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Abstract Consider a nice hyperbolic dynamical system (singularities not excluded).
Statements about the topological smallness of the subset of orbits, which avoid an open
subset of the phase space (for every moment of time, or just for a not too small subset of
times), play a key role in showing hyperbolicity or ergodicity of semi-dispersive billiards,
especially, of hard-ball systems. As well as surveying the characteristic results, called ball-
avoiding theorems, and giving an idea of the methods of their proofs, their applications
are also illustrated. Furthermore, we also discuss analogous questions (which had arisen,
for instance, in number theory), when the Hausdorff dimension is taken instead of the
topological one. The answers strongly depend on the notion of dimension which is
used. Finally, ball-avoiding subsets are naturally related to repellers extensively studied
by physicists. For the interested reader we also sketch some analytical and rigorous results
about repellers and escape times.

1. Introduction
The seminal work of Chernov and Sin&Ch(1987) not only established the K-property
of dispersive billiards in the general, multidimensional case, but—through their theorem
on local ergodicity for semi-dispersive billiards —also opened the possibility of showing
the K-property of semi-dispersive billiards. Indeed, in 1989, by using this fundamental
tool, Kramli et al[KSSz(1989)first showed the K-property of a billiard, which was semi-
dispersive but not dispersive. Our method, which has been further developed in a series of
works (for a survey of the results se87[(1996)), consists of three essential parts using
dynamical-topological, geometric—algebraic, and, finally, dynamical-measure-theoretic
tools. The dynamical-topological methods of these proofs are distilled in so-talled
avoiding theoremsavhose content we are going to formulate here.

Assume(M, F, %+ 1) is a semigroup of endomorphisms (W, F, S, u) is a
group of automorphisms) of a probability spadé, F, 1). For formulating topological
statements, we will, in general, assume tiais a Riemannian manifold with or without
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boundary. Most of our methods will use some hyperbolicity and/or mixing properties of
the dynamics involved. Fix an arbitrary subggétof R, (or of R) and a subseB C M.
For B andH given in this way, the ball-avoiding subs¢l; (B) C M is defined as follows:

Ag(B)={xeM: SfxnB =0}

In words, it consists of phase points whose orbits avoid the subisgprescribed moments

of time (B, in general, need not be a ball, but often it is, and the term ball-avoiding already
has traditional usage). B is not too small, e.g. it is open, thefi; (B), as a collection

of non-typical trajectories, is expected to be smalall-avoiding theoremglaim that,

by assuming thaB is not very small and{ is unbounded (or semi-unbounded, at least),
Ay (B) is small in a well-defined sense (i.e. its topological codimension is at least one
or two, and, moreovem{Ay(B)} = 0), under weaker or stronger assumptions on the
hyperbolic and/or ergodic behaviour of the dynamics. It is worth stressing that, although
some general results have only been formulated for semi-dispersive billiards, their validity
is wider: they are true for a class of ‘hyperbolic’ systems with singularities possessing a
smooth invariant probability measure.

If M is a separable and metrizable space, therfBet: i = 1,2,...} be a basis of
the topology inM (then eachi 5 (B;) is closed provided that the gros is continuous).
Denote

ND := {x € M : S¥x is not everywhere dense M}. (1.1)

Plainly, ND = U;(Agr_(Bi) N Ag, (B:)). If one shows that eacAr_(B;) N Ar, (B;)
is a zero-measure subset of codimension two, thiénwill necessarily beslim (for the
definition see 83), i.e. topologically small.

Although the guestion ball-avoiding theorems answer is natural, in this form they seem
to have not been treated befok€gSz(1989). In the particular caséf = R the set
AR(B) is an invariant subset. These sets were used by Smaléi(d@970))) and later by
others to analyse possible dimensions of compact, proper invariant subsets of a hyperbolic
diffeomorphism. The difference between their treatment of the problem and between ours
reflects the very difference between smooth (Anosov) systems and those with singularities.
On the other hand, there is a very active and interesting direction of research investigating,
in particular, the same subse¥d from a different point of view. These results generalize
a classical theorem of Jarnik(fL929) and of Besicovitch B(1934] claiming that the
set of badly approximable (or Diophantine) numbers in the intdfal] has Hausdorff
dimension one. The typical result then claims thatiaeisdorff dimensionf the subset
ND is maximal, i.e. agrees with diM. In other words, despite the fact that these orbits
are non-typical, nevertheless the Hausdorff dimension does not sense this atypicality.

Also, in the last few years physicists have become interested in open systems, e.g.
in open billiards, which actually live on a ball-avoiding subset of the phase space of a
closed billiard. As a consequence, these systems have also been investigated from the
mathematical point of view. Since the interest of their authors was different from ours (cf.
[ChMT(2000)]) we will be satisfied only to give a brief account of their main characteristic
results.

This work is partitioned into three parts. In the first, consisting of §§2-5, the simplest
ball-avoiding theorems are presented: a weak one in 82 and, after a brief summary of some
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useful notions from topological dimension theory given in 83, and some strong ones in

8§84 and 5. In the second part, consisting of §86-9, first the relevance of ball-avoiding
theorems for hard ball systems is explained. Then various forms of them are surveyed.
Our additional aim is to present the different methods used in their proofs, or at least to
hint at them, and to also collect the most interesting open problems. Finally, in the third

part some related directions mentioned above are reviewed.

I.  Weak and strong ball-avoiding theorems

2. An (abstract) weak ball-avoiding lemma
Let (M, F, S®+, 1) be a semigroup of endomorphisms of a probability spater, 1).
Fix an arbitrary subseff of R satisfying supd = +o0.

LEMMA 2.1. [KSSz(1989) If the semigroupS™+ is mixing, then, for anyd € F with
u{B} > 0, one has
n{An(B)} = 0.

Since the proof is extremely simple, it will be presented below.

Proof. Denote
A% (B) :={x e M : sHOT N g —p).

Then, on the one hand,

(AL (B)} N\ {An(B)} (2.2)
if t — oo. On the other hand, for everye H, we have
u{Ay(B) N{S'x ¢ B}} = u{Au(B)) (2.3)

Then, by mixing and (2.2), (2.3) leads to

lim lim (AL (B)N{S'x ¢ B}} = w{An(B)}u{BY} = n{An(B)}

T—>00 t—o0,teH
implying u{Ag(B)} = 0 for u{B} > 0. |

Remark.Any irrational rotation ofR /Z serves as an example of an ergodic automorphism
for which the claim of the lemma is not valid. Different is the situatiollif= R, since
then ergodicity is, of course, sufficient to implfA 5 (B)} = 0.

Remark.The proof of the lemma immediately implies that its analogue for discrete time
semigroupd %+ is also true.

3. Simple facts from topological dimension theory
Here we briefly summarize some necessary notions and facts from topological dimension
theory (for details seedq(1978) or [HW(1941))).

Assume first, in general, that is a separable metric space. We will denote by &im
the small inductive topological dimension af whose recursive definition will just be
recovered.
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Definition 3.1.

(i) dimX=-1lifandonlyifX = ¢;

(i) dim X < n if and only if there exists a basi# of open neighbourhoods fo¢ such
that for everyU € / onehasdimdU <n—-1n=0,1,2,...);

(i) dim X =nifandonly if dimX < n and itis not true that dinX <n — 1.

Definition 3.2.1f A C X, and for some natural numbérone has dimd < dimX — k,
then we say that the topological codimensiondoin X is at leastk (or often we briefly
say that the topological codimensiorkis

From now on we assume thistt is a connected, smooth manifold (boundary permitted)
andyu is a smooth measure d.

PROPOSITION3.3. ForanyA ¢ M, dimA < dimM — 1 (in other words, the topological
codimension ofA in M is at least 1) if and only iint A = ¢.

PROPOSITION3.4. If F C M is closed, then the following statements are equivalent:

(i) codimy F > 2;

(i) F # M and, for every open connected getc M, the difference st \ F is also
connected,;

(iii) int F = @ and for every poink € M and for any neighbourhood of x in M there
exists a smaller neighborhodd@ < V of the pointx such that, for every pair of
pointsy,z € W \ F, there is a continuous curve in the setV \ F connecting the
pointsy andz.

For the main applications of strong ball-avoiding theorems we need another concept of
topological smallness closely related to being of codimension two (this will be clear from
the content of §5).

Definition 3.5.[KSSz(1989) We say thatA c M is aslim subset if and only if it is the
subset of arF,, zero-set of codimension at least twé i a zero-set ifu{A} = 0).

By their definition, slim subsets &fl form ac-ideal. The key property of slim subsets
is expressed by the following

PROPOSITION3.6. [KSSz(1989)If M is connected, and is slim, thenM \ A contains
an arcwise connecte s-set of full measure.

In applications, in particular in the inductive arguments, the following integrability
property of codimension two subsets is often very useful.

PROPOSITION3.7. [KSSz(1989) If M = N1 x N2, whereN1 and N2 are connected
smooth manifolds, ani ¢ M is a closed subset such that, for evarye Ny, the (closed)
sectionF,, := {p € N2 : (w, p) € F} obeys

codimn, Fy, > 2,

then
codimy F > 2.
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4. The Smale—Williams theorem for Anosov diffeomorphisms
AssumeM is a smooth Riemannian manifold afd : M — M is an AnosovC?-
diffeomorphism. Smale and Williams (sd€(fL970)) proved the following nice theorem.

THEOREMA4.1. Assume thatthe set of periodic point§dE dense irM. If F is a compact
invariant subset oM satisfyingcodimy F > 1, thencodimy F > 2.

The combination of Theorem 4.1 with our weak Lemma 2.1 provides a strong ball-
avoiding statement for smooth systems.

Corollary. For anyB # ¢ C M open,Az(B) is a closed set of topological codimension
of at least two.

Proof of the corollary. Topological transitivity, the invariance ofy(B), and the openness
of B imply that intAy(B) # @. Proposition 3.3 then proves the claim. |

Proof of Theorem 4.1Throughout the whole paper we will denote fg%'} and{y“} the
invariant foliations defined by the dynamics in question, angtly) andy/ (x) the local
invariant manifolds of size through the poink.

Denote byP the set of periodic points &fl \ F. We use the following simple statements.

CLAIM 1. PisdenseirM.
CLAIM 2. If x e P, theny*(x)NF = y*(x) N F = @.

These claims easily provide the truth of the theorem. Indeed; let F and choose
¢ > 0 small. The foliationgy“}, {y*} define a local product structure and using it we can
consider a parallelogragy’ (y) x yS(y). Moreover, we defindp = F N (yX (y) x ¥ ().

By Claim 2, for anyx € P, (y“(x) U y*(x)) N F = @, and, consequentlyky C
Ve )\ Urery (X)) X (2 (0) \ Uxepy" (x)).

Claim 1 and Proposition 3.3 then say that the factors of the previous product set each
have codimension at least one. Hence the Theorem follows by the product theorem (cf.
Theorem I11.4 of HW(1941))).

Let us now prove Claim 1. Take an arbitrary open sulesef M. The open seG \ F
is not empty for otherwise we would have difn= n. Since was dense iM \ F, we
also havgG \ F)N'P £ @.

Turn next to Claim 2. We prove®(x) N F = ¢ for an arbitraryx € P. Assume
TPx = x. Select an open neighbourhoa#l of x disjoint from F. By invariance,
(UyezT"G) N F = @. Now for anyy € y*(x), p(T*?y, x) — 0if k — oo, and thus, for
k sufficiently large, %y € G implyingy ¢ F. ]

Remark 4.2 After the aforementioned result, the study of compact invariant subsets was
continued, among others by Frankg1977), Hancock H(1978), and Maié [M(1978)].

Since the setsir(B) provide natural examples of compact, invariant subsets—in fact,
all compact invariant subsets are of this form—this description has been used by several
authors. In particular, for every 8 k < d — 2, Przytycki P(1980] found examples of
setsB; such that dimAg (By) = k.
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5. A strong ball-avoiding theorem for hyperbolic systems (with or without singularities)
For simplicity, we formulate the theorem for discrete time grouds F, T%, 1) of
hyperbolic systems since the generalization to continuous time is straightforward. Our
set-up is thatM is a compactC*-manifold andu is a smooth, invariant probability
measure. We also want to permit singularities as is don&WY(1995)], in [Y(1998],

or in [Ch(1998]. To save space, we do not list the conditions formulated in these works
since we only use some standard consequences of them. Namelyalee existence

of the local invariant manifolds and the absolute continuity of the canonical isomorphism
between them, and further the simple fact that if in the case of singularities we define
trajectory branches as is described, for instanceK®9z(1992) or in [Sim(1992], then

the dynamics can always be considered continuous on these trajectory branches. On the
other hand, the kind of hyperbolicity needed will be implicitly ensured by our assumptions.
Start with the corresponding definition.

Definition 5.1. A pointx € M is calleda zigzag pointf one can find arbitrary small open

neighbourhood® of x such that for every zero-sdt C M there exists another zero-set
A’ > A with the following property: for every, y’ € U \ A’ there exists a chain (also

called a Hopf-chain)

¥10c(20)s Yioc (21 Yioc(21)s Vioc(22)s - - - » Yioc(2n—1), Vige(2n)

(herezo = y, z, = y’) of local unstable and stable invariant manifolds inditisuch that
each intersection

Yioc@) NVipei+r) (=0,....,n—=1)
and
Yioc(@) NVipezi) = {zi} (i =1,....,n—1)
consists of exactly one point belonginglio\ A’.

The following theorem generalizes Lemma 4.3 K552z(1989), and its proof is also
based on their ideas.

THEOREMb5.2. Assume that:

() thegroup(M, F, TZ, u) is mixing;

(i) for the subsef of zigzag points ¥, M \ Z is slim;

(i) B # ¥ (C M) isopen; and

(iv) H (c Z) satisfiessupH = —inf H = oo.

ThenA gy (B)(C M) is a closed zero-set of codimension at least two.

Remark 5.3.For the first glance, condition (ii) of Theorem 5.2, as formulated, might seem
too restrictive, but, fortunately, this is not the case. In the case of hyperbolic systems with
singularities, with billiards included (cfLW(1995)]), the singularities, to be denoted 5y

(in other words, the set of points wheFeor 71 is not smooth), form one-codimensional
submanifolds of the phase space. Let us denote

Ay = U (T*S N T'S)

—n<k<Il<n
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and, furthermore,
o0
M* =M \ U A,
n=1
and

0._ > k
MO :=M U T*S.
k=—00

Then, as one can see, for instance KB5z(1990), for our main model of semi-dispersive
billiards, in general, the zigzag property holds not only for sufficient poinkd @fbut also
forthose oM *. Analogously, in the interesting casé$\M* has codimension at least two.

Proof. (1) By definition,A g (B) is closed onceB is open.
(2) Denote the inner radius @& by r and choose a baB c B such thad(B, B¢) >
r/2. Define

D:={xeM:p"(x)>0and infn e H:T"x € B} = -0
and supn € H : T"x € B} = oo}.

Here p*-*(x) denotes the inner radius of the local unstable (stable) invariant manifold
y*(x) (y*(x)) throughx. By (ii) and Lemma 2.1 (this presupposes (i)) we hay®} = 1.

(3) Since, by (ii), non-zigzag points make a slim subset, by Lioiktheorem, it is
sufficient to check that every zigzag poinhas a neighbourhootl = U(z) such that
Ag(B) N U is slim. This is what we do. Fix and its neighbourhood according to
Definition 5.1 in such a way that diath < /2. ToA = U \ D selectA > A according to
the same definition. We claim that every pair of points’ € U \ A can be connected by a
curve belongingté/ \ Ay (B). SinceAy (B) is closed, botly andy’ have neighbourhoods
in U disjoint of A (B). Also, sinceU \ A is dense iU/, we can choosg andj’ (€ U\ A)
in these neighbourhoods and conngetith ¥ and analogously’ with 3’ inside these tiny
neighbourhoods not intersectirgy (B).

Connect nowy andy’ with a Hopf-chain ensured by Definition 5.1. Since dieim
r/2, we know that the outer diameters of all local manifolds figuring in the chain are
less tharr/2. Observe that the property that the intersection paintselong toU \ A
ensures that they belong 0. This implies that for infinitely many € H N Z+ one
hasT"w e B. Then forn large enoughZ”y*(w) C B holds, too, implying that
yS(w) N Ay (B) = B. Analogously, for the unstable local manifolds figuring in the chain
we havey” (w) N Ay (B) = ¥ and thus the desired connection betwgamdy’ is, indeed,
constructed. |

Remark.Compare Theorem 5.2 with the corollary of the Smale—Williams Theorem 4.1.
Instead of requiring the density of periodic points we have a smooth, invariant and mixing
measure. Furthermore, we also permit singular systems, and our assumptda oruch
weaker, for it can even have zero density.

An immediate consequence is the following.

COROLLARY. Assume thatM, F, S®, 1) is a group of automorphisms satisfying the
conditions of Theorem 5.2 suitably modified to the continuous time case (in particular,
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H C R, and otherwise satisfies the same assumptions). BgB) is a closed zero-set
of codimension at least two.

By copying the proof given above one finds a simple generalization of Theorem 5.2,
which will be applied in 8§6. Namely, le8_, B4 (C M), and define

An(B_,By):={xeM: st-xnB_ =s+xn B, =0
whereH_ := HNR_ andH; := HNR,.

THEOREMb5.4. Assume that besides (i), (i) and (iv) of Theorem 5.2, the following
condition is satisfied:

(ii)* B_ #¥andBy # ¥ (C M) are open.

ThenApy (B—, By) is a closed zero-set of codimension at least two.

Proof. This is the same as that of Theorem 5.2 with the natural modification that now
we selectB. ¢ B_ and B, C B, in such a way thad(B_,B_) > r/2 and
d(B, By) > r/2, and define

D:={xeM:p"(x)>0andinfne H:T"x € B_} = —oc0
and supn € H: T"x € By} = o0}. O

Il.  Ball-avoiding theorems and hyperbolic properties

6. Hyperbolic and ergodic properties of hard-ball systems
6.1. Isomorphy to semi-dispersive billiardsThe main aim of this section is to
provide a motivation and explanation of how ball-avoiding theorems enter into proofs of
hyperbolicity and ergodicity of hard-ball systems or, more generally, of semi-dispersive
billiards. Consequently, in our exposition the details are surrendered to this goal.

Let us assume, in general, that a systenvaf>2) balls of unit mass and of radii> 0
are given onr”, thev-dimensional unit torugy > 2). (The assumption that the masses
and the radii are identical is not an essential restriction for our purposes.) Denote the phase
point of theith ball by (¢;, v;) € T” x R”. The configuration spad@ of the N balls is a
subset offVV: from TV we cut out(];’) cylindric scatterers

Cij={0=(1,-...qn) e TV 1 llgi — gl < 2r}, (6.1)

1<i<j<N.Theenerg¥ = 231 v? and the total momenturd = Y"7' v; are first
integrals of the motion. Thus, without loss of generality, we can assuméfthat% and

P = 0 and, moreover, that the sum of spatial compon8nis Z’lv gi is equal to zero (if

P # 0, then the centre of mass has an additional conditionally periodic or periodic motion).
For these values df, P and B, the phase space of the system reducé4 te= Q x §¢—1

where N
Qi={Q€Q\ U éi,j52‘b':0}

1<i<j<N 1

andd := dimQ = N - v — v (hereS¥ denotes, in general, thedimensional unit sphere).
Itis easy to see the following.
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PrROPOSITIONG.2. The dynamics of thd balls, determined by their uniform motion with
elastic collisions, on the one hand, and the billiard flo§% : € R} in Q with specular
reflections atoQ, on the other hand, are isomorphic and they conserve the Liouville
measurel;. = constant dq - dv. (Thus both dynamics can be denotediy S, dy.).)

We recall that dilliard is a dynamical system describing the motion of a point particle
in a connected, compact domainc R? orQ ¢ T¢ = Tor?, d > 2 with a piecewise
C2-smooth boundary. As usual, the phase spéazf the system is identified with the unit
tangent bundle ove®. In other words, the configuration spacé&isvhile the phase space
isM = Q x §¢~1. The natural projections : M — Qandp : M — S?~1 are defined by
7(g,v) = g and byp(q, v) = v, respectively. The billiard dynamical systei , S¥, 1),
wherep is the Liouville measure, is callatie standard billiard flowlf it is isomorphic to
a hard ball system in the sense of Proposition 6.2, then it is ctilkedtandard hard ball
flowor standard billiard ball flow

Suppose thadQ = U’iaQi whereoQ; are the smooth components of the boundary.
DenotedM = dQx S¢~1 and letn(¢) be the unit normal vector of the boundary component
0Q; atg € 0Q; directed inward®). (In billiards, isomorphic to hard ball systems, the
scatterers are convex cylinderghf> 3, and are (strictly convex) ballsN = 2.)

Definition 6.3. We say that a billiard islispersiveif eachaQ; is strictly convex, and we
say it issemi-dispersivé eachaQ; is convex.

6.2. Local ergodicity of semi-dispersive billiardsOur next aim is to introduce the
notion of sufficiency which is basic to the study of semi-dispersive billiards. Assume
thatsle-?ly is a finite trajectory segment of a semi-dispersive billiard, which is regular, i.e.
it avoids singularities. Lef“x = (Q, V) € M and consider the hyperplanar wavefront
[(S%) :={(Q +dQ,V) :dQ smalle R? and(dQ, V) = 0} (indeed7(I") is part of a
hyperplane).

Definition 6.4.[SCh(1987) We say that the trajectory segmesit-?lx is sufficientif
7 (SPT) is strictly convex ats?x. A phase poink € M is sufficient if its entire trajectory
is sufficient (i.e. it contains a sufficient trajectory segment).

We note that, for semi-dispersive billiards, the tangent vectors of convex orthogonal
manifolds (cf. KSSz(1990)) form an invariant cone field in the tangent spacé/bin the
sense of\W(1985). Then the sufficiency of am € M is equivalent to saying that the cone
field along the orbits®x is eventually strictly invariant in the sense ®¥{1985). Simple
geometric considerations (cfK§Sz(1990)) show that a sufficient trajectory segment
generates an expansion rate uniformly larger than one in some neighbourhood of the
point $¢x.

By using Poincag recurrence and the ergodic theorem, it is easy to prove the following.

LEMMA 6.5. [SCh(1987) If x € M is sufficient, then there exists an open neighbourhood
U C M of x such that the relevant Lyapunov exponents of the system are ngt-zénoost
everywhere irV. (In the case of singular orbits, we only consider neighbourhoods in the
phase spaces of the corresponding trajectory branches.)
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In other words, in this neighbourhood, the system is hyperbolic. A very deep and
delicate result is as follows.

THEOREM®G6.6. (Local ergodicity of semi-dispersive billiardSCh(1987)) Assume that
a semi-dispersive billiard satisfies some geometric conditions and the Chernov—-Sinai
ansatz, a condition strongly connected with the singularities of the system (the conditions
are formulated in detail in[KSSz(1990); also, for a generalization to hyperbolic
symplectomorphisms with singularities, $£@/(1995)]).

If x € M* is a sufficient point, then it has an open neighbourhdgavhich belongs to
one ergodic component.

If almost every phase point of a semi-dispersive billiard is sufficient, then, of course, it
may have at most a countable number of ergodic components. In some cases it is not hard
then to derive thglobal ergodicityof the system, i.e. to show that there is just one ergodic
component in the phase space. A very important consequence is thus the following.

COROLLARY. [SCh(1987) Every dispersive billiard is ergodic, and, moreover, is a K-

flow. In particular, the system &f = 2 balls on thev-torus is a K-flow ifr < 711.

6.3. Richness of a symbolic collision sequenc€onsider a semi-dispersive billiariil *

will denote the set of phase points whose orbits contain no more than one singular collision,
andM” the set of phase points with no collision at M° ¢ M* \ M? will be the subset

of regular phase points, and finally we 8t := M*\ (M®UM?). Moreover SRt c oM

will denote the collection of all phase poiniss dM for which the reflection, occurring at

x, is singular (tangential or multiple) and, in the case of a multiple collisids,supplied

with the outgoingvelocity V*. We remind the reader that a trajectory segmgfitlx is
calledregular (or non-singular) if it does not hit singularities{**1x N SR* = ¢).

Definition 6.7. Consider a non-singular trajectory segméft?lx, —oo < a < b <

0o, x € M. Assume that during the intervil, b] the orbit hits the boundaryQ in times
a<t,...t, <b(ie.forvi:1<i<nSxedQju, andifr # 1 (1 <i < n) but

t € [a, b],thenS’x ¢ 9Q). Then thesymbolic collision sequence = (o1, ..., 0,) of the

orbit segmentig; (1), ... j(n)). (If the trajectory hits one or several singularities, then, of
course, there is a finite number of such sequences since every trajectory branch has its own
symbolic collision sequence.)

In applications one usually defines a combinatorial property, cailgthess for
symbolic sequences of orbit segments. The usefulness of such a notion will be clear from
Key Lemmas 6.9 and 6.10 and Theorems 6.12 and 6.16, valid for hard-ball systems, where
the definition of richness is actually very clear and simple.

Since, as said above, hard-ball systems are isomorphic to billiards where the scatterers
are the cylinders (6.1), the symbolic collision sequence of an orbit is, in this case, a
sequenc& = (o1,...,0,) Of ‘colliding pairs’, i.e.or = {ik, jx} wheneverQ(t) =
n(S%x) € 3Ci, j,- The sequenc& := X(S%tlx) := (01,02, ...,0,) is called the
symbolic collision sequenaé the trajectory segmerst®’lx.
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Definition 6.8.[SSz(1999)We say that the symbolic collision sequerte= (o1, ..., 0y)
is connectedf the collision graph of this sequence,

Gs =WV ={1,2,...,N}, & = {{ik, ji} : whereoy = {iy, ji}, 1 <k <n}),

is connected.

We say that the symbolic collision sequere= (o1, ..., o) is C-rich, with C being
a natural number, if it can be decomposed into at I€asbnsecutive, disjoint collision
subsequences in such a way that each of them is connected.

6.4. The role of ball-avoiding theorems in proving hyperbolicity or ergodicityhe
definition of C-richness should be so strong that one could establish the following
hypotheses, formulated as ‘key lemmas’.

(WEAK) ‘KEY LEMMA’ 6.9. Assume thaf € N is suitably fixed and for a non-singular
orbit segments!®-?lx the symbolic collision sequend(S¢*lx) is C-rich. Then there
exists an open neighbourhootlof x and a submanifoldv” such that

(1) foreveryy e U\ N S¢?ly s sufficient; and

(2) codiny NV > 1.

(STRONG) ‘KEY LEMMA’ 6.10. Assume thatC € N is suitably fixed and for a non-
singular orbit segmen§!®-?1x the symbolic collision sequen&g S'**lx) is C-rich. Then
there exists an open neighbourho@df x and a submanifoldV” such that:
(1) foreveryy e U\ N, Sl%Ply is sufficient; and
(2) codimy N > 2.

An analogous statement also holds for phase points M, where SI*%1x contains
exactly one singularity.

Denote for som€ € N
¢ := {x € M : S& x is notC-rich}. (6.11)

Our next theorem shows the role a weak ball-avoiding theorem—actually
equation (6.13)—plays in establishing ttgperbolicity of a hard-ball system

THEOREM®6.12. Assume that for a semi-dispersive billiard, isomorphic to a hard-ball
system,

(1) the weak ‘Key Lemma’ 6.9 and

(2) the statement

u{llc} =0 (6.13)

hold true, whereC is the constant from Lemma 6.9.
Then the system is hyperbolic.

A system is said to bhyperbolicif all its relevant Lyapunov exponents do not vanish
for u-a.e. phase point.

Proof. By (6.13), for almost every point € M, S®+x is (non-singular andy-rich.
Now the application of ‘Key Lemma’ 6.9, Lemma 6.5 and Liraféd"theorem provide
the statement. |
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Let P be a non-trivial, two-class partition of the 4@t ..., N} of balls and denote
Fi := F{(P) := {x € M : S®+x is P-partitioned (6.14)

We say thas™+ x is P-partitionedif the non-negative semi-trajectory efdoes not contain
collisions between pairs of balls belonging to different classes of the parfition

COROLLARY 1. The claim of Theorem 6.12 holds whenever instead of (6.13) we require,
for any non-trivial, two-class partitiorP,

to be true.

Proof. This follows straightforwardly from the obvious inequality

o
e c | JJSFr(p) (6.16)
P t=0
whereUp runs over all non-trivial two-class partitiosof {1, ..., N}. O

COROLLARY 2. Under the assumptions of Theorem 6.12, the ergodic components of the
system are of positive measure.

Proof. This is a consequence of Theorem 6.12 and of the Katok—Strelcyn theory (see
[KS(1986)). O

Now, complementing Theorem 6.12, we formulate a theorem which illustrates the role a
strong ball-avoiding theorem plays when establishingetigedicity of a hard-ball system

THEOREM®6.17. Assume that for a semi-dispersive billiard, isomorphic to a hard-ball
system, the geometric conditions of Theorem 6.6 hold true. Assume, moreover,

(1) the ‘Key Lemma’ 6.10 is proved; and

(2) TIc is aslim subset wher€ is the constant from ‘Key Lemma’ 6.10.

Then the system is ergodic.

Proof. From the geometric conditions it follows that the complememidfis a countable
union of codimension-two submanifolds and thus is slim @5%(1995). Consequently,
in virtue of condition (2), apart from a slim subset Mf, every phase point contains at
most one singularity and i€-rich. By applying ‘Key Lemma’ 6.10, and then Linaéis
theorem, we obtain that, apart from a slim subseMqgfevery phase point is sufficient
(slim subsets form &-ideal!). By referring to Theorem 6.6 and once more to Lindsl”
theorem, the statement of the theorem follows. |

Remark 1.By [S(1992), condition (2) holds wheneveW > 3. In the caseN = 2,
however, the orbits with no collisions at all form a one-codimensional submanifold. Then
the argument given above provides that we may have at most a finite humber of open
ergodic components. To obtain global ergodicity, one can connect these by the dynamics
in a straightforward way.
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Remark 2.Among the geometric conditions of Theorem 6.6, an essential one is the
Chernov—Sinai ansatz. We note that the methods for settling it use, on the one hand, ‘key-
lemma’-type statements, and they, on the other hand, are related to ball-avoiding theorems;
since the set-up of these methods is more involved and the ideas are much the same as the
ones we are discussing, we do not treat them in detail in this paper.

COROLLARY 1. The statement of Theorem 6.17 holds whenever instead of its condition
(2) we require, for any non-trivial, two-class partitia?, u{F,} = 0 and

codimF; > 2
to be true.
Proof. This follows from Definition 3.5 and the inequality (6.16). |

COROLLARY 2. Under the assumptions of Theorem 6.17, the system is K-mixing and is,
moreover, a B-system.

The K-property is standard and the B-property is proved @GhH(1996) and
[OW/(1998]].

7. Interlude: an instructive example

Despite its very simplicity the paradigm we are going to study sheds light on two

fundamental circumstances:

(1) How do ball-avoiding theorems arise and help in proving hyperbolicity or ergodicity
of semi-dispersive billiards?

(2) Inwhich way do their applications possess an inductive character? This also explains
the apparent contradiction: on the one hand, ball-avoiding theorems are exploited in
proofs of hyperbolicity or ergodicity of the systems, but, on the other hand, the latter
properties do occur among the assumptions of most ball-avoiding theorems.

So have a closer look at our example. Its analysis is taken flK685(1989), so
consequently our treatment here will be concise. For later use we introduce a very
interesting class of semi-dispersive billiards, that of cylindric ones.

In words, cylindric billiards are toric billiards where the scatterers are cylinders.

In our discussion, the bases of the cylinders will be assumed to be strictly convex, a

property which ensures that the scatterers are convex, and thus the arising billiard be semi-

dispersive. Because of the simplicity of our model, let us immediately start with a formal
definition.

Definition 7.1. (Cylindric billiard) The configuration space of a cylindric billiard@ =
T\ (CL1 U --- U Cy), whereT? = R?/7Z% (d > 2) is the unit torus. Here the cylindric
scattereiC; (i = 1, ..., k) is defined as follows.

Let A; ¢ R? be a so-calledattice subspacef the Euclidean spadg?, which means
that the discrete intersectioh N Z4 has rank dimj;. In this case the factot; /(A; N Z4)
naturally defines a subtorus @¥, which will be taken as the generator of the cylinder
C; c T¢. Denote byL; = Al.L the orthocomplement of;. Under the above conditions,
the subspacé; must also be a lattice subspace. We also assume that;dim2. Let,
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moreover,D; C L; be a convex, compact domain with(Z-smooth boundary D; so

that O € int D;. SupposeD; is strictly convex in the sense that the second fundamental
form of its boundary D; is everywhere positive definite. Furthermore, in order to avoid
unnecessary complications, we postulate that the convex dabalnes not contain any
pair of points congruent modulé?. The domainD; will be taken as thébaseof the
cylinder C;. Finally, suppose that a translation vectore R¢ is given, which plays an
essential role in positioning the cylindé€r in the ambient toru§?. Set

Ci={a+1+t|acAleD;}/7¢.

In order to avoid further unnecessary complications, we also assume that the interior of the
configuration spac® = T\ (C1U---U Cy) is connected.

The phase spack! of our billiard will be the unit tangent bundle &, i.e. M =
Q x S91. (Here, as usua§? 1 is the ¢ — 1)-dimensional unit sphere.)

The dynamical systertM, S¥, 11) is acylindric billiard.

As we have seen in the first part of 85, hard-ball systems actually belong to the class of
cylindric billiards.

The exampleConsider a simple cylindric billiard ofi® with two cylindric scattererg’;y
andCa, where

A1 :={(x,y,2):y=2=0}, Ax:={(x,y,2):x=z=0}
Dy :={(x,y,2):x=0,y2+22<r?), Da:={(x,y,2):y=0,x>+2z%<r3}

andr1 andr; are arbitrary. To exclude the possibility of an infinite number of collisions in a
finite time interval, we assume that no tangencies occur in the given cylinder configuration.

Our goal here is to demonstrate how the proof of the following theorem can be reduced
to the strong ball-avoiding one.

THEOREM7.2. [KSSz(1989) The cylindric billiard inQ = T2\ (C1 U C,) defined above
is ergodic (and, consequently, a K-mixing flow).

Proof. The following prerequisites are used:

(i) Lemma 4.15 of KSSz(1990) claiming thatM \ M* is a countable union of proper
closed submanifolds of codimension two (in our case, the reader can, in fact, directly check
the claim);

(ii) the fact that the conditions of the theorem on local ergodicity (Theorem 6.6) are
satisfied (as to the non-trivial Chernov—Sinai ansatz K&Sp(1989)), and Theorem 6.6
itself ensuring that every sufficient poia®, V) € M* has an open neighbourhood which
belongs to one ergodic component;

(iii) and, finally, the fact, that the set of orbik8? with no collision at all is the union
of the one-codimensional submanifolls = 0} and{v, = 0}. Thus the argument to
come ensures that the system has at most four ergodic components. These, however, can
be connected by using the dynamics providing the desired global ergodicity.

Denote byMgysr the subset of sufficient points. In view of (i) and (ii) the proof of
Theorem 7.2 boils down to showing the following.
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LEMMA 7.3. M*\ (Mgut UM?) is a slim subset.

Since we only have two scatterers, in any symbolic collision sequéhce=
(01,...,0,),n > 0,0ne has; =1 or 2.

Definition 7.4. An orbit segment isich if its symbolic collision sequence contains at least
one digit 1 and at least one digit 2.

The following simple observation, whose proof is left for the reader, is basic for our
whole approach. In fact, for our model, this lemma does the job of a strong key lemma (cf.
‘Key Lemma’ 6.10).

LEMMA 7.5. Every rich orbit segment is sufficient.

Indeed, denote by; ¢ M* (i = 1, 2) the subset of orbits whose symbolic collision
sequenceis...,i,i,i,...). By Lemma 7.5, Lemma 7.3 will follow from the following.

LEMMA 7.6. The subsetd;, i = 1, 2 are closed zero-sets of codimension two.

Proof. ConsiderJ;. Choose an open subsketx B C C2 wherel is an open interval
of the x-axis, andB is an open ball of thg—-plane. Fix thex-coordinates(q,, vy)
of the phase pointgx, gy, z; vy, vy, v;) (V2 + vf, +v? = 1). For the fixed(gx, vy),
consider the dispersive billiard in thez-plane with the sole scatterd; := {(y, z) :
y2 +z2 < r?. More precisely, assume & [vy| < 1. An orbit starting from
(Q,V) = (q1, 92, g3, v1, v2, v3) Never hitsl x B if and only if

for everyt € R, such thay, + tv, € I, n{y,z}St(Q, V)¢ B
wherer(y 7(gx, gy, qz; Vx, Uy, V) = (qy, qz; Vy, V7). Let
(A (B))g, v, = {(qy, qz; vy, v;) : fOr everyr € R such that
gx +tvy € I one hasry, 15 (Q, V) ¢ B}

i.e. (A (B))q, v, is understood for the projected dynamics wih:= {t : g, + tv, € I}.
We note that for the billiarer(, .S’ (Q, V)

O<vi4+v2=1-2v2<1, (7.7)

so the system is obtained by a linear time change from a standard dispersive billiard
flow. Consequently, by virtue of the corollary to Theorem 6.6, for this projected system,
Lemma 2.1 and the corollary of Theorem 5.2 can also be applied whenever (7.7) holds,
implying that, on the one hand,

p{(AH (B))g, v} =0

and, on the other handd  (B)), v, is of codimension two.
Fubini's theorem then first provides{Ay(B)} = 0, whereas Proposition 3.7 implies
thatA g (B) is a codimension two subset. SinéeC Ay (B), Lemma 7.6 follows. |

Lemma 7.3 easily follows from Lemmas 7.5 and 7.6. Now Theorem 7.2, indeed, follows
from Lemma 7.3 by simple arguments left to the reader (orls8&£(1989)). O
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The reader could certainly observe in the proof of Lemma 7.6 the fundamental role
of the ball-avoiding theorems, and further the fact that in proving the hyperbolicity and
ergodicity of a higher—in this case three-dimensional—semi-dispersive billiard we used
the hyperbolicity and ergodicity of a lower—in this case two-dimensional—billiard.

8. Results for hard-ball systems

8.1. Dynamical method. As we have seen in the proof of Theorem 7.2, a substantial
element has been the strong ball-avoiding Theorem 5.2. The demonstration of
Theorem 5.2, in its turn, has used the fundamental tools of the theory of hyperbolic
dynamical systems. By more sophisticated versions of the arguments of Theorems 7.2
and 5.2, in particular, it was possible to establish the following.

THEOREMS8.1. [KSSz(1991) KSSz(1992) AssumeN = 3 or 4, v > 3. Then the
standard hard-ball flow is a K-system.

The structure of the verification of this theorem is the one given in Theorem 6.17 with
the slight difference that richness is not exactly-aichness for somé€, but is introduced
according to the following definition.

Definition 8.2. For the models of Theorem 8.1 we say that the symbolic collision sequence

¥ = (01, ...,0,) isnotrichif there exist an’ : 1 < »n’ < n and two non-trivial two-class
partitions P~ and P* of the set{1, ..., N} of balls such tha®~ = (01,...,0,) is
partitioned byP~ and =+ = (0,11, ..., 0,) is partitioned byP™, or, in other words,

neitherGs- nor Gy + are connected (cf. Definition 6.8). Otherwise, the symbolic collision
sequence is calledch.

Remark.The statement of Theorem 8.1 is also shown to holdMo& 3, v = 2 with a
more stringent notion of richness.

Denote byF(P~, P*1) the subset of phase pointss M for which S¥-x is partitioned
by P~ andS™+x is partitioned byP ™. The role of assumption (2) of Theorem 6.17 is now
played by the following strong ball-avoiding theorem.

THEOREM8.3. [KSSz(1991) KSSz(1992) If N = 3,v > 20or N = 4,v > 3, then
for every pair P~ and P* of non-trivial two-class partitions ofl, ..., N}, the subset
F(P~, P1)is aclosed zero-set of codimension two.

Remark.As always, the closedness df(P—, P*) follows from the definition of
F(P~, P%) by considering trajectory branches in the case of singular orbit segments (cf.
82 of [KSSz(1992) or of [Sim(1992)-1)).

To substantiate the idea of the proof of Theorem 5.2, the demonstrations of this theorem
presented inKSSz(1991) (caseN = 3) and KSSz(1992) (caseN = 4) use a quite
interesting dynamical construction: that of thasting of dynamical systemsVe do not
give here a detailed argument, we only explain it for the simplest non-trivial case: let
N = 3, and setP™ := {{2}, {1, 3}} and, further,PT := {{1}, {2, 3}}. Now F(P~, PT)
contains orbits where particle 2 has no interaction in the past, whereas particle 1 has not
any in the future. In other words, the past trajectory avoids both cylindegssandC> 3,
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whereas the future one avoid3 > and C13. Since in the past there is an interaction
between 1 and 3, only, and 2 has an almost periodic motion on the torus, we are in a
similar situation as in the proof of Theorems 5.2 and 5.4: we have a ball-avoiding problem
for the past orbit of the subsystefh, 3}, which is actually known to be a K-system. The
situation with the future trajectory is similar: particle 1 has an almost periodic motion, and
we have a ball-avoiding problem for the future orbit of the K-mixing subsyst2rs}.

The difference from the situation of Theorem 5.4 is that the dynamics that should now
avoid some balls are different for the past and for the future. This difficulty is resolved by
the method of pasting: one uses the unstable invariant manifolds of the sub$ysg&m

and the stable ones of the subsyst@B3}; further on one repeats the idea of the proof of
Theorems 5.2 and 5.4 and the arising technical problems can be solved.

Fix a finite symbolic collision sequenéeand a pairP~ and P of partitions as before.
Denote byF := F(P~, =, P) the subset of phase pointse M for which S¥-x is
partitioned byP—, there exists a > 0 such that (s©"x) = %, and, moreover§ R+ x
is partitioned byP*. Encouraged by the success of the previous argument, one is inclined
to hope that the method of pasting also permits one to settle the following conjecture.

CONJECTURES.4. For any N > 3,v > 2, for an arbitrary symbolic collision sequence
¥ and for any pairP~, P of non-trivial two-class partitionsf(P~, £, PT) is a closed
zero-set of codimension two.

Remark 8.5.(a) The statement of Conjecture 8.4 immediately implies that for any &ixed
¢ is a slim subset (for the definition df¢ see (6.11)), which is exactly assumption (2)
of Theorem 6.17.

Though we strongly believe that the conjecture is true, nevertheless, the method of
pasting in its present form is not strong enough to prove Conjecture 8.4. The reason is,
roughly speaking, that one can still consider the unstable manifolds for the subdynamics
restricted to the classes 8f in the time interval—oo, 0] and the stable manifolds for the
subdynamics restricted to the classe®dfin the time intervalz, o). Itis, however, hard
to see why the absolute continuity and transversality statements necessary to formulate the
zigzag properties, so basic to repeat the idea of Theorem 5.4, would hold.

(b) In [KSSZz(1991), the statement of Theorem 8.1 is also settled for the dase 3,

v = 2. However, to obtain it for this particular case one also had to verify Conjecture 8.4
for the case of a one-element symbolic collision sequeéice (o). This was actually
done in KSSz(1991)through a concrete analysis of the concrete situation and so far it is
not clear how this argument generalizes.

Having seen the limitations of the method of pasting, we will now turn to another
method, which we call the mechanical method.

8.2. Mechanical method. The mechanical method was elaborated by &iy’in
[Sim(1992)-]. It will be presented in the simple case of a weak-type theorem borrowed
from [SSz(1999) A novelty and an essential advantage of the upcoming formulation is
thatitis absolute, i.e. it is not inductive; afterwards we will also see inductive statements. A
non-inductive formulation is needed if one is only able to show hyperbolicity of hard-ball
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systems, since this is a weak property to permit a possible induction. For the convenience
of the reader and brevity of exposition, the set-up is simplified to the case when the masses
of the balls are identical, although, in essence, the assumption on the identity of masses is
only a minor technical one.

Denote byR* = R*(N, v) the maximal number such that for every € (0, R) the
interior of the configuration domai@ of the hard-ball system is connected.

THEOREMB8.6. [SSz(1999) Consider a system a¥ (>3) particles on thev-torus T"
(v = 2) satisfyingr < R*. Let P = {P1, P2} be a given, two-class partition of theg
particles, where, for simplicity?y = {1,...,n}and P, ={n+1,..., N} (n < N — 1).
Then the closed set
Fy = {x € M : SI® is partitioned byP}

has measure zero.
Proof. The two cases m{m, N —n} > 2 and mirjn, N — n} = 1 can be treated similarly,
and thus we only consider the first one.

Every pointx € M can be characterized by the following coordinates in an essentially
unigue way:
(1) mp(x)=x1€ My,
(2) 7py(x) = x2 € M,

1 n
@) Cw=- ;qim eT,

I1(x) v—1
4 S
@ hor €
) 1Ll € Ry,

(6) Eilx) = %;v?(x) eRy.

wherel1(x) = [Y.7_; vi(x)]/n. Hererp,(x) : M — My, i = 1,2, acts in the following
way. First we separate the coordinates of balls belonging taSince then we lose the
normalization conditions formulated at the beginning of &6, also recovers them by
trivial linear rescalings. Non-uniqueness only arises in choo6iflg) as an arbitrary
representant o;f— Y " 14qi(x) € T". However, it can be uniquely defined locally and this
will be satisfactory for our purposes. In what follows the six coordinates corresponding
to the characterization given before will, in general, be denotdg by. ., bg; thus it will
always be assumed that € M1, by € M, b3 € T", ba € S~ 1, bs, bg € R,.. The relation
u{F+} = 0 will certainly follow if we show that for almost every such choices of ke

by, by.bs.bs,be L F+ (b1, b2, b3, bs, be)} = 0, (8.7)
where

andus, by, b3, 55,65 dENOtEs the conditional measurgqaiinder the conditions corresponding
to fixing the values ob1, by, b3, bs, bs. (This conditional measure is equivalent to the
Lebesgue measure on its support.)
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The relationt € F; is equivalent to saying that for every paie P1, j € P, and every
t>0

0(g; (x) — qj(x),0) = 2r, (8.8)

whereo(., .) denotes the Euclidean distance. For simplicity; fix 1 andj = n + 1.

Now we will be considering the subdynamics corresponding to our two-class partition
P (cf. the ‘'subsystems, decompositions’ part of §2 in the papan(1992)-I), and will
denote them, for simplicity, by; andsS,, respectively (their phase spacesdreandMo,
of course).

Our only task is to represent the time displacemglml(x) — ¢j(x) in terms of the
coordinates (1)—(6) and the subdynamfgssS,. It is easy to see that for anye R and
anyx € M one has

- - N -
41 ) = G0 = G310 = 37" () = o Cu00) ~ (8.9)
where for any € R we denoter! := Six; andi, := Shxo, and, moreover, is the relative
velocity of the ‘baricentres’ of the second and first subsystems (this term appears since in

M1 andM 2 the momenta of the subsystems are scaled to be equal to zero); in fact,

~ —N —-N I
I = I = —|11]|l—, 8.10
Nt N—n” 1”||11|| ( )
and, finally,
o = \2E1(0) — nll 1)1,
n2
B=,1-2E1(x) — [ 11(x) 12
N —n
are the corresponding time scalings.
Our task is to show that the event
I
Vi>0 o (Mlll—lll T ), Z”) > 2r (8.11)
1

has measure zero for every fixed b, b3, bs, b, wherer = (N — n)~Y(=N)||I1|| and

f():R—TR"
is an arbitrary fixed function such that(z) = f(¢, x1, x2, C1, || 11]|, E1). Actually, by
(8.9),
~at ~ Bt N
J@®) =g, 1(x) —qp (x) — N —n C1(x).

In (8.11), the canonical meaning of zero measure is that/if/1 ||.

Denote by, the lattice of balls of radiusr2centred at points of.". Our proof of
Theorem 8.6 will be based on the following well-known elementary lemma whose proof
can, for instance, be found i85z(1999)
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LEMMA 8.12. Fix a vectorii € S”~1 for which at least one ratio of coordinates is
irrational. Consider arbitrary hyperplane#/ perpendicular taz, and denote byBg(z)
the (v — 1)-dimensional ball of radiusk in H centred at; € H. Then, for a suitable
y(n) >0,

limint inf inf MEA$BRE) N L2r)

R—oco H zeH  meas$Bg(z)) y ). (8.13)

Assume that the statement (8.11) is not true, i.e. the measure of the gub$et’ 1
described by (8.11) is positive. Then select and fix a Lebesgue densityi udift with the
property that at least one ratio of the components isfirrational. Denote by, ¢ S¥~1
the ball of radiug aroundi. By (8.13) we can choosg so large that, foR > Rg,

inf inf meas$Br(z) N L2r) - y (1)
H zeH meas$Br(z)) 2

The setitG. can be arbitrarily well approximated by a ball of radiug = R (R is
fixed, R > Rp) in the hyperplane orthogonal tbthrough the poink.tzi + f(¢) if only ¢
is sufficiently large. Consequently, K > R, then by choosing sufficiently large and at
the same time putting = (Ar) 1R, we have

meas(AtG, + (1)) N L2) - y ()
meagirG, + f(1)) - 4

But this inequality contradicts the fact thatwas chosen as a Lebesgue density point of
the subsek c S¥~1. Hence Theorem 8.6 follows. |

Remark 8.14 An essential advantage of the formulation, and of the mechanical method as
well, is that the definition of;. only uses the ball-avoiding property of the non-negative
semi-trajectory. For a weak theorem this is not surprising (cf. Lemma 2.1) but for strong
theorems this is a great advantage over results like Theorem 5.2. In faan@iosed the
mechanical method to show the following.

THEOREMS8.15. [Sim(1992)-]| Let(M, {S'}, n) be thestandard hard-ball flowf N (>3)
particles on the unittoru¥” (v > 2). Suppose that < R*. Assume that foralt < N the
n-billiard flow on T” is a K—flow. LetP be a given, two-class partition of thé particles.
Then the set

Fy = {x € M : S%%®)x is partitioned byP}

is a closed, zero set with codimension at least two.

Remark 8.16 By (6.16) and (6.11), the theorem immediately implies that is a slim
subset for an arbitrarg € N; consequently, it settles a basic assumption (condition (2)) of
Theorem 6.17.

Remark 8.17 As one can also convince oneself upon reading the proof of Theorem 8.6,
the assumption that the radii be not too large is absolutely essential. Indeed, the
mechanical method is based on the conservation of the momenta of the non-interacting
subsystems. This, however, does not hold for large radii, more precisely, for radii where
the configuration domain consists of more than one connected component. We note that it
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does not hold either when one considers hard-ball systems in a boangif8im(1998],

when proving the ergodicity of two hard balls in a box, in fact, used a quite different
notion of richness and had to prove a special ball-avoiding theorem directly adapted to that
notion. In fact, these (i.e. large radii and systems confined to a boxyarénportant

open problems of the thearifrhe ball-avoiding question, however, is not isolated since it
heavily depends on the effective notion of richness.

Theorem 8.15, weak and strong at the same time, is inductive and uses the K-property
of smaller systems as its hypothesis. If one is only able or is satisfied to establish weaker
properties (hyperbolicity or openness of ergodic components), then one uses a weaker
inductive assumption and thus has to strengthen the method. The wisdom of the previous
results suggests to us that, from the aspect of an inductive proof, hyperbolicity is a weak
notion. So if we want to settle hyperbolicity, then the necessary weak ball-avoiding
statement requires a non-inductive proof. On the other hand, as Theorems 8.15 and 8.18
show, the openness of the ergodic components is already a sufficiently strong notion to be
used in an inductive argument. Such a theorem, a weak one, was uS&ri995)

THEOREM8.18. [5Sz(1995) Consider a system df (>3) particles on the unit torus
TV with r < R*. Assume that, for alt < N, almost everywhere, none of the relevant
Lyapunov exponents of the standard hard-ball systeim{s’}, u) vanishes, the ergodic
components of the system are open (and thus of positive measure), and on each of them the
flow has the K-property. La® be a given, two-class partition of theé particles. Then the
set

Fy = {x € M : SI®®y is partitioned byP}

has measure zero.

9. Hyperbolic properties of cylindrical billiards

9.1. Orthogonal cylindric billiards. Cylindric billiards, a more general class than hard-

ball systems, were defined in Definition 7.1. 82[1994), a special class of cylindric
billiards was considered: that ofthogonal cylindrical billiards They are characterized

by the additional requirement that the generator subspace of any cylindric scatterer is
spanned by some of the coordinate vectors adapted to the orthogonal coordinate system
whereT? is given. In technical terms the scatterers of such a billiard are given by a family
C/ :1< j < Jofcylinders,

. 1/2 .
c/ ::cruj{(ql,...,qd) : < Z qlz) Sr]}

iekK/

on thed-torus wherey, denotes the translation by a vectoe T¢.
A basic role in the conditions of ergodicity of orthogonal cylindrical billiards is played
by the subset&/ c {1, ...,d},|K/| > 2. These subsets will also be importantin defining

richness.
Consider the non-singular trajectory segmg&it’lx, —co < a < b < o0, x € M. Its
symbolic collision sequend®the list of subsequent cylinders of collisioi®, . . ., C/+),

k > 1, of the trajectory and can be described by the sequéfce. ., ji), 1 < ji < J,
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1 <[ < k. (If the trajectory hits one or more singularities, then, as usual, there is a finite
number of such sequences for any finite orbit.)

Definition 9.1. We say that the trajectory segmeht-’lx is connectedf (K71, ..., K/}
is a connected cover of the 4@t . . ., d}. We say that the trajectory segmettt-lx is rich
if there exists a time € [a, b] (with S’x € 9M also permitted) such that both trajectory
segmentssl®‘lx and SI"%1x are connected. (If the trajectory segment hits singularities,
then the above properties are required for any trajectory branch.)

Finally, the trajectory segmentgmor if it is not rich.

(K1,..., K/} is said to be a connected cover of the gkt. .., d} if it is a cover,
and, moreover,ndd C {1,...,d}, H # @, H # {1,...,d} exists such that, for every
1<j<J,K/Cc HorK/ c H¢holds.

Denote byMg the subset of non-rich phase points fran?. It would be nice to claim
thatMg is slim but there may exist some trivial one-codimensional submanifolds of non-
sufficient points for our billiard. The trajectories of points lying in these submanifolds are
non-sufficient for they (or the corresponding orbits of some auxiliary sub-billiards used
in the proof) contain no collisions at all. Therefore, we should exclude fbra finite
union of one-codimensional submanifolds, and as a result we obtain thé*set M.

Since the introduction of these submanifolds is a bit lengthy and is not deeply connected
to the topic of our survey, we omit their precise description (this is done in detail in the
appendix of £z(1994)). With a little hand-waving we just repeat that this finite union
consists all phase points whose trajectories never collide in at least one non-trivial sub-
billiard of our system (such a sub-billiard is obtained by taking a non-empty subset of
the cylindric scatterers, and by considering the billiard with these scatterers, only; i.e. we
discard the other scatterers). We note that these submanifolds themselves are defined by
linear conditions on the velocities.

In [Sz(1994), it is shown that the necessary and sufficient condition of the ergodicity
(and the K-property) of orthogonal cylindrical billiards is as follows.

CONDITION 9.2. {K/ : 1 < j < J}is aconnected cover ¢1, ..., d}.
The ball-avoiding theorem used in the proof of sufficiency is the following.
THEOREM9.3. [Sz(1994) If Condition 9.2 holds, ther,’ N M*is a slim subset.

To illustrate the deep analogy with hard-ball systems (cf. in particular, Theorem 8.3)
it is worth formulating the basic lemma which immediately provides this theorem. To
this end for any paifP~, P*} of non-trivial two-class partitions of theet of coordinates
{1,...,d}, letus define

F:=F(P~,P"):={x € Mg\ aM : the K /s corresponding t& (S>> ) and
»(8©@®x) are partitioned by~ and P*}.

We note thata symbolic collision sequence is said to be partitioned by a non-trivial
two-class partitionP of {1, ..., d} if the K/s corresponding to the elementsXfform a
connected cover dfl, .. ., d}.
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LEMMA 9.4. If Condition 9.2 holds, thel is a slim subset.

This lemma can again be settled by the (dynamical) method of pasting; in fact, for
cylindrical billiards the mechanical method does not make sense since the momentum, in
general, is not an invariant of motion any more.

9.2. General case. According to Remark 8.16, the ball-avoiding type condition of
Theorem 6.17 is settled once and for all by 8myi’s Theorem 8.15, at least if we have an
inductive proof in mind. It would be desirable to arrive at a similar success in cylindrical
billiards. One encounters several problems, however. First of all, it is potori clear

what a suitable definition of richness should be so that some analogue of hypothesis (2)
of Theorem 6.17 (or that of Theorem 6.12) could be checked. The ideas of the paper
[SSz(2000) however, suggest the following definition.

Definition 9.5. In a symbolic collision sequencg = (o1, ...,0,) everyo; : 1 <i <n,
by definition, corresponds to a cylinder with base spa¢ce Now we say that® is
connectedff there is no orthogonal splittin®¢ = B1 & B, with dim B; > 0 and with the
property that forevery =1, ...,n eitherL; C ByorL; C Ba.

We say that the symbolic collision sequere= (o1, ..., o) is C-rich, with C being
a natural number, if it can be decomposed into at I€asbnsecutive, disjoint collision
subsequences in such a way that each of them is connected.

Remark 9.6.The condition of connectedness is exactly identical to the orthogonal non-
splitting property, formulated ingSz(2000) of the system of subspacdsy, ..., L,.
Moreover, by Theorem 4.6 and Proposition 4.9 of the same work, in the particular case
of hard-ball systems our Definition 9.5 reduces precisely to Definition 6.5 given above.

CONJECTUREY.7. For an arbitrary natural numberC, the subset of orbits whose
symbolic collision sequence is nGtrich, is a slim subset oM.

Finally we formulate a stronger conjecture than the previous one. In principle it is
adapted to a possible proof of ergodicity by an induction on to the number of cylinders.
Fix a finite symbolic collision sequence and two cylinders:C;- andC;+. Denote
by F(j—, £, j1) the subset of phase pointse M for which S®-x avoids the cylinder
C;-, and there existsa> 0 such that(§®"x) = %, and, moreovers’ %+ x avoids the
cylinderC+.

CONJECTURE9.8. For an arbitrary symbolic collision sequencg and any pair of
cylindersC;-, C;+, the setF'(j~, Z, jT) is a closed zero-set of codimension two.

This conjecture generalizes Conjecture 8.4 and its eventual proof has an analogous
difficulty as of that one.

Ill.  Related directions

10. Replacing topological dimension by the Hausdorff one
LetT : M — M be a transitive Anoso¢?-diffeomorphism of a compact Riemannian
manifold M. Our ball-avoiding theorems discussed so far expressed the fact that for an
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orbit to be non-dense is an atypical behaviour, at least as long as the notion of dimension
we are considering is the topological one. Surprisingly enough, if we take Hausdorff
dimension, then we cannot recover this atypicality as this will be shown by the following
selection of theorems.

THEOREM10.1. U(1991] Let G be a non-empty open subseth Then
HD(G N ND) = dimM

where
ND = ND(T) := {x € M : T%x is not everywhere dense i}

andHD denotes Hausdorff dimension.
Urbaiski has also established an analogous statement for Anosov flows.

THEOREM10.2. [U(1991] Let G be a non-empty open subseth Then
HD(GNND) =dimM
whereN D = N D(S) is the set from (1.1).

Dolgopyat has found an interesting strengthening of the question answered by the
previous theorems. Note thatD is the set of orbits whose limit points do not fill up
the whole space. Fd&f c M a fixed subset, we can consider the set

Ly:={xeM:IimT?xnZz =0}

where limT%x denotes the set of limit points of the orljii”x : + € Z}. Dolgopyat’s
theorem sounds as follows.

THEOREM10.3. D(1997) AssumeT is a topologically transitive AnosouC2-
diffeomorphism ofl’2, the 2-torus, and denote BYD(u) the Hausdorff dimension of its
Sinai-Ruelle-Bowen measyse If Z ¢ T? has Hausdorff dimension less th&D(u),
then

HD(Lz) = 2.

Conversely, for any > HD(u), one can find a seX of Hausdorff dimension less than
for which the above statement fails.

The proofs of Theorems 10.1-10.3 all exploit the existence of a finite Markov partition.
Furthermore, the verifications of Theorems 10.1-10.2 use a generalization of a result of
McMullen [McM(1987)], providing a lower bound for the Hausdorff dimension through
local densities. On the other hand, to establish Theorem 10.3, Dolgopyat uses formulas
of Manning—McCluskey¥IM(1983)] and Young [¥(1982) which are valid in the two-
dimensional setting and this fact explains the dimensional restriction in Theorem 10.3.

For systems with singularities the Markov partition, even if it exists, cannot be finite and
the previous methods do not work. Nevertheless it is reasonable to expect the following.

CONJECTURELO0.4. Theorems 10.1-10.3 are valid for Anosov systems with singularities
(for the axioms of these systems PégL998) or [Ch(1999])).

https://doi.org/10.1017/50143385700001000 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700001000

Ball-avoiding theorems 1845

Finally we note that results analogous to the aforementioned theorems have been
formulated for certain one-parameter subgroups of some Lie groups but even their listing
would go beyond the scope of the present survey. For results and conjectures we refer to
[M(1990)] and [K(1998)] and we just note that in these cases again the method of Markov
partitions is not at hand but one can exploit the rich algebraic structure instead.

11. Ball-avoiding in physics: open systems and repellers

For a better understanding of the pre-turbulent behaviour of the Lorenz model, in 1979,
Pianigiani and YorkeRY (1979] initiated the study of open dynamical systems. One main
model they suggested was a dispersive billiard with a hole. Since it is close to our basic
object, let us look at the questions they raise for this model.

Assume we are given a dispersive billiard@and a small hole is cut in the table.
Whenever the billiard particle enters the hole, it gets absorbed with its orbit deleted from
the phase space. We select the hole to be an open SRilndehe phase space and assume
that the initial phase point is given by a measuge Then let

pH () :=mo{S®x N B = %}
be the probability that the particle stays on the table for at leaststieued let
i) == mo{S"%x N B =@ andS'x € A)
be the probability that it is in the sdtin timez.
Question 1.What is the rate with whiclp™ (¢) converges to zero, when— co?

Question 2.Does the weak limit of the conditional measure

+
Py (1) o+
1—o0 pt(t) =niiA)

exist and if it does what is its value?
Question 3.How doesu™ depend on the initial distributiom?

The questions can also be raised in a time-symmetric way. Indeed, denote
p(t) :=mo{S""x N B =¢)
and
pa®) :=mo{S"""'x N B =¢andS'x € A}

w(A) = lim PAD)
=00 p(r)
Then we can pose the same questions for these objects as before.

Pianigiani and Yorke answered Questions 1-3 for expanding maps acting in a domain of
R<. In a recent work of Chernoat al[ChMT(2000)], the problems are settled for Anosov
diffeomorphisms on surfaces with small holes. Their results and previous rigorous results
of other authors have been based on analytic calculations obtained originally by physicists.
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Out of these—without aiming at completeness—we only mention the works of Kantz
and GrassbergeK[G(1985)] (related, in particular, to Theorem 11.5 below), Hsual
[HOG(1988]) (related, in particular, to Theorem 11.1 below), and Legrand and Sornette
[LS(1990] (for an analytic calculation for stadia); for a review we refer to the survey of
Teél [T(1996)]. Since we only plan to give the flavour of the results@hMT(2000)], we
will omit the very technical formulation of their conditions.

LetT : M — M be a topologically transitive Anosog!*+*-diffeomorphism of a
compact Riemannian surface aBd- M be a nice open subset. Dendle:= M \ B and
let, for everyn > 0,

M, = ﬂ;’:OTiI\A/I and M_, := ﬂf’:OT*il\]
and, moreover,
My i=Mp=1My,, Mo i=Ny=1M_,, Q:=M_NM4.

The sef2 is calledthe repeller(in the physics literature, more recently they are often called
chaotic saddles
Now for some more notation. For every finite Borel measurge denotém| = m{M},

(Tom){A} = m{T"HANM1)} (A CM)

Tym := iT*m if |Tem| # 0.
| T |
We say that the probability measute on M is conditionally invariantunder 7 if
T.m = m, or equivalently if there is & > 0 such thatT,m = Aim. Any
conditionally invariant measura is, of course, supported oM, and we also have
Ay = |Tem| = m{M_1 N M4} = m{M_1}. Denote byM,,, M., and M the classes
of (SRB-like) probability measures supportedin, M, and<2, respectively.

THEOREM11.1. [ChMT(2000)] There is a unique (SRB-like) conditionally invariant
measurew+ € My, i.e. the operatoffy : M4+ — M has a unique fixed point..

THEOREM11.2. [ChMT(2000)] For any measureng € My, the sequence of measures
T}mgo converges weakly, as— oo, to the conditionally invariant measuye;. . Moreover,
the sequence of measureg’ (T'mo) converges weakly to(mo) 4, where the functions
p(mo) andp~1(mo) are uniformly bounded oM.

THEOREM11.3. [ChMT(2000)] The sequenc& " converges weakly, as— oo, to
a T-invariant probability measuré . € M. The measurg .. is ergodic and K-mixing.

The aforementioned results have their natural duals by changing the signs, and then one
obtainsy_, fi—, A_.

THEOREM11.4. [ChMT(2000)] If for every periodic point € ©, T*x = x we have
|detDT*x| = 1, thenjiy = ii_ = fiandi, = A_ = A. In particular, this happens if the
given Anosov diffeomorphism preserves a smooth invariant measure.

(In [ChMT(2000)] it is also conjectured that is a Bernoulli measure, and has a
fast decay of correlations.) The following theorem not only answers Question 1, most
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interesting from the point of view of physical applications, but also provesftape
rate formulaof [KG(1985)]. We call y4 := —logi, the escape rateof the system.
Denote by, the positive Lyapunov exponent of the ergodic meagureand bya (i)
its Kolmogorov-Sinai entropy.

THEOREM11.5. [ChMT(2000)]
Y+ = A —h(fiy). (11.6)

An interesting feature of the escape rate formula (11.6) is that its right-hand side is
defined exclusively in terms of the measyire given on the repellevl ., whereas/,. is the
rate with which an initial measure given on whélegets pulled down to the repeller. Itis
an interesting task to generalize Theorems 11.1-11.5 to Anosov systems with singularities
and subsequently to billiards.

Remark 11.7 For dynamical systems of large linear sizewhich actually are appropriate
models of transport phenomena, Gaspard and Nic@iN(L990] derived a beautiful
equation replacing the escape rate formula. For definiteness, let us think of a Lorentz
process (i.e. a dispersive, finite-horizon billiard with a periodic configuration of scatterers)
in an elongated periodic container of integer lengththe boundary condition in the
direction of they-axis is periodic, whereas those in the direction of thaxis atx = 0

andx = L are open, i.eB = ({x = 0} U {x = L}) x S1. This model determines a
repellerM 1 (L) with SRB-like invariant measurg. (L), for which we denote the positive
Lyapunov exponent by; and the K-S entropy by(i+(L)). Then, by using the diffusion
approximation for the Lorentz process, Gaspard and Nicolis proved analytically that

; L N
D= Lll_r)noo (;) (AL — h(p4(L)))

whereD is the diffusion coefficient of the Lorentz process in the infinite slab (i.e. in the
same model with. = oo). Further related formulas and models are beyond the scope of
the present survey. As references on this developing direction of research we mention the
papers of Gaspard and Dorfmd®BID(1995), Tél et al[TVB(1996)] and Ruelle R(1999];

for earlier related models of transport see the works of Lebowitz and Sp&3{t1978)

and Kramli et al[KSSz(1987).

Notes added in proofl. According to a recent observation of RalBt, N. Chernov,

D. Szz and P. I. ©th, in Theorem 6.6 (Local ergodicity of semi-dispersive billiards)
one should suppose in addition that the boundaries of the scatterers are algebraic.
Consequently, according to our present understanding this algebraicity condition should
be everywhere assumed where Theorem 6.6 is applied.

2. New developments in the applications of ball-avoiding theorems to ergodicity proofs
of billiards can be found in N. Siariyi's most recent survey: Hard ball systems and semi-
dispersive billiards: hyperbolicity and ergodicityfard Ball Systems and the Lorentz Gas
(Encyclopaedia of Mathematical Sciences, vol. 1&4). D. Sasz. Springer.
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