
ABSTRACT
This paper examines the design of a composite helicopter rotor
blade to meet given cross-sectional properties. As with many real-
world problems, the choice of objective and design variables can
lead to a problem with a non-linear and/or non-convex objective
function, which would require the use of stochastic optimisation
methods to find an optimum. Since the objective function is evalu-
ated from the results of a finite element analysis of the cross
section, the computational expense of using stochastic methods
would be prohibitive. It is shown that by choosing appropriate
simplified design variables, the problem becomes convex with
respect to those design variables. This allows deterministic optimi-
sation methods to be used, which is considerably more computa-
tionally efficient than stochastic methods. It is also shown that the
design variables can be chosen such that the response of each indi-
vidual cross-sectional property can be closely modelled by a linear
approximation, even though the response of a single objective
function to many design parameters is non-linear. The design
problem may therefore be reformulated into a number of simulta-
neous linear equations that are easily solved by matrix methods,
thus allowing an optimum to be located with the minimum number
of computationally expensive finite element analyses.

NOMENCLATURE
X[i] general design variable
X general vector of design variables
Y[i] general cross-sectional target property
Y general vector of cross-sectional target properties
aij coefficient of linearity between design variable and cross-

sectional property
Aij normalised coefficient of linearity between design variable 

and cross-sectional property

[A] coefficients matrix
EIXX flap-bending stiffness of section
EIYY lag-bending stiffness of section
mass mass per unit depth of cross-section
CG chordwise location of centre of gravity

1.0 BACKGROUND
A helicopter blade is designed to meet constraints on both inertia and
stiffness properties. While the mass and chordwise location of centre
of gravity (CG) of the section are important to ensure adequate blade
stability, the blade stiffness properties are designed to meet target
values. Geometrically, a helicopter blade is a long, slender structure
and is routinely idealised as a 1D beam. From a design perspective,
it is important not only that the structural properties of the cross-
section can be accurately determined (usually from a finite element
model), but that these properties can also be tailored to achieve
desirable characteristics of the structure being designed. 

In order to illustrate the scope of current work, this paper exam-
ines the design of a typical helicopter rotor blade to meet the objec-
tive that the cross-section meets given values of mass, chordwise
location of centre of gravity (CG), and flap- and lag-bending stiff-
nesses (EIXX and EIYY). 

The use of composite materials allows the structural designer
new degrees of freedom with which to tailor the structural proper-
ties of a design. This is a good feature in itself, but it also increases
the dimensionality of the design space – a negative trait from an
optimisation viewpoint. Design optimisation is further complicated
by the fact that a number of design variables are discrete – typi-
cally due to manufacturing considerations. Examples include ply
thickness (typically 1/8th-mm increments), and ply orientation
(typically 45° increments). 
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Given existing computing power, it is not feasible to search the
entire design space for a complex design of helicopter rotor blade.
Even a simple three variable problem takes two days to run on
current computing platforms (Pentium P4 1⋅7GHz). Problems with
more variables would require the design space to be reduced in order
to make the search feasible. As such, many studies 1-13 have been
directed towards the optimisation of laminated composite aerospace
structures. Some of these (e.g. Kameyama et al(1), Chattopadhyay et
al(2) use simplified geometrical models such as modelling the wings
as flat plates, or helicopter blades as a rectangular torsion boxes.
Although these give important physical insight and useful results for
preliminary design, the modelling simplifications made in the
analysis leave the accuracy of the ‘optimum’ design open to ques-
tion. Indeed, Chattopadhyay et al(2) conclude that “the results
obtained must be viewed within the context of the modelling
assumptions used in the analysis.” While such work is of some use
to the industry, further design tools are required to produce a
finished detail design ready for manufacture. This work addresses
that industrial need.

Finite element analysis is an established design tool in the aero-
space industry, and the use of rigorous optimisation techniques is
gradually becoming more widespread. An optimisation method is
therefore required that is capable of interfacing with commercially
available analysis tools, thereby allowing the design to be optimised
at whatever level of detail is necessary. 

Although this study examines the design of a simplified helicopter
blade, the finite element approach adopted may be applied directly to
more complex prismatic sections. Furthermore, the lessons learned
from this problem and the methods developed to solve it are also
applicable to more complex structural design problems. 

2.0 PROBLEM FORMULATION
The problem formulated is to design a composite helicopter rotor
blade (shown in Fig. 1) to meet predetermined target values of four
cross sectional properties. 

The main features of this generic blade design that will be consid-
ered in optimisations studies are highlighted in Fig. 1 and are

1. nose weight
2. rear wedge
3. eight-ply composite spar wall
4. eight-ply composite blade wall     
5. foam filler
6. glass fibre surface layer

The parameters to be varied (i.e. the design variables) are 

X[0] : chordwise location of end of nose weight
X[1] : chordwise location of start of rear wedge
X[2] : thickness of each eight-ply composite
The cross-sectional properties (i.e. the target variables) are chosen as 

Y[0]t : EIXX = 2⋅72 × 108Nm2 . . . (1a)

Y[1]t : EIYY = 4⋅79 × 109Nm2 . . . (1b)

Y[2]t : mass = 0⋅397kg/m . . . (1c)

Y[3]t: CG = 23⋅0 % chord . . . (1d)

These target variables were chosen as they correspond to the cross
sectional properties of an existing section – i.e. it is known that the
solution lies within the feasible design space.

The behaviour of the structure has been assessed using the
approach of Hill and Weaver(14) which is an extension of the
approach presented by Bartholomew and Mercer(15). This approach
uses finite element analysis of a three-dimensional slice of the cross-
section of any prismatic beam with any number of materials to
produce equivalent 1D beam properties, i.e. a cross-sectional stiff-
ness matrix. It achieves this by linking the two faces of the slice
model with multi-point constraint equations, which allow relative
motion of the faces according to linear bending, axial displacement
and torsion through ‘scalar freedoms’. The individual components of
the stiffness matrix are found by taking the displacements of these
scalar freedoms for the four load cases of axial tension, torsion and
the two bending cases. The 3D slice itself is free to deform (warp) in
the plane of the section and also out-of-plane, if necessary.

It is common practice to formulate a single function that gives an
objective measure of design performance. In this problem, the fitness
of the design is determined by how closely the target values of cross
sectional stiffness are met. The following objective function was
formulated for this problem:

which may be represented in the general case as

where subscripts c and t refer to current and target values of the
stiffness, respectively. It is noted that the objective function is
always positive, but reduces to zero if/when all of the target
values are met exactly. Each of the terms in the objective function
are normalised with respect to the relevant target value, thus
giving each term equal weighting. 

Although the cross sectional properties of the blade cannot be
accurately determined from a simple analytical model, it is rela-
tively straightforward to obtain these results from a finite element
analysis of the cross section using the method of Hill and Weaver.
Many real world problems, are complicated by the fact that
several design variables are discretised (e.g. ply thicknesses). It
may not be possible to select the exact ply thicknesses that give
the desired laminates properties, but instead must round the ply
thicknesses to the nearest ply thickness (typically 0⋅125mm).
Although this is not usually a problem for large structures with
wall thicknesses of several millimetres, this may be significant for
smaller structures such as that studied in this problem. 

Although it is not an efficient method of approaching an optimi-
sation problem, an exhaustive search of the solutions for different
designs is first undertaken. This study will locate the discrete
point that most closely matches the required solution, and the
results are enlightening for, once the design space is mapped out,
the nature of the design space is known and the most appropriate
optimisation strategy may be chosen.
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Figure 1. Generic helicopter blade design.
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3.0 INVESTIGATION OF FEASIBLE DESIGN 
SPACE

In order to gain a full understanding of the exact nature of the objec-
tive function, the design space was discretised and searched. Due to
the simple (three-variable) nature of this problem, a sufficiently
high-resolution search was obtained by discretising the entire design
space into 512 design points. This design space required two days to
exhaustively search.

Figure 2 illustrates the variation of objective function (plotted in
colour) at discrete points over the three-dimensional design space.
The visualisation of an objective function within a design space that
has more than three dimensions is neither intuitive, nor easy to
represent in a concise pictorial format. However, despite the obvious
difficulties of representation, these results have significant conse-
quences for the optimisation of helicopter blades. 

Although convexity is demonstrated mathematically if the
Hessian matrix is positive semi-definite, the variation of colour (i.e.
value of objective function) across the design space in Fig. 2 does
suggest convexity of the underlying continuous problem. Prior
studies on composite cylindrical shells indicate that this design
space is convex because the design variables in this problem are
wall locations and ply thicknesses. It is noted that the inclusion of
ply orientations or stacking sequences as design variables would
lead to a non-convex objective function. If this were the case, the
problem would either have to be solved using stochastic methods,
or simplified by the use of lamination parameters(17-19). For the sake
of simplicity, stacking sequences are ignored but their relative
effects will be discussed later.

Despite the limitations imposed by discretisation, it is possible to
meet the target values to a mean error of less than 1% at the
optimum point. The optimum design values were found to be 

X[0] = 4⋅0mm
X[1] = 98mm
X[2] = 1⋅375mm

4.0 EFFICIENT SOLUTION METHODS
With the knowledge that the design space is convex, it is possible to
apply sequential linear programming (SLP) techniques to solve the
problem. A typical approach may use the current objective function
and apply a steepest descent method with appropriate move limits –
a method that reliably finds the optimum of a convex problem. Since

the objective function for this problem is highly non-linear, the
analysis will require several iterations – each requiring the gradients
of the objective function to be evaluated via a computationally
expensive finite-difference method. It is therefore desirable to
minimise the number of times that such gradients are calculated. An
even more efficient method linearises the variation of the target vari-
ables (EIXX, EIYY and CG) about an initial design point. Figures 3(a)-
3(c) show the values of several cross-sectional properties
(normalised to the target values) plotted against each design 
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Figure 2. Variation of objective function over 3D design space.
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Figure 3: Variation of cross-sectional properties with 
design variables.
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variable. The significant result is that each property varies almost
linearly with the design variable over almost the entire design space.
Note that only the target variables EIX, EIY, mass and CG are consid-
ered in this problem, however the graphs show that other variables
(EA and GJ) also vary linearly. 

As the problem is essentially linear, the problem can be expressed
as N simultaneous linear equations, where N is the number of target
variables,

EIXXnew = EIXXc + a11∆X[0] + a12∆X[1] + a13∆X[2] . . . (3a)

EIYYnew = EIYYc + a21∆X[0] + a22∆X[1] + a23∆X[2] . . . (3b)

massnew = massc + a31∆X[0] + a32∆X[1] + a33∆X[2] . . . (3c)

GCnew = GCc + a41∆X[0] + a42∆X[1] + a43∆X[2] . . . (3d)

Since the desired new values of the target variables are the target
values, so it is straightforward to solve for ∆X[i]. Since the linearisa-
tion is valid across the entire design space, the change in each design
variable X[i] (i.e. ∆X[i]) does not have to be small. 

These simultaneous linear equations can be conveniently repre-
sented in generalised matrix form as

which may be normalised as

which may be abbreviated to

[A] ∆∆X = b . . . (4c)

Note that the magnitude of vector b in Equation (4c) is representa-
tive of the normalised distance between the current design point and
the target design point. This is equivalent to the square root of the
objective function defined in Equation (2). When the magnitude of b
becomes zero, the target values have all been met, and the optimal
point has been found. Because the problem is not completely linear,
the process must be iterated until it converges upon a solution. 

There are three types of problem that arise depending on the
number of target values for cross-sectional properties and the
number of variables to be used in the optimisation problem. Each
scenario is examined in turn.

Case 1. The number of design variables is less than the number
of target variables
This three-design-variable problem requires that four target values
(EIXX, EIYY, mass and CG) are satisfied. Although in this case, the
chosen target values of cross-sectional property corresponded to an
actual design, in general it is not necessarily possible to obtain an
exact solution in problems where the number of target values
exceeds the number of design variables. However, it is possible to
obtain a least squared error solution by the pseudo-inverse method –
i.e. by solving 

[A]T[A]∆∆X = [A]T b . . . (5a)

which gives  X as

∆∆X = ([A]T[A])–1[A]T b . . . (5b)

thus minimising the magnitude of b (and also the value of the objec-
tive function). 

Case 2. The number of design variables is equal to the number of
target variables
If the problem considered here had only required that EIX, EIY and
CG values are matched, the number of target values is equal to the
number of design variables. In this case there is one unique optimum
solution, which may be found directly from 

∆∆X = [A]–1 b . . . (6)

Case 3. The number of design variables is greater than the
number of target variables
In this case, there is a range of solutions. This is analogous to redun-
dancy in a structure. The appropriate number of design variables
may therefore be fixed, until the remaining number of design vari-
ables is equal to the number of target variables. A unique solution
may then be obtained from Equation (6) above. 

In the Discussion section relative advantages and disadvantages of
the proposed method are presented.

5.0 DISCUSSION
The optimisation method presented works well because the design
space is well-understood. Indeed, the fact that optimal solutions are
relatively close in some sense to the initial values, as borne out by
the linear perturbations of optimal variables from their starting
values, is indicative of a good initial design. This is a reflection on
the mature state of blade design for current configurations. The great
merit of the current approach is that optimisation of blade sections
becomes very quick and routine such that optimisation of an entire
blade may take place by a succession of two-dimensional optimisa-
tion analyses along the blade. The fact that blades are mostly pris-
matic in nature implies geometry and material do not vary much
along the blade length giving support this approach. Despite the
obvious advantages of the proposed method it does have disadvan-
tages and these are discussed in the following two sections.

5.1 The effect of discretisation

The analysis presented here does not consider the effect of discreti-
sation. This problem is additionally constrained by the discretisation
of individual ply thicknesses to 0⋅125-mm increments. 

For this problem, the simplest solution is to evaluate the discrete
designs either side of the continuous optimum and re-optimise any
remaining continuous variables for each point. Each solution can be
obtained analytically by solving the matrix equation above, using the
same values of Aij and searching through all the appropriate discre-
tised combinations of ∆X[i]. Depending on the accuracy of the
linearisation and the degree of discretisation, the calculated discrete
optimum may then be verified using finite element analysis.

In the general case for convex problems (i.e. with more than just
one discretised variable) the discretised solution will be one of the
design points that immediately surround the continuous solution in
M-dimensional design space, where M is the number of discretised
variables.

This will give 2M possible discretised solutions. For each discre-
tised solution, optimisation must be carried out with the remaining
continuous design variables. The best of these optimised discrete
solutions will be the global discretised optimum. 

474 THE AERONAUTICAL JOURNAL OCTOBER 2005

. . . (4a)

. . . (4b)

11 12 13

21 22 23

31 32 33

41 42 43

[0] [0]
[0]

[1] [1]
[1]

[2] [2]
[2]

[3] [3]

t c

t c

t c

t c

a a a Y Y
X

a a a Y Y
X

a a a Y Y
X

a a a Y Y

−⎡ ⎤ ⎧ ⎫
∆⎧ ⎫⎢ ⎥ ⎪ ⎪−⎪ ⎪ ⎪ ⎪⎢ ⎥ ∆ =⎨ ⎬ ⎨ ⎬⎢ ⎥ −⎪ ⎪ ⎪ ⎪∆⎢ ⎥ ⎩ ⎭ ⎪ ⎪−⎣ ⎦ ⎩ ⎭

( )
( )
( )
( )

11 12 13

21 22 23

31 32 33

41 42 43

1 [0] [0]
[0]

1 [1] [1]
[1]

1 [2] [2]
[2]

1 [3] [3]

c t

c t

c t

c t

A A A Y Y
X

A A A Y Y
X

A A A Y Y
X

A A A Y Y

−⎧ ⎫⎡ ⎤
∆⎧ ⎫ ⎪ ⎪⎢ ⎥ −⎪ ⎪ ⎪ ⎪⎢ ⎥ ∆ =⎨ ⎬ ⎨ ⎬⎢ ⎥ −⎪ ⎪ ⎪ ⎪∆⎢ ⎥ ⎩ ⎭ ⎪ ⎪−⎣ ⎦ ⎩ ⎭

https://doi.org/10.1017/S0001924000000889 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000000889


5.2 Effect of ignoring stacking sequences

The effect of ignoring stacking sequences significantly simplifies the
problem from one that is non-convex to one that is. Neglecting such
effects implies that in-plane stiffness effects of laminates greatly
outweigh flexural stiffness contributions. This is a feature of thin-
walled closed section structures, in which buckling and vibration
effects are discounted, and as such, is a feature of efficient struc-
tures. Flexural stiffness effects are expected to become significant
for ratios of t / r < 10 where t represents a wall thickness and r is the
smallest outer dimension of the section. For a blade r is half the
section depth. However, it is noted that not all rotor blades are thin-
walled. Under these circumstances it is recommended that the
current approach is adopted to find proportions of plies with speci-
fied fibre angles from which a subsequent optimisation analysis
taking into account stacking sequences may be effected. A possible
means of achieving this is via use of lamination parameters. Finally,
it is re-emphasised that for thin-walled closed section structures
stacking sequences are expected to have minimal effects.

6.0 CONCLUSIONS
It is well known that while stochastic methods are useful for locating
several near optimal points in a non-convex design space, they are
relatively poor at locating a single best point. Conversely, determin-
istic methods efficiently locate an optimum point, but do not guarantee
global optimum for non-convex problems. Since the design space of
the helicopter rotor blade problem is convex, the optimum point can
be located using computationally efficient, deterministic methods. By
linearising the target variables in terms of the design variables about a
given design point, the problem is solved by matrix methods. 

It is a straightforward procedure to program this method and inter-
face with finite element analysis packages to reliably and efficiently
design complex closed-section composite structures to meet given
structural properties. 

In order to ensure that the design space is convex, lay-up and
stacking sequence have been fixed. Existing composite helicopter
blades are not always thin-walled, so these design freedoms could
affect the design envelope significantly. However, it is noted that
designs found by the proposed method may be used in a subsequent
optimisation analysis using stacking sequence as a variable.
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