port a steady detonation wave. The theoretical treatment that
we consider is based on 1D plane detonation wave under
Chapman–Jouguet (CJ) condition.
In the case of chemical-based detonation, the energetic

material entering the shock front is compressed and thus its
temperature rises. Under sufficient temperature the material
transforms exothermally into gasses products releasing
energy per unit mass (Q) that supports the shock. The section
at which this reaction undergoes is called the reaction zone,
and it is on the order of 0.1 mm for most explosives. The gov-
erning parameter effecting reaction rate in the reaction zone
are the local density and temperature. Our detonation is anal-
ogous to this description where the chemical energy has been
changed to nuclear fusion energy. In the DT fusion one gets
17.6 MeV fusion energy per reaction but only the 3.52 Mev

of the α-particle is relevant to support the desired steady-state
shock condition with a mean-free path <0.1 μm (see
Eq. (17)).

The conservation laws of mass (flow of mass), momentum
(sum of the flow of momenta), and energy (the sum of the
flows of thermal, chemical, and kinetic energies and the
work of the pressure force) are given by the following equa-
tions, respectively:

(i) ρ(D− u) = ρ0D,

(ii) P+ ρ(D− u)2 = P0 + ρ0D
2,

(iii) ET + P

ρ
+ 1

2
(D− u)2 = E0 + P0

ρ0
+ 1

2
D2 + Q (Q>0).

(19)

P[erg/cm3] is the pressure, ρ[g/cm3] is the density, ET[erg/g]
is the thermal energy, Q[erg/g] is the nuclear fusion energy
deposited on the wave front, u is the velocity of motion of
the fluid [cm/s], andD [cm/s] is the detonation wave velocity.

The detonation wave is steadily propagating with velocity
D, namely all magnitudes P, ρ, u, and ET are functions of
time t and space x only in the form x−Dt. By using CJ for-
malism for the ideal gas case one can obtain from the conser-
vation Eq. (19) some useful relations (Browne et al., 2008):

ρ

ρ0

( )
CJ

= Γ+ 1
Γ

;PCJ = ρ0D
2

Γ+ 1
,

u

D
= 1

Γ+ 1
;
cs
D

= Γ

Γ+ 1
,

Q

D2
= (Γ− 1)

2(Γ+ 1)2 ,

(20)

where cs is the adiabatic sound velocity and Γ= CP/CV is the
ratio of heat capacity at constant pressure to heat capacity at
constant volume. For the detonation wave, we take Γ= 3
(Landau & Stanyukovich, 1945) implying

u

D
= 1

4
;
cs
D

= 3
4
;
Q

D2
= 1

16
. (21)

We can see that by determining the particle velocity u= up to
equal 1.0% the speed of light we have determined the
nuclear energy needed to support a steady state CJ condition,
Q= 9·1012 J/kg. As one can see from Figure 4, this value of
Q is achieved by our laser-induced detonator.

It is interesting to point out that in the detonation wave for
u/c= 0.01 we have D/c= 0.04, while the α released in the
DT fusion with an energy of 3.5 MeV has a velocity of (u+
vα)/c= 0.052. This implies that some of the α-particles will
reach the detonation front.

4. CONCLUSION

In this paper, we have shown that a detonation wave can be
derived by a laser-induced detonator. The energy in this det-
onation is supplied by the α-particles created in the fusion of

Fig. 4. The fusion energy Q per unit mass released in the shock wave for-
ward direction as a function of time in the shocked volume considered in
Figure 1 for (a) Γ= 3, and (b) Γ= 5/3.
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DT. The fusion ignition is triggered by a laser-induced shock
wave in a pre-compressed DT fuel that is able to supply the
desired steady-state detonation criteria. The shock wave pa-
rameters in the detonator are in the intermediate domain be-
tween relativistic and non-relativistic hydrodynamics (see the
Appendix).
The laser energy is WL= ILτLSL, where IL, τL, and SL are

the laser irradiance, the pulse time duration and cross-section
accordingly. The laser cross-section SL= πRL

2 is chosen in
such a way that the 1D laser-induced shock wave is conceiv-
able. In particular, we take RL= 1.5(us–up)τL. In our domain
of interest, the shock wave is between the relativistic and
non-relativistic hydrodynamics, where Eq. (A13) determine
the shock velocity us and particle velocity up as a function
of laser irradiance IL, the initial target density ρ0, and the
EOS parameter Γ (see the Appendix).
The laser parameters creating the ignitor depend strongly

on the EOS. We consider an ideal gas with Γ= 5/3 and
3. The simulation shows that for the case (a) Γ= 3 and a pre-
compressed target at 1800 g/cm3 (equal to an ion density of
ni= 4.3 × 1026 cm−3) a laser irradiance IL= 5.25 × 1023 W/
cm2 and energy 149 kJ during 0.75 ps creates an α heating
fusion detonation wave; while (b) for Γ= 5/3 and a pre-
compressed target 900 g/cm3, the detonation wave requires
a laser irradiance IL= 1.75 × 1023 W/cm2 and energy
13.1 kJ during 1 ps.
Although the detonator EOS may be described by Γ= 5/3

or 3 the detonation wave has Γ= 3 following the original
idea of Landau (Landau & Stanyukovich, 1945). The laser-
induced ignitor should supply the steady state CJ conditions
as described by Eq. (21). In particular, we get that the
α-particles created in the DT fusion by the end of the ignitor
produce a power flux of WCJ=Qρ0u= 4.86 × 1025 W/m2,
where Q= 9 × 1012 J/kg.
The nuclear fusion burn is described by Figure 2. We

achieve a detonation wave when the numbers of DT reactions
are between 15% and 25% with an α density number of about
1026 cm−3.
To conclude we suggest that the detonation wave created

by the laser-induced shock wave can ignite a pre-compressed
DT pellet. The required ignition criterion of DT ignition and

burn are easily satisfied (Atzeni & Meyer-Ter-Vehn, 2004;
Eliezer et al., 2015) along the detonation wave trajectory.
In Figure 5, we show a schematic view of the detona-

tion trajectory in a pre-compressed pellet. As a numerical
example an initial pellet with radius R0= 1 mm and DT
fuel of density 0.2 g/cm3 with thickness 0.1 mm (i.e., an
aspect ratio of 10) is compressed to a density of ρ0=
900 g/cm3 by the nanosecond lasers. The novel aspect
of this ignition is the possibility to ignite the compressed
pellet from inside and not from the surface as usually sug-
gested. The compression of a typical pellet as discussed in
the literature (Eliezer et al., 2007) requires between 100
and 300 kJ of energy depending on the EOS, target
design, and the final required density. The fast ignition
in our case needs about 13 kJ of energy. Such a laser is
under development and may be available in the near
future (ELI, 2015).
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APPENDIX

BETWEEN RELATIVISTIC AND
NON-RELATIVISTIC SHOCK WAVES

In this appendix, we discuss the intermediate domain be-
tween relativistic and non-relativistic shock waves.
The three relativistic shock wave conservation laws (mass,

momentum, and energy) in the laboratory frame of reference

yield the following relations (Eliezer et al., 2014b):

us
c
=

����������������������(P1 − P0)(e1 + P0)
(e1 − e0)(e0 + P1) ,

√

up
c
=

��������������������(P1 − P0)(e1 − e0)
(e0 + P1)(e1 + P0)

√
,

(e1 + P1)2
ρ1

2
− (e0 + P0)2

ρ0
2

= (P1 − P0) (e0 + P0)
ρ0

2
+ (e1 + P1)

ρ1
2

[ ]
,

(A1)

where P, e, and ρ are the pressure, energy density, and mass
density accordingly, the subscripts 0 and 1 denote the do-
mains before and after the shock arrival, us is the shock
wave velocity, up is the particle flow velocity in the laborato-
ry frame of reference, and c is the speed of light. We have as-
sumed that in the laboratory the target is initially at rest, up0=
0. The last of Eq. (A1) is known as the Hugoniot equation.
The EOS taken here in order to calculate the shock wave pa-
rameters is the ideal gas EOS

ej = ρjc
2 + Pj

Γ− 1
; j= 0, 1, (A2)

where Γ is the specific heat ratio. We have to solve Eqs. (A1)
and (A2) together with our piston model equation (Esirkepov
et al., 2004; Eliezer et al., 2014b)

P1 = 2IL
c

1− β

1+ β

( )
; β ≡

up
c
. (A3)

The calculations are conveniently done in the dimensionless
units defined by

ΠL ≡
IL
ρ0c

3
; κ ≡

ρ1
ρ0

; κ0 ≡
Γ+ 1
Γ− 1

; Π = P1

ρ0c
2
; Π0 = P0

ρ0c
2
. (A4)

It is important to emphasize that if we take P0= 0, then we
get only the κ> 4 solutions (Eliezer et al., 2014a); therefore,
in order to see the behavior at the transition between relativ-
istic and nonrelativistic domains one has to take P0≠ 0! In
this case, we get from Eqs. (A1) and (A2) the following equa-
tion relating dimensionless shock wave pressure Π with the
compression κ, namely the relativistic Hugoniot equation
for an ideal gas EOS is

Π2 + BΠ+ C = 0,

κ ≡
ρ1
ρ0

≥ 1,

⎧⎨
⎩
Π = 1

2

( )
(−B±

����������
B2 − 4C

√
),

B = (Γ− 1)2
Γ

(κ0κ− κ2) + Π0(Γ− 1)(1− κ2),

C = (Γ− 1)2
Γ

(κ− κ0κ
2)Π0 − κ2Π0

2.

(A5)
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The solution of this equation is shown in Figure 6 for Γ= 5/3.
As one can see from Figure 6, the compression κ= ρ/ρ0 is
constant in a large domain of the dimensionless pressure
Π= P/(ρ0c

2), where P is the shock wave pressure. Therefore,
for the intermediate relativistic shock wave, we have to a good
(as desired) approximation the following relation:

κ ≡
ρ1
ρ0

= κ0 = Γ+ 1
Γ− 1

. (A6)

The non-relativistic shock wave equations are obtained
from the relativistic Eq. (A1) using e= ρc2+ ρE, P, and
ρE are much smaller than ρc2 and u/c≪ 1, where u stands
for the velocities under consideration. The appropriate non-
relativistic equations describing the shock wave in the labo-
ratory frame of reference are (Zeldovich & Raizer, 1966).

(i) up = (P1 − P0)1/2(1/ρ0 − 1/ρ1)1/2,
(ii) us = (1/ρ0)(P1 − P0)1/2(1/ρ0 − 1/ρ1)−1/2,

(iii) E1 − E0 = 1
2

( )
(P1 + P0)(1/ρ0 − 1/ρ1),

(iv)
(v)

}
Ej = 1

Γ− 1

( )
Pj

ρj

( )
, for j = 0, 1.

(A7)

The relativistic Hugoniot equation for an ideal gas EOS is
given by Eq. (A5), while the non-relativistic Hugoniot equa-
tion for an ideal gas EOS is [from (A7)]

Π = κκ0 − 1
κ0 − κ

( )
Π0. (A8)

Figure 6 describes the transition between the relativistic and
non-relativistic Hugoniot, namely the transition between Eqs.
(A5) and (A8). In this transition domain, between relativistic

and non-relativistic shock waves, we have

10−9 ≤ Π ≤ 10−3 ⇔ κ = ρ

ρ0
= 4.00 (for Γ = 5/3). (A9)

In the domain defined by Eq. (A6) (yielding (A9) for Γ= 5/3),
we can use the first two equations of (A7) for up/c< 0.03 in
order to get

up
c
=

������
2Π
Γ+ 1

√
;

us
c
=

����������
(Γ+ 1)Π

2

√
.

(A10)

Using now our piston model Eq. (A3) together with Eq. (A10),
we obtain

β = up
c
=

−ΠL +
���������������������
Γ+ 1
4

( )
ΠL − ΠL

2

√

Γ+ 1
4

( )
− 2ΠL

, (A11)

Π = 2ΠL

Γ+ 1
4

( )
− ΠL −

���������������������
Γ+ 1
4

( )
ΠL − ΠL

2

√

Γ+ 1
4

( )
− 3ΠL +

���������������������
Γ+ 1
4

( )
ΠL − ΠL

2

√
⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦. (A12)

In Figures 7 and 8, we describe appropriately the dimensionless
particle shock velocity β= up/c and the dimensionless pres-
sure Π= P/(ρ0c

2) as a function of the dimensionless laser in-
tensity ΠL= IL/(ρ0c

3) for the two cases Γ= 3 and 5/3. An
identical graph for Π as a function of ΠL is derived for Γ=
5/3, since the Γ dependence in this domain is negligible.

Fig. 7. The dimensionless particle shock velocity β= up/c as a function of
the dimensionless laser intensity ΠL= IL/(ρ0c

3) for the two cases Γ= 3 and
Γ= 5/3.

Fig. 6. The shock wave compression κ= ρ/ρ0 as a function of the dimen-
sionless shock wave pressure Π= P/ρ0c

2 for Γ= 5/3.
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Since ΠL< 10−2, we have to a good approximation in the
domain between relativistic and non-relativistic shock waves

the following approximations:

Π ≈2ΠL,

up
c
≈2

������
ΠL

Γ+ 1

√
= 2

�������������
IL

(Γ+ 1)ρ0c3
√

,

us
c
≈

�����������
(Γ+ 1)ΠL

√
=

������������
IL(Γ+ 1)
ρ0c

3
.

√ (A13)

Under this approximation, the shock wave length ls by the
end of the laser pulse is

ls = (us − up)τL = Γ− 1

(Γ+ 1)1/2
( ) ������

ILτL2

ρ0c

√
. (A14)

The laser cross-section SL= πRL
2 is chosen RL= 1.5(us–up)

τL in order that the 1D laser-induced shock wave is conceiv-
able. Therefore for a constant laser irradiation IL, we need a
laser energy WL given by

WL = ILSLτL = 2.25π
(Γ− 1)2
Γ+ 1

[ ]
IL2τL3

ρ0c

( )
. (A15)

Fig. 8. The dimensionless shock wave pressure Π= P/(ρoc
2) as a function

of the dimensionless laser intensity ΠL= IL/(ρ0c
3) for Γ= 3. An identical

graph is derived for Γ= 5/3, since the Γ dependence in this domain is
negligible.
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