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Turbulence plays a key role in the conversion of the energy of large-scale fields
and flows to plasma heat, impacting the macroscopic evolution of the heliosphere
and other astrophysical plasma systems. Although we have long been able to make
direct spacecraft measurements of all aspects of the electromagnetic field and plasma
fluctuations in near-Earth space, our understanding of the physical mechanisms
responsible for the damping of the turbulent fluctuations in heliospheric plasmas
remains incomplete. Here we propose an innovative field–particle correlation technique
that can be used to measure directly the secular energy transfer from fields to particles
associated with collisionless damping of the turbulent fluctuations. Furthermore, this
novel procedure yields information about the collisionless energy transfer as a function
of particle velocity, providing vital new information that can help to identify the
dominant collisionless mechanism governing the damping of the turbulent fluctuations.
Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau
damping, and the field–particle correlation technique is thoroughly illustrated using the
simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension
in physical space and one dimension in velocity space) Vlasov–Poisson plasma.
Generalizations necessary to apply the field–particle correlation technique to diagnose
the collisionless damping of turbulent fluctuations in the solar wind are discussed,
highlighting several caveats. This novel field–particle correlation technique is intended
to be used as a primary analysis tool for measurements from current, upcoming and
proposed spacecraft missions that are focused on the kinetic microphysics of weakly
collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS),
Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
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1. Introduction
The flow of energy from the sun, through interplanetary space, to the magnetospheres

of the Earth and other planets impacts the macroscopic evolution of the heliosphere,
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our home in the universe. Plasma turbulence plays a key role in this process,
mediating the conversion of the energy of large-scale fields and flows to plasma
heat. But our understanding of how turbulence governs energy transport and plasma
heating remains incomplete, representing a grand challenge problem in heliophysics.

To complicate matters further, in many turbulent heliospheric plasmas of interest,
such as the solar corona and the solar wind, the typically low-density and high-
temperature conditions dictate that the turbulent dynamics is weakly collisional,
requiring the application of kinetic plasma theory to follow the evolution and
dissipation of the turbulence. Kinetic plasma theory describes the evolution of
six-dimensional (6-D, or 3D-3V) particle velocity distribution functions and the
resulting electromagnetic fields, so in addition to tackling the large spatial dynamic
range typical of turbulence problems, heliospheric plasma turbulence demands
novel theoretical approaches to tackle the inherently high dimensionality of the
kinetic plasma dynamics. A particular challenge at the frontier of studies in kinetic
plasma turbulence is to identify the physical mechanisms by which the turbulent
electromagnetic field and plasma flow fluctuations are damped and their energy
converted to plasma heat, or some other energization of particles.

Under the very low collisionality typical of the solar corona and solar wind,
the damping of the turbulent fluctuations is governed by collisionless interactions
between the electromagnetic fields and the plasma particles. In linear kinetic theory,
such interactions lead to the collisionless damping of linear waves and are therefore
commonly denoted wave–particle interactions, with typical examples being Landau
damping (Landau 1946; Villani 2014), transit-time damping (Barnes 1966) and
cyclotron damping (Stix 1992). It is important to note that the underlying physical
process occurring in such wave–particle interactions is not limited to linearized
systems or to sinusoidal waveforms, but holds as well for nonlinearly evolving
plasmas. For a turbulent plasma, in which nonlinear evolution plays a central role,
the collisionless interactions between the electromagnetic fields and the plasma
particles may lead to a secular transfer of energy from fields to particles, resulting in
collisionless damping of the turbulent fluctuations. Recognizing that the linearization
and plane-wave decomposition frequently adopted in analytical calculations are often
simply chosen to express the essential collisionless dynamics in a simplified context,
we choose to adopt here the term wave–particle interaction as a general concept not
limited to a linearized system.

Although handling the three additional dimensions of velocity space inherent
to kinetic theory is a significant challenge, both analytically and numerically, the
fluctuations in velocity space constitute a new source of information about the
dynamics and energetics of a turbulent kinetic plasma. Although the interpretation
of velocity-space data is not straightforward in many cases, it represents a largely
untapped potential source of information for discovery science. Although direct
sampling of turbulence in the solar wind by spacecraft missions is often limited to
measurements at a single point in space as a function of time, spacecraft can also
provide measurements of the three-dimensional particle velocity distribution (3V) at
that position in space as a function of time.

Our ultimate goal is to devise a strategy to identify and characterize the secular
transfer of energy from fields to particles (leading to the collisionless damping of the
turbulent fluctuations) using measurements of the electromagnetic fields and particle
velocity distributions at a single point in space as a function of time. In particular, how
this energy transfer varies as a function of particle velocity illuminates the properties
of the collisionless energy transfer, potentially helping to identify definitively the
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physical processes involved in the damping of the turbulence. Here we propose the
general concept of using field–particle correlations to isolate the net transfer of energy
from fields to particles as turbulent fluctuations are damped through collisionless
interactions between the electromagnetic fields and individual plasma particles.

In this paper, we employ the simplified 1D-1V (one dimension in physical space and
one dimension in velocity space) Vlasov–Poisson system for the nonlinear evolution
of electrostatic fluctuations in an unmagnetized plasma to guide the development of
a procedure to identify the secular energy transfer via collisionless wave–particle
interactions. We propose an innovative analysis technique using field–particle
correlations at a single point in space to estimate the energization of the plasma
particles due to the damping of the electromagnetic fields, providing vital new
information about how this energy transfer is distributed as a function of particle
velocity. We employ nonlinear simulations of the 1D-1V system to illustrate the
application of this novel procedure.

As the intended application of this technique is to diagnose the collisionless
energy transfer between turbulent electromagnetic fluctuations and particles in weakly
collisional heliospheric and astrophysical environments, such as the solar wind
and solar corona, we choose parameters for this simple numerical demonstration
of the technique most relevant to the case of solar wind turbulence. Since the
turbulent fluctuations in the solar wind typically have |δB|/|B| ∼ 0.1 at the kinetic
length scales on which the turbulent fluctuations may be collisionlessly damped, we
choose the amplitudes of the damped Langmuir waves to be δn/n0 ∼ 0.1. At these
amplitudes, quasilinear theory describes quite accurately the evolution of the system,
which primarily shows damping of the initial Langmuir waves. The emergence of
strongly nonlinear features in phase space, such as BGK (Bernstein–Greene–Kruskal)
structures or phase-space vortices, requires significantly higher initial amplitudes of
δn/n0 & 0.5. Although the application of the field–particle correlation technique to
analyse the collisionless energy transfer in such a strongly nonlinear regime would
potentially be very interesting, it is not directly relevant to the parameter regime
of solar wind turbulence, so we do not explore this limit of strong nonlinearity in
the 1D-1V Vlasov–Poisson system. Subsequent work will generalize the application
of the field–particle correlation technique to the case of turbulent electromagnetic
fluctuations in a magnetized plasma directly relevant to many heliospheric and
astrophysical environments.

1.1. Previous investigations of waves and particles
The idea of examining the relation between measured electromagnetic fields and
particle fluxes in weakly collisional space plasmas has long been used in the
investigation of the energy transfer between fields and particles. The types of studies
that have been performed in the past fall into three broad categories: (i) spatial
coincidence, (ii) conjunction and (iii) correlation. In spatial coincidence studies, if a
single spacecraft measures a feature in both the fields and particles at the same time –
for example, a particular feature in the frequency spectrum along with an enhancement
of particle counts within a certain energy and pitch angle bin – this evidence is used
to infer the action of wave–particle interactions. In conjunction studies (Keiling 2009),
the measurements at different positions along the same magnetic flux tube can be
used to infer the integrated effect of wave–particle interactions between the two
points. In correlation studies, a mathematical correlation between field measurements
and particle measurements is performed using measurements at the same point in
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space, preserving the valuable phase information needed to establish definitively an
interaction between the fields and particles.

Spatial coincidence studies between measured field fluctuations and particle fluxes
have played an important role since the early exploration of the physical phenomena
in the Earth’s magnetosphere. Bursts of energetic electrons with E> 40 keV measured
by the Injun 3 spacecraft were found to be accompanied by the very low frequency
(VLF) electromagnetic fluctuations of the whistler-mode chorus (Oliven & Gurnett
1968), and subsequent studies using high-altitude balloons (Rosenberg, Helliwell &
Katsufrakis 1971) and the Ogo 5 satellite (Burton & Holzer 1974) found further
evidence of association between the distribution of energetic electrons in the range
from 40 keV6E6 100 keV and whistler chorus emissions (Kennel & Petschek 1966).
In addition, spatial coincidence studies also provided evidence linking electrostatic
fluctuations above the cyclotron frequency to diffusion and pitch angle scattering
of energetic electrons in the region 5 . L . 7 (Kennel et al. 1970; Fredricks &
Scarf 1973; Scarf et al. 1973; Shaw & Gurnett 1975). Subsequent work using
measurements from the Explorer 45 spacecraft showed that electrons with energies
1 keV 6 E 6 10 keV injected during magnetic storms and substorms appeared to
be associated with VLF emissions both above and below the cyclotron frequency
(Anderson & Maeda 1977).

Early magnetic conjunction studies included the comparison of ground-based
measurements of VLF radio waves at high latitudes (Siple, Antarctica, which samples
magnetic field lines L' 4) to in situ electron measurements on the geostationary ATS
6 satellite (Park, Parks & Lin 1981) and the launching of VLF waves from the same
ground station with observations made by the Japanese EXOS-B satellite (Kimura
et al. 1983).

Magnetic conjunction studies are particularly well suited to study the interaction
of particles with electromagnetic waves that travel primarily along the magnetic
field, such as the Alfvén wave and its kinetic counterparts. Travelling along the
Earth’s magnetic field from the distant magnetosphere toward the ionosphere below,
Alfvén waves play a key role in the coupling of the magnetosphere–ionosphere
system (Keiling 2009). Alfvén waves can be launched by a sheared plasma flow
perpendicular to Earth’s magnetic field, or by a sudden dynamic change in convection
or resistivity in some region of the magnetosphere (Stasiewicz et al. 2000), as can
occur when magnetic storms cause shifts in magnetospheric boundaries or when
magnetotail reconnection occurs (Hasegawa 1976). When these Earth-bound waves
pass a geocentric radius of r ∼ 3RE, the cold plasma of primarily ionospheric origin
and strong magnetic field of the Earth lead to plasma conditions in the inertial regime,
with β <me/mi or vte < vA, and Alfvén waves with small cross-field scales transition
to inertial Alfvén waves (Lysak & Lotko 1996; Stasiewicz et al. 2000). Associated
with the inertial Alfvén wave is a significant component of the electric field parallel
to the local magnetic field, and this parallel electric field has been proposed as a
primary mechanism for the acceleration of auroral electrons (Hasegawa 1976; Goertz
& Boswell 1979; Lysak & Dum 1983; Hui & Seyler 1992; Kletzing 1994; Lysak &
Lotko 1996).

Subsequently, the FAST, Freja, Polar, DMSP, Geotail and Cluster missions have
provided unparalleled new opportunities to use magnetic conjunction studies to
explore the Alfvénic electron acceleration in the auroral zone. Polar measurements
of downward Alfvénic Poynting flux at 4–7 RE in the plasma sheet boundary layer
(PSBL) are closely associated with the luminosity of magnetically conjugate auroral
structures in a statistical study of 40 PSBL crossings (Keiling et al. 2002). A study
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of the conjunctions of the Polar spacecraft at 4–7 RE and the FAST spacecraft at
1.05–1.65 RE demonstrated statistically that the Alfvénic Poynting flux dominated
over electron energy flux at Polar orbits but the electron energy flux was greater
than the Alfvénic Poynting flux at the FAST altitudes (Chaston et al. 2003; Chaston
2006). This evidence supports the picture that Alfvén waves are losing energy
via wave–particle interactions to accelerate electrons as they propagate toward the
ionosphere. A statistical survey correlating particle fluxes and Alfvén wave fields of
more than 5000 polar orbits from the FAST satellite shows that Alfvén waves may
be responsible for 31 % of all auroral activity (Chaston et al. 2007). At magnetic
local noon and midnight, Alfvénic activity may account for as much as 50 % of
auroral activity. Finally, Schriver et al. (Schriver et al. 2003) used seven FAST–Polar
conjunction events to show that, during geomagnetically active times, Polar measured
large-amplitude Alfvén waves in the PSBL, FAST measured field-aligned electron
acceleration events and the Polar Ultraviolet Imager (UVI) recorded strong auroral
luminosity at the magnetically conjugate point in the ionosphere. They concluded that
Alfvén waves are important drivers of auroral acceleration, in addition to quasi-static,
field-aligned potentials and the earthward flow of energetic plasma beams from the
magnetotail.

Although the magnetic conjunction studies above have provided significant insights
into the dynamics of wave–particle interactions in the auroral magnetosphere, all
conjunction studies suffer from difficulties such as field line mapping, differential
motions of the field lines at each spacecraft, different orbital speeds of the
spacecraft and time delays in signal propagation along the field lines (Keiling 2009).
Furthermore, conjunction studies, in common with spatial coincidence studies, lack
the phase information needed to confirm directly the energy transfer between fields
and particles. Only correlation studies can provide such a direct estimate of the
collisionless energy transfer.

An early attempt to identify wave–particle interactions in space plasmas sought to
measure the phase bunching of resonant electrons predicted to occur in the presence
of sufficiently large-amplitude Langmuir wave fluctuations (Melrose 1986). Particle
auto-correlator instruments were developed to detect electron phase bunching at
MHz frequencies in the auroral ionosphere, even when electron count rates are
.105 Hz (Spiger et al. 1974, 1976; Gough 1980; Gough et al. 1980). Although the
measurements from these early instruments were merely used to seek the coincidence
of phase-bunched electrons with features in the electrostatic wave spectrum, they
provided a critical foundation for the subsequent development of wave–particle
correlators. The application of electron particle auto-correlators to study wave–particle
interactions continued with experiments on later sounding rocket flights (Gough &
Urban 1983; Gough, Christiansen & Wilhelm 1990) and with the inception of active
experiments, where an electron beam launched by one spacecraft is measured by
another and the distortion of that received beam provides a sensitive probe of the
physics of wave–particle interactions. Such active experiments where conducted during
space shuttle flights using tethered satellites (Gough et al. 1995, 1997, 1998a,c; Huang
et al. 1998; Burke et al. 1999; Rubin et al. 1999) and with dual payload sounding
rocket flights (Gough, Hardy & James 1998b; Huang et al. 2001). More recently,
all four of the Cluster-II spacecraft were equipped with particle auto-correlators for
the electrons (Woolliscroft et al. 1997), and early results from measurements by
this instrument, as well as a thorough review of previous particle auto-correlator
experiments, are presented in Gough et al. (2003).

The first true wave–particle correlator, flown on a sounding rocket in the auroral
zone, performed a direct correlation of the arrival times of electrons with the phase
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of the high-frequency wave field (Ergun et al. 1991a,b). This experiment indeed
detected electron phase bunching during periods of intense Langmuir waves, driving
subsequent theoretical work to develop refined theoretical predictions for finite-size
Langmuir wavepackets (Muschietti, Roth & Ergun 1994). Another wave–particle
correlator was flown on the NASA Combined Release and Radiation Effects Satellite
(CRRES), computing correlations on board between the Low Energy Plasma Analyzer
and the electric field/Langmuir probe instrument (Watkins et al. 1996), and later a
refined wave–particle correlator was implemented as a component of the Fields
instrument on the FAST spacecraft (Ergun, McFadden & Carlson 1998; Ergun
et al. 2001). Subsequent development lead to an improved wave–particle correlator
design with higher phase resolution than previous instruments, flown on an auroral
sounding rocket, which measured the reactive component of the electron phase
bunching in a Langmuir wave (Kletzing et al. 2005; Kletzing & Muschietti 2006).
Further developments in wave–particle correlator instrumentation continue (Fukuhara
et al. 2009), with the planned implementation of an on-board Wave–Particle
Interaction Analyzer in the upcoming Japanese Exploration of energization and
Radiation in Geospace (ERG) spacecraft mission to study the energy transfer process
between energetic electrons and whistler-mode chorus emissions in the Earth’s inner
magnetosphere (Katoh et al. 2013).

All of these wave–particle correlator instruments are specially designed to explore
the energy transfer to particles from waves that have frequencies at or above the
particle detector counting rate, for example studying the interaction of electrons with
whistler waves or Langmuir waves in the Earth’s magnetosphere. But the Alfvénic
turbulent fluctuations in the solar wind and solar corona have a much lower frequency
than the whistler and Langmuir wave fluctuations of interest in the magnetosphere.
Furthermore, current, upcoming, and proposed spacecraft missions – such as the
Magnetospheric Multiscale (MMS) (Burch et al. 2016), Solar Probe Plus (Kasper et al.
2015; Bale et al. 2016), Solar Orbiter (Müller et al. 2013) and Turbulence Heating
ObserveR (THOR) (Vaivads et al. 2016) missions – boast fast, three-dimensional
particle velocity measurements at a sampling rate approaching or surpassing the
frequency of the fluctuations involved in the collisionless transfer of energy between
fields and particles. For example, collisionless damping of turbulent fluctuations by
protons peaks at the ion kinetic scales, coincident with the scale of the spectral break
between the inertial and dissipation ranges of the turbulent magnetic energy frequency
spectrum in the solar wind, occurring at a spacecraft-frame frequency of approximately
f ∼ 0.4 Hz. The MMS mission samples the 3V proton velocity distribution function
with a sampling rate of 150 ms, and the THOR mission proposes the same sampling
rate with improved sensitivity, both yielding a Nyquist frequency of fNy > 3 Hz,
sufficient to resolve the velocity-space dynamics of the strongly damped fluctuations.
Similarly, collisionless damping by electrons is believed to be distributed across
a range of scales within the dissipation range (Told et al. 2015), corresponding
to spacecraft-frame frequencies in the range 1 Hz . f . 20 Hz. The MMS mission
boasts sampling of 3V electron velocity distribution functions at 30 ms, and the THOR
mission proposes electron measurements at a 5 ms sampling rate, corresponding to
Nyquist frequencies of fNy > 16 Hz and fNy= 100 Hz respectively, sufficient to resolve
the electron velocity-space dynamics of the strongly damped fluctuations. These
unprecedented capabilities motivate the development of a thorough foundation of
kinetic theory to maximize the scientific return from these missions. The key concept
underlying the innovative field–particle correlations proposed here is to exploit the
variation of the correlations as a function of the particle velocity to gain much deeper
insight into the nature of the collisionless energy transfer mechanism.

https://doi.org/10.1017/S0022377816001197 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001197


Field–particle correlations 7

2. Physics of energy transfer via collisionless wave–particle interactions
To investigate the dynamics and energetics of turbulence in weakly collisional

plasmas relevant to heliospheric environments, such as the solar corona and the
solar wind, one may use the Boltzmann equation to describe the evolution of the
six-dimensional velocity distribution function fs(r, v, t) for a plasma species s,

∂fs

∂t
+ v · ∇fs + qs

ms

[
E+ v×B

c

]
· ∂fs

∂v
=
(
∂fs

∂t

)
coll

. (2.1)

Combining the Boltzmann equation for each plasma species together with Maxwell’s
equations forms the closed set of Maxwell–Boltzmann equations that govern the
nonlinear evolution of turbulent fluctuations in a magnetized kinetic plasma.

Under the weakly collisional conditions typical of turbulent heliospheric plasmas,
the collisional term on the right-hand side of (2.1) is subdominant, influencing only
the long-term evolution of the particle distribution function, but not significantly
affecting the dynamics on the much shorter time scale of the turbulent fluctuations.
The ballistic term, the second term on the left-hand side of (2.1), describes the free
streaming of particles along the direction parallel to magnetic field, and can lead to
linear phase mixing of fluctuations in the particle density along this direction. The
Lorentz force term, the third term on the left-hand side of (2.1), dictates the reaction
of the charged plasma particles in response to the (self-consistently determined)
electric and magnetic fields in the plasma, and therefore is the term that governs
wave–particle interactions in a kinetic plasma.

The Lorentz force term, however, not only is responsible for the secular transfer
of energy from the electromagnetic fields to the plasma particles that occurs when
electromagnetic fluctuations are collisionlessly damped, but also describes the typical
oscillatory transfer of energy between fields and particles that is characteristic of wave
motion. The difficulty in identifying the collisionless damping of turbulent fluctuations
in a kinetic plasma is that the oscillatory transfer of energy often has a much larger
magnitude than the secular transfer of energy. For clarity, we define the oscillating
energy transfer as the conservative transfer of energy back and forth between fields
and particles that is typical of undamped linear wave motion in a kinetic plasma.
We define the secular energy transfer as the energy lost from the electromagnetic
fluctuations to the plasma particles through collisionless damping.

The Alfvén wave ideally illustrates the difference between the oscillating and
secular energy transfer. Alfvén waves behave like waves on a stretched rubber
band, where magnetic tension provides the restoring force and the kinetic energy
of the transverse plasma motion gives rise to the inertia necessary to support wave
motion. In an undamped Alfvén wave – for example, an Alfvén wave in the ideal
magnetohydrodynamic (MHD) limit – energy is transferred back and forth between
magnetic energy and kinetic energy conservatively, so the ideal MHD Alfvén wave
has oscillating energy transfer but no secular energy transfer. In a kinetic treatment of
the Alfvén wave in a weakly collisional plasma (Kulsrud 1983; Howes et al. 2006),
resonant interactions between the electromagnetic wave and the particles propagating
at velocities very near the phase velocity of the wave (the resonant particles) will
lead to a net transfer of energy from the electromagnetic waves to the microscopic
kinetic energy of the particles. For scales much larger than the ion Larmor radius,
these resonant wave–particle interactions lead to weak but non-zero collisionless
damping of the Alfvén wave, so the non-zero secular energy transfer is small relative
to the oscillating energy transfer. For smaller scales at or below the ion Larmor
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radius, the Alfvén wave transitions to a kinetic Alfvén wave, and the collisionless
damping by transit-time damping or Landau damping may become strong, leading to
a significantly larger secular component of energy transfer relative to the oscillating
component.

The primary aim of this paper is to distinguish the physics leading to the secular
energy transfer from that governing the oscillating energy transfer and to exploit that
insight to devise a method to determine the secular energy transfer from single-point
measurements in a plasma. Furthermore, we highlight the characteristic signature
in velocity space of this secular energy transfer via collisionless wave–particle
interactions.

3. Theory of energy transfer in a Vlasov–Poisson plasma
The main goal of this study is to identify the secular transfer of energy from the

electrostatic field to the particles via resonant collisionless wave–particle interactions,
and to determine the impact of this resonantly transferred energy on the particle
distribution functions. This theoretical insight will be used to devise a novel analysis
strategy using correlated field and particle measurements to identify definitively the
action of collisionless wave–particle interactions in heliospheric plasmas using either
spacecraft measurements or nonlinear kinetic numerical simulations.

Here we review the properties of electrostatic fluctuations in a collisionless,
unmagnetized plasma that are relevant to the aim of identifying the secular energy
transfer via collisionless wave–particle interactions. For simplicity in the analytical
calculations presented here, we consider a strictly one-dimensional (1D-1V) kinetic
system, but we do note that the physics of electrostatic fluctuations (∇ × E = 0)
remains unchanged in a realistic three-dimensional plasma. The dynamics of
the electrostatic fluctuations in a collisionless 1D-1V plasma is governed by the
Vlasov–Poisson equations, where the Vlasov equation determines the collisionless
evolution of the distribution function for each species s, fs(x, v, t), given by

∂fs

∂t
+ v ∂fs

∂x
− qs

ms

∂φ

∂x
∂fs

∂v
= 0 (3.1)

and the Poisson equation yields the scalar electrostatic potential, φ(x, t),

∂2φ

∂x2
=−4π

∑
s

∫ +∞
−∞

dv qsfs. (3.2)

Physically, the second term of the Vlasov equation describes the ballistic behaviour
of the particles in the collisionless plasma and the third term governs the response of
the particles to the electric field E=−∂φ/∂x. Here we denote these terms the ballistic
term and the wave–particle interaction term, respectively.

3.1. Energy conservation
To derive the expression for the conserved energy of electrostatic fluctuations in an
unmagnetized plasma, we begin with the electrostatic analogue of Poynting’s theorem.
Beginning with the 1-D electrostatic limit of the Ampere–Maxwell Law, ∂E/∂t =
−4πj, we multiply by E to obtain the rate of change of electrostatic field energy
density,

∂

∂t

(
E2

8π

)
=−jE. (3.3)
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Next, we multiply the Vlasov equation (3.1) for species s by msv
2/2 and integrate

over velocity and position. Exchanging the order of differentiation and integration of
the independent variables, we may obtain the form

∂

∂t

∫
dx
∫

dv
1
2

msv
2fs +

∫
dx
∂

∂x

[∫
dv

1
2

msv
3fs

]
−
∫

dx
∂φ

∂x

∫
dv
(

qsv
2

2

)
∂fs

∂v
= 0. (3.4)

The first term of this equation represents the rate of change of the microscopic kinetic
energy of species s

Ws ≡
∫ L/2

−L/2
dx
∫ ∞
−∞

dv
1
2

msv
2fs. (3.5)

The second term, associated with the ballistic behaviour of particles, is a perfect
differential in x, yielding zero for either periodic boundary conditions, fs(x =
−L/2, v)= fs(x=L/2, v), or boundary conditions at infinity, limL→∞ fs(x=±L/2, v)=
0. Physically, the ballistic term can only transport energy from one position to another,
so when integrated over the volume yields a net change of zero for Ws. The third
term may be integrated by parts in velocity to yield the result

∂Ws

∂t
=−

∫
dx
∂φ

∂x

∫
dv qsvfs =

∫
dx jsE, (3.6)

where the current density for species s is given by js =
∫

dv qsvfs.
Since the total current density j = ∑s js, we may integrate (3.3) over space

and combine it with (3.6) summed over species to obtain an expression for the
conservation of energy in a 1D-1V electrostatic plasma,

∂

∂t

∫
dx
(

E2

8π

)
+ ∂

∂t

∑
s

∫
dx
∫

dv
1
2

msv
2fs = 0. (3.7)

Therefore, the conserved Vlasov–Poisson energy W for electrostatic fluctuations in a
collisionless, unmagnetized plasma is given by

W =
∫

dx
E2

8π
+
∑

s

∫
dx
∫

dv
1
2

msv
2fs. (3.8)

We also define the electrostatic field

Wφ ≡
∫

dx
E2

8π
, (3.9)

such that the total conserved Vlasov–Poisson energy for a single ion species plasma
is given by

W =Wφ +Wi +We. (3.10)
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3.2. Energy transfer via collisionless wave–particle interactions
To illuminate the secular transfer of energy between the electrostatic field and the
particles via resonant wave–particle interactions, it is instructive to examine more
closely the different contributions to the change in the particle energy, Ws. As (3.7)
mandates, in the Vlasov–Poisson system, the energy gain by the particles must be
equal to the energy lost from the electrostatic field,

∑
s ∂Ws/∂t=−∂Wφ/∂t. We may

express the rate of energy exchange (gain or loss) for species s by

∂Ws

∂t
=
∫

dx
∫

dv
1
2

msv
2 ∂fs

∂t
. (3.11)

To progress further, we decompose the distribution function into an equilibrium and
perturbed component,

fs(x, v, t)= fs0(v)+ δfs(x, v, t), (3.12)

where the equilibrium distribution function fs0(v) is assumed to be uniform in space
and static in time. We also make the additional assumption that fs0(v) is an even
function of velocity so that the equilibrium has no bulk plasma flow (first moment),
but it need not be a Maxwellian. Not that for solar wind measurements, we may
transform to the frame of reference flowing with the solar wind plasma (see § 7.1 for
more discussion of the frame of reference of measurements).

We emphasize here that we have made no ordering assumptions on the magnitude
of δfs relative to fs0, so the nonlinear evolution of the distribution function described
by this form is not limited in any way. The term δfs contains the entire (nonlinear)
perturbation, not just the lowest-order (linear) perturbation. Of course, the physical
limitation

fs(x, v, t)= fs0(v)+ δfs(x, v, t)> 0 (3.13)

must always be satisfied, so this means that δfs(x, v, t) > −fs0(v) for all values of
velocity v. Practically, this does lead to constraints on the allowable time step in
numerical simulations to maintain a physically realizable fs(x, v, t)> 0 everywhere.

Substituting (3.12) into the Vlasov equation (3.1), we obtain

∂δfs

∂t
=−v ∂δfs

∂x
+ qs

ms

∂φ

∂x
∂fs0

∂v
+ qs

ms

∂φ

∂x
∂δfs

∂v
. (3.14)

In this form, on the right-hand side, the first term is the (linear) ballistic term,
the second term is the linear wave–particle interaction term and the third term is
the nonlinear wave–particle interaction term. Next, we substitute (3.14) into (3.11),
yielding

∂Ws

∂t
=
∫

dx
∫

dv
1
2

msv
2

[
−v ∂δfs

∂x
+ qs

ms

∂φ

∂x
∂fs0

∂v
+ qs

ms

∂φ

∂x
∂δfs

∂v

]
. (3.15)

We now evaluate the influence of each of these terms on the evolution of the
microscopic kinetic energy, Ws.

The first term, the ballistic term, may be written as a perfect differential in x,
thereby yielding a value of zero upon integration over x for periodic or infinite
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boundaries. The second term, the linear wave–particle interaction term, may be
written in the form ∫

dx
∂

∂x

{
qsφ

2

[∫
dvv2 ∂fs0

∂v

]}
= 0. (3.16)

Since we have chosen fs0 to be an even function of v, then its derivative ∂fs0/∂v is
an odd function, so the integrand of the velocity integral is an odd function evaluated
over an even interval, yielding zero. In addition, because fs0 is not a function of x,
everything in the braces is also a perfect differential, so this term will vanish upon
integration over x for any choice of fs0, not just even functions of v.

For the third term, the nonlinear wave–particle interaction term, we may integrate
by parts in velocity to yield the final result for the rate of change of microscopic
kinetic energy for species s,

∂Ws

∂t
=−

∫
dx
∂φ

∂x

∫
dvqsvδfs =

∫
dx jsE. (3.17)

Therefore, the secular change of particle energy in the Vlasov–Poisson system
occurs via the nonlinear wave–particle interaction term in (3.14). Furthermore, the
perturbations in the distribution function arising from the collisionless transfer of
energy from fields to particles are generated by this term, making it possible to
separate the fluctuations in velocity space due to resonant wave–particle interactions
from the (generally larger-amplitude) fluctuations generated by the ballistic term and
the linear wave–particle interaction term.

Note that linearization of the kinetic system leads to dropping the nonlinear
wave–particle interaction term, the third term on the right-hand side of (3.15). But
this term is necessary to describe the change in the energy of the particles Ws. So,
although a linearized system will describe the collisionless Landau damping of the
electrostatic waves of the Vlasov–Poisson system (Landau 1946), the Vlasov–Poisson
energy W given by (3.8) is not conserved in a linearized system. The nonlinear
wave–particle interaction term must be retained in order to achieve conservation of
W, or an alternative Kruskal–Obermann energy (Kruskal & Oberman 1958; Morrison
1994) can be devised to achieve a conserved quadratic invariant of the linearized
system.

In summary, using measurements of the fluctuations in the particle distribution
function δfs(x, v, t) and the electric field E(x, t), we may calculate the rate of transfer
of energy from the fields to the particles by either form of the following expression,

∂Ws

∂t
=−

∫
dx
∫

dvqs
v2

2
∂δfs(x, v, t)

∂v
E(x, t)=

∫
dx
∫

dv qsvδfs(x, v, t)E(x, t). (3.18)

3.3. Diagnosing secular energy transfer
The key challenge in diagnosing the collisionless damping of fluctuations in a
turbulent plasma is to separate the often small-amplitude signal of the secular energy
transfer from the generally much larger-amplitude signal of the oscillating energy
transfer. The arguments of the preceding section suggest that by integrating over all
space – or taking a spatial average, as is done in quasilinear theory – we can average
out the zero net effect of the oscillating energy transfer and extract the smaller secular
energy transfer that is associated with collisionless damping. In this case, the spatial
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integration eliminates the contribution from the ballistic and linear wave–particle
interaction terms in (3.14), isolating the non-zero net effect of the secular energy
transfer due to the nonlinear wave–particle interaction term.

Of course, in a numerical simulation, where all of the spatial information is known,
spatial integration can be used to isolate the secular energy transfer. But such spatial
information is not accessible observationally, where spacecraft measurements are
typically made at only a single point (or at most, a few points) in space. Furthermore,
numerical simulations of plasma turbulence provide strong evidence that energy
dissipation is often highly localized in space (Wan et al. 2012; Karimabadi et al.
2013; TenBarge & Howes 2013; Wu et al. 2013; Zhdankin et al. 2013; Zhdankin,
Uzdensky & Boldyrev 2015b); so, even in numerical simulations, integration over
a volume larger than the region of strong dissipation may obscure the details of
the local dissipation mechanism, making it more difficult to identify the physical
mechanism responsible. Here we aim to develop a method that can be used to analyse
the secular energy transfer using single-point measurements of the electromagnetic
fields and velocity distribution functions, enabling an improved analysis of the
collisionless damping of turbulent fluctuations in both spacecraft measurements and
kinetic numerical simulations.

Let us define the phase-space energy density for a particle species s by ws(x, v, t)=
msv

2fs(x, v, t)/2. Note that, for the 1D-1V Vlasov–Poisson system, this is the energy
density per unit length per unit velocity. The integral of ws(x, v, t) over all velocity
yields the spatial energy density of the plasma species as a function of position,
which is the usual meaning of the term energy density. Subsequent integration over
the spatial volume yields the total microscopic kinetic energy of the species, Ws.

If we want to understand how the phase-space energy density evolves in time,
we can take the time derivative of ws(x, v, t) and replace ∂fs/∂t using the Vlasov
equation to obtain an expression for the instantaneous change of the phase-space
energy density,

∂ws(x, v, t)
∂t

=−1
2

msv
3 ∂δfs

∂x
− qs

v2

2
∂fs0(v)

∂v
E(x, t)− qs

v2

2
∂δfs(x, v, t)

∂v
E(x, t). (3.19)

From the analysis of the energy conservation equation (3.15), we know that, if this
equation is integrated over all velocity and all physical space, only the third term
contributes to the secular energy transfer from fields to particles (or vice versa).
However, in the absence of these integrations, all three terms contribute to the
instantaneous phase-space energy density change at each point in (x, v) phase space.

3.4. Field–particle correlations
The form of the term responsible for the secular energy transfer in (3.19) suggests that
the product of (−qsv

2/2)(∂δfs(x, v, t)/∂v) and E(x, t) provides a direct measure of
the rate of energy transfer (possibly including an oscillating component). To isolate
the small secular component, we take the unnormalized field–particle correlation,
Cτ (−qsv

2/2∂δfs/∂v, E), at a single point in space over a selected correlation interval
τ . By correlating the two signals over a sufficiently long interval (more than a linear
wave period, τ & 2πω), the oscillating energy transfer is averaged out, extracting the
smaller signal of the secular energy transfer.

For measurements of the velocity distribution and the electric field at a single point
in space, x = x0, this correlation is a function of velocity, time and the correlation
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interval,

CE(v, t, τ )=Cτ

(
−qs

v2

2
∂δfs(x0, v, t)

∂v
, E(x0, t)

)
. (3.20)

Therefore, the general idea of diagnosing the energy transfer at each point in (x, v)
phase space reduces, due to the observational constraints of single-point measurements,
to the case of determining the distribution of the energy transfer rate in velocity space.
A key advance with this method is that determining how the secular energy transfer
rate varies in velocity space provides valuable new information about the physical
mechanism responsible for the collisionless damping of the fluctuations. Different
mechanisms, such as Landau damping or stochastic ion heating, are likely to have
distinct signatures of this damping in velocity space. In this paper, we illustrate
this field–particle correlation analysis method using the case of the Landau damping
of Langmuir waves in a 1D-1V Vlasov–Poisson plasma, but the concept of using
field–particle correlations to diagnose collisionless energy transfer is extremely general,
and it can be also applied to examine the damping of turbulence in heliospheric
plasmas using single-point spacecraft measurements.

There are two issues that merit further discussion regarding the construction
of field–particle correlations. First, because the product of the two terms that are
correlated is a direct measure of the instantaneous collisionless energy transfer
(specifically, just the component due to the nonlinear wave–particle interaction term),
the field–particle correlation is to be performed in the following way: (i) the mean
values of the two correlated variables are not subtracted before multiplication; and
(ii) the correlation is not normalized by the variances of each of the correlated
variables. Although a normalized correlation can be performed and indeed contains
information about the nature of the collisionless wave–particle interactions, the process
of normalization effectively removes the amplitude variation of the energy transfer
rate as a function of velocity, a vital piece of information provided by this analysis.
A simple model that predicts the form of the normalized correlation for an exact
linear eigenfunction in terms of the normalized damping rate −γ /ω is presented in
appendix B.

The second issue regards the applicability of the particular field–particle correlation
given in (3.20) to spacecraft observations. The often low velocity-space resolution of
particle measurements by spacecraft instrumentation and the corruption by noise for
low particle count rates mean that accurate computation of the necessary derivative
∂δfs(x, v, t)/∂v may be difficult, or even impossible. But, as shown in § 3.2, upon
integration over velocity space, both (−qsv

2/2)(∂δfs(x, v, t)/∂v) and qsvδfs(x, v, t)
yield the same result for the total species current, js(x, t). Therefore, we propose an
alternative field–particle correlation

C′E(v, t, τ )=Cτ (qsvδfs(x0, v, t), E(x0, t)) (3.21)

that may be more suitable for implementation with low resolution spacecraft
measurements of particle velocity distribution functions. Different collisionless
damping mechanisms are likely to produce distinct signatures of any chosen form of
field–particle correlation in velocity space. So, although the form qsvδfs(x, v, t)E(x, t)
does not correspond directly to the energy transfer rate at a point in (x, v) phase space
as given by (3.19), this alternative field–particle correlation may still be valuable in
distinguishing one collisionless damping process from another.
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4. Code description
Here we describe the nonlinear Vlasov–Poisson simulation code VP. Our approach

is designed to highlight the perturbations to the distribution function fs associated
with secular transfer of energy from the electrostatic field to the plasma particles
via collisionless wave–particle interactions. Since the distribution function fs(x, v, t)=
fs0(v)+ δfs(x, v, t) only appears linearly in the Vlasov equation, we may separate the
evolution of different components of the perturbed distribution function,

δfs = δfsB + δfsWl + δfsWn, (4.1)

denoted the (linear) ballistic term δfsB, the linear wave term δfsWl and the nonlinear
wave term δfsWn. The time evolution of these different terms is given by

∂δfsB

∂t
=−v ∂δfs

∂x
(4.2)

∂δfsWl

∂t
= qs

ms

∂φ

∂x
∂fs0

∂v
(4.3)

∂δfsWn

∂t
= qs

ms

∂φ

∂x
∂δfs

∂v
. (4.4)

As we shall see, the perturbed distribution function δfs at a single point in space is
dominated by the ballistic and linear wave terms, but it is the much smaller nonlinear
wave term that represents the secular transfer of energy from fields to particles via
collisionless wave–particle interactions. The motivation for this paper is to identify
a strategy for isolating the much smaller perturbations associated with collisionless
damping of the electrostatic field, so separating these different contributions helps to
illuminate the different contributions to the collisionless energy transfer via wave–
particle interactions.

The details of the numerical implementation used to evolve the separated
components of the Vlasov equation, given by (4.2)–(4.4), and the calculation of
the electrostatic potential, given by (3.2), are presented in appendix A. In addition,
validation of the VP code by reproducing the results of the complex linear dispersion
relation for Langmuir waves is presented in § A.2.

5. Evolution of the distribution function
In this section, we use the nonlinear Vlasov–Poisson simulation code VP to

explore the secular energy transfer from the electrostatic field energy Wφ to particle
microscopic kinetic energy Ws due to the Landau damping of Langmuir waves in
a 1D-1V Vlasov–Poisson plasma. In particular, we focus on the perturbations of
the particle velocity distribution functions arising as a consequence of this secular
energy transfer. Three cases are used to illustrate the physics of the collisionless
energy transfer: (I) a moderately damped case of a standing Langmuir wave pattern
with kλde = 0.5; (II) a weakly damped case of a standing Langmuir wave pattern
with kλde = 0.25; and (III) a moderately damped case of a single propagating
Langmuir wave mode with kλde = 0.5. All cases have plasma parameters Ti/Te = 1
and mi/me = 100 and numerical resolution nx = 128 and nv = 256 in a simulation
domain of length L= 2π/k. For the Landau damping of Langmuir waves in a plasma
with mi/me = 100, little of the electrostatic field energy is transferred collisionlessly
to the ions, so we focus strictly on the evolution of the electron distribution function
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Quantity Case I Case II Case III

Wavenumber, kλde 0.5 0.25 0.5
Density fluctuation, δne/n0 0.1 0.025 0.07425
Potential amplitude, −qeφ/Te 0.4 0.4 0.297
Domain size, L/λde 4π 8π 4π

Linear frequency, ω/ωpe 1.43 1.11 1.43
Linear damping rate, −γ /ωpe 0.159 0.00203 0.159
Resonant velocity, ω/(kvte) 2.86 4.4 2.86
Linear wave period, ωpeT 4.39 5.66 4.39
Nonlinear time, τnlωpe = [(−qeφ/Te)k2λ2

de]−1/2 3.16 4.00 3.67

TABLE 1. Langmuir wave damping simulation parameters. The collisionless damping rate
is expected to deviate from the linear value due to the quasilinear evolution of the
distribution function for times much longer than the nonlinear time (O’Neil 1965), t� τnl.

fe(x, v, t). The fundamental parameters for these three simulations are presented
in table 1. Note that the linear and nonlinear evolution of the Landau damping
of Langmuir waves is well characterized in seminal works by O’Neil (1965) and
Manfredi (1997).

5.1. Case I: moderately damped standing Langmuir wave
According to the procedure outlined in § A.1, we initialize a standing Langmuir wave
pattern in VP with kλde= 0.5 using an electron density perturbation δne/n0= 0.1. For
this wavenumber, a numerical solution of the linear dispersion relation for Langmuir
waves gives ω/ωpe = 1.43 and γ /ωpe = −1.59 × 10−1, yielding a resonant phase
velocity vp/vte = ω/(kvte) = 2.86. For this simulation, L = 4πλde, vmax = 5vte, and
fCFL = 0.05.

In figure 1, we plot the evolution of the perturbed energies of the system. The
perturbed energy for a species s is given by

δWs =
∫ L/2

−L/2
dx
∫ ∞
−∞

dv
1
2

msv
2δfs, (5.1)

where we include all contributions to the perturbation, δfs = δfsB + δfsWl + δfsWn.
The total perturbed energy δW = Wφ + δWi + δWe, with an initial value of
δW = 0.2453(n0Teλ

3
de/2), is conserved to within 0.05 %. From figure 1, it is clear that

the electrostatic electric field energy Wφ (green) is converted primarily to microscopic
kinetic energy of the electrons δWe (blue), with less than 0.2 % of the energy
transferred to the ions δWi (red). The normalized period of the standing Langmuir
wave pattern with kλde = 0.5 is ωpeT = 4.39, so 99 % of the electrostatic energy in
the wave pattern is secularly transferred to the electrons in approximately 3 periods.

Next we explore the different components of the perturbed electron distribution
function for this nonlinear simulation at time ωpet = 19.64 and position x = 0. Note
that the position x= 0 is a maximum (anti-node) of the electric field standing wave
pattern. In panel (a) of figure 2, we plot the total electron distribution function fe
(magenta), the equilibrium electron distribution function fe0 (black) and the total
perturbed electron distribution function δfe = δfeB + δfeWl + δfeWn (cyan). We can gain
deeper insight into the nature of the fluctuations in the electron distribution function
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(a)

(b)

FIGURE 1. Energy evolution for the moderately damped Case I up to ωpet= 20. Plotted
are the total perturbed energy δW (black), field energy Wφ (green), perturbed ion energy
δWi (red) and perturbed electron energy δWe (blue). Linear (a) and logarithmic (b) scales
are both presented.

by separating out the components arising from the different terms in (3.14), shown
in panel (b): (i) the ballistic term yields δfeB (green), (ii) the linear wave–particle
interaction term yields δfeWl (blue) and (iii) the nonlinear wave–particle interaction
term yields δfeWn (red). As shown in § 3.2, it is only the nonlinear wave–particle
interaction term that leads to a secular transfer of energy from the electrostatic field
to the electrons, and this component of the perturbed electron distribution function
is generally much smaller than the ballistic and linear wave–particle interaction
components. The primary aim of this paper is to devise a procedure to isolate this
small component of the fluctuations in the distribution function using only single-point
measurements of the particle velocity distribution functions and the electrostatic field.

If full spatial information about the fluctuations is available, then a spatial average
(or integration) over the volume eliminates the large fluctuations associated with
the oscillatory energy transfer. This is the standard approach in quasilinear theory,
taking a spatial average of the distribution function over the volume to obtain
δfeQL(v, t)= (1/L) ∫ dx δfe(x, v, t). In panel (a) of figure 3, we plot the total electron
distribution function evaluated at position x = 0, fe(0, v, t) (thin magenta) and the
spatially averaged, quasilinear distribution function feQL(v, t) (thick magenta) at time
ωpet = 19.64. It is clear that spatial average eliminates almost all of the fluctuations
of the distribution function away from the equilibrium fe0 (black). To better see
the deviations of the quasilinear distribution function from the equilibrium, in panel
(b) we plot an expanded view of the nonlinear wave–particle interaction component
of the perturbed electron distribution function at position x = 0, δfeWn(0, v, t) (thin
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(a)

(b)

FIGURE 2. For Case I, (a) total electron distribution function fe (magenta), equilibrium
electron distribution function fe0 (black) and total perturbed electron distribution function
δfe (cyan). (b) The separated components of the perturbed electron distribution function:
(i) δfeB (green), (ii) δfeWl (blue) and (iii) δfeWn (red). Dashed vertical black lines denote
the resonant velocities v =±ω/k.

red) and the quasilinear perturbed distribution function δfeQL(v, t) (thick red). The
total quasilinear distribution function feQL(v, t) (thick magenta) in this bottom plot
shows a quasilinear flattening of the distribution function at the resonant velocities
v = ±ω/k, where the flattening occurs at both positive and negatives values of
the Langmuir wave phase velocity because the standing wave pattern consists of
equal-amplitude Langmuir waves propagating in opposite directions. Note that, when
only single-point measurements at x = 0 are observed, the large perturbations of the
distribution function associated with the oscillating energy transfer (due to the ballistic
and linear wave–particle interaction terms) obscure this quasilinear flattening effect
when the total electron distribution function evaluated at position x = 0, fe(0, v, t)
(thin magenta), is plotted.

The key point of figure 3 is that the perturbed component of the electron distribution
function due to the nonlinear wave–particle interaction term measured at a single
point in space, δfeWn (thin red), agrees closely with the spatially averaged, quasilinear
perturbed distribution function δfeQL(v, t) (thick red). Thus, if we can devise a
procedure to isolate the perturbation due to the nonlinear wave–particle interaction
term from the larger fluctuations, shown in figure 2(b), then single-point measurements
can be used to determine the secular energy transfer associated with the collisionless
damping of the electrostatic Langmuir waves. We will show in § 6 that the correlation
given by (3.20) can accomplish this isolation of the secular energy transfer.

Although the aim of this paper it is determine what insight can be gained
from single-point measurements of the electromagnetic fields and particle velocity

https://doi.org/10.1017/S0022377816001197 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001197


18 G. G. Howes, K. G. Klein and T. C. Li

(a)

(b)

FIGURE 3. For Case I, (a) total electron distribution function evaluated at position x= 0,
fe(0, v, t) (thin magenta), the spatially averaged, quasilinear distribution function feQL(v, t)
(thick magenta) and the equilibrium electron distribution function fe0 (black). (b) The
nonlinear wave–particle interaction component of the perturbed electron distribution
function at position x = 0, δfeWn(0, v, t) (thin red), the quasilinear perturbed distribution
function δfeQL(v, t) (thick red). The quasilinear flattening of the distribution function at the
resonant velocities v=±ω/k (dashed black) is apparent in the total quasilinear distribution
function feQL(v, t) (thick magenta), but this signature is obscured in the total electron
distribution function evaluated at position x= 0, fe(0, v, t) (thin magenta).

distribution functions, it is instructive to examine how the different terms in the
Vlasov equation contribute to the evolution of the distribution function throughout
1D-1V phase space. In figure 4, for Case I at ωpet= 19.64, we plot on the full (x, v)
phase space (a) the total perturbed electron distribution function δfe, (b) the ballistic
contribution δfeB, (c) the linear wave contribution δfeWl and (d) the nonlinear wave
contribution δfeWn. These plots demonstrate that it is quite difficult to see any features
at the resonant velocities (green lines) in the total perturbed electron distribution
function δfe because, focusing on the amplitudes of each of these plots, the ballistic
contribution δfeB and linear wave contribution δfeWl dominate the perturbation to the
distribution function. Only the nonlinear wave term δfeWn shows any obvious feature
at the resonant velocities, generally showing an increase in particle energy just above
the resonance at |v| > |ω/k| and a decrease just below the resonance at |v| < |ω/k|,
qualitatively consistent with the quasilinear flattening of the distribution function
at the resonance. The full phase-space plot shows that the nonlinear wave term
δfeWn is not spatially uniform in x. In fact, the amplitude variation of the nonlinear
perturbation in x reflects the amplitude variation of the electric field standing wave
pattern in x: as noted in § A.1, the standing wave pattern is initialized with an electron
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(a) (b)

(c) (d)

FIGURE 4. Plots of the full (x, v) phase space at time ωpet= 19.64 for Case I, showing
(a) the total perturbed electron distribution function fe, (b) the ballistic contribution δfeB,
(c) the linear wave contribution δfeWl and (d) the nonlinear wave contribution δfeWn. Green
horizontal lines indicate the resonant velocities.

density perturbation δne ∝ sin(kx), leading to an electric field pattern E∝ cos(kx); the
interaction of the standing electric field pattern leads to a pattern of the nonlinear
wave term δfeWn that is also modulated in amplitude by cos(kx), as evident in
panel (d).

Also notable in these phase-space plots is absence of any strongly nonlinear features,
such as trapping in phase-space vortices. These features do not arise because the
perturbation amplitude is too small for such features to develop over the time scales
simulated here (up to ωpet= 40). As shown in figure 3, the evolution is indeed well
described by the quasilinear average, further reinforcing that the nonlinear evolution
is a higher-order (long-time) correction to the linear evolution. This is the appropriate
regime for the intended application of this new field–particle correlation technique
to heliospheric turbulence, such as the solar wind. In the solar wind, the magnetic
field fluctuations at the ion kinetic length scales have typical amplitudes δB/B . 0.1;
the fluctuations of the velocity distribution are expected to be approximately the
same order of magnitude, δf (v)/f0(v) ∼ δB/B . 0.1, so the amplitudes chosen for
the test case presented here are indeed relevant to the turbulent heliospheric plasmas
of interest.
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(a)

(b)

FIGURE 5. (a) Plot of −qe(v
2/2)∂δfe(x0, v)/∂vE(x0) (black) and qevδfe(x0, v)E(x0) (red)

evaluated at time ωpet= 11.29 and position x0= 0. (b) Plot of the even (in v) components
of the same curves in panel (a).

As a final note, we compare the product of the correlated quantities given in (3.20)
and (3.21) as a function of the velocity. In figure 5(a), we plot F(v) = −qe(v

2/2)
∂δfe(x0, v)/∂vE(x0) (black) and F′(v) = qevδfe(x0, v)E(x0) (red) evaluated at time
ωpet = 11.29 and position x0 = 0. Recall that the form −qe(v

2/2)∂δfe(x0, v)/∂vE(x0)

is direct computation of the rate of change of phase-space energy density due to the
nonlinear particle interaction term in (3.19), and this is the only term that yields a
non-zero secular energy transfer. When integrated over velocity, both of these forms
yield the same rate of change of the spatial energy density at x0 (since they are
equivalent through an integration by parts in velocity). Although these two quantities
indeed have very different structures as a function of velocity, they are indeed related.
The zero crossings of −qe(v

2/2)∂δfe(x0, v)/∂vE(x0) correspond closely (though not
exactly∗) with the minima and maxima of qevδfe(x0, v)E(x0). Thus, although the form
given by the correlation (3.21) does not correspond directly to the rate of change
of phase-space energy density, this more observationally accessible quantity can still
provide valuable information about the distribution of the secular energy transfer from
fields to particles as a function of the particle velocity.

∗For a zero of ∂δfe/∂v at v0, the deviation 1v of the position of an extremum of vδfe from v0 is given
by 1v/v0 = δfe(v0)/(δfe(v0)− v2

0∂
2δfe/∂v2) for 1v/v0� 1. For sufficiently oscillatory functions δfe(v), such

as the examples shown in figure 5, this difference 1v scales as (v/vte)
−2, becoming increasingly small for

v > vte.
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FIGURE 6. Quasilinear electron distribution function feQL (magenta) and equilibrium
distribution function fe0 (black). Dashed vertical black lines denote the resonant velocities
v =±ω/k.

The correspondence between the two curves in figure 5(a) can be made a
little more clear by taking just the component of these products that have an
even parity in velocity, Feven(v) = [F(v) + F(−v)]/2. Because the odd component,
Fodd(v) = [F(v) − F(−v)]/2, yields no net phase-space energy density change when
integrated over velocity, plotting only the even component in panel (b) more clearly
shows the variation of the energy transfer rate about the resonant velocity (dashed
vertical black) – specifically, a loss of energy at |v|< |ω/k| and a gain of energy at
|v|> |ω/k|.

5.2. Case II: weakly damped standing Langmuir wave
We initialize a standing Langmuir wave pattern in VP, using the procedure outlined in
§ A.1, with kλde = 0.25 and an electron density perturbation δne/n0 = 0.025, yielding
an initial total perturbed energy of δW = 0.1256(n0Teλ

3
de/2). For this wavenumber, a

numerical solution of the linear dispersion relation for Langmuir waves gives ω/ωpe=
1.11 and γ /ωpe=−2.03× 10−3, yielding a resonant phase velocity vp/vte=ω/(kvte)=
4.4. For this simulation, L= 8πλde, vmax = 6vte, and fCFL = 0.05.

In this simulation, the collisionless damping of the Langmuir wave is very weak
because the resonant velocity occurs far out in the tail of the electron distribution
function at vp/vte = 4.4, so there are few electrons to interact resonantly with
the electric field fluctuations. Thus, it takes very little electrostatic field energy
to flatten the electron distribution function at the resonant velocity, eliminating
further Landau damping. We illustrate this in figure 6, where the total quasilinear
electron distribution function feQL (magenta) is plotted at ωpet = 28.63 along with
the equilibrium distribution function fe0 (black). Here the value of the distribution
function must be plotted logarithmically to see the perturbations to the distribution
function, which occur at an amplitude four orders of magnitude smaller than the peak
of the velocity distribution. This minute secular transfer of energy from the electric
field to the electrons is likely to be unobservable given the instrumental noise levels
for spacecraft particle measurements.
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(a)

(b)

FIGURE 7. Energy evolution for the moderately damped single Langmuir wave with
kλde= 0.5 up to ωpet= 20. Plotted are the total perturbed energy δW (black), field energy
Wφ (green), perturbed ion energy δWδfi (red) and perturbed electron energy δWδfe (blue).
Linear (a) and logarithmic (b) scales are both presented.

5.3. Case III: moderately damped single Langmuir wave mode
In this simulation, a single Langmuir wave with kλde= 0.5 and amplitude −qeφ1/Te=
0.297 propagating in the +x direction is initialized using the solution of the linear
dispersion relation for the Langmuir wave mode, as detailed in § A.1. Both the
electron and ion distribution functions are initialized according to (A 9) using the
numerically determined complex frequency from a linear dispersion relation solver,
ω/ωpe = 1.43 and γ /ωpe = −1.59 × 10−1. To minimize transients in the simulation
initialization, these initialized eigenfunctions are smoothed in velocity space using a
Crank–Nicholson diffusion operator in velocity space Ns = 15 times with a diffusion
coefficient ν/(1v)2 = 1.5625 × 10−3. For this wave, the resonant phase velocity
vp/vte =ω/(kvte)= 2.86. For this simulation, L= 4πλde, vmax = 5vte, and fCFL = 0.05.

In figure 7, we plot the evolution of the perturbed energies of the system.
Total perturbed energy δW = Wφ + δWi + δWe, with an initial value of δW =
0.008659(n0Teλ

3
de/2), is conserved to within 0.1 %. This figure shows that the

electrostatic field energy Wφ (green) is converted primarily to microscopic kinetic
energy of the electrons δWe (blue).

For the evolution of this single Langmuir wave, we plot in figure 8 the perturbed
electron distribution function for this nonlinear simulation at time ωpet = 19.64
and position x = 0. In panel (a), we plot the total electron distribution function fe

(magenta), the equilibrium electron distribution function fe0 (black) and the total
perturbed electron distribution function δfe = δfeB + δfeWl + δfeWn (cyan). The separate
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(a)

(b)

FIGURE 8. (a) Total electron distribution function fe (magenta), equilibrium electron
distribution function fe0 (black) and total perturbed electron distribution function δfe (cyan).
(b) The separated components of the perturbed electron distribution function: (i) δfeB
(green), (ii) δfeWl (blue) and (iii) δfeWn (red). The dashed vertical black line denotes the
resonant velocity v =ω/k.

components arising from the different terms in (3.14) are shown in panel (b): (i)
the ballistic term yields δfeB (green), (ii) the linear wave–particle interaction term
yields δfeWl (blue) and (iii) the nonlinear wave–particle interaction term yields δfeWn
(red). In this simulation, the perturbations of the distribution function are highly
localized around the resonant velocity (dashed black). Again, as in the case of
the Landau damping of the standing wave pattern, the perturbations due to the
ballistic and linear wave–particle interaction terms are much larger than that due
to the nonlinear wave–particle interaction term, making the isolation of this term a
significant challenge.

In figure 9(a), we compare the spatially averaged, quasilinear distribution function
feQL(v, t) (thick magenta) at time ωpet = 19.64 with the total electron distribution
function evaluated at position x= 0, fe(0, v, t) (thin magenta). For the small amplitude
of the initialized Langmuir wave, the deviation of feQL(v, t) from the equilibrium fe0
(black) is difficult to see at this scale, so, in panel (b), we plot the total quasilinear
distribution function feQL(v, t) (thick magenta) and the equilibrium fe0 (black), showing
the quasilinear flattening at the resonant velocity v = ω/k (dashed black). The total
electron distribution function evaluated at position x = 0, fe(0, v, t) (thin magenta),
has much larger fluctuations, dominated by the ballistic and linear wave–particle
interaction terms, that obscure the signature of the quasilinear flattening. We also
plot the perturbed distribution function δfeQL(v, t) (thick red) and the nonlinear
wave–particle interaction component of the perturbed electron distribution function at
position x= 0, δfeWn(0, v, t) (thin red) – these two curves coincide almost exactly in
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(a)

(b)

FIGURE 9. (a) Total electron distribution function evaluated at position x= 0, fe(0, v, t)
(thin magenta), the spatially averaged, quasilinear distribution function feQL(v, t) (thick
magenta) and the equilibrium electron distribution function fe0 (black). (b) The nonlinear
wave–particle interaction component of the perturbed electron distribution function at
position x= 0, δfeWn(0, v, t) (thin red) and the quasilinear perturbed distribution function
δfeQL(v, t) (thick red) coincide exactly here. The quasilinear flattening of the distribution
function at the resonant velocity v=ω/k (dashed black) is apparent in the total quasilinear
distribution function feQL(v, t) (thick magenta).

this case, providing motivation that single-point measurements can indeed be used to
determine the secular energy transfer from the electrostatic field to the electrons.

In figure 10, for Case III at ωpet = 19.64, we plot on the full (x, v) phase space
(a) the total perturbed electron distribution function fe, (b) the ballistic contribution
δfeB, (c) the linear wave contribution δfeWl and (d) the nonlinear wave contribution
δfeWn. Although all of these perturbations to the electron distribution functions only
have significant amplitudes at positive velocities, concentrated somewhat around the
resonant velocity (green line), only the nonlinear wave contribution δfeWn is highly
localized in velocity around the resonant velocity, with the characteristic qualitative
signature of quasilinear damping (phase-space energy density loss at v <ω/k and gain
at v > ω/k). Note also that the effect of the resonant wave–particle interaction that
transfer energy from the electric field to the electrons does not show the significant
variation along x: the reason is that electric field associated with the propagating
Langmuir wave travels across the domain, having crossed the domain more than four
times by ωpet= 19.64, leading to the energization of the electrons (at the expense of
the electric field energy) being spread fairly evenly across x.
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(a) (b)

(c) (d)

FIGURE 10. Plots of the full (x, v) phase space at time ωpet= 19.64 for single Langmuir
wave Case III, showing (a) the total perturbed electron distribution function fe, (b) the
ballistic contribution δfeB, (c) the linear wave contribution δfeWl and (d) the nonlinear wave
contribution δfeWn. The green horizontal line indicates the resonant velocity for this single
propagating Langmuir wave.

6. Field–particle correlations
Here we define specifically how we compute the unnormalized correlation given in

(3.20). Consider distribution function and electric field measurements at point x= x0
measured at a time cadence of 1t. Labelling the discrete times of the measurements
as tj≡ t( j1t) for j= 0, 1, 2, . . ., we define δfsj(v)≡ δfs(x0, v, tj) and Ej≡E(x0, tj). For
a chosen correlation interval of τ = N1t, N points will be used for the correlation.
With these definitions, the correlation at time t= ti is defined by

CE(v, ti, τ )= 1
N

i+N−1∑
j=i

qs
v2

2
∂δfsj(v)

∂v
Ej. (6.1)

This procedure is essentially just a sliding time average of the rate of change of the
phase-space energy density. The discrete velocity derivatives are computed using the
same second-order, centred finite difference scheme described in appendix A. Note
also that this scheme may be used even for a point of measurement moving with
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(a) (b)

FIGURE 11. For Case I, (a) the total perturbed electron distribution function δfe(0, v, t)
(colour map) and (b) electric field E(0, t) measured at x= 0 as a function of normalized
time ωpet.

respect to the plasma by simply replacing x0 = x0(t). We discuss implications using
measurements made at a point in space moving with respect to the plasma below
in § 7.1.

6.1. Case I: moderately damped standing Langmuir wave
Before presenting the results of the field–particle correlation technique applied to the
problem of the collisionless damping of electrostatic Langmuir waves, we begin with
a plot of the single-point measurements used for this analysis. For the case of the
moderately damped standing Langmuir wave pattern presented in § 5.1, we plot in
figure 11(a) the total perturbed electron distribution function δfe(0, v, t) (colour map)
and (b) the electric field E(0, t) measured at x= 0 as a function of normalized time
ωpet. Here the electric field is normalized to E0 = Te/(qeλde). The data plotted in
figure 11 correspond to observable quantities that can be derived from single-point
spacecraft measurements.

In figure 12, we plot the products of the quantities used in the correlations
CE(v, t, τ ) and C′E(v, t, τ ): (a) (−qev

2/2)(∂δfe(0, v, t)/∂v)E(0, t) and (b) qevδfe(0, v, t)
E(0, t) as a function of velocity v/vte and time ωpet. Note that the regions of
velocity space where these functions have a significant amplitude are not especially
well correlated with the resonant velocities (dot-dashed green). Without taking the
correlation of these quantities over an appropriate correlation interval τ (typically one
or more periods of a wave), the small-amplitude signal of the secular energy transfer
is masked by the much larger-amplitude oscillating energy transfer, making it difficult
to determine resonant nature of the collisionless damping.

A key part of this field–particle correlation analysis is the selection of an appropriate
correlation interval τ to isolate successfully the small-amplitude secular energy transfer
in the presence of a much larger-amplitude oscillating energy transfer. For this case,
the standing wave period is ωpeT = 4.39. In figure 13(a,b), we plot the correlation
CE(v0, t, τ ) from (3.20) over a range of correlation intervals 0 6 ωpeτ 6 16 at two
velocity values, (a) off-resonance at v0 = 0.08vte and (b) on-resonance at v0 = 2.85vte.
Note that the τ = 0 curve (dark blue) corresponds to a vertical slice along figure 12(a)
at the specified velocity v0. The impact of increasing the correlation interval τ is
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(a)(a) (b)

FIGURE 12. For Case I, plots of (a) the CE(v, t, τ ) correlation quantity,
(qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t) and (b) the C′E(v, t, τ ) correlation quantity,
qsvδfs(0, v, t)E(0, t), at x = 0 as a function of velocity v/vte and time ωpet. The
dot-dashed vertical green lines denote the resonant velocities v =±ω/k.

clear. As the correlation interval increases, the large-amplitude oscillations of the τ =0
case (blue), which are dominated by the oscillating energy transfer, are averaged out,
isolating the smaller-amplitude secular energy transfer for correlation intervals longer
than the wave period, τ > T (red). Note that the amplitude of the energy transfer
rate – estimated by the correlation CE(v0, t, τ ) – at v0 = 0.08vte is two orders of
magnitude smaller than at v0 = 2.85vte, so only the latter would likely be observable,
given limitations to the sensitivities of particle instruments aboard spacecraft.

As shown in § 3, the correlation CE(v0, t, τ ) in (3.20) is a direct calculation of
the rate of energy transfer between the electrostatic field and the plasma particles.
Therefore, to determine the accumulated energy transfer to the electrons, we can
simply integrate this correlation over time. Thus, we obtain the total accumulated
change in the electron phase-space energy density at x= x0, 1we(x0, v, t), given by

1we(x0, v, t)=
∫ t

0
CE(v, t′, τ ) dt′. (6.2)

In figure 13(c,d), we plot the time-integrated correlation, giving the change in the
electron phase-space energy density 1we(x0, v, t) as a function of time ωpet at the
same two velocity values, (c) off-resonance at v0 = 0.08vte and (d) on-resonance at
v0=2.85vte. Note again that the change in phase-space energy density is several orders
of magnitude larger for the resonant case at v0= 2.85vte. The take away lesson here is
that, by selecting a correlation interval τ & 1.5T , the large-amplitude oscillating energy
transfer rate can be averaged out, isolating the signal of the secular energy transfer rate
to the electrons associated with the collisionless damping of the electrostatic field.

Another point worth mentioning is that the total accumulated change in the electron
phase-space energy density, 1we, decreases as the correlation interval is increased in
figure 13(d). Since the envelope of the electric field oscillation decreases in amplitude
monotonically in time, as shown in figure 11(b), the rate of energy transfer given
by the form of CE will also have an envelope that decreases in time. For a longer
correlation interval τ , the average over a decreasing function will yield ever smaller
values, leading to the decrease in the estimate of the total accumulated phase-space
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(a) (b)

(c) (d)

FIGURE 13. The correlation CE(v0, t, τ ) from (3.20) over a range of correlation intervals
06ωpeτ 616 at two velocity values, (a) off-resonance at v0=0.08vte and (b) on-resonance
at v0 = 2.85vte. Also, the change in the electron phase-space energy density 1we(x0, v, t)
as a function of time ωpet at the same two velocity values, (c) off-resonance at v0=0.08vte
and (d) on-resonance at v0= 2.85vte. Units of the energy transfer rate (a,b) and change in
phase-space energy density (c,d) are arbitrary, but consistent from one panel to another.

energy density change seen in figure 13(d). Therefore, one should not choose a
correlation interval that is much longer than the lifetime of a damped wave. In a
turbulent plasma, however, the nonlinear interactions underlying the turbulent cascade
of energy from large scales will continually feed energy into the fluctuations at the
scales where collisionless damping can occur, so this constraint is likely to be far
less important for diagnosing collisionless damping in a turbulent plasma.

Now that we have determined an appropriate value for the correlation interval, we
apply the field–particle correlation CE(v, t, τ ), given by (3.20), to the observable
data in figure 11 using a correlation interval ωpeτ = 6.28. The resulting value of
the correlation CE(v, t, τ ) as a function of velocity v/vte and time ωpet for Case I
is shown in figure 14(a). The selection of an appropriately long correlation interval
has eliminated the large oscillations seen in figure 12 at v/vte < 2, showing that the
remaining rate of secular energy transfer has a significant amplitude that is much more
localized around the resonant velocity of v/vte = 2.86. Further, we can time integrate
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(a) (b)

FIGURE 14. (a) The field–particle correlation CE(v, t, τ ) = Cτ (qsv
2/2∂δfs/∂v, E) at

x = 0 using a correlation interval ωpeτ = 6.28. (b) The time-integrated correlation∫ t
0 CE(v, t′, τ ) dt′, showing a clear resonant signature of the secular energy transfer about

the resonant velocities v =±ω/k (dashed green).

this correlation to obtain the secular change in the electron phase-space energy
density, 1we(x0, v, t), shown in figure 14(b). Panel (b) is the primary result of this
field–particle correlation technique, showing the net change in electron phase-space
energy density is tightly correlated with the resonant velocity. The loss of energy
at v < ω/k and gain of energy at v > ω/k corresponds physically to a flattening of
the distribution function at the resonant velocity, consistent with the quasilinearly
averaged electron distribution function shown in figure 3.

As mentioned in § 3.4, it may be impractical to compute the derivative of the
perturbed distribution function, ∂δfs(x, v, t)/∂v, using spacecraft measurements
that are affected by noise and typically have limited velocity-space resolution.
Therefore, the alternative correlation C′E(v, t, τ ), given by (3.21), may be more
suitable for the analysis of single-point spacecraft measurements. Therefore, we
repeat the field–particle correlation analysis, starting with the observable single-point
measurements given in figure 11, and using the alternative form of the correlation
C′E(v, t, τ ) with the same correlation interval ωpeτ = 6.28. In figure 15, we plot
(a) the correlation C′E(v, t, τ ) as a function of velocity v/vte and time ωpet and (b)
the time-integrated correlation

∫ t
0 C′E(v, t′, τ ) dt′ for Case I. This alternative form

C′E of the field–particle correlation analysis does not represent the rate of change
of phase-space energy density, although its velocity-integrated value does yield the
same net local energy transfer as correlation CE. Nonetheless, this alternative form
still yields a signature that is highly peaked at the resonant velocities v = ±ω/k,
indicating that the physical mechanism of the secular energy transfer is a resonant
process. In addition, of course, the velocity-integrated rate of energy change is the
same for both forms of the correlation, so the total secular transfer of energy from
collisionless interactions between the fields and particles can still be determined from
the alternative form of the correlation C′E(v, t, τ ).

To show that this field–particle correlation method indeed recovers the local energy
transfer rate, in figure 16(a) we plot the velocity-integrated correlation

∫
dv CE(v, t, τ )

(red dotted), which provides a measure of the local (at position x0= 0) rate of transfer
of spatial energy density from the electrostatic field to the electrons. We also plot the
velocity-integrated value of the alternative correlation,

∫
dv C′E(v, t, τ ) (blue dashed),
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(a) (b)

FIGURE 15. For Case I, (a) the alternative field–particle correlation C′E(v, t, τ ) =
Cτ (qsvδfs/∂v,E) at x= 0 using a correlation interval ωpeτ = 6.28. (b) The time-integrated
correlation

∫ t
0 C′E(v, t′, τ ) dt′. Vertical dashed green lines denote the resonant velocities

v =±ω/k.

(a) (b)

FIGURE 16. (a) The net local energy transfer rate, computed using the velocity-integrated
correlation

∫
dv CE(v, t, τ ) (red dashed) and alternative correlation,

∫
dv C′E(v, t, τ ) (blue

dashed). Also plotted on the right-hand vertical axis is the electric field amplitude as a
function of time, E/E0 (green). (b) The net accumulated transfer of spatial energy density,∫

dv 1wej(x0, v, t)= ∫ dt′
∫

dv Cj(c, t′, τ ) for both CE (red dotted) and C′E (blue dashed)
and local electrostatic spatial energy density, |E(x0, t)|2/8π (green).

to demonstrate that these two alternative forms, when integrated over velocity, indeed
yield the same result for the rate of transfer of spatial energy density between the
fields and particles. Also plotted is the electric field amplitude as a function of time,
E/E0 (green), where the electric field is normalized to E0=Te/(qeλde). In figure 16(b),
we plot the net accumulated transfer of spatial energy density,

∫
dv 1wej(x0, v, t)=∫

dt′
∫

dv Cj(c, t′, τ ) for both CE (red dotted) and C′E (blue dashed). Also plotted is the
local electrostatic spatial energy density, |E(x0, t)|2/8π (green), showing that energy
is lost from the electrostatic field while it is gained by the electrons. Note, however,
that the accumulated local energy changes in the electrons and the electrostatic field
do not sum to a constant value – this is because the ballistic and linear wave–particle
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(a) (b)

FIGURE 17. (a) The field–particle correlation CE(v, t, τ )=Cτ (qsv
2/2∂δfs/∂v,E) for Case

II at x = 0 using a correlation interval ωpeτ = 6.28. (b) The time-integrated correlation∫ t
0 CE(v, t′, τ ) dt′, showing a negligible signature of secular energy transfer at the resonant

velocities v =±ω/k (dashed green).

interaction terms in (3.19) are non-zero locally. Only upon integrating over space is
total energy conserved, as shown in figure 1.

6.2. Case II: weakly damped standing Langmuir wave
For the weakly damped standing Langmuir wave pattern described in § 5.2, we can
perform the same field–particle correlation analysis. In figure 17, we plot (a) the field–
particle correlation CE(v, t, τ ) using a correlation interval ωpeτ = 6.28, and (b) the
time-integrated correlation

∫ t
0 CE(v, t′, τ ) dt′ for the weakly damped Case II. Note that

the colour map magnitude of this figure is the same as that in figure 14, showing that
the secular energy transfer for this weakly damped case is very small compared to
the moderately damped Case I. The rate of energy transfer in panel (a) indeed shows
some signal associated with the oscillating energy transfer that is not eliminated using
a correlation interval of ωpeτ =6.28, but the time integration of the correlation in panel
(b) effectively eliminates any net energy transfer accumulating over time. Note that
this field–particle correlation technique produces only a very-small-amplitude signature
in this weakly damped case, a signature that is unlikely to be observable given realistic
instrumental limitations on the measurement of small-amplitude fluctuations in the
velocity distribution function.

The field–particle correlation method indeed shows a negligible amount of local
secular transfer of energy from fields to particles on the time scale of the wave
period, as shown by plotting the velocity-integrated correlation

∫
dv CE(v, t, τ ) (red

dotted) in figure 18(a) and the net accumulated transfer of spatial energy density,∫
dv 1we(x0, v, t) = ∫ dt′

∫
dv CE(c, t′, τ ) in figure 18(b). Instrumental constraints

likely would render any such small energy transfer rate unobservable.

6.3. Case III: moderately damped single Langmuir wave mode
Finally, we apply the field–particle correlation analysis to Case III, the propagating
single Langmuir wave mode. The observable single-point measurements at x= 0 are
plotted in figure 19, showing (a) the total perturbed electron distribution function
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(a) (b)

FIGURE 18. (a) The net local energy transfer rate, computed using the velocity-integrated
correlation

∫
dv CE(v, t, τ ) (red dashed) and the electric field amplitude as a function

of time, E/E0 (green). (b) The net accumulated transfer of spatial energy density,∫
dv1we(x0, v, t)= ∫ dt′

∫
dv CE(c, t′, τ ) (red dotted) and local electrostatic spatial energy

density, |E(x0, t)|2/8π (green).

(a) (b)

FIGURE 19. For Case III, (a) the total perturbed electron distribution function δfe(0, v, t)
(colour map) and (b) electric field E(0, t) measured at x= 0 as a function of normalized
time ωpet.

δfe(0, v, t) (colour map) and (b) the electric field E(0, t) as a function of normalized
time ωpet. Note that the perturbed electron distribution function is highly localized in
velocity near the resonant velocity, v/vte =ω/(kvte)= 2.86.

For this case, we plot in figure 20 the products of the quantities used in the
correlations CE(v, t, τ ) and C′E(v, t, τ ): (a) (−qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t) and (b)
qsvδfs(0, v, t)E(0, t) as a function of velocity v/vte and time ωpet. In this case, even
without the time average over the correlation interval, the product has a definite net
sign on either side of the resonant velocity v = ω/k (dash-dotted green). Note that
in this section we also plot the resonant velocity of the counterpropagating Langmuir
wave, v=−ω/k, because a very slight signature does appear in the opposite direction,
likely due to an imperfect initialization of the single propagating Langmuir wave. Note
that this minor amount of energy in the counterpropagating Langmuir wave does not
impact the results of this study.
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(a) (b)

FIGURE 20. For Case III, plots of (a) the CE(v, t, τ ) correlation quantity,
(qsv

2/2)(∂δfs(0, v, t)/∂v)E(0, t) and (b) the C′E(v, t, τ ) correlation quantity,
qsvδfs(0, v, t)E(0, t), at x = 0 as a function of velocity v/vte and time ωpet. The
dot-dashed vertical green line at v = ω/k denotes the resonant velocity of the initialized
Langmuir wave mode, and we also plot v =−ω/k since nonlinear couplings may excite
the counterpropagating Langmuir wave mode.

(a) (b)

FIGURE 21. For Case III, (a) the field–particle correlation CE(v, t, τ ) =
Cτ (qsv

2/2∂δfs/∂v, E) at x = 0 using a correlation interval ωpeτ = 6.28. (b) The
time-integrated correlation

∫ t
0 CE(v, t′, τ ) dt′, showing a clear resonant signature of the

secular energy transfer about the resonant velocity v =ω/k (dashed green).

In figure 21, we present the results of the field–particle correlation CE(v, t, τ ), given
by (3.20), applied to Case III, the propagating single Langmuir wave mode using a
correlation interval ωpeτ = 6.28. We plot (a) the field–particle correlation CE(v, t, τ ),
and (b) the time-integrated correlation

∫ t
0 CE(v, t′, τ ) dt′ for Case III. In both (a) the

rate of secular energy transfer and (b) the time-integrated net change in phase-space
energy density, the resonant signature of Landau damping of the Langmuir wave is
very clear, with the loss of energy at v < ω/k and the gain of energy at v > ω/k
corresponding to a flattening of the distribution function at the resonant velocity.
Finally, we plot in figure 22 the results of the alternative form of the correlation
C′E(v, t, τ ), with (a) the correlation C′E(v, t, τ ) as a function of velocity v/vte and
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(a) (b)

FIGURE 22. For Case III, (a) the alternative field–particle correlation C′E(v, t, τ ) =
Cτ (qsvδfs/∂v,E) at x= 0 using a correlation interval ωpeτ = 6.28. (b) The time-integrated
correlation

∫ t
0 C′E(v, t′, τ ) dt′. Vertical dashed green line denotes the resonant velocity

v =ω/k.

(a) (b)

FIGURE 23. (a) The net local energy transfer rate, computed using the velocity-integrated
correlation

∫
dv CE(v, t, τ ) (red dashed) and alternative correlation,

∫
dv C′E(v, t, τ )

(blue dashed). Also plotted is the electric field amplitude as a function of time, E/E0
(green). (b) The net accumulated transfer of spatial energy density,

∫
dv 1wej(x0, v, t)=∫

dt′
∫

dv Cj(c, t′, τ ) for both CE (red dotted) and C′E (blue dashed), and local electrostatic
spatial energy density, |E(x0, t)|2/8π (green).

time ωpet and (b) time-integrated correlation
∫ t

0 C′E(v, t′, τ ) dt′ for Case III. Again, we
see that this alternative form has a peak in the energy transfer rate and net transferred
energy at the resonant velocity v=ω/k (dotted green), indicating clearly the resonant
nature of the mechanism of collisionless energy transfer.

In figure 23, we show the local (at position x0 = 0) rate of transfer of spatial
energy density from the electrostatic field to the electrons by plotting (a) the
velocity-integrated correlation

∫
dv CE(v, t, τ ) (red dotted) and the alternative

correlation,
∫

dv C′E(v, t, τ ) (blue dashed). Also plotted is the electric field amplitude
as a function of time, E/E0 (green). In figure 23(b), we plot the net accumulated
transfer of spatial energy density,

∫
dv 1wej(x0, v, t) = ∫ dt′

∫
dv Cj(c, t′, τ ) for

https://doi.org/10.1017/S0022377816001197 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001197


Field–particle correlations 35

both CE (red dotted) and C′E (blue dashed). Also plotted is the local electrostatic
spatial energy density, |E(x0, t)|2/8π (green), showing that energy is lost from the
electrostatic field while it is gained by the electrons.

7. Discussion

This paper proposes a novel field–particle correlation technique that uses single-
point measurements of the particle velocity distribution functions and electromagnetic
fields to isolate the secular energization of the plasma particles due to the damping
of the electromagnetic fields and to provide vital new information about how this
energy transfer is distributed as a function of particle velocity. The technique has
been developed using guidance from kinetic plasma theory to estimate the rate
of energy transfer between electromagnetic fields and plasma particles, using a
correlation over time to average out the oscillating energy transfer that supports
wave motion, isolating the secular transfer of energy associated with the collisionless
damping of electromagnetic fluctuations and resulting energization of particles. This
extremely general technique has been worked out theoretically in detail for the case
of electrostatic fluctuations in an unmagnetized, 1D-1V Vlasov–Poisson plasma in § 3.
The application of the resulting field–particle correlation procedure to single-point
measurements generated using nonlinear simulations of Langmuir wave damping in
a 1D-1V Vlasov–Poisson plasma is presented in § 6, demonstrating that this method
can determine the local energization of the plasma particles as a function of particle
velocity, providing valuable insight into the nature of the collisionless damping
mechanism. Here we discuss the extension of this general field–particle correlation
technique to the case of the collisionless damping of turbulent fluctuations in the
magnetized plasma of the solar wind.

In the weakly collisional, magnetized plasma of the solar wind, three distinct
physical mechanisms have been proposed to be responsible for the dissipation
of plasma turbulence: (i) resonant collisionless wave–particle interactions, such as
Landau damping, transit-time damping or cyclotron damping (Landau 1946; Barnes
1966; Coleman Jr. 1968; Denskat, Beinroth & Neubauer 1983; Isenberg & Hollweg
1983; Goldstein, Roberts & Fitch 1994; Leamon et al. 1998b,a; Quataert 1998; Gary
1999; Leamon et al. 1999; Quataert & Gruzinov 1999; Leamon et al. 2000; Isenberg,
Lee & Hollweg 2001; Hollweg & Isenberg 2002; Howes et al. 2008a; Schekochihin
et al. 2009; TenBarge & Howes 2013; Howes 2015; Li et al. 2016); (ii) non-resonant
collisionless wave–particle interactions, primarily leading to stochastic ion heating
(Chen, Lin & White 2001; Johnson & Cheng 2001; White, Chen & Lin 2002;
Voitenko & Goossens 2004; Bourouaine, Marsch & Vocks 2008; Chandran 2010;
Chandran et al. 2010, 2011; Bourouaine & Chandran 2013); and (iii) dissipation in
coherent structures, specifically current sheets, often involving collisionless magnetic
reconnection (Dmitruk, Matthaeus & Seenu 2004; Markovskii & Vasquez 2011;
Matthaeus & Velli 2011; Osman et al. 2011; Servidio et al. 2011; Osman et al.
2012a,b; Wan et al. 2012; Karimabadi et al. 2013; Zhdankin et al. 2013; Osman
et al. 2014a,b; Zhdankin, Uzdensky & Boldyrev 2015a; Zhdankin et al. 2015b).

As discussed in § 2, under the weakly collisional conditions of the solar wind, all
of these mechanisms are mediated by the Lorentz force term in the Boltzmann
equation (2.1). Therefore, all of these collisionless damping mechanisms will
necessarily lead to a correlation between fluctuations in the particle velocity
distribution functions and the electromagnetic fields. Each different physical mechanism,
however, is likely to generate a distinct velocity-space signature that can be diagnosed
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using the general approach of field–particle correlations. For example, Landau
damping is expected to generate fluctuations in the distribution function that vary
along the direction parallel to the local magnetic field, whereas cyclotron damping
leads to pitch angle scattering that can also generate variations in the distribution
function in the perpendicular direction. These distinct velocity-space signatures of the
field–particle correlation can be used to identify the dominant physical mechanism
responsible for the damping of the turbulent fluctuations.

The concept of using field–particle correlations to diagnose the secular transfer
of energy between fields and particles is very general. The field–particle correlation
technique described in this paper was derived directly from (3.19), a nonlinear
phase-space energy density transport equation derived from the Boltzmann equation,
and assumed nothing about the existence of waves or the specific properties of
Landau damping. Nonetheless, the particular form of the field–particle correlation can
be optimized to isolate each of the different mechanisms depending on the specific
properties of each mechanism. For example, Landau damping is a resonant interaction
involving the force on a charged particle by the component of the electric field parallel
to the magnetic field, E‖. On the other hand, transit-time damping is due to the
magnetic mirror force acting on the magnetic moment of the particle’s gyration about
magnetic field, involving parallel gradients of the magnetic field magnitude, dominated
by δB‖ in the limit of |δB|� |B|. The particular field–particle correlation demonstrated
here is the ideal diagnostic for Landau damping of electrostatic fluctuations in a
Vlasov–Poisson plasma. For the case of the collisionless damping of fluctuations in
the weakly collisional solar wind, insights from kinetic theory will be necessary to
devise the most discerning forms of field–particle correlations for each of the three
major proposed damping mechanisms above, as well as stochastic ion heating and
collisionless magnetic reconnection.

Below we will comment on the generalizations necessary to apply the field–particle
correlation technique to diagnose the collisionless damping of turbulent fluctuations
in the solar wind using single-point measurements of particle velocity distribution
functions and electromagnetic fields. We also will enumerate a number of caveats
regarding the use of this novel field–particle correlation method in the solar wind.
Finally, we will mention a couple of potential analysis techniques that can be used
in concert with field–particle correlations.

7.1. Measurements in a moving frame and the Taylor hypothesis
A key issue regarding the applicability of this field–particle correlation method
to diagnose the collisionless energy transfer in the solar wind is the fact that
measurements are made in the frame of reference of the spacecraft, but the solar
wind is flowing radially outward from the sun at a speed ranging approximately from
300 to 800 km s−1, where the typical Alfvén speed in the wind is around 50 km s−1.
In studies of solar wind turbulence, this super-Alfvénic flow is often exploited to
interpret the temporal fluctuations measured by the spacecraft as the result of spatial
fluctuations being swept past the spacecraft by the solar wind flow, an approximation
known as the Taylor hypothesis (Taylor 1938). An important question is whether this
field–particle correlation technique still works when the single point of measurement
is moving with respect to the plasma frame.

In fact, if applied carefully, we expect this field–particle correlation technique to
be actually rather insensitive to measurements made in a frame of reference moving
relative to the plasma frame. There are three separate points related to this issue
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of the Taylor hypothesis. First, how does the movement of the measurement point
affect the process of averaging out the oscillating energy transfer over the correlation
interval? Second, can the technique be applied to analyse spatially intermittent heating,
such as the localization of heating near current sheets found in numerical simulations
of plasma turbulence (Uritsky et al. 2010; Wan et al. 2012; Karimabadi et al. 2013;
TenBarge & Howes 2013; Wu et al. 2013; Zhdankin et al. 2013) and inferred from
solar wind measurements (Borovsky & Denton 2011; Osman et al. 2011; Perri et al.
2012; Wang et al. 2013; Wu et al. 2013)? Third, the frame of reference of the
particle velocity and electromagnetic field measurements used in the correlation must
be consistent.

To isolate the secular energy transfer arising from the collisionless damping
of electromagnetic fluctuations, the key step in the technique is to perform the
correlation over a suitably long correlation interval τ in order to average out the
generally larger-amplitude oscillating energy transfer. In the examples presented here,
this step is achieved by averaging in time over a correlation interval longer than
the period of the wave, τ > T . But, fundamentally, the only requirement is that the
measurements span more than 2π of the wave phase. For the Langmuir waves of the
1D-1V Vlasov–Poisson system presented in § 6, the wave phase is a function of both
the time and position, α(x, t) = kx − ωt. Thus, any combination of changes in time
and position that cover more than 2π of the wave phase will suffice to average out
the oscillating energy transfer. A perfectly suitable alternative is to use measurements
at a series of positions xj (all measured at the same time t0), thereby using a spatial
average, instead of a time average, to eliminate the oscillating energy transfer; this is,
in fact, exactly the averaging process that is performed in quasilinear theory. But such
spatially distributed measurements are not accessible for most spacecraft missions –
this motivates the time-averaged form of the procedure presented here. But, if the
point of measurement is moving in space, x0(t), then the phase of the wave, for a
time series of measurements, is given by α(t) = kx0(t) − ωt, and the field–particle
correlation technique presented here simply requires this phase α to span more than
2π over the correlation interval τ .

Another important question is whether this field–particle correlation method can
be used to diagnose the particle energization in localized structures, such as current
sheets. If the current sheet is particularly thin, obviously the cadence of the particle
measurements has to be sufficiently high to sample within the structure of interest as
it is advected past the spacecraft with the solar wind flow. Fortunately, current and
upcoming spacecraft missions – such as MMS, Solar Probe Plus, Solar Orbiter and
THOR – have sufficiently high-cadence plasma instruments to satisfy this unavoidable
requirement. The crucial issue for applying field–particle correlations in the case of
spatially intermittent particle energization is to determine an appropriate correlation
interval τ to isolate the secular transfer of energy from the oscillating transfer of
energy. For wave-like turbulent fluctuations in which there is a conservative transfer of
energy from fields to particles and back, the correlation interval τ must be sufficiently
long to expose the often smaller-amplitude secular energy transfer associated with
the collisionless damping of the turbulence. But the energy transfer in a current
sheet has a significantly different character: the particle energization at current sheets
often appears to be sign-definite, and may have an amplitude that is large relative to
any oscillating energy transfer associated with superimposed wave-like fluctuations.
These characteristics are supported by Cluster observations of particle energization
at a reconnecting current sheet in magnetosheath turbulence (Retinò et al. 2007;
Sundkvist et al. 2007) as well as simulations of a current sheet generated by the
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strong nonlinear interaction between counterpropagating Alfvén waves (Howes 2016).
In both cases, the local energy transfer rate, given by evaluating j · E within the
current sheet, is largely sign-definite, implying the transfer of energy from the
electromagnetic fields to the particles. In this case, the correlation interval need not
be large, and in fact, significant secular particle energization may be apparent without
any averaging of the measured single-point time series. Therefore, with appropriate
modifications respecting the distinct nature of particle energization at current sheets,
the field–particle correlation technique may indeed provide a valuable new tool for
the exploration of particle energization at current sheets.

The last complication arising from using measurements made in the spacecraft
frame of reference, in relative motion with respect to the solar wind plasma frame, is
that it is imperative to use a consistent frame of reference for both field and particle
measurements. For example, often solar wind particle velocity distribution functions
are transformed to the frame of reference of the bulk solar wind plasma flow†, vsw.
But electric field measurements are made in the spacecraft frame moving at a speed
of hundreds of km s−1 relative to the solar wind plasma. Thus, any electric field
measurements to be used must be Lorentz transformed from the spacecraft to the
plasma frame, E′ ' E + vsw/c × B (Chen et al. 2011; Howes, Klein & TenBarge
2014). The plasma-frame electric field E′ is often much smaller than both the
electric field measured in the spacecraft frame E and the convection electric field
vsw/c × B, so uncertainties in the determination of the solar wind velocity vsw can
make the determination of the plasma-frame electric field E′ unreliable. To avoid
this complication, one may use a component of the magnetic field – under typical
solar wind parameters, a Lorentz transform changes the magnetic field negligibly
(Howes et al. 2014) – as a proxy for the desired electric field component, at the
expense of making an assumption that the electromagnetic wave satisfies a linear
wave eigenfunction.

7.2. Generalization to solar wind measurements
First, spacecraft measurements can provide three-dimensional velocity (3V) distribution
functions fs(vx, vy, vz), so one must appropriately adapt the field–particle correlations
given in (3.20) and (3.21). The Lorentz force term in the Boltzmann equation (2.1)
respects the direction of the local magnetic field, so transformation of the distribution
function to field-aligned coordinates, fs(v⊥1, v⊥2, v‖), is generally helpful in the
interpretation of the measurements. Following this step, one means of adapting
the correlation is simply to determine the field–particle correlation at each point
in the 3V space, CE(v⊥1, v⊥2, v‖, t, τ ). Then, one may choose to reduce this 3V
correlation, for example determining a parallel correlation CE(v‖, t, τ ) by integrating
over the perpendicular dimensions of velocity space. Alternatively, this reduction
can be performed first to obtain the parallel reduced distribution function fs(v‖) –
yielding a valuable improvement in the signal-to-noise ratio of the particle velocity
measurements – followed by a correlation of an appropriate electromagnetic field
component with the reduced velocity distribution. Tests of these alternatives using
existing spacecraft datasets may enable the best approach to be identified.

Second, with spacecraft instrumentation it is often not possible to reliably detect
E‖ directly because it generally has a much smaller magnitude than its components
perpendicular to the local magnetic field. In this case, it is possible to use another

†Note that this bulk solar wind plasma flow value may also include transverse motions (relative to the
magnetic field direction) associated with turbulent Alfvénic fluctuations.
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component of the electromagnetic fields, such as E⊥ or δB‖, as a proxy for E‖
(or whatever other component you desire that is difficult to measure directly).
Maxwell’s equations dictate the relationships between the different components
of the electric and magnetic fields; the spatial gradients necessary to specify these
relationships completely, however, are not observationally available when restricted to
single-point spacecraft measurements. Nonetheless, the linear response of the plasma
and electromagnetic fields to an applied perturbation can be computed theoretically
given the frequency and wavevector of the perturbation. If one assumes a particular
linear wave mode and wavevector, one can predict the relationship between all of
the different components of the electric and magnetic fields. One can thereby relate
the phase and amplitude of the desired field in terms of a more easily measured
field, for example E‖ in terms of E⊥. Additionally, this assumption can be tested by
comparing the phase and amplitude relationships of all of the other measured field
components. The strategy of assuming that the relationships among field components
satisfy the eigenfunctions of linear wave modes has meet with significant success
in establishing the kinetic-Alfvén-wave nature of dissipation range fluctuations in
the solar wind (Salem et al. 2012; Chen et al. 2013) and the slow-mode nature
of compressible fluctuations in the solar wind inertial range (Howes et al. 2012;
Klein et al. 2012). Additionally, nonlinear gyrokinetic simulations of solar wind
turbulence have demonstrated that the different field components indeed have
amplitude relationships as a function of scale that are given by the linear Alfvén
and kinetic Alfvén wave eigenfunctions (Howes et al. 2008b, 2011; TenBarge et al.
2012). Therefore, the specific form of the field–particle correlation can be modified
to allow use with an alternative field component as a proxy for any component that
cannot be easily measured.

7.3. Caveats on the use of the field–particle correlation technique
One significant benefit of the field–particle correlation method devised here is that,
even if the cadence of plasma distribution function measurements 1t is longer than
the period T of typical fluctuations on the scale at which the collisionless damping
occurs, using a sufficiently long correlation interval τ � T may enable the signature
of the secular energy transfer to be obtained. A first caveat, however, is that aliasing
may become significant for under-sampled plasma measurements, artificially altering
the phase of the fluctuations in the distribution function and thereby masking the
underlying physical correlation (Klein et al. 2014).

A second caveat involves the application of the method to diagnose spatially
localized dissipation. Even though the method uses single-point measurements
to determine the local rate of energy transfer between fields and particles, the
correlation must be performed over a time longer than the characteristic fluctuation
frequency to isolate the typically small secular energy transfer from the often much
larger oscillating energy transfer. The result may be that the correlation smears out
the signature of strongly localized energy transfer in the attempt to average out
the oscillating component. On the other hand, if the localized energy transfer is
sign-definite and has a sufficiently large amplitude, it may still be discernible by
comparing correlations computed over a range of time intervals.

Particle velocity distribution measurements that are highly resolved in pitch angle
and energy often suffer from rather a low count rate, and consequently a low
signal-to-noise ratio, in the low-density conditions of the solar wind plasma. A third
caveat is that noise is particularly detrimental to extracting meaningful correlations
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(a)

(b)

FIGURE 24. (a) Normalized phase velocity ω/k‖vA and (b) normalized damping rate
−γ /ω versus perpendicular wavenumber k⊥ρi for the collisionless damping of the Alfvén
and kinetic Alfvén wave for βi = 0.5, 1, 3, 5, 10.

from measurements (Howes et al. 2012), so particular care must be taken to ensure
that the measurement noise is low enough not to avoid corrupting the correlations.

A fourth significant caveat is that the broadband nature of the spectrum of turbulent
fluctuations may smear out any resonant signatures of the dissipation. In particular,
since the collisionless damping becomes significant in the same range of length
scales that the characteristic linear response becomes dispersive, the change in
wave phase velocity leads to a range of possible resonant velocities. However,
significant transit-time damping of Alfvén waves onto ions occurs over a rather
narrow band in perpendicular wavenumber, alleviating this potential problem. As an
example, we calculate the linear frequencies and damping rates of Alfvén waves
using the linearized Vlasov–Maxwell dispersion relation (Quataert & Gruzinov 1999;
Howes et al. 2006) for Ti/Te = 1 and βi = 0.5, 1, 3, 5, 10 and a realistic mass ratio
mi/me = 1836. In figure 24, we plot the (a) normalized phase velocity ω/k‖vA and
(b) normalized damping rate −γ /ω versus perpendicular wavenumber k⊥ρi. The
peak in the damping rate at k⊥ρi ∼ 1 for higher values of ion plasma beta βi & 3
is due to transit-time damping onto the ions. Significant collisionless transit-time
damping occurs for −γ /ω > 0.1 (thin dashed); the phase velocities corresponding to
the strongly damped range of k⊥ρi vary by less than a factor of two, so indeed the
range of phase velocities is rather narrow. Therefore, in this case, we expect that any
signature of resonant energy transfer is unlikely to be obscured by dispersion in the
phase velocity.

At higher values of k⊥ρi & 5 in figure 24, however, the damping strengthens again,
yielding −γ /ω > 0.1 due to Landau damping onto the electrons. In this case, the
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damping is not narrowband, but instead rises monotonically with increasing k⊥ρi. The
corresponding phase velocities of kinetic Alfvén waves at these scales also increase
linearly with the perpendicular wavenumber, so the velocity-space signature of energy
transfer by electron Landau damping using field–particle correlations may indeed be
smeared out by this continual dispersive change of the resonant velocity.

A fifth and final caveat also deals with applying this field–particle correlation
technique to single-point spacecraft measurements of the electron velocity distributions.
Because the electron thermal velocity is much faster than the Alfvén velocity under
typical solar wind plasma conditions, the resonant velocity for electron Landau
damping of turbulent fluctuations falls within the core of the electron velocity
distribution, |ω/k‖|<vte. Spacecraft charging effects typically corrupt electron particle
velocity measurements in the core of the distribution at |v|<vte, so it is uncertain if a
meaningful field–particle correlation can be computed in the presence of interference
by spacecraft charging.

7.4. Complementary analysis techniques
Finally, we propose here two techniques that can be used to complement a field–
particle correlation analysis of single-point spacecraft measurements in the turbulent
solar wind. We have shown that the field–particle correlation CE(v, t, τ ) is a direct
measure of the collisionless transfer of phase-space energy density between fields and
particles in § 3.4, but it may not be possible to compute accurately the derivative
∂δfs(x, v, t)/∂v necessary for this particular correlation. The alternative field–particle
correlation C′E(v, t, τ ) is more easily applied to spacecraft measurements, but does
not yield a direct measure of the energy transfer in velocity space. One may test
whether the derivative ∂δfs(x, v, t)/∂v in CE(v, t, τ ) is leading to inaccurate results
by computing both forms of the correlation and integrating over velocity. Since they
should both have the same velocity-integrated value of the local energy transfer rate,
any disagreement is likely due to problems with the derivative.

A second method to determine whether the estimate of the rate of transfer of
the phase-space energy density given by the field–particle correlation analysis
is meaningful is to compare the correlation signature using a the same field
measurements with randomized phases. To randomize the phases, the time series
of field measurements can be Fourier transformed to a frequency spectrum, each
complex Fourier coefficient can be multiplied by a random complex phase, and then
the randomized Fourier frequency coefficients (which have the same energy spectrum
as the original field measurements) can be inverse transformed back to the time
domain. The envelope of the field–particle correlations computed using an ensemble
of randomized fields gives an idea of the noise level in the correlation as a function
of velocity.

8. Conclusion
In the quest to unravel the kinetic physics of the damping of turbulent fluctuations

in weakly collisional space and astrophysical plasmas, we propose here an innovative
field–particle correlation technique to estimate the resulting particle energization and
identify the characteristics of the governing collisionless energy transfer mechanism.
The major features of this novel method are:

(a) The method requires only single-point measurements of the fluctuations in the
electromagnetic fields and particle velocity distribution functions, enabling it to
be applied not only to numerical simulations but also to spacecraft measurements.
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(b) By correlating the field and particle fluctuations over a suitable time interval, the
method averages out the conservative, oscillating energy transfer rate associated
with wave motion to isolate the secular energy transfer rate associated with the
collisionless damping of the electromagnetic fluctuations.

(c) By not requiring an integration over particle velocity, the procedure provides
information about the energy transfer between electromagnetic fields and plasma
particles as a function of particle velocity, yielding vital new information that can
help to identify the dominant collisionless mechanism governing the damping of
the turbulent fluctuations.

Using the simplified case of the electrostatic fluctuations in a 1D-1V Vlasov–
Poisson plasma, we have shown how to use nonlinear kinetic plasma theory to
derive a particular field–particle correlation that corresponds directly to the rate
of transfer of energy density in phase space, given by CE(v0, t, τ ) in (3.20). We
have applied this field–particle correlation technique to a nonlinear simulation of the
collisionless damping of Langmuir waves in a Vlasov–Poisson plasma, generating the
key field–particle correlation results in figure 14.

We have outlined caveats on the applying this field–particle correlation technique
to diagnose the secular transfer of energy from fields to particles associated with
the collisionless damping of turbulent electromagnetic fluctuations in the solar wind.
The concept of using field–particle correlations to diagnose the secular transfer of
energy between fields and particles is very general, and is applicable to any proposed
collisionless damping mechanism in the solar wind, including Landau damping,
transit-time damping, cyclotron damping, stochastic ion heating and collisionless
magnetic reconnection. Kinetic theory can be used to devise a suitable field–particle
correlation for the investigation of a particular proposed mechanism. Specifically, one
is free to specify whether to use 3-D velocity distributions f (v⊥1, v⊥2, v‖) or reduced
parallel f (v‖) or perpendicular f (v⊥) velocity distributions, as well as the appropriate
component of the electromagnetic field, or a more easily measurable proxy field
component. Supporting numerical work will be required to characterize the qualitative
and quantitative features of the field–particle correlations associated with each of the
proposed damping mechanisms above.

We emphasize that this general technique can be applied to any weakly collisional
plasma system in which the particle velocity distributions and electromagnetic fields
can be measured at a single point in space. It can be widely used to estimate the local
rate of transfer of energy density in phase space in kinetic numerical simulations not
only of kinetic plasma turbulence (Howes 2015), but also of collisionless magnetic
reconnection and particle acceleration. And it can also be used to investigate the
weakly collisional dynamics in spacecraft measurements and laboratory experiments
(Schroeder et al. 2016). A major motivation for the work presented here is to develop
a mature field–particle correlation method that can be used as the primary tool for the
analysis of measurements from current, upcoming and proposed spacecraft missions
that are focused on the kinetic microphysics of weakly collisional heliospheric
plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar
Orbiter and Turbulent Heating ObserveR (THOR) missions.
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Appendix A. Numerical implementation of the VP code
The numerical implementation of the nonlinear Vlasov–Poisson simulation code VP

evolves the components of the total velocity distribution function for species s,

fs(x, v, t)= fs0(v)+ δfsB(x, v, t)+ δfsWl(x, v, t)+ δfsWn(x, v, t), (A 1)

according to the separated evolution equations (4.2)–(4.4). Note that the VP code
can also be run in a linear mode simply by setting δfsWn(x, v, t) = 0. The 1D-1V
domain is discretized with uniform spacing over the interval [−L/2, L/2] in physical
space x using nx points and over [−vmax, vmax] in velocity space v using nv + 1
points. Spatial derivatives are computed using second-order centred finite differencing,
periodically wrapped at the spatial boundary. Velocity derivatives are computed using
second-order centred finite differencing, except for the points at v = ±vmax, which
employ only first-order finite differencing. The distribution function is advanced using
a third-order Adams–Bashforth scheme. The maximum time step for this explicit
algorithm is constrained by the Courant–Friedrichs–Lewy stability criterion to be
(1t)max = 1x/ max(vmax, ω/k), where the maximum velocity is either the maximum
resolved particle velocity vmax or the maximum phase velocity of the Langmuir wave
mode, ω/k. The time step used in the simulation is set to be some fraction fCFL of
this maximum time step, 1t = fCFL(1t)max. At each time step, the Poisson equation
is solved for the potential φ(x) using the Green’s function solution,

φ(x)= 4π

L

{(
L
2
− x
) ∫ x

−L/2

(
L
2
+ x′

)
ρ(x′) dx′ +

(
L
2
+ x
) ∫ L/2

x

(
L
2
− x′

)
ρ(x′) dx′

}
,

(A 2)

where the charge density is computed by

ρ(x)=
∑

s

∫
dv qsfs(x, v). (A 3)

Table 2 presents the dimensionless normalizations of the quantities in the code
and the definitions of characteristic plasma parameters. Note the velocity coordinate
normalization is species dependent, so the ion and electron distribution functions cover
different absolute values of the velocity depending on the ion-to-electron mass ratio
mi/me and ion-to-electron temperature ratio Ti/Te. For all of the examples presented
in this paper, the equilibrium distribution function is specified as a Maxwellian,

fs0 = n0

(2π)1/2vts
e−v

2/2v2
ts, (A 4)

although the code itself admits an arbitrary form of the equilibrium distribution
function. A particularly useful relation in manipulating the normalizations is
vte = λdeωpe.

The plasma is assumed to be a fully ionized plasma with all ions in a singly
charged state, so n0e = n0i ≡ n0 and qe = −qi. Under these conditions, the linear
Vlasov–Poisson dispersion relation yields the complex frequency ωc as a function of
three dimensionless parameters

ωc/ωpe =ω(kλde, Ti/Te,mi/me). (A 5)
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Quantity Normalization Quantity Definition

Position x̂= x/λde Debye length λ2
de = Te/4πn0q2

e

Velocity v̂s = v/vts Thermal velocity v2
ts = Ts/ms

Time t̂=ωpet Plasma frequency ω2
pe = 4πn0q2

e/me

Potential φ̂ = qeφ/Te

Distribution f̂s0 = fs0vts/n0

TABLE 2. Dimensionless normalization of quantities and definitions of plasma parameters
in cgs units. The Boltzmann constant is absorbed into temperature, giving temperature in
units of energy.

A recent paper (Pezzi, Camporeale & Valentini 2016) has explored the issue of
numerical recurrence in the collisionless Vlasov–Poisson system, a numerical artefact
arising from the discrete nature of the velocity-space resolution. The recurrence time
is given by

Trec = 2π

k1v
, (A 6)

which leads to a condition in our code normalization

ωpeTrec = πnv
kλde(vmax/vte)

. (A 7)

Care is taken to ensure that the number of velocity-space points nv is chosen to be
large enough that the recurrence time is longer than the simulation run time.

A.1. Initialization of simulations
In this paper, we initialize two different types of simulations: (i) a standing Langmuir
wave pattern, and (ii) a propagating single Langmuir wave mode.

For the standing Langmuir wave pattern with a corresponding wavenumber given
by kλde, a single wavelength of the wave pattern is created in VP by initializing
a plasma with a constant ion density and a sinusoidal perturbation of the electron
density ne(x)=n0+ δn sin(kx). The initial velocity distributions for both plasma species
are Maxwellian distributions with relative temperatures given by the temperature ratio
Ti/Te. The initial perturbation of the electron distribution function is initialized in
the variable δfeWl, with δfeB = δfeWn = 0. The electric field arising from the sinusoidal
electron density perturbation, computed from the Green’s function solution using
fe(x, v, t) and fi(x, v, t), leads to two equal-amplitude, counterpropagating Langmuir
waves of wavenumber kλde that constructively interfere to generate a standing wave
pattern.

For the propagating single wave mode, the linear dispersion relation for Langmuir
waves is solved in Fourier space for a specified wavenumber kλde,

D(ωc, kλde, Ti/Te,mi/me)= 1− 1
k2λ2

de

∑
s

Te

Ts
[1+ ξsZ(ξs)] = 0. (A 8)

This equation is solved numerically for complex frequency ωc = ω + iγ , where
ξs = ωc/(kvts

√
2) and Z is the plasma dispersion function (Fried & Conte 1961).

This complex ωc is then used to initialize the Fourier coefficients of the linearized
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FIGURE 25. Validation of the Vlasov–Poisson simulation code VP for the normalized
frequency and damping rate of Langmuir waves as a function of kλde. We show numerical
solutions of the linear Vlasov–Poisson dispersion relation (thick lines), the analytical
estimates from (A 10) and (A 11) (thin lines), and the numerical simulation results from
VP using a standing Langmuir wave pattern generated by an initial electron density
fluctuation (black boxes). Parameters for this case are Ti/Te = 1 and mi/me = 100.

perturbation of the distribution function for each species s for wave mode k,

δf̂sWl(k, v, 0)=
(

qsφ1

Ts

)
kv

ωc − kv
fs0(v) (A 9)

with initial wave amplitude of the potential given by the value of qeφ1/Te. The
initialized perturbation is fsWl(x, v, 0)=Re[δf̂sWleikx], and δfeB= δfeWn= 0. The discrete
nature of the velocity grid means that potentially sharp gradients may arise near the
resonance at v = ω/k, and this may lead to transient behaviour at the beginning of
the simulation due to the fact that the discrete eigenfunction is not exactly that of
a single propagating Langmuir wave. We have found that a practical procedure for
reducing this transient behaviour is to smooth the initial δfsWl for both species using
a Crank–Nicholson diffusion operator in velocity space. This operator is applied Ns
times successively with diffusion coefficient ν/(1v)2 before the simulation is started.
This procedure enables a single Langmuir wave propagating in one direction to be
initialized.

A.2. Code validation
As a validation of VP, we have performed tests of the linear frequencies and damping
rates of Langmuir waves with a range of values of kλde for fully ionized, single
species plasma with Maxwellian equilibrium velocity distribution functions and plasma
parameters Ti/Te = 1 and mi/me = 100, as presented in figure 25. Both nonlinear

https://doi.org/10.1017/S0022377816001197 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816001197


46 G. G. Howes, K. G. Klein and T. C. Li

simulations at sufficiently small initial amplitude δn/n0 and linear simulations (where
the nonlinear wave–particle interaction term is not included in the evolution) yield
consistent results, given by the open squares, showing good agreement with the results
of a numerical solution of the linear dispersion relation (thick lines). Also plotted (thin
lines) for comparison are analytical estimates of the frequency ω and damping rate −γ
for Langmuir waves using the weak growth rate approximation,

ω2 =ω2
pe(1+ 3k2λ2

de), (A 10)

γ =−
√

π

8
ωpe

|kλde|3 exp
( −1

2k2λ2
de
− 3

2

)
. (A 11)

Appendix B. Simple model of normalized field–particle correlation
The linearized 1D-1V Vlasov–Poisson equations can be solved by a Laplace–Fourier

transform approach to obtain the linear dispersion relation D(ωc, k). This dispersion
relation can be solved to obtain the complex frequency ωc=ω+ iγ for each possible
linear wave mode with a given wavenumber k. From this linear solution for the
complex frequency, we may determine the complex coefficients of the electrostatic
potential of the wave φ̃(k, ωc) and of the perturbation to the distribution function
for each species s, δf̃s(k, v, ωc), where the spatial and temporal variation is given by
the usual form φ(x, t)= Re[φ̃(k, ωc)ei(kx−ωct)]. The linear solution for the distribution
function yields

δf̃s(k, v, ωc)= qsφ̃(k, ωc)

Ts

kv
ωc − kv

f0s(v) (B 1)

in terms of a specified φ̃(k, ωc). The electric field is given by Ẽ(k, ωc)=−ikφ̃(k, ωc).
Here we show how the normalized correlation between the fields and particles for a

linear wave is simply a function of the normalized damping rate −γ /ω and the wave
phase velocity vp = ω/k. Specifically, let us consider the normalized version of the
correlation C2norm(qsvδfs(x0, v, t), E(x0, t)). For two real variables of the form A(t)=
Re[Ã(ωc)e−iωct], the normalized correlation over one period, τ = 2π/ω, is given by
C(Ã, B̃)= (ÃB̃∗ + Ã∗B̃)/(2|Ã||B̃|), where Ã and B̃ are complex coefficients.

The calculation is simplified by expressing the complex coefficients δf̃s(k, v, ωc) and
Ẽ(k, ωc) in polar form. We choose the phase of the linear wave solution by setting the
complex coefficient of the potential to be a real constant, φ̃(k, ωc)=φ0. In polar form,
the electric field is represented by Ẽ=−ikφ0= [kφ0]e−iπ/2. The perturbed distribution
function is given by

δf̃s =
(

qsφ0

Ts

)
kv

(ω− kv)+ iγ
f0s(v), (B 2)

where the phase of the perturbed distribution function, relative to φ0, is determined by
the magnitudes of the real frequency ω and damping rate γ . Expressing this complex
coefficient in polar form yields

δf̃s(k, v, ωc)=
[(

qsφ0

Ts

)
kv√

(ω− kv)2 + γ 2
f0s(v)

]
eiα, (B 3)
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FIGURE 26. The normalized correlation C2norm(qevδfe, E) for different values of
−γ /ω= 0.01, 0.1, 0.3,1, where the resonant phase velocity is given by vp=ω/k= 2.86vte.

where the phase is given by

α = tan−1

( −γ
ω− kv

)
. (B 4)

Now, to evaluate the normalized correlation C2norm(qsvδfs(x0, v, t),E(x0, t)), we have
treat the sign of qs carefully to get the change in the sign of the correlation between
species. We choose to write qs = (−1)δse |qs|, where δse is the Kronecker delta, with
the value 0 for s= i and 1 for s= e. In this case, the contribution to the phase from
the sign of q is given by iπδse. Evaluating the normalized correlation, we obtain

C2norm(qsvδfs(x0, v, t), E(x0, t))= cos(α −π/2+πδse)= (−1)δse sin(α). (B 5)

Manipulating the argument of the tan−1 yields a particularly illuminating form of
the normalized correlation,

C2norm(qsvδfs, E)= (−1)δse sin
[

tan−1

( −γ /ω
1− v/vp

)]
. (B 6)

One can see that the form of the normalized correlation is a simple function of the
normalized damping rate −γ /ω, where the sign of the correlation is expected to
change at the resonant phase velocity v = vp =ω/k.

We plot the normalized correlation C2norm(−|qe|vδfe(x0, v, t), E(x0, t)) for electrons
in figure 26 for the case of a wave phase velocity vp=ω/k= 2.86vte and for different
values of the normalized damping rate −γ /ω= 0.01, 0.1, 0.3, 1. Note that the case of
the Langmuir wave with kλde = 0.5 has −γ /ω' 0.11. This simple calculation shows
that the correlation of electrons with a linear Langmuir wave yields a change of
sign through the resonant phase velocity, with the distribution function losing energy
at lower velocities and gaining energy at higher velocities. Note that this strictly
linear calculation does not correspond directly to figure 15 because the nonlinear
evolution of the distribution function can alter the resulting normalized correlations
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substantially from this simple linear case. Nonetheless, this simple model provides
a clear indication that the phase relationship between the electric field and the
fluctuations in the distribution function, which depends on the velocity v, plays a key
role in determining the energy transfer between fields and particles.
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