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Abstract. Consider a nice hyperbolic dynamical system (singularities not excluded).
Statements about the topological smallness of the subset of orbits, which avoid an open
subset of the phase space (for every moment of time, or just for a not too small subset of
times), play a key role in showing hyperbolicity or ergodicity of semi-dispersive billiards,
especially, of hard-ball systems. As well as surveying the characteristic results, called ball-
avoiding theorems, and giving an idea of the methods of their proofs, their applications
are also illustrated. Furthermore, we also discuss analogous questions (which had arisen,
for instance, in number theory), when the Hausdorff dimension is taken instead of the
topological one. The answers strongly depend on the notion of dimension which is
used. Finally, ball-avoiding subsets are naturally related to repellers extensively studied
by physicists. For the interested reader we also sketch some analytical and rigorous results
about repellers and escape times.

1. Introduction
The seminal work of Chernov and Sinai [SCh(1987)] not only established the K-property
of dispersive billiards in the general, multidimensional case, but—through their theorem
on local ergodicity for semi-dispersive billiards —also opened the possibility of showing
the K-property of semi-dispersive billiards. Indeed, in 1989, by using this fundamental
tool, Krámli et al [KSSz(1989)] first showed the K-property of a billiard, which was semi-
dispersive but not dispersive. Our method, which has been further developed in a series of
works (for a survey of the results see [Sz(1996)]), consists of three essential parts using
dynamical–topological, geometric–algebraic, and, finally, dynamical–measure-theoretic
tools. The dynamical–topological methods of these proofs are distilled in so-calledball-
avoiding theorems, whose content we are going to formulate here.

Assume(M ,F, SR+ , µ) is a semigroup of endomorphisms (or(M ,F, SR, µ) is a
group of automorphisms) of a probability space(M ,F, µ). For formulating topological
statements, we will, in general, assume thatM is a Riemannian manifold with or without
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boundary. Most of our methods will use some hyperbolicity and/or mixing properties of
the dynamics involved. Fix an arbitrary subsetH of R+ (or of R) and a subsetB ⊂ M .
ForB andH given in this way, the ball-avoiding subsetAH(B) ⊂ M is defined as follows:

AH(B) = {x ∈ M : SH x ∩ B = ∅}.
In words, it consists of phase points whose orbits avoid the subsetB in prescribed moments
of time (B, in general, need not be a ball, but often it is, and the term ball-avoiding already
has traditional usage). IfB is not too small, e.g. it is open, thenAH(B), as a collection
of non-typical trajectories, is expected to be small.Ball-avoiding theoremsclaim that,
by assuming thatB is not very small andH is unbounded (or semi-unbounded, at least),
AH(B) is small in a well-defined sense (i.e. its topological codimension is at least one
or two, and, moreover,µ{AH(B)} = 0), under weaker or stronger assumptions on the
hyperbolic and/or ergodic behaviour of the dynamics. It is worth stressing that, although
some general results have only been formulated for semi-dispersive billiards, their validity
is wider: they are true for a class of ‘hyperbolic’ systems with singularities possessing a
smooth invariant probability measure.

If M is a separable and metrizable space, then let{Bi : i = 1, 2, . . . } be a basis of
the topology inM (then eachAH(Bi) is closed provided that the groupSR is continuous).
Denote

ND := {x ∈ M : SRx is not everywhere dense inM}. (1.1)

Plainly, ND = ∪i (AR−(Bi) ∩ AR+(Bi)). If one shows that eachAR−(Bi) ∩ AR+(Bi)

is a zero-measure subset of codimension two, thenND will necessarily beslim (for the
definition see §3), i.e. topologically small.

Although the question ball-avoiding theorems answer is natural, in this form they seem
to have not been treated before [KSSz(1989)]. In the particular caseH = R the set
AR(B) is an invariant subset. These sets were used by Smale (cf. [H(1970)]) and later by
others to analyse possible dimensions of compact, proper invariant subsets of a hyperbolic
diffeomorphism. The difference between their treatment of the problem and between ours
reflects the very difference between smooth (Anosov) systems and those with singularities.
On the other hand, there is a very active and interesting direction of research investigating,
in particular, the same subsetsND from a different point of view. These results generalize
a classical theorem of Jarnik [J(1929)] and of Besicovitch [B(1934)] claiming that the
set of badly approximable (or Diophantine) numbers in the interval[0, 1] has Hausdorff
dimension one. The typical result then claims that theHausdorff dimensionof the subset
ND is maximal, i.e. agrees with dimM . In other words, despite the fact that these orbits
are non-typical, nevertheless the Hausdorff dimension does not sense this atypicality.

Also, in the last few years physicists have become interested in open systems, e.g.
in open billiards, which actually live on a ball-avoiding subset of the phase space of a
closed billiard. As a consequence, these systems have also been investigated from the
mathematical point of view. Since the interest of their authors was different from ours (cf.
[ChMT(2000)]) we will be satisfied only to give a brief account of their main characteristic
results.

This work is partitioned into three parts. In the first, consisting of §§2–5, the simplest
ball-avoiding theorems are presented: a weak one in §2 and, after a brief summary of some
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useful notions from topological dimension theory given in §3, and some strong ones in
§§4 and 5. In the second part, consisting of §§6–9, first the relevance of ball-avoiding
theorems for hard ball systems is explained. Then various forms of them are surveyed.
Our additional aim is to present the different methods used in their proofs, or at least to
hint at them, and to also collect the most interesting open problems. Finally, in the third
part some related directions mentioned above are reviewed.

I. Weak and strong ball-avoiding theorems

2. An (abstract) weak ball-avoiding lemma
Let (M ,F, SR+ , µ) be a semigroup of endomorphisms of a probability space(M ,F, µ).
Fix an arbitrary subsetH of R+ satisfying supH = +∞.

LEMMA 2.1. [KSSz(1989)] If the semigroupSR+ is mixing, then, for anyB ∈ F with
µ{B} > 0, one has

µ{AH(B)} = 0.

Since the proof is extremely simple, it will be presented below.

Proof. Denote
Aτ

H (B) := {x ∈ M : SH∩[0,τ ]x ∩ B = ∅}.
Then, on the one hand,

µ{Aτ
H(B)} ↘ µ{AH(B)} (2.2)

if τ → ∞. On the other hand, for everyt ∈ H , we have

µ{Aτ
H (B) ∩ {Stx /∈ B}} ≥ µ{AH(B)} (2.3)

Then, by mixing and (2.2), (2.3) leads to

lim
τ→∞ lim

t→∞,t∈H
µ{Aτ

H (B) ∩ {Stx /∈ B}} = µ{AH(B)}µ{Bc} ≥ µ{AH(B)}

implying µ{AH(B)} = 0 for µ{B} > 0. 2

Remark.Any irrational rotation ofR/Z serves as an example of an ergodic automorphism
for which the claim of the lemma is not valid. Different is the situation ifH = R, since
then ergodicity is, of course, sufficient to implyµ{AH(B)} = 0.

Remark.The proof of the lemma immediately implies that its analogue for discrete time
semigroupsTZ+ is also true.

3. Simple facts from topological dimension theory
Here we briefly summarize some necessary notions and facts from topological dimension
theory (for details see [E(1978)] or [HW(1941)]).

Assume first, in general, thatX is a separable metric space. We will denote by dimX

the small inductive topological dimension ofX whose recursive definition will just be
recovered.
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Definition 3.1.
(i) dim X = −1 if and only ifX = ∅;
(ii) dim X ≤ n if and only if there exists a basisU of open neighbourhoods forX such

that for everyU ∈ U one has dim∂U ≤ n − 1 (n = 0, 1, 2, . . . );
(iii) dim X = n if and only if dimX ≤ n and it is not true that dimX ≤ n − 1.

Definition 3.2. If A ⊂ X, and for some natural numberk one has dimA ≤ dimX − k,
then we say that the topological codimension ofA in X is at leastk (or often we briefly
say that the topological codimension isk).

From now on we assume thatM is a connected, smooth manifold (boundary permitted)
andµ is a smooth measure onM .

PROPOSITION3.3. For anyA ⊂ M , dimA ≤ dimM − 1 (in other words, the topological
codimension ofA in M is at least 1) if and only ifint A = ∅.

PROPOSITION3.4. If F ⊂ M is closed, then the following statements are equivalent:
(i) codimM F ≥ 2;
(ii) F 6= M and, for every open connected setG ⊂ M , the difference setG \ F is also

connected;
(iii) int F = ∅ and for every pointx ∈ M and for any neighbourhoodV of x in M there

exists a smaller neighborhoodW ⊂ V of the pointx such that, for every pair of
pointsy, z ∈ W \ F , there is a continuous curveγ in the setV \ F connecting the
pointsy andz.

For the main applications of strong ball-avoiding theorems we need another concept of
topological smallness closely related to being of codimension two (this will be clear from
the content of §5).

Definition 3.5. [KSSz(1989)] We say thatA ⊂ M is a slim subset if and only if it is the
subset of anFσ zero-set of codimension at least two (A is a zero-set ifµ{A} = 0).

By their definition, slim subsets ofM form aσ -ideal. The key property of slim subsets
is expressed by the following

PROPOSITION3.6. [KSSz(1989)] If M is connected, andA is slim, thenM \ A contains
an arcwise connectedGδ-set of full measure.

In applications, in particular in the inductive arguments, the following integrability
property of codimension two subsets is often very useful.

PROPOSITION3.7. [KSSz(1989)] If M = N1 × N2, whereN1 and N2 are connected
smooth manifolds, andF ⊂ M is a closed subset such that, for everyw ∈ N1, the (closed)
sectionFw := {p ∈ N2 : (w, p) ∈ F } obeys

codimN2 Fw ≥ 2,

then

codimM F ≥ 2.
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4. The Smale–Williams theorem for Anosov diffeomorphisms
AssumeM is a smooth Riemannian manifold andT : M → M is an AnosovC1-
diffeomorphism. Smale and Williams (see [H(1970)]) proved the following nice theorem.

THEOREM 4.1. Assume that the set of periodic points ofT is dense inM . If F is a compact
invariant subset ofM satisfyingcodimM F ≥ 1, thencodimM F ≥ 2.

The combination of Theorem 4.1 with our weak Lemma 2.1 provides a strong ball-
avoiding statement for smooth systems.

Corollary. For anyB 6= ∅ ⊂ M open,AZ(B) is a closed set of topological codimension
of at least two.

Proof of the corollary.Topological transitivity, the invariance ofAZ(B), and the openness
of B imply that intAZ(B) 6= ∅. Proposition 3.3 then proves the claim. 2

Proof of Theorem 4.1.Throughout the whole paper we will denote by{γ s} and{γ u} the
invariant foliations defined by the dynamics in question, and byγ s

ε (x) andγ u
ε (x) the local

invariant manifolds of sizeε through the pointx.
Denote byP the set of periodic points ofM\F . We use the following simple statements.

CLAIM 1. P is dense inM .

CLAIM 2. If x ∈ P , thenγ u(x) ∩ F = γ s(x) ∩ F = ∅.

These claims easily provide the truth of the theorem. Indeed, lety ∈ F and choose
ε > 0 small. The foliations{γ u}, {γ s} define a local product structure and using it we can
consider a parallelogramγ u

ε (y)× γ s
ε (y). Moreover, we defineF0 = F ∩ (γ u

ε (y)× γ s
ε (y)).

By Claim 2, for anyx ∈ P , (γ u(x) ∪ γ s(x)) ∩ F = ∅, and, consequently,F0 ⊂
(γ u

ε (y) \ ∪x∈Pγ s(x)) × (γ s
ε (y) \ ∪x∈Pγ u(x)).

Claim 1 and Proposition 3.3 then say that the factors of the previous product set each
have codimension at least one. Hence the Theorem follows by the product theorem (cf.
Theorem III.4 of [HW(1941)]).

Let us now prove Claim 1. Take an arbitrary open subsetG of M . The open setG \ F

is not empty for otherwise we would have dimF = n. SinceP was dense inM \ F , we
also have(G \ F) ∩ P 6= ∅.

Turn next to Claim 2. We proveγ s(x) ∩ F = ∅ for an arbitraryx ∈ P . Assume
T px = x. Select an open neighbourhoodG of x disjoint from F . By invariance,
(∪n∈ZT nG) ∩ F = ∅. Now for anyy ∈ γ s(x), ρ(T kpy, x) → 0 if k → ∞, and thus, for
k sufficiently large,T kpy ∈ G implying y /∈ F . 2

Remark 4.2.After the aforementioned result, the study of compact invariant subsets was
continued, among others by Franks [F(1977)], Hancock [H(1978)], and Mañé [M(1978)].
Since the setsAR(B) provide natural examples of compact, invariant subsets—in fact,
all compact invariant subsets are of this form—this description has been used by several
authors. In particular, for every 0≤ k ≤ d − 2, Przytycki [P(1980)] found examples of
setsBk such that dimAR(Bk) = k.

https://doi.org/10.1017/S0143385700001000 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001000


1826 D. Sźasz

5. A strong ball-avoiding theorem for hyperbolic systems (with or without singularities)
For simplicity, we formulate the theorem for discrete time groups(M ,F, TZ, µ) of
hyperbolic systems since the generalization to continuous time is straightforward. Our
set-up is thatM is a compactC∞-manifold andµ is a smooth, invariant probability
measure. We also want to permit singularities as is done in [LW(1995)], in [Y(1998)],
or in [Ch(1998)]. To save space, we do not list the conditions formulated in these works
since we only use some standard consequences of them. Namely, theµ-a.e. existence
of the local invariant manifolds and the absolute continuity of the canonical isomorphism
between them, and further the simple fact that if in the case of singularities we define
trajectory branches as is described, for instance, in [KSSz(1992)] or in [Sim(1992)], then
the dynamics can always be considered continuous on these trajectory branches. On the
other hand, the kind of hyperbolicity needed will be implicitly ensured by our assumptions.
Start with the corresponding definition.

Definition 5.1. A point x ∈ M is calleda zigzag pointif one can find arbitrary small open
neighbourhoodsU of x such that for every zero-setA ⊂ M there exists another zero-set
A′ ⊃ A with the following property: for everyy, y ′ ∈ U \ A′ there exists a chain (also
called a Hopf-chain)

γ u
loc(z0), γ

s
loc(z1), γ

u
loc(z1), γ

s
loc(z2), . . . , γ

u
loc(zn−1), γ

s
loc(zn)

(herez0 = y, zn = y ′) of local unstable and stable invariant manifolds insideU such that
each intersection

γ u
loc(zi) ∩ γ s

loc(zi+1) (i = 0, . . . , n − 1)

and

γ s
loc(zi) ∩ γ u

loc(zi) = {zi} (i = 1, . . . , n − 1)

consists of exactly one point belonging toU \ A′.

The following theorem generalizes Lemma 4.3 of [KSSz(1989)], and its proof is also
based on their ideas.

THEOREM 5.2. Assume that:
(i) the group(M ,F, TZ, µ) is mixing;
(ii) for the subsetZ of zigzag points ofM , M \ Z is slim;
(iii) B 6= ∅ (⊂ M) is open; and
(iv) H (⊂ Z) satisfiessupH = −inf H = ∞.
ThenAH(B)(⊂ M) is a closed zero-set of codimension at least two.

Remark 5.3.For the first glance, condition (ii) of Theorem 5.2, as formulated, might seem
too restrictive, but, fortunately, this is not the case. In the case of hyperbolic systems with
singularities, with billiards included (cf. [LW(1995)]), the singularities, to be denoted byS
(in other words, the set of points whereT or T −1 is not smooth), form one-codimensional
submanifolds of the phase space. Let us denote

1n :=
⋃

−n≤k<l≤n

(T kS ∩ T lS)
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and, furthermore,

M∗ := M
∖ ∞⋃

n=1

1n,

and

M0 := M
∖ ∞⋃

k=−∞
T kS.

Then, as one can see, for instance, in [KSSz(1990)], for our main model of semi-dispersive
billiards, in general, the zigzag property holds not only for sufficient points ofM0, but also
for those ofM∗. Analogously, in the interesting cases,M\M∗ has codimension at least two.

Proof. (1) By definition,AH(B) is closed onceB is open.
(2) Denote the inner radius ofB by r and choose a ball̃B ⊂ B such thatd(B̃, Bc) ≥

r/2. Define

D := {x ∈ M : ρu,s(x) > 0 and inf{n ∈ H : T nx ∈ B̃} = −∞
and sup{n ∈ H : T nx ∈ B̃} = ∞}.

Here ρu,s(x) denotes the inner radius of the local unstable (stable) invariant manifold
γ u(x) (γ s(x)) throughx. By (ii) and Lemma 2.1 (this presupposes (i)) we haveµ{D} = 1.

(3) Since, by (ii), non-zigzag points make a slim subset, by Lindel¨of’s theorem, it is
sufficient to check that every zigzag pointz has a neighbourhoodU = U(z) such that
AH(B) ∩ U is slim. This is what we do. Fixz and its neighbourhood according to
Definition 5.1 in such a way that diamU < r/2. ToA = U \D selectÃ ⊃ A according to
the same definition. We claim that every pair of pointsy, y ′ ∈ U \ Ã can be connected by a
curve belonging toU \AH(B). SinceAH(B) is closed, bothy andy ′ have neighbourhoods
in U disjoint ofAH(B). Also, sinceU \Ã is dense inU , we can choosẽy andỹ ′ (∈ U \Ã)

in these neighbourhoods and connecty with ỹ and analogouslyy ′ with ỹ ′ inside these tiny
neighbourhoods not intersectingAH(B).

Connect nowỹ andỹ ′ with a Hopf-chain ensured by Definition 5.1. Since diamU <

r/2, we know that the outer diameters of all local manifolds figuring in the chain are
less thanr/2. Observe that the property that the intersection pointsw belong toU \ Ã

ensures that they belong toD. This implies that for infinitely manyn ∈ H ∩ Z+ one
hasT nw ∈ B̃. Then for n large enough,T nγ s(w) ⊂ B holds, too, implying that
γ s(w) ∩ AH(B) = ∅. Analogously, for the unstable local manifolds figuring in the chain
we haveγ u(w)∩AH (B) = ∅ and thus the desired connection betweenỹ andỹ ′ is, indeed,
constructed. 2

Remark.Compare Theorem 5.2 with the corollary of the Smale–Williams Theorem 4.1.
Instead of requiring the density of periodic points we have a smooth, invariant and mixing
measure. Furthermore, we also permit singular systems, and our assumption onH is much
weaker, for it can even have zero density.

An immediate consequence is the following.

COROLLARY. Assume that(M ,F, SR, µ) is a group of automorphisms satisfying the
conditions of Theorem 5.2 suitably modified to the continuous time case (in particular,
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H ⊂ R, and otherwise satisfies the same assumptions). ThenAH(B) is a closed zero-set
of codimension at least two.

By copying the proof given above one finds a simple generalization of Theorem 5.2,
which will be applied in §6. Namely, letB−, B+ (⊂ M), and define

AH(B−, B+) := {x ∈ M : SH−x ∩ B− = SH+x ∩ B+ = ∅}
whereH− := H ∩ R− andH+ := H ∩ R+.

THEOREM 5.4. Assume that besides (i), (ii) and (iv) of Theorem 5.2, the following
condition is satisfied:
(iii) ∗ B− 6= ∅ andB+ 6= ∅ (⊂ M) are open.
ThenAH(B−, B+) is a closed zero-set of codimension at least two.

Proof. This is the same as that of Theorem 5.2 with the natural modification that now
we selectB̃− ⊂ B− and B̃+ ⊂ B+ in such a way thatd(B̃−, B−) ≥ r/2 and
d(B̃+, B+) ≥ r/2, and define

D := {x ∈ M : ρu,s(x) > 0 and inf{n ∈ H : T nx ∈ B̃−} = −∞
and sup{n ∈ H : T nx ∈ B̃+} = ∞}. 2

II. Ball-avoiding theorems and hyperbolic properties

6. Hyperbolic and ergodic properties of hard-ball systems
6.1. Isomorphy to semi-dispersive billiards.The main aim of this section is to
provide a motivation and explanation of how ball-avoiding theorems enter into proofs of
hyperbolicity and ergodicity of hard-ball systems or, more generally, of semi-dispersive
billiards. Consequently, in our exposition the details are surrendered to this goal.

Let us assume, in general, that a system ofN (≥2) balls of unit mass and of radiir > 0
are given onTν , theν-dimensional unit torus(ν ≥ 2). (The assumption that the masses
and the radii are identical is not an essential restriction for our purposes.) Denote the phase
point of theith ball by(qi, vi) ∈ Tν × Rν . The configuration spacẽQ of theN balls is a
subset ofTN ·ν : from TN ·ν we cut out

(
N
2

)
cylindric scatterers

C̃i,j = {Q = (q1, . . . , qN) ∈ TN ·ν : ‖qi − qj‖ < 2r}, (6.1)

1 ≤ i < j ≤ N . The energyE = 1
2

∑N
1 v2

i and the total momentumP = ∑N
1 vi are first

integrals of the motion. Thus, without loss of generality, we can assume thatE = 1
2 and

P = 0 and, moreover, that the sum of spatial componentsB = ∑N
1 qi is equal to zero (if

P 6= 0, then the centre of mass has an additional conditionally periodic or periodic motion).
For these values ofE,P andB, the phase space of the system reduces toM := Q × Sd−1

where

Q :=
{
Q ∈ Q̃

∖ ⋃
1≤i<j≤N

C̃i,j :
N∑
1

qi = 0

}
andd := dimQ = N · ν − ν (hereSk denotes, in general, thek-dimensional unit sphere).
It is easy to see the following.
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PROPOSITION6.2. The dynamics of theN balls, determined by their uniform motion with
elastic collisions, on the one hand, and the billiard flow{St : t ∈ R} in Q with specular
reflections at∂Q, on the other hand, are isomorphic and they conserve the Liouville
measuredµ = constant· dq · dv. (Thus both dynamics can be denoted by(M , SR, dµ).)

We recall that abilliard is a dynamical system describing the motion of a point particle
in a connected, compact domainQ ⊂ R

d or Q ⊂ T
d = Tord, d ≥ 2 with a piecewise

C2-smooth boundary. As usual, the phase spaceM of the system is identified with the unit
tangent bundle overQ. In other words, the configuration space isQ while the phase space
is M = Q×Sd−1. The natural projectionsπ : M → Q andp : M → Sd−1 are defined by
π(q, v) = q and byp(q, v) = v, respectively. The billiard dynamical system(M , SR, µ),
whereµ is the Liouville measure, is calledthe standard billiard flow. If it is isomorphic to
a hard ball system in the sense of Proposition 6.2, then it is calledthe standard hard ball
flowor standard billiard ball flow.

Suppose that∂Q = ∪k
1∂Qi where∂Qi are the smooth components of the boundary.

Denote∂M = ∂Q×Sd−1 and letn(q) be the unit normal vector of the boundary component
∂Qi at q ∈ ∂Qi directed inwardsQ. (In billiards, isomorphic to hard ball systems, the
scatterers are convex cylinders ifN ≥ 3, and are (strictly convex) balls ifN = 2.)

Definition 6.3. We say that a billiard isdispersiveif each∂Qi is strictly convex, and we
say it issemi-dispersiveif each∂Qi is convex.

6.2. Local ergodicity of semi-dispersive billiards.Our next aim is to introduce the
notion of sufficiency, which is basic to the study of semi-dispersive billiards. Assume
thatS[a,b]x is a finite trajectory segment of a semi-dispersive billiard, which is regular, i.e.
it avoids singularities. LetSax = (Q, V ) ∈ M and consider the hyperplanar wavefront
0̃(Sax) := {(Q + dQ,V ) : dQ small∈ Rd and〈dQ,V 〉 = 0} (indeed,π(0̃) is part of a
hyperplane).

Definition 6.4. [SCh(1987)] We say that the trajectory segmentS[a,b]x is sufficient if
π(Sb0̃) is strictly convex atSbx. A phase pointx ∈ M is sufficient if its entire trajectory
is sufficient (i.e. it contains a sufficient trajectory segment).

We note that, for semi-dispersive billiards, the tangent vectors of convex orthogonal
manifolds (cf. [KSSz(1990)]) form an invariant cone field in the tangent space ofM in the
sense of [W(1985)]. Then the sufficiency of anx ∈ M is equivalent to saying that the cone
field along the orbitSRx is eventually strictly invariant in the sense of [W(1985)]. Simple
geometric considerations (cf. [KSSz(1990)]) show that a sufficient trajectory segment
generates an expansion rate uniformly larger than one in some neighbourhood of the
pointSax.

By using Poincar´e recurrence and the ergodic theorem, it is easy to prove the following.

LEMMA 6.5. [SCh(1987)] If x ∈ M is sufficient, then there exists an open neighbourhood
U ⊂ M of x such that the relevant Lyapunov exponents of the system are not zeroµ-almost
everywhere inU . (In the case of singular orbits, we only consider neighbourhoods in the
phase spaces of the corresponding trajectory branches.)
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In other words, in this neighbourhood, the system is hyperbolic. A very deep and
delicate result is as follows.

THEOREM 6.6. (Local ergodicity of semi-dispersive billiards [SCh(1987)]) Assume that
a semi-dispersive billiard satisfies some geometric conditions and the Chernov–Sinai
ansatz, a condition strongly connected with the singularities of the system (the conditions
are formulated in detail in[KSSz(1990)]; also, for a generalization to hyperbolic
symplectomorphisms with singularities, see[LW(1995)]).

If x ∈ M∗ is a sufficient point, then it has an open neighbourhoodU , which belongs to
one ergodic component.

If almost every phase point of a semi-dispersive billiard is sufficient, then, of course, it
may have at most a countable number of ergodic components. In some cases it is not hard
then to derive theglobal ergodicityof the system, i.e. to show that there is just one ergodic
component in the phase space. A very important consequence is thus the following.

COROLLARY. [SCh(1987)] Every dispersive billiard is ergodic, and, moreover, is a K-
flow. In particular, the system ofN = 2 balls on theν-torus is a K-flow ifr < 1

4.

6.3. Richness of a symbolic collision sequence.Consider a semi-dispersive billiard.M∗
will denote the set of phase points whose orbits contain no more than one singular collision,
andM∅ the set of phase points with no collision at all.M0 ⊂ M∗ \ M∅ will be the subset
of regular phase points, and finally we setM1 := M∗ \(M0∪M∅). Moreover,SR+ ⊂ ∂M
will denote the collection of all phase pointsx ∈ ∂M for which the reflection, occurring at
x, is singular (tangential or multiple) and, in the case of a multiple collision,x is supplied
with theoutgoingvelocity V +. We remind the reader that a trajectory segmentS[a,b]x is
calledregular (or non-singular) if it does not hit singularities (S[a,b]x ∩ SR+ = ∅).

Definition 6.7. Consider a non-singular trajectory segmentS[a,b]x, −∞ < a < b <

∞, x ∈ M . Assume that during the interval[a, b] the orbit hits the boundary∂Q in times
a ≤ t1, . . . , tn ≤ b (i.e. for ∀i : 1 ≤ i ≤ n Sti x ∈ ∂Qj (i), and if t 6= ti (1 ≤ i ≤ n) but
t ∈ [a, b], thenStx /∈ ∂Q). Then thesymbolic collision sequence6 = (σ1, . . . , σn) of the
orbit segment is(j (1), . . . j (n)). (If the trajectory hits one or several singularities, then, of
course, there is a finite number of such sequences since every trajectory branch has its own
symbolic collision sequence.)

In applications one usually defines a combinatorial property, calledrichness, for
symbolic sequences of orbit segments. The usefulness of such a notion will be clear from
Key Lemmas 6.9 and 6.10 and Theorems 6.12 and 6.16, valid for hard-ball systems, where
the definition of richness is actually very clear and simple.

Since, as said above, hard-ball systems are isomorphic to billiards where the scatterers
are the cylinders (6.1), the symbolic collision sequence of an orbit is, in this case, a
sequence6 = (σ1, . . . , σn) of ‘colliding pairs’, i.e. σk = {ik, jk} wheneverQ(tk) =
π(Stkx) ∈ ∂C̃ik ,jk . The sequence6 := 6(S[a,b]x) := (σ1, σ2, . . . , σn) is called the
symbolic collision sequenceof the trajectory segmentS[a,b]x.
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Definition 6.8. [SSz(1995)] We say that the symbolic collision sequence6 = (σ1, . . . , σn)

is connectedif the collision graph of this sequence,

G6 := (V = {1, 2, . . . , N}, E6 := {{ik, jk} : whereσk = {ik, jk}, 1 ≤ k ≤ n}),
is connected.

We say that the symbolic collision sequence6 = (σ1, . . . , σn) is C-rich, with C being
a natural number, if it can be decomposed into at leastC consecutive, disjoint collision
subsequences in such a way that each of them is connected.

6.4. The role of ball-avoiding theorems in proving hyperbolicity or ergodicity.The
definition of C-richness should be so strong that one could establish the following
hypotheses, formulated as ‘key lemmas’.

(WEAK) ‘K EY LEMMA’ 6.9. Assume thatC ∈ N is suitably fixed and for a non-singular
orbit segmentS[a,b]x the symbolic collision sequence6(S[a,b]x) is C-rich. Then there
exists an open neighbourhoodU of x and a submanifoldN such that
(1) for everyy ∈ U \N S[a,b]y is sufficient; and
(2) codimU N ≥ 1.

(STRONG) ‘K EY LEMMA’ 6.10. Assume thatC ∈ N is suitably fixed and for a non-
singular orbit segmentS[a,b]x the symbolic collision sequence6(S[a,b]x) is C-rich. Then
there exists an open neighbourhoodU of x and a submanifoldN such that:
(1) for everyy ∈ U \N , S[a,b]y is sufficient; and
(2) codimU N ≥ 2.

An analogous statement also holds for phase pointsx ∈ M , whereS[a,b]x contains
exactly one singularity.

Denote for someC ∈ N

5C := {x ∈ M : SR+x is notC-rich}. (6.11)

Our next theorem shows the role a weak ball-avoiding theorem—actually
equation (6.13)—plays in establishing thehyperbolicity of a hard-ball system.

THEOREM 6.12. Assume that for a semi-dispersive billiard, isomorphic to a hard-ball
system,
(1) the weak ‘Key Lemma’ 6.9 and
(2) the statement

µ{5C} = 0 (6.13)

hold true, whereC is the constant from Lemma 6.9.
Then the system is hyperbolic.

A system is said to behyperbolicif all its relevant Lyapunov exponents do not vanish
for µ-a.e. phase point.

Proof. By (6.13), for almost every pointx ∈ M , SR+x is (non-singular and)C-rich.
Now the application of ‘Key Lemma’ 6.9, Lemma 6.5 and Lindel¨of’s theorem provide
the statement. 2
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Let P be a non-trivial, two-class partition of the set{1, . . . , N} of balls and denote

F+ := F+(P ) := {x ∈ M : SR+x is P -partitioned} (6.14)

We say thatSR+x isP -partitionedif the non-negative semi-trajectory ofx does not contain
collisions between pairs of balls belonging to different classes of the partitionP .

COROLLARY 1. The claim of Theorem 6.12 holds whenever instead of (6.13) we require,
for any non-trivial, two-class partitionP ,

µ{F+} = 0 (6.15)

to be true.

Proof. This follows straightforwardly from the obvious inequality

5C ⊂
⋃
P

∞⋃
t=0

S−tF+(P ) (6.16)

where∪P runs over all non-trivial two-class partitionsP of {1, . . . , N}. 2

COROLLARY 2. Under the assumptions of Theorem 6.12, the ergodic components of the
system are of positive measure.

Proof. This is a consequence of Theorem 6.12 and of the Katok–Strelcyn theory (see
[KS(1986)]). 2

Now, complementing Theorem 6.12, we formulate a theorem which illustrates the role a
strong ball-avoiding theorem plays when establishing theergodicity of a hard-ball system.

THEOREM 6.17. Assume that for a semi-dispersive billiard, isomorphic to a hard-ball
system, the geometric conditions of Theorem 6.6 hold true. Assume, moreover,
(1) the ‘Key Lemma’ 6.10 is proved; and
(2) 5C is a slim subset whereC is the constant from ‘Key Lemma’ 6.10.
Then the system is ergodic.

Proof. From the geometric conditions it follows that the complement ofM∗ is a countable
union of codimension-two submanifolds and thus is slim (cf. [SSz(1995)]). Consequently,
in virtue of condition (2), apart from a slim subset ofM , every phase point contains at
most one singularity and isC-rich. By applying ‘Key Lemma’ 6.10, and then Lindel¨of’s
theorem, we obtain that, apart from a slim subset ofM , every phase point is sufficient
(slim subsets form aσ -ideal!). By referring to Theorem 6.6 and once more to Lindel¨of’s
theorem, the statement of the theorem follows. 2

Remark 1.By [S(1992)], condition (2) holds wheneverN ≥ 3. In the caseN = 2,
however, the orbits with no collisions at all form a one-codimensional submanifold. Then
the argument given above provides that we may have at most a finite number of open
ergodic components. To obtain global ergodicity, one can connect these by the dynamics
in a straightforward way.
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Remark 2.Among the geometric conditions of Theorem 6.6, an essential one is the
Chernov–Sinai ansatz. We note that the methods for settling it use, on the one hand, ‘key-
lemma’-type statements, and they, on the other hand, are related to ball-avoiding theorems;
since the set-up of these methods is more involved and the ideas are much the same as the
ones we are discussing, we do not treat them in detail in this paper.

COROLLARY 1. The statement of Theorem 6.17 holds whenever instead of its condition
(2) we require, for any non-trivial, two-class partitionP , µ{F+} = 0 and

codimF+ ≥ 2

to be true.

Proof. This follows from Definition 3.5 and the inequality (6.16). 2

COROLLARY 2. Under the assumptions of Theorem 6.17, the system is K-mixing and is,
moreover, a B-system.

The K-property is standard and the B-property is proved in [ChH(1996)] and
[OW(1998)].

7. Interlude: an instructive example
Despite its very simplicity the paradigm we are going to study sheds light on two
fundamental circumstances:
(1) How do ball-avoiding theorems arise and help in proving hyperbolicity or ergodicity

of semi-dispersive billiards?
(2) In which way do their applications possess an inductive character? This also explains

the apparent contradiction: on the one hand, ball-avoiding theorems are exploited in
proofs of hyperbolicity or ergodicity of the systems, but, on the other hand, the latter
properties do occur among the assumptions of most ball-avoiding theorems.

So have a closer look at our example. Its analysis is taken from [KSSz(1989)], so
consequently our treatment here will be concise. For later use we introduce a very
interesting class of semi-dispersive billiards, that of cylindric ones.

In words, cylindric billiards are toric billiards where the scatterers are cylinders.
In our discussion, the bases of the cylinders will be assumed to be strictly convex, a
property which ensures that the scatterers are convex, and thus the arising billiard be semi-
dispersive. Because of the simplicity of our model, let us immediately start with a formal
definition.

Definition 7.1. (Cylindric billiard) The configuration space of a cylindric billiard isQ =
T

d \ (C1 ∪ · · · ∪ Ck), whereTd = Rd/Zd (d ≥ 2) is the unit torus. Here the cylindric
scattererCi (i = 1, . . . , k) is defined as follows.

Let Ai ⊂ Rd be a so-calledlattice subspaceof the Euclidean spaceRd , which means
that the discrete intersectionAi ∩ Zd has rank dimAi . In this case the factorAi/(Ai ∩ Zd )

naturally defines a subtorus ofTd , which will be taken as the generator of the cylinder
Ci ⊂ Td . Denote byLi = A⊥

i the orthocomplement ofAi . Under the above conditions,
the subspaceLi must also be a lattice subspace. We also assume that dimLi ≥ 2. Let,
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moreover,Di ⊂ Li be a convex, compact domain with aC2-smooth boundary∂Di so
that 0 ∈ int Di . SupposeDi is strictly convex in the sense that the second fundamental
form of its boundary∂Di is everywhere positive definite. Furthermore, in order to avoid
unnecessary complications, we postulate that the convex domainDi does not contain any
pair of points congruent moduloZd . The domainDi will be taken as thebaseof the
cylinderCi . Finally, suppose that a translation vectorti ∈ Rd is given, which plays an
essential role in positioning the cylinderCi in the ambient torusTd . Set

Ci = {a + l + ti | a ∈ Ai, l ∈ Di, }/Z
d .

In order to avoid further unnecessary complications, we also assume that the interior of the
configuration spaceQ = T

d \ (C1 ∪ · · · ∪ Ck) is connected.
The phase spaceM of our billiard will be the unit tangent bundle ofQ, i.e. M =

Q × Sd−1. (Here, as usual,Sd−1 is the (d − 1)-dimensional unit sphere.)
The dynamical system(M , SR, µ) is acylindric billiard.

As we have seen in the first part of §5, hard-ball systems actually belong to the class of
cylindric billiards.

The example.Consider a simple cylindric billiard onT3 with two cylindric scatterersC1

andC2, where

A1 := {(x, y, z) : y = z = 0}, A2 := {(x, y, z) : x = z = 0},
D1 := {(x, y, z) : x = 0, y2 + z2 ≤ r2

1}, D2 := {(x, y, z) : y = 0, x2 + z2 ≤ r2
2}

andr1 andr2 are arbitrary. To exclude the possibility of an infinite number of collisions in a
finite time interval, we assume that no tangencies occur in the given cylinder configuration.

Our goal here is to demonstrate how the proof of the following theorem can be reduced
to the strong ball-avoiding one.

THEOREM 7.2. [KSSz(1989)] The cylindric billiard inQ = T3 \ (C1 ∪C2) defined above
is ergodic (and, consequently, a K-mixing flow).

Proof. The following prerequisites are used:
(i) Lemma 4.15 of [KSSz(1990)] claiming thatM \ M∗ is a countable union of proper

closed submanifolds of codimension two (in our case, the reader can, in fact, directly check
the claim);

(ii) the fact that the conditions of the theorem on local ergodicity (Theorem 6.6) are
satisfied (as to the non-trivial Chernov–Sinai ansatz see [KSSz(1989)]), and Theorem 6.6
itself ensuring that every sufficient point(Q, V ) ∈ M∗ has an open neighbourhood which
belongs to one ergodic component;

(iii) and, finally, the fact, that the set of orbitsM∅ with no collision at all is the union
of the one-codimensional submanifolds{vx = 0} and {vy = 0}. Thus the argument to
come ensures that the system has at most four ergodic components. These, however, can
be connected by using the dynamics providing the desired global ergodicity.

Denote byMsuff the subset of sufficient points. In view of (i) and (ii) the proof of
Theorem 7.2 boils down to showing the following.
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LEMMA 7.3. M∗ \ (Msuff ∪ M∅) is a slim subset.

Since we only have two scatterers, in any symbolic collision sequence6 =
(σ1, . . . , σn), n ≥ 0, one hasσi = 1 or 2.

Definition 7.4. An orbit segment isrich if its symbolic collision sequence contains at least
one digit 1 and at least one digit 2.

The following simple observation, whose proof is left for the reader, is basic for our
whole approach. In fact, for our model, this lemma does the job of a strong key lemma (cf.
‘Key Lemma’ 6.10).

LEMMA 7.5. Every rich orbit segment is sufficient.

Indeed, denote byJi ⊂ M∗ (i = 1, 2) the subset of orbits whose symbolic collision
sequence is(. . . , i, i, i, . . . ). By Lemma 7.5, Lemma 7.3 will follow from the following.

LEMMA 7.6. The subsetsJi , i = 1, 2 are closed zero-sets of codimension two.

Proof. ConsiderJ1. Choose an open subsetI × B ⊂ C2 whereI is an open interval
of the x-axis, andB is an open ball of they–z-plane. Fix thex-coordinates(qx, vx)

of the phase point(qx, qy, qz; vx, vy, vz) (v2
x + v2

y + v2
z = 1). For the fixed(qx, vx),

consider the dispersive billiard in they–z-plane with the sole scattererD′
1 := {(y, z) :

y2 + z2 ≤ r2
1}. More precisely, assume 0< |vx | < 1. An orbit starting from

(Q, V ) = (q1, q2, q3, v1, v2, v3) never hitsI × B if and only if

for everyt ∈ R, such thatqx + tvx ∈ I, π{y,z}St (Q, V ) /∈ B

whereπ{y,z}(qx, qy, qz; vx, vy, vz) := (qy, qz; vy, vz). Let

(AH (B))qx,vx := {(qy, qz; vy, vz) : for everyt ∈ R such that

qx + tvx ∈ I one hasπ{y,z}St (Q, V ) /∈ B}
i.e. (AH (B))qx,vx is understood for the projected dynamics withH := {t : qx + tvx ∈ I }.
We note that for the billiardπ{y,z}St (Q, V )

0 < v2
y + v2

z = 1 − v2
x < 1, (7.7)

so the system is obtained by a linear time change from a standard dispersive billiard
flow. Consequently, by virtue of the corollary to Theorem 6.6, for this projected system,
Lemma 2.1 and the corollary of Theorem 5.2 can also be applied whenever (7.7) holds,
implying that, on the one hand,

µ{(AH (B))qx,vx } = 0

and, on the other hand,(AH (B))qx,vx is of codimension two.
Fubini’s theorem then first providesµ{AH(B)} = 0, whereas Proposition 3.7 implies

thatAH(B) is a codimension two subset. SinceJ1 ⊂ AH(B), Lemma 7.6 follows. 2

Lemma 7.3 easily follows from Lemmas 7.5 and 7.6. Now Theorem 7.2, indeed, follows
from Lemma 7.3 by simple arguments left to the reader (or see [KSSz(1989)]). 2
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The reader could certainly observe in the proof of Lemma 7.6 the fundamental role
of the ball-avoiding theorems, and further the fact that in proving the hyperbolicity and
ergodicity of a higher—in this case three-dimensional—semi-dispersive billiard we used
the hyperbolicity and ergodicity of a lower—in this case two-dimensional—billiard.

8. Results for hard-ball systems
8.1. Dynamical method. As we have seen in the proof of Theorem 7.2, a substantial
element has been the strong ball-avoiding Theorem 5.2. The demonstration of
Theorem 5.2, in its turn, has used the fundamental tools of the theory of hyperbolic
dynamical systems. By more sophisticated versions of the arguments of Theorems 7.2
and 5.2, in particular, it was possible to establish the following.

THEOREM 8.1. [KSSz(1991), KSSz(1992)] AssumeN = 3 or 4, ν ≥ 3. Then the
standard hard-ball flow is a K-system.

The structure of the verification of this theorem is the one given in Theorem 6.17 with
the slight difference that richness is not exactly aC-richness for someC, but is introduced
according to the following definition.

Definition 8.2. For the models of Theorem 8.1 we say that the symbolic collision sequence
6 = (σ1, . . . , σn) is not rich if there exist an′ : 1 ≤ n′ ≤ n and two non-trivial two-class
partitionsP− and P+ of the set{1, . . . , N} of balls such that6− = (σ1, . . . , σn′ ) is
partitioned byP− and6+ = (σn′+1, . . . , σn) is partitioned byP+, or, in other words,
neitherG6− norG6+ are connected (cf. Definition 6.8). Otherwise, the symbolic collision
sequence is calledrich.

Remark.The statement of Theorem 8.1 is also shown to hold forN = 3, ν = 2 with a
more stringent notion of richness.

Denote byF(P−, P+) the subset of phase pointsx ∈ M for whichSR−x is partitioned
by P− andSR+x is partitioned byP+. The role of assumption (2) of Theorem 6.17 is now
played by the following strong ball-avoiding theorem.

THEOREM 8.3. [KSSz(1991), KSSz(1992)] If N = 3, ν ≥ 2 or N = 4, ν ≥ 3, then
for every pairP− and P+ of non-trivial two-class partitions of{1, . . . , N}, the subset
F(P−, P+) is a closed zero-set of codimension two.

Remark.As always, the closedness ofF(P−, P+) follows from the definition of
F(P−, P+) by considering trajectory branches in the case of singular orbit segments (cf.
§2 of [KSSz(1992)] or of [Sim(1992)-I]).

To substantiate the idea of the proof of Theorem 5.2, the demonstrations of this theorem
presented in [KSSz(1991)] (caseN = 3) and [KSSz(1992)] (caseN = 4) use a quite
interesting dynamical construction: that of thepasting of dynamical systems. We do not
give here a detailed argument, we only explain it for the simplest non-trivial case: let
N = 3, and setP− := {{2}, {1, 3}} and, further,P+ := {{1}, {2, 3}}. Now F(P−, P+)

contains orbits where particle 2 has no interaction in the past, whereas particle 1 has not
any in the future. In other words, the past trajectory avoids both cylindersC1,2 andC2,3,
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whereas the future one avoidsC1,2 and C1,3. Since in the past there is an interaction
between 1 and 3, only, and 2 has an almost periodic motion on the torus, we are in a
similar situation as in the proof of Theorems 5.2 and 5.4: we have a ball-avoiding problem
for the past orbit of the subsystem{1, 3}, which is actually known to be a K-system. The
situation with the future trajectory is similar: particle 1 has an almost periodic motion, and
we have a ball-avoiding problem for the future orbit of the K-mixing subsystem{2, 3}.
The difference from the situation of Theorem 5.4 is that the dynamics that should now
avoid some balls are different for the past and for the future. This difficulty is resolved by
the method of pasting: one uses the unstable invariant manifolds of the subsystem{1, 3},
and the stable ones of the subsystem{2, 3}; further on one repeats the idea of the proof of
Theorems 5.2 and 5.4 and the arising technical problems can be solved.

Fix a finite symbolic collision sequence6 and a pairP− andP+ of partitions as before.
Denote byF := F(P−,6, P+) the subset of phase pointsx ∈ M for which SR−x is
partitioned byP−, there exists at > 0 such that6(S(0,t )x) = 6, and, moreover,St+R+x

is partitioned byP+. Encouraged by the success of the previous argument, one is inclined
to hope that the method of pasting also permits one to settle the following conjecture.

CONJECTURE8.4. For anyN ≥ 3, ν ≥ 2, for an arbitrary symbolic collision sequence
6 and for any pairP−, P+ of non-trivial two-class partitions,F(P−,6, P+) is a closed
zero-set of codimension two.

Remark 8.5.(a) The statement of Conjecture 8.4 immediately implies that for any fixedC,
5C is a slim subset (for the definition of5C see (6.11)), which is exactly assumption (2)
of Theorem 6.17.

Though we strongly believe that the conjecture is true, nevertheless, the method of
pasting in its present form is not strong enough to prove Conjecture 8.4. The reason is,
roughly speaking, that one can still consider the unstable manifolds for the subdynamics
restricted to the classes ofP− in the time interval(−∞, 0] and the stable manifolds for the
subdynamics restricted to the classes ofP+ in the time interval[t,∞). It is, however, hard
to see why the absolute continuity and transversality statements necessary to formulate the
zigzag properties, so basic to repeat the idea of Theorem 5.4, would hold.

(b) In [KSSz(1991)], the statement of Theorem 8.1 is also settled for the caseN = 3,
ν = 2. However, to obtain it for this particular case one also had to verify Conjecture 8.4
for the case of a one-element symbolic collision sequence6 = (σ ). This was actually
done in [KSSz(1991)] through a concrete analysis of the concrete situation and so far it is
not clear how this argument generalizes.

Having seen the limitations of the method of pasting, we will now turn to another
method, which we call the mechanical method.

8.2. Mechanical method. The mechanical method was elaborated by Sim´anyi in
[Sim(1992)-I]. It will be presented in the simple case of a weak-type theorem borrowed
from [SSz(1999)]. A novelty and an essential advantage of the upcoming formulation is
that it is absolute, i.e. it is not inductive; afterwards we will also see inductive statements. A
non-inductive formulation is needed if one is only able to show hyperbolicity of hard-ball
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systems, since this is a weak property to permit a possible induction. For the convenience
of the reader and brevity of exposition, the set-up is simplified to the case when the masses
of the balls are identical, although, in essence, the assumption on the identity of masses is
only a minor technical one.

Denote byR∗ = R∗(N, ν) the maximal numberR such that for everyr ∈ (0, R) the
interior of the configuration domainQ of the hard-ball system is connected.

THEOREM 8.6. [SSz(1999)] Consider a system ofN (≥3) particles on theν-torus Tν

(ν ≥ 2) satisfyingr < R∗. Let P = {P1, P2} be a given, two-class partition of theN
particles, where, for simplicity,P1 = {1, . . . , n} andP2 = {n + 1, . . . , N} (n < N − 1).
Then the closed set

F+ = {x ∈ M : S[0,∞)x is partitioned byP }
has measure zero.

Proof. The two cases min{n,N − n} ≥ 2 and min{n,N − n} = 1 can be treated similarly,
and thus we only consider the first one.

Every pointx ∈ M can be characterized by the following coordinates in an essentially
unique way:
(1) πP1(x) = x1 ∈ M1,
(2) πP2(x) = x2 ∈ M2,

(3) C1(x) = 1

n

n∑
i=1

qi(x) ∈ T
ν ,

(4)
I1(x)

‖I1(x)‖ ∈ S
ν−1,

(5) ‖I1(x)‖ ∈ R+,

(6) E1(x) = 1

2

n∑
i=1

v2
i (x) ∈ R+.

whereI1(x) = [∑n
i=1 vi(x)]/n. HereπPi (x) : M → M1, i = 1, 2, acts in the following

way. First we separate the coordinates of balls belonging toPi . Since then we lose the
normalization conditions formulated at the beginning of §6,πPi also recovers them by
trivial linear rescalings. Non-uniqueness only arises in choosingC1(x) as an arbitrary
representant of1

n

∑n
i=1 qi(x) ∈ Tν . However, it can be uniquely defined locally and this

will be satisfactory for our purposes. In what follows the six coordinates corresponding
to the characterization given before will, in general, be denoted byb1, . . . , b6; thus it will
always be assumed thatb1 ∈ M1, b2 ∈ M2, b3 ∈ T

ν , b4 ∈ Sν−1, b5, b6 ∈ R+. The relation
µ{F+} = 0 will certainly follow if we show that for almost every such choices of thebi ’s

µb1,b2,b3,b5,b6{F+(b1, b2, b3, b5, b6)} = 0, (8.7)

where

F+(b1, b2, b3, b5, b6) = {y4 ∈ Sν−1 : (b1, b2, b3, y4, b5, b6) ∈ F+},
andµb1,b2,b3,b5,b6 denotes the conditional measure ofµ under the conditions corresponding
to fixing the values ofb1, b2, b3, b5, b6. (This conditional measure is equivalent to the
Lebesgue measure on its support.)
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The relationx ∈ F+ is equivalent to saying that for every pairi ∈ P1, j ∈ P2 and every
t ≥ 0

%(qt
i (x) − qt

j (x), 0) ≥ 2r, (8.8)

where%(., .) denotes the Euclidean distance. For simplicity, fixi = 1 andj = n + 1.
Now we will be considering the subdynamics corresponding to our two-class partition

P (cf. the ‘subsystems, decompositions’ part of §2 in the paper [Sim(1992)-I]), and will
denote them, for simplicity, byS1 andS2, respectively (their phase spaces areM1 andM2,
of course).

Our only task is to represent the time displacementqt
n+1(x) − qt

1(x) in terms of the
coordinates (1)–(6) and the subdynamicsS1, S2. It is easy to see that for anyt ∈ R and
anyx ∈ M one has

qt
n+1(x) − qt

1(x) = q̃αt
n+1(x) − q̃

βt

1 (x) − N

N − n
C1(x) − Ĩ (8.9)

where for anyt ∈ R we denotẽxt
1 := St

1x1 andx̃t
2 := St

2x2, and, moreover,̃I is the relative
velocity of the ‘baricentres’ of the second and first subsystems (this term appears since in
M1 andM2 the momenta of the subsystems are scaled to be equal to zero); in fact,

Ĩ = −N

N − n
I1 = −N

N − n
‖I1‖ I1

‖I1‖ , (8.10)

and, finally,

α =
√

2E1(x) − n‖I1(x)‖2,

β =
√

1 − 2E1(x) − n2

N − n
‖I1(x)‖2

are the corresponding time scalings.
Our task is to show that the event

∀t ≥ 0 %

(
λt

I1

‖I1‖ + f (t), Z
ν

)
≥ 2r (8.11)

has measure zero for every fixedb1, b2, b3, b5, b6, whereλ = (N − n)−1(−N)‖I1‖ and

f (t) : R → R
ν

is an arbitrary fixed function such thatf (t) = f (t, x1, x2, C1, ‖I1‖, E1). Actually, by
(8.9),

f (t) = q̃αt
n+1(x) − q̃

βt

1 (x) − N

N − n
C1(x).

In (8.11), the canonical meaning of zero measure is that inI1/‖I1‖.
Denote byL2r the lattice of balls of radius 2r centred at points ofZν . Our proof of

Theorem 8.6 will be based on the following well-known elementary lemma whose proof
can, for instance, be found in [SSz(1999)].
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LEMMA 8.12. Fix a vector En ∈ Sν−1 for which at least one ratio of coordinates is
irrational. Consider arbitrary hyperplanesH perpendicular toEn, and denote byBR(z)

the (ν − 1)-dimensional ball of radiusR in H centred atz ∈ H . Then, for a suitable
γ (En) > 0,

lim inf
R→∞ inf

H
inf
z∈H

meas(BR(z) ∩ L2r )

meas(BR(z))
≥ γ (En). (8.13)

Assume that the statement (8.11) is not true, i.e. the measure of the subsetK of Sν−1

described by (8.11) is positive. Then select and fix a Lebesgue density pointEn of K with the
property that at least one ratio of the components ofEn is irrational. Denote byGε ⊂ Sν−1

the ball of radiusε aroundEn. By (8.13) we can chooseR0 so large that, forR ≥ R0,

inf
H

inf
z∈H

meas(BR(z) ∩ L2r )

meas(BR(z))
≥ γ (En)

2
.

The setλtGε can be arbitrarily well approximated by a ball of radiusλtε = R (R is
fixed,R ≥ R0) in the hyperplane orthogonal toEn through the pointλt En + f (t) if only t

is sufficiently large. Consequently, ifR ≥ R0, then by choosingt sufficiently large and at
the same time puttingε = (λt)−1R, we have

meas((λtGε + f (t)) ∩ L2r )

meas(λtGε + f (t))
≥ γ (En)

4
.

But this inequality contradicts the fact thatEn was chosen as a Lebesgue density point of
the subsetK ⊂ Sν−1. Hence Theorem 8.6 follows. 2

Remark 8.14.An essential advantage of the formulation, and of the mechanical method as
well, is that the definition ofF+ only uses the ball-avoiding property of the non-negative
semi-trajectory. For a weak theorem this is not surprising (cf. Lemma 2.1) but for strong
theorems this is a great advantage over results like Theorem 5.2. In fact, Sim´anyi used the
mechanical method to show the following.

THEOREM 8.15. [Sim(1992)-I] Let(M, {St }, µ) be thestandard hard-ball flowofN (≥3)

particles on the unit torusTν (ν ≥ 2). Suppose thatr < R∗. Assume that for alln < N the
n-billiard flow onTν is aK–flow. LetP be a given, two-class partition of theN particles.
Then the set

F+ = {x ∈ M : S[0,∞)x is partitioned byP }
is a closed, zero set with codimension at least two.

Remark 8.16.By (6.16) and (6.11), the theorem immediately implies that5C is a slim
subset for an arbitraryC ∈ N; consequently, it settles a basic assumption (condition (2)) of
Theorem 6.17.

Remark 8.17.As one can also convince oneself upon reading the proof of Theorem 8.6,
the assumption that the radii be not too large is absolutely essential. Indeed, the
mechanical method is based on the conservation of the momenta of the non-interacting
subsystems. This, however, does not hold for large radii, more precisely, for radii where
the configuration domain consists of more than one connected component. We note that it
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does not hold either when one considers hard-ball systems in a box. Sim´anyi [Sim(1998)],
when proving the ergodicity of two hard balls in a box, in fact, used a quite different
notion of richness and had to prove a special ball-avoiding theorem directly adapted to that
notion. In fact, these (i.e. large radii and systems confined to a box) aretwo important
open problems of the theory. The ball-avoiding question, however, is not isolated since it
heavily depends on the effective notion of richness.

Theorem 8.15, weak and strong at the same time, is inductive and uses the K-property
of smaller systems as its hypothesis. If one is only able or is satisfied to establish weaker
properties (hyperbolicity or openness of ergodic components), then one uses a weaker
inductive assumption and thus has to strengthen the method. The wisdom of the previous
results suggests to us that, from the aspect of an inductive proof, hyperbolicity is a weak
notion. So if we want to settle hyperbolicity, then the necessary weak ball-avoiding
statement requires a non-inductive proof. On the other hand, as Theorems 8.15 and 8.18
show, the openness of the ergodic components is already a sufficiently strong notion to be
used in an inductive argument. Such a theorem, a weak one, was used in [SSz(1995)].

THEOREM 8.18. [SSz(1995)] Consider a system ofN (≥3) particles on the unit torus
Tν with r < R∗. Assume that, for alln < N , almost everywhere, none of the relevant
Lyapunov exponents of the standard hard-ball system(M , {St }, µ) vanishes, the ergodic
components of the system are open (and thus of positive measure), and on each of them the
flow has the K-property. LetP be a given, two-class partition of theN particles. Then the
set

F+ = {x ∈ M : S[0,∞)x is partitioned byP }
has measure zero.

9. Hyperbolic properties of cylindrical billiards
9.1. Orthogonal cylindric billiards. Cylindric billiards, a more general class than hard-
ball systems, were defined in Definition 7.1. In [Sz(1994)], a special class of cylindric
billiards was considered: that oforthogonal cylindrical billiards. They are characterized
by the additional requirement that the generator subspace of any cylindric scatterer is
spanned by some of the coordinate vectors adapted to the orthogonal coordinate system
whereT

d is given. In technical terms the scatterers of such a billiard are given by a family
Cj : 1 ≤ j ≤ J of cylinders,

Cj := σuj

{
(q1, . . . , qd) :

( ∑
i∈Kj

q2
i

)1/2

≤ rj

}
on thed-torus whereσu denotes the translation by a vectoru ∈ T

d .
A basic role in the conditions of ergodicity of orthogonal cylindrical billiards is played

by the subsetsKj ⊂ {1, . . . , d}, |Kj | ≥ 2. These subsets will also be important in defining
richness.

Consider the non-singular trajectory segmentS[a,b]x, −∞ < a ≤ b < ∞, x ∈ M. Its
symbolic collision sequenceis the list of subsequent cylinders of collisions(Cj1, . . . , Cjk ),
k ≥ 1, of the trajectory and can be described by the sequence(j1, . . . , jk), 1 ≤ jl ≤ J ,
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1 ≤ l ≤ k. (If the trajectory hits one or more singularities, then, as usual, there is a finite
number of such sequences for any finite orbit.)

Definition 9.1. We say that the trajectory segmentS[a,b]x is connectedif {Kj1, . . . ,Kjk }
is a connected cover of the set{1, . . . , d}. We say that the trajectory segmentS[a,b]x is rich
if there exists a timet ∈ [a, b] (with Stx ∈ ∂M also permitted) such that both trajectory
segmentsS[a,t ]x andS[t,b]x are connected. (If the trajectory segment hits singularities,
then the above properties are required for any trajectory branch.)

Finally, the trajectory segment ispoor if it is not rich.
{Kj1, . . . ,Kjk } is said to be a connected cover of the set{1, . . . , d} if it is a cover,

and, moreover, noH ⊂ {1, . . . , d}, H 6= ∅, H 6= {1, . . . , d} exists such that, for every
1 ≤ j ≤ J , Kj ⊂ H or Kj ⊂ Hc holds.

Denote byM0
p the subset of non-rich phase points fromM0. It would be nice to claim

thatM0
p is slim but there may exist some trivial one-codimensional submanifolds of non-

sufficient points for our billiard. The trajectories of points lying in these submanifolds are
non-sufficient for they (or the corresponding orbits of some auxiliary sub-billiards used
in the proof) contain no collisions at all. Therefore, we should exclude fromM a finite
union of one-codimensional submanifolds, and as a result we obtain the setM# ⊂ M .
Since the introduction of these submanifolds is a bit lengthy and is not deeply connected
to the topic of our survey, we omit their precise description (this is done in detail in the
appendix of [Sz(1994)]). With a little hand-waving we just repeat that this finite union
consists all phase points whose trajectories never collide in at least one non-trivial sub-
billiard of our system (such a sub-billiard is obtained by taking a non-empty subset of
the cylindric scatterers, and by considering the billiard with these scatterers, only; i.e. we
discard the other scatterers). We note that these submanifolds themselves are defined by
linear conditions on the velocities.

In [Sz(1994)], it is shown that the necessary and sufficient condition of the ergodicity
(and the K-property) of orthogonal cylindrical billiards is as follows.

CONDITION 9.2. {Kj : 1 ≤ j ≤ J } is a connected cover of{1, . . . , d}.
The ball-avoiding theorem used in the proof of sufficiency is the following.

THEOREM 9.3. [Sz(1994)] If Condition 9.2 holds, thenM0
p ∩ M# is a slim subset.

To illustrate the deep analogy with hard-ball systems (cf. in particular, Theorem 8.3)
it is worth formulating the basic lemma which immediately provides this theorem. To
this end for any pair{P−, P+} of non-trivial two-class partitions of theset of coordinates
{1, . . . , d}, let us define

F := F(P−, P+) := {x ∈ M0 \ ∂M : theKjs corresponding to6(S(−∞,0)x) and

6(S(0,∞)x) are partitioned byP− andP+}.
We note thata symbolic collision sequence6 is said to be partitioned by a non-trivial
two-class partitionP of {1, . . . , d} if the Kjs corresponding to the elements of6 form a
connected cover of{1, . . . , d}.
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LEMMA 9.4. If Condition 9.2 holds, thenF is a slim subset.

This lemma can again be settled by the (dynamical) method of pasting; in fact, for
cylindrical billiards the mechanical method does not make sense since the momentum, in
general, is not an invariant of motion any more.

9.2. General case. According to Remark 8.16, the ball-avoiding type condition of
Theorem 6.17 is settled once and for all by Sim´anyi’s Theorem 8.15, at least if we have an
inductive proof in mind. It would be desirable to arrive at a similar success in cylindrical
billiards. One encounters several problems, however. First of all, it is nota priori clear
what a suitable definition of richness should be so that some analogue of hypothesis (2)
of Theorem 6.17 (or that of Theorem 6.12) could be checked. The ideas of the paper
[SSz(2000)], however, suggest the following definition.

Definition 9.5. In a symbolic collision sequence6 = (σ1, . . . , σn) everyσi : 1 ≤ i ≤ n,
by definition, corresponds to a cylinder with base spaceLi . Now we say that6 is
connectediff there is no orthogonal splittingRd = B1 ⊕ B2 with dimBj > 0 and with the
property that for everyi = 1, . . . , n eitherLi ⊂ B1 or Li ⊂ B2.

We say that the symbolic collision sequence6 = (σ1, . . . , σn) is C-rich, with C being
a natural number, if it can be decomposed into at leastC consecutive, disjoint collision
subsequences in such a way that each of them is connected.

Remark 9.6.The condition of connectedness is exactly identical to the orthogonal non-
splitting property, formulated in [SSz(2000)], of the system of subspacesL1, . . . , Ln.
Moreover, by Theorem 4.6 and Proposition 4.9 of the same work, in the particular case
of hard-ball systems our Definition 9.5 reduces precisely to Definition 6.5 given above.

CONJECTURE9.7. For an arbitrary natural numberC, the subset of orbits whose
symbolic collision sequence is notC-rich, is a slim subset ofM .

Finally we formulate a stronger conjecture than the previous one. In principle it is
adapted to a possible proof of ergodicity by an induction on to the number of cylinders.

Fix a finite symbolic collision sequence6 and two cylinders:Cj− andCj+ . Denote
by F(j−,6, j+) the subset of phase pointsx ∈ M for which SR−x avoids the cylinder
Cj− , and there exists at > 0 such that6(S(0,t )x) = 6, and, moreover,St+R+x avoids the
cylinderCj+ .

CONJECTURE9.8. For an arbitrary symbolic collision sequence6 and any pair of
cylindersCj− , Cj+ , the setF(j−,6, j+) is a closed zero-set of codimension two.

This conjecture generalizes Conjecture 8.4 and its eventual proof has an analogous
difficulty as of that one.

III. Related directions

10. Replacing topological dimension by the Hausdorff one
Let T : M → M be a transitive AnosovC2-diffeomorphism of a compact Riemannian
manifoldM . Our ball-avoiding theorems discussed so far expressed the fact that for an
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orbit to be non-dense is an atypical behaviour, at least as long as the notion of dimension
we are considering is the topological one. Surprisingly enough, if we take Hausdorff
dimension, then we cannot recover this atypicality as this will be shown by the following
selection of theorems.

THEOREM 10.1. [U(1991)] LetG be a non-empty open subset inM . Then

HD(G ∩ ND) = dimM

where
ND = ND(T ) := {x ∈ M : TZx is not everywhere dense inM}

andHD denotes Hausdorff dimension.

Urbański has also established an analogous statement for Anosov flows.

THEOREM 10.2. [U(1991)] LetG be a non-empty open subset inM . Then

HD(G ∩ ND) = dimM

whereND = ND(S) is the set from (1.1).

Dolgopyat has found an interesting strengthening of the question answered by the
previous theorems. Note thatND is the set of orbits whose limit points do not fill up
the whole space. ForZ ⊂ M a fixed subset, we can consider the set

LZ := {x ∈ M : lim TZx ∩ Z = ∅}
where limTZx denotes the set of limit points of the orbit{T nx : t ∈ Z}. Dolgopyat’s
theorem sounds as follows.

THEOREM 10.3. [D(1997)] Assume T is a topologically transitive AnosovC2-
diffeomorphism ofT2, the 2-torus, and denote byHD(µ) the Hausdorff dimension of its
Sinai–Ruelle–Bowen measureµ. If Z ⊂ T2 has Hausdorff dimension less thanHD(µ),
then

HD(LZ) = 2.

Conversely, for anyp > HD(µ), one can find a setZ of Hausdorff dimension less thanp
for which the above statement fails.

The proofs of Theorems 10.1–10.3 all exploit the existence of a finite Markov partition.
Furthermore, the verifications of Theorems 10.1–10.2 use a generalization of a result of
McMullen [McM(1987)], providing a lower bound for the Hausdorff dimension through
local densities. On the other hand, to establish Theorem 10.3, Dolgopyat uses formulas
of Manning–McCluskey [MM(1983)] and Young [Y(1982)] which are valid in the two-
dimensional setting and this fact explains the dimensional restriction in Theorem 10.3.

For systems with singularities the Markov partition, even if it exists, cannot be finite and
the previous methods do not work. Nevertheless it is reasonable to expect the following.

CONJECTURE10.4. Theorems 10.1–10.3 are valid for Anosov systems with singularities
(for the axioms of these systems see[Y(1998)] or [Ch(1999)]).
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Finally we note that results analogous to the aforementioned theorems have been
formulated for certain one-parameter subgroups of some Lie groups but even their listing
would go beyond the scope of the present survey. For results and conjectures we refer to
[M(1990)] and [K(1998)] and we just note that in these cases again the method of Markov
partitions is not at hand but one can exploit the rich algebraic structure instead.

11. Ball-avoiding in physics: open systems and repellers
For a better understanding of the pre-turbulent behaviour of the Lorenz model, in 1979,
Pianigiani and Yorke [PY(1979)] initiated the study of open dynamical systems. One main
model they suggested was a dispersive billiard with a hole. Since it is close to our basic
object, let us look at the questions they raise for this model.

Assume we are given a dispersive billiard inQ and a small hole is cut in the table.
Whenever the billiard particle enters the hole, it gets absorbed with its orbit deleted from
the phase space. We select the hole to be an open subsetB of the phase space and assume
that the initial phase point is given by a measurem0. Then let

p+(t) := m0{S[0,t ]x ∩ B = ∅}
be the probability that the particle stays on the table for at least timet , and let

p+
A(t) := m0{S[0,t ]x ∩ B = ∅ andStx ∈ A}

be the probability that it is in the setA in time t .

Question 1.What is the rate with whichp+(t) converges to zero, whent → ∞?

Question 2.Does the weak limit of the conditional measure

lim
t→∞

p+
A(t)

p+(t)
= µ+{A}

exist and if it does what is its value?

Question 3.How doesµ+ depend on the initial distributionm0?

The questions can also be raised in a time-symmetric way. Indeed, denote

p(t) := m0{S[−t,t ]x ∩ B = ∅}
and

pA(t) := m0{S[−t,t ]x ∩ B = ∅ andStx ∈ A}
µ{A} = lim

t→∞
pA(t)

p(t)
.

Then we can pose the same questions for these objects as before.
Pianigiani and Yorke answered Questions 1–3 for expanding maps acting in a domain of

R
d . In a recent work of Chernovet al [ChMT(2000)], the problems are settled for Anosov

diffeomorphisms on surfaces with small holes. Their results and previous rigorous results
of other authors have been based on analytic calculations obtained originally by physicists.
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Out of these—without aiming at completeness—we only mention the works of Kantz
and Grassberger [KG(1985)] (related, in particular, to Theorem 11.5 below), Hsuet al
[HOG(1988)] (related, in particular, to Theorem 11.1 below), and Legrand and Sornette
[LS(1990)] (for an analytic calculation for stadia); for a review we refer to the survey of
Tél [T(1996)]. Since we only plan to give the flavour of the results of [ChMT(2000)], we
will omit the very technical formulation of their conditions.

Let T : M → M be a topologically transitive AnosovC1+α-diffeomorphism of a
compact Riemannian surface andB ⊂ M be a nice open subset. DenotẽM := M \ B and
let, for everyn ≥ 0,

Mn := ∩n
i=0T

iM̃ and M−n := ∩n
i=0T

−iM̃

and, moreover,

M+ := ∩n≥1Mn, M− := ∩n≥1M−n, � := M− ∩ M+.

The set� is calledthe repeller(in the physics literature, more recently they are often called
chaotic saddles).

Now for some more notation. For every finite Borel measurem we denote|m| = m{M},
(T∗m){A} = m{T −1(A ∩ M1)} (A ⊂ M̃ )

T+m := 1

|T∗m|T∗m if |T∗m| 6= 0.

We say that the probability measurem on M̃ is conditionally invariantunderT if
T+m = m, or equivalently if there is aλ+ > 0 such thatT∗m = λ+m. Any
conditionally invariant measurem is, of course, supported onM+, and we also have
λ+ = |T∗m| = m{M−1 ∩ M+} = m{M−1}. Denote byMn, M+, andM the classes
of (SRB-like) probability measures supported onMn, M+, and�, respectively.

THEOREM 11.1. [ChMT(2000)] There is a unique (SRB-like) conditionally invariant
measureµ+ ∈ M+, i.e. the operatorT+ : M+ → M+ has a unique fixed pointµ+.

THEOREM 11.2. [ChMT(2000)] For any measurem0 ∈ M0, the sequence of measures
T n+m0 converges weakly, asn → ∞, to the conditionally invariant measureµ+. Moreover,
the sequence of measuresλ−n+ (T n∗ m0) converges weakly toρ(m0)µ+, where the functions
ρ(m0) andρ−1(m0) are uniformly bounded onM0.

THEOREM 11.3. [ChMT(2000)] The sequenceT −nµ+ converges weakly, asn → ∞, to
a T -invariant probability measurêµ+ ∈ M. The measurêµ+ is ergodic and K-mixing.

The aforementioned results have their natural duals by changing the signs, and then one
obtainsµ−, µ̂−, λ−.

THEOREM 11.4. [ChMT(2000)] If for every periodic pointx ∈ �, T kx = x we have
| detDT kx| = 1, thenµ̂+ = µ̂− = µ̂ andλ+ = λ− = λ. In particular, this happens if the
given Anosov diffeomorphism preserves a smooth invariant measure.

(In [ChMT(2000)] it is also conjectured that̂µ+ is a Bernoulli measure, and has a
fast decay of correlations.) The following theorem not only answers Question 1, most
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interesting from the point of view of physical applications, but also proves theescape
rate formulaof [KG(1985)]. We call γ+ := − logλ+ the escape rateof the system.
Denote byλ+ the positive Lyapunov exponent of the ergodic measureµ̂+, and byh(µ̂+)

its Kolmogorov–Sinai entropy.

THEOREM 11.5. [ChMT(2000)]

γ+ = λ+ − h(µ̂+). (11.6)

An interesting feature of the escape rate formula (11.6) is that its right-hand side is
defined exclusively in terms of the measureµ̂+ given on the repellerM+, whereasγ+ is the
rate with which an initial measure given on wholeM gets pulled down to the repeller. It is
an interesting task to generalize Theorems 11.1–11.5 to Anosov systems with singularities
and subsequently to billiards.

Remark 11.7.For dynamical systems of large linear sizeL, which actually are appropriate
models of transport phenomena, Gaspard and Nicolis [GN(1990)] derived a beautiful
equation replacing the escape rate formula. For definiteness, let us think of a Lorentz
process (i.e. a dispersive, finite-horizon billiard with a periodic configuration of scatterers)
in an elongated periodic container of integer lengthL; the boundary condition in the
direction of they-axis is periodic, whereas those in the direction of thex-axis atx = 0
andx = L are open, i.e.B = ({x = 0} ∪ {x = L}) × S1. This model determines a
repellerM+(L) with SRB-like invariant measurêµ+(L), for which we denote the positive
Lyapunov exponent byλL and the K–S entropy byh(µ̂+(L)). Then, by using the diffusion
approximation for the Lorentz process, Gaspard and Nicolis proved analytically that

D = lim
L→∞

(
L

π2

)
(λL − h(µ̂+(L)))

whereD is the diffusion coefficient of the Lorentz process in the infinite slab (i.e. in the
same model withL = ∞). Further related formulas and models are beyond the scope of
the present survey. As references on this developing direction of research we mention the
papers of Gaspard and Dorfman [GD(1995)], Tél et al [TVB(1996)] and Ruelle [R(1999)];
for earlier related models of transport see the works of Lebowitz and Spohn [LS(1978)]
and Krámli et al [KSSz(1987)].

Notes added in proof.1. According to a recent observation of P. B´alint, N. Chernov,
D. Száz and P. I. T´oth, in Theorem 6.6 (Local ergodicity of semi-dispersive billiards)
one should suppose in addition that the boundaries of the scatterers are algebraic.
Consequently, according to our present understanding this algebraicity condition should
be everywhere assumed where Theorem 6.6 is applied.

2. New developments in the applications of ball-avoiding theorems to ergodicity proofs
of billiards can be found in N. Sim´anyi’s most recent survey: Hard ball systems and semi-
dispersive billiards: hyperbolicity and ergodicity.Hard Ball Systems and the Lorentz Gas
(Encyclopaedia of Mathematical Sciences, vol. 101). Ed. D. Szász. Springer.
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