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We consider the evolution of a long and thin vertically aligned axisymmetric viscous
thread that is composed of an incompressible fluid. The thread is attached to a
solid wall at its upper end, experiences gravity and is pulled at its lower end by
a fixed force. As the thread evolves, it experiences either heating or cooling by its
environment. The heating affects the evolution of the thread because both the viscosity
and surface tension of the thread are assumed to be functions of the temperature. We
develop a framework that can deal with threads that have arbitrary initial shape, are
non-uniformly preheated and experience spatially non-uniform heating or cooling from
the environment during the pulling process. When inertia is completely neglected and
the temperature of the environment is spatially uniform, we obtain analytic solutions
for an arbitrary initial shape and temperature profile. In addition, we determine the
criteria for whether the cross-section of a given fluid element will ever become zero
and hence determine the minimum stretching force that is required for pinching. We
further show that the dynamics can be quite subtle and leads to surprising behaviour,
such as non-monotonic behaviour in time and space. We also consider the effects of
non-zero Reynolds number. If the temperature of the environment is spatially uniform,
we show that the dynamics is subtly influenced by inertia and that the location at
which the thread will pinch is selected by a competition between three distinct
mechanisms. In particular, for a thread with initially uniform radius and a spatially
uniform environment but with a non-uniform initial temperature profile, pinching can
occur either at the hottest point, at the points near large thermal gradients or at the
pulled end, depending on the Reynolds number. Finally, we show that similar results
can be obtained for a thread with initially uniform radius and uniform temperature
profile but exposed to a spatially non-uniform environment.
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1. Introduction
In recent years, with the advent of optical fibres (Fitt et al. 2001), micro-

electrodes (Huang et al. 2003, 2007), microfluidic devices (X. Gong, 2015, private
communication), polymer optical fibres (Argyros 2013) and microscopy (Gallacchi
et al. 2001), there has been a rapid increase in the development of new fabrication
techniques involving components with extremely small scales. A common feature of
these techniques is that they use extensional flows to transform relatively large-scale
bulk materials into the required small-scale components using extensive stretching.
External stretching in these applications is applied either by pulling material at its
ends, and/or by allowing the material to fall under gravity.

Stretching of highly viscous threads in an isothermal setting has been widely
studied. In particular, there has been extensive work on steady drawing. Early
works in this field neglected the effects of surface tension that may potentially
lead to pinching. For the drawing of fibres, pinching must be avoided to ensure that
sufficiently long fibres can be manufactured. However, in other applications, such
as ink-jet printing and pulling micro-electrodes, pinching is desired. Matovich &
Pearson (1969) developed a one-dimensional extensional model that can be applied
to both Newtonian and non-Newtonian flows. Denn (1980) discussed the relevance
of one-dimensional models to experimental studies that involved both glass fibres
and polymer melts. Kaye (1991) considered non-steady flow of non-Newtonian fluids
and demonstrated that the use of Lagrangian coordinates could significantly simplify
the problem. Dewynne, Ockendon & Wilmott (1992) systematically derived the
leading-order equations for extensional flows in slender geometries in the absence
of inertia, while Dewynne, Howell & Wilmott (1994) performed a similar analysis
that included both inertial and gravitational effects. In an isothermal setting, surface
tension effects have been included by a number of authors: Yarin, Gospodinov &
Roussinov (1994) used a one-dimensional model to study a thin hollow tube and
determined conditions for stable drawing. Cummings & Howell (1999) developed a
framework that allowed for the study of the evolution of non-axisymmetric fibres with
inertia, gravity and surface tension. Fitt et al. (2001) derived a one-dimensional model
for capillary drawing including surface tension and internal hole overpressure. Stokes
et al. (2014) developed a method to deal with optical glass fibres with multiple holes.
All of these studies did not explicitly deal with thermal effects.

The viscosity of most materials decreases with temperature. Some materials, such
as glasses and polymers, can exhibit such dramatic changes in viscosity that their
manipulation can only be performed at high temperatures. Industrial processes
therefore often involve preheating before any manipulation occurs and may also
involve applying external heating during the manipulation.

Although surface tension effects can sometimes be negligible in such processes
(Huang et al. 2007), they can play a role if the scales involved are sufficiently small.
A notable example is the drawing of micro-structured optical fibres in which small
holes in the fibre evolve and possibly close up (Stokes et al. 2014). For glasses
and polymers, the surface tension coefficient also depends on the temperature. The
variation of surface tension with temperature is generally not as dramatic as the
variation in viscosity. However, for extending threads, we will show that variations in
viscosity affect the rate at which thinning or thickening of the thread occurs, whereas
changes in surface tension can determine whether the thread thins or thickens.
Therefore, changes in surface tension can fundamentally affect the thread dynamics.
In this paper, we will investigate a thin thread where both viscosity and surface
tension vary with temperature.
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A number of authors have considered how thermal effects give rise to changes
in viscosity that significantly modify the drawing process. The steady-state problem
with thermal effects was first considered by Shah & Pearson (1972a), while stability
was considered by Shah & Pearson (1972b) and Pearson & Shah (1973). Yarin
(1986) showed how the effects of cooling can suppress instabilities. Yin & Jaluria
(1998) showed how the fibre drawing speed, the furnace temperature and the
preform diameter have significant effects on the temperature field in the material.
Gospodinov & Yarin (1997) determined stability conditions for non-isothermal flows
of hollow fibres. Gupta & Schultz (1998) systematically derived the leading-order
approximations to the full Navier–Stokes equations and analysed higher-order
corrections. Yin & Jaluria (2000) compared analytical and numerical approaches
for a fibre drawing process with relatively large diameter preforms. Forest & Zhou
(2001) showed that such flows can have a strong sensitivity to thermal fluctuations.
Huang, Miura & Wylie (2008) considered how dopant diffuses during the drawing
process for threads with temperature-dependent viscosity. Wylie, Huang & Miura
(2007) showed that thermal effects can lead to hysteresis with steady states existing
for which the force required to stretch the thread can decrease as the pulling speed
is increased. Suman & Kumar (2009) considered how non-isothermal effects can give
rise to draw ratio enhancement. Thermally induced variations in viscosity have also
been studied in the setting of gravity currents (Vasilyev, Ten & Yuen 2001). Griffiths
& Howell (2008) considered non-axisymmetric capillary tube drawing. These studies
assumed that the viscosity depends on the temperature, but neglected thermally
induced variations in surface tension.

The problem of a thread that is stretched by gravity or by applying a pulling
force at its end presents significant challenges for direct numerical simulation as
it requires solution of a nonlinear time-dependent free boundary problem that can
exhibit singularity formation (in the form of pinching) at an unknown time. In the
isothermal setting, significant progress has been made. Wilson (1988) and Stokes,
Tuck & Schwartz (2000) provided a one-dimensional theory for a thread extending
under its own weight if inertia is negligible. Inertial effects were included in a
numerical study by Stokes & Tuck (2004) and a particularly accurate numerical
method was determined by Bradshaw-Hajek, Stokes & Tuck (2007). Wylie, Huang &
Miura (2011) determined asymptotic solutions for the case of a thread pulled by its
ends by a fixed force with inertial effects. Wylie, Huang & Miura (2015) performed
a similar analysis for a thread falling under gravity. In the absence of inertia, surface
tension effects were included by Stokes, Bradshaw-Hajek & Tuck (2011). However,
all of these studies neglected thermal effects. Thermal effects that give rise to changes
in viscosity in such initial boundary-value problems have been included by Huang
et al. (2003, 2007) who developed a one-dimensional model for the formation of
glass micro-electrodes. The role played by viscous heating in extensional flows was
considered by Wylie & Huang (2007). As was the case for drawing, these studies
assumed that the viscosity depended on the temperature, but neglected thermally
induced variations in surface tension.

Thermocapillary effects have been the focus of study in a range of situations.
There has been a significant amount of work on thin films. Goussis & Kelly
(1991) considered the stability of a liquid film flowing down in an inclined heated
plane. The case of non-uniform heating was considered by Miladinova, Slavtchev &
Lebon (2002). Marangoni effects were analysed in detail by Kalliadasis, Kiyashko
& Demekhin (2003a) and the Shkadov integral boundary-layer approximation was
considered by Kalliadasis, Demekhin & Ruyer-Quil (2003b). Scheid et al. (2005)
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studied the Benney equation with thermocapillary effects. The rupture of a thin
film was considered by Tilley & Bowen (2005). Hu, Ben Hadid & Daniel (2008)
considered binary liquid films subject to the Soret effect. Samanta (2008) considered
flows down a vertical non-uniformly heated wall. D’Alessio, Pascal & Jasmine (2010)
considered the problem of gravity-driven laminar flow of a thin layer of fluid down
a heated wavy inclined surface. Flow over a heated topography was also studied
by Blyth & Bassom (2012). Chinnov & Shatskiy (2014) experimentally studied
thermocapillary instabilities for a falling thread. An extensive review on the thin
film literature can be found in Craster & Matar (2009). Most thermocapillary studies
neglect temperature dependence in the viscosity, but Kabova, Kuznetsov & Kabov
(2012) considered films with both temperature-dependent viscosity and surface tension.
We note that effects of surface tension on threads and films can be quite different.
In particular, the effects of surface tension tend to be stabilizing in the case of films
and destabilizing in the case of threads.

Thermocapillary effects in jets have been studied by Mashayek & Ashgriz (1995)
who determined conditions for instability and the subsequent formation of satellite
drops. Liquid bridges have also been widely studied. Chen, Sheu & Lee (1990)
determined the maximum stable length of non-isothermal liquid bridges. Kuhlmann
& Rath (1993) studied the steady axisymmetric thermocapillary flow in a cylindrical
liquid bridge. Chen, Abbaschian & Steen (2003) showed that thermocapillary effects
could suppress the Plateau–Rayleigh instability. In the context of core-annular flows,
Dijkstra & Steen (1991) discussed thermocapillary stabilization for the capillary
breakup of an annular film. Wei (2005) derived evolution equations to describe the
leading-order stability of such flows. However, as far as we are aware, there have
been no studies of thermocapillary effects in highly viscous threads.

In this paper, we therefore study a viscous thread that is composed of a fluid
whose viscosity and surface tension coefficient depend on temperature. The thread
is attached to a solid wall, falls under its weight, is subject to preheating and will
also be externally heated or cooled as it is pulled at its free end by a fixed force.
This represents a basic framework that allows for the study of extensional flows
that are subject to different types of heating (both external heating and preheating)
and extensional forces (both gravity and an imposed extensional force). The study is
relevant to threads that are heated and/or cooled and have a length scale sufficiently
small that surface tension is significant. Using appropriate assumptions, we will
develop a long-wavelength model for the mass, momentum and temperature equations
(§§ 2 and 3). For zero Reynolds number and a spatially uniform environment, we
will derive analytical solutions for the thread evolution for arbitrary initial shape and
temperature profiles and show that a surprisingly rich set of phenomena can occur
(§ 4). In particular, we will show that there are a number of mechanisms that can
lead to non-monotonicity in both space and time in the profiles for the cross-sectional
area and temperature. We will also investigate the effects of inertia and show that
the location at which the thread will pinch can be influenced by inertia in subtle
ways that involve the interaction of three distinct mechanisms (§ 5). In particular, for
a thread with initially uniform radius and a spatially uniform environment but with a
non-uniform initial temperature profile, pinching can occur either at the hottest point,
at the points near large thermal gradients or at the pulled end, depending on the
Reynolds number. Similar results can be obtained for a thread with initially uniform
radius and uniform temperature profile but with a spatially non-uniform environment.
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FIGURE 1. Vertical puller with external heater.

2. Formulation
We consider a slender axisymmetric thread of a Newtonian fluid with temperature-

dependent viscosity and surface tension. The thread is suspended from a horizontal
boundary, experiences gravity and is pulled at its free end by a constant extensional
force (figure 1). Prior to stretching, the thread is preheated, and during the stretching
process, the thread experiences external heating or cooling from the environment.

We start with the axisymmetric incompressible Navier–Stokes equations and the heat
equation as given by Fitt et al. (2001)

ρ(ut + uux + vur)=−px + (σxx)x + 1
r
(rσrx)r + ρg, (2.1)

ρ(vt + uvx + vvr)=−pr + (σrx)x + 1
r
(rσrr)r − σφφ

r
, (2.2)

ux + 1
r
(rv)r = 0, (2.3)

ρcp(θt + uθx + vθr)= k
(

1
r
(rθr)r + θxx

)
, (2.4)

where t is time, x is the distance measured along the axis of the thread, r is the
distance measured radially outward from the centre of the thread, u is the velocity
in the x direction, v is the velocity in the r direction, θ is the temperature, ρ is the
density of fluid, p is the pressure relative to the ambient air pressure, g is gravity
(which is acting in the axial direction), k is the thermal conductivity and cp is the
specific heat capacity. For optically transparent materials (such as glasses) that are
subjected to radiative heating, equation (2.4) may not be a reasonable assumption as
radiative energy may be absorbed in the interior of the thread. However, given a model
for heat flux, see for example, Taroni et al. (2013), we will still, in principle, be able
to use a broadly similar approach to the one we will use in this paper. The viscous
stress components are given by

σxx = 2µ(θ)ux, σrr = 2µ(θ)vr, σrx = σxr =µ(θ)(ur + vx),

σφφ = 2µ(θ)v
r

, σrφ = σφr = 0, σzφ = σφz = 0,

 (2.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.426


Extension of a viscous thread 725

where φ is the angle measured around the axis of the thread and µ is the dynamic
viscosity of fluid, which depends on the temperature θ .

The viscosity of the air is negligible compared to the viscosity of the thread, so on
the free surface of the thread, there is a balance between the fluid stress and surface
tension in the normal and tangential directions

n · (−pI + σ ) · n=−γ (θ)κ on r= R(x, t), (2.6)
τ · (−pI + σ ) · n=∇sγ (θ) · τ on r= R(x, t), (2.7)

where R(x, t) is the radius of the thread, I is the identity matrix, σ is the viscous
stress tensor with components given by (2.5), γ is the surface tension coefficient and
κ is the mean curvature of the free surface, given by

κ = 1
R(1+ R2

x)
1/2
− Rxx

(1+ R2
x)

3/2
. (2.8)

In (2.7), ∇s is the surface gradient, given by ∇s = (I − nn) · ∇, where ∇ = (∂x, ∂r,
(1/r)∂φ)T. The vectors n and τ are the unit vectors on the free surface in the outward
normal and tangential directions, given by

n= 1√
1+ R2

x

(−Rx, 1, 0)T and τ = 1√
1+ R2

x

(1, Rx, 0)T, (2.9a,b)

respectively. Here the three components of the above vectors are in the x, r and φ
directions, respectively. In addition, on the free surface, the kinematic condition is

Rt + uRx = v on r= R(x, t). (2.10)

At the upper boundary, we impose a zero normal velocity condition and at the
lower boundary we impose a fixed extensional force, F. In fact, when solving the
full Navier–Stokes equations, one typically requires two boundary conditions at both
ends. However, in this paper we will use long-wavelength asymptotics that represent
a singular perturbation of the Navier–Stokes equations and thus only require one
boundary condition at each end. At both ends of the thread, there will be thin
boundary layers in which the solutions to the long-wavelength equations rapidly
adjust to accommodate the neglected boundary conditions.

At the centreline of the thread, there is no heat flux, no viscous stress and no mass
flux, so we have

rθr→ 0, µ(θ)rur→ 0, rv→ 0, as r→ 0. (2.11a−c)

Additionally, there is a heat flux balance at the free surface. In general, the heat flux
coming from the environment will include both radiative and convective components
and can be a complicated function of x and θ that we denote by −H(x, θ). Then, the
heat flux condition on the free surface is

−kn · ∇θ =−H(x, θ) on r= R(x, t). (2.12)

Different heat transfer models apply in different temperature ranges. For example,
in glass manufacture, which can require heater temperatures in excess of 1000 ◦C
(Kostecki et al. 2014), radiative transfer will be dominant. Whereas, for polymer
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processing, which generally occurs at significantly lower temperatures, heat transfer is
often modelled using the Newtonian law (Denn 2014). We will attempt to present our
analysis for a general heating model, but it sometimes proves convenient to specify
a particular model. In such cases, we will use Newton’s heat transfer law

H(x, θ)= hw(θh(x)− θ) on r= R(x, t), (2.13)

where hw is the heat transfer coefficient and the function θh(x) represents the
temperature of the external heater. This formulation also allows for external cooling,
which occurs if θh is less than θ .

Finally, we must adopt models for the temperature dependence of the viscosity and
the surface tension. For materials such as polymers and glasses, the viscosity decreases
dramatically with temperature. Temperature increases of approximately 200 ◦C can
induce viscosity decreases of 1–3 orders of magnitude for typical polymers (Wang
& Porter 1995; Kalpakjian & Schmid 2007) and can induce viscosity decreases
of 2–3 orders of magnitude for typical glasses near the working point (Seward III
& Vascott 2005; Fluegel 2007; Bingham 2010). For most materials, the variation of
surface tension is not as dramatic as the viscosity, but can still be significant. For
example, some silicone oils exhibit a decrease of surface tension of more than 35 %
when the temperature increases from 20 to 150 ◦C (Roe 1968), and polyethylene
exhibits a decrease of more than 25 % when the temperature increases from 20
to 180 ◦C (Wu 1969). Typical glasses exhibit a decrease of approximately 10 %
when the temperature increases by 400 ◦C (Bansal & Doremus 1986). Changes in
surface tension are significantly smaller than changes in viscosity, thus many authors
neglect variations in surface tension. However, we will show that changes in viscosity
affect the time scale of the thread evolution, whereas changes in surface tension
can determine whether a thread thins or thickens. Therefore, even relatively modest
changes in surface tension can have important consequence for the thread dynamics.

We will model the viscosity–temperature relation using an exponential law, given
by

µ(θ)= µ̂e−β(θ−θ̂ ), (2.14)

where β is a positive constant representing how rapidly the viscosity decreases with
temperature, θ̂ is a characteristic initial temperature and µ̂ is the viscosity at the
initial characteristic temperature. This model is widely used in the polymer and glass
literature (Vlachopoulos 2003; Huang et al. 2007; Vlachopoulos & Polychronopoulos
2012). We will model the surface-tension–temperature relation using a linear function,
given by

γ (θ)= γ̂ (1− α(θ − θ̂ )), (2.15)

where α is a positive constant representing how rapidly the surface tension decreases
with temperature and γ̂ is the surface tension at the initial characteristic temperature.
This model is also widely used in the polymer and glass literature (Roe 1968; Wu
1969, 1970; Bansal & Doremus 1986). We note that, for most materials, β >α, that is,
the variation of viscosity with temperature is more rapid than the variation of surface
tension.

We denote the initial length of the thread as l and the initial characteristic radius
of the thread as R̂. We denote the characteristic temperature difference as θ̄ . In the
case of heating, θ̄ will be the characteristic difference between the initial temperature
of the thread and the heater. In the case of cooling, θ̄ will be the characteristic
difference between the initial temperature of the thread and the environment.
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We non-dimensionalize the above equations (2.1)–(2.5) and conditions (2.6)–(2.13)
using the following scales:

x= lx′, r= R̂r′, R= R̂R′, t= 3R̂µ̂√
πγ̂

t′, u=
√

πγ̂ l

3µ̂R̂
u′, v =

√
πγ̂

3µ̂
v′,

θ = θ̂ + θ̄ θ ′, θh(x)= θ̂ + θ̄ θ ′h(x), p=
√

πγ̂

3R̂
p′, µ= µ̂µ′, γ = γ̂ γ ′.

 (2.16)

After substituting the above scalings and dropping primes, the resulting non-
dimensional equations for (2.1)–(2.4) are

3Reε2(ut + uux + vur) = −ε2px + 1
r
(µ(θ)rur)r + ε2(2µ(θ)ux)x

+ ε
2

r
(µ(θ)rvx)r + 3ε2Bo, (2.17)

3Reε2(vt + uvx + vvr)=−pr + (µ(θ)ur)x + ε2(µ(θ)vx)x + 1
r
(2rµ(θ)vr)r − 2µ(θ)v

r2
,

(2.18)

ux + 1
r
(rv)r = 0, (2.19)

Peε2(θt + uθx + vθr)= 1
r
(rθr)r + ε2θxx, (2.20)

where

ε= R̂
l
, Pe=

√
πρcpγ̂ l2

3µ̂kR̂
, Re=

√
πργ̂ l2

9µ̂2R̂
, Bo= ρgR̂l√

πγ̂
. (2.21a−d)

Here, ε is the aspect ratio, Pe is the Peclet number that compares along-thread
advection with along-thread conduction, Re is the Reynolds number that compares
the relative importance of inertial and viscous effects and Bo is the Bond number
that compares the gravitational and surface tension forces.

On the thread surface, the dimensionless normal and tangential stress conditions are

−p+ 1
1+ ε2R2

x

(2µ(θ)vr − 2µ(θ)Rxur + ε2(2µ(θ)uxR2
x − 2µ(θ)Rxvx))

=−3γ (θ)√
π

(
1

R(1+ ε2R2
x)

1/2
− ε2Rxx

(1+ ε2R2
x)

3/2

)
on r= R(x, t), (2.22)

µ(θ)ur + ε2(µ(θ)vx + 2µ(θ)Rxvr − 2µ(θ)Rxux −µ(θ)urR2
x)− ε4µ(θ)R2

xvx

= 3ε2(1+ ε2R2
x)

1/2(γ (θ))x√
π

on r= R(x, t). (2.23)

The non-dimensional kinematic boundary condition is,

Rt + uRx = v on r= R(x, t). (2.24)

The non-dimensional regularity conditions at the centreline are

rθr→ 0, µ(θ)rur→ 0, rv→ 0, as r→ 0. (2.25a−c)
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The non-dimensional heat flux condition for Newton’s law is

θr − ε2Rxθx√
1+ ε2R2

x

= ε
2PeH
2
√

π
(θh(x)− θ) on r= R(x, t), (2.26)

where

H = 6µ̂hw

ρcpγ̂
. (2.27)

Here, H is a dimensionless number that compares the external heat flux with along-
thread advection.

Following many previous studies (Fitt et al. 2001; Stokes & Tuck 2004; Huang
et al. 2007, 2008; Stokes et al. 2011), we proceed by assuming that the aspect ratio
is small, and posing the following asympotic expansions

θ = θ (0) + ε2θ (1) + ε4θ (2) + · · · , (2.28)
u= u(0) + ε2u(1) + ε4u(2) + · · · , (2.29)
v = v(0) + ε2v(1) + ε4v(2) + · · · , (2.30)
p= p(0) + ε2p(1) + ε4p(2) + · · · . (2.31)

It proves to be convenient to start by analysing the non-dimensional heat
equation (2.20) and show that, under an appropriate approximation, the leading-order
temperature profile is independent of the radial coordinate.

Substituting (2.28)–(2.30) into (2.20), (2.25)–(2.26) and formally retaining only
O(1) terms, we obtain

1
r
(rθ (0)r )r = 0, (2.32)

rθ (0)r → 0 as r→ 0, (2.33)
θ (0)r = 0 on r= R(x, t). (2.34)

From (2.32) to (2.34), we immediately see that θ (0) is a function of x and t only.
Hence, at the next order, (2.20), (2.25) and (2.26) give

Pe(θ (0)t + u(0)θ (0)x )= 1
r
(rθ (1)r )r + θ (0)xx , (2.35)

rθ (1)r → 0 as r→ 0, (2.36)

θ (1)r − Rxθ
(0)
x =

PeH
2
√

π
H(x, θ (0)) on r= R(x, t), (2.37)

where
H(x, θ)= θh − θ. (2.38)

We note that H(x, θ) > 0 corresponds to heating while H(x, θ) < 0 corresponds to
cooling.

The leading-order temperature, θ (0), does not depend on the radial coordinate r and
so, at leading order, the viscosity is also independent of r. Moreover, the leading-order
approximation for (2.17) gives

1
r
(µ(θ (0))ru(0)r )r = 0. (2.39)
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Extension of a viscous thread 729

Integrating the above equation and using the leading-order regularity conditions (2.25),
it is readily seen that the leading-order velocity, u(0), is also independent of r. Hence,
we can integrate (2.35) and apply the boundary conditions (2.37) to obtain

θ (0)t + u(0)θ (0)x =
H H(x, θ (0))√

A
+ 1

PeA
(Aθ (0)x )x, (2.40)

where A=πR2 is the dimensionless cross-sectional area of the thread.
Having shown that the leading-order temperature, and hence the viscosity, are

independent of r, the derivation of the leading-order long-wave momentum and
continuity equations is broadly similar to Fitt et al. (2001), except that an extra
surface tension derivative term appears in the force balance in the tangential direction
at the free surface. We therefore only briefly derive these equations and refer the
reader to Fitt et al. (2001) for a detailed derivation.

Using the leading-order continuity equation (2.19) and the leading-order r-
momentum equation (2.18), it can be readily seen that the leading-order pressure,
p(0), is independent of r and the following relation is valid

v(0) =− r
2

u(0)x . (2.41)

The leading-order normal stress condition gives,

−p(0) + 2µ(θ (0))v(0)r =−
3√
π

γ (θ (0))

R
on r= R(x, t). (2.42)

In addition, the first-order x-momentum equation (2.17) gives

3Re(u(0)t + u(0)u(0)x )=−p(0)x +
1
r
(µ(θ (0))ru(1)r )r + (2µ(θ (0))u(0)x )x+

1
r
(µ(θ (0))rv(0)x )r + 3Bo.

(2.43)
The first-order tangential condition (2.23) on the free surface yields

µ(θ (0))u(1)r +µ(θ (0))v(0)x + 2µ(θ (0))Rxv
(0)
r − 2µ(θ (0))Rxu(0)x

= 3√
π
(γ (θ (0)))x on r= R(x, t). (2.44)

All of the above equations (2.41)–(2.44) are the same as Fitt et al. (2001) except for
(2.44), which has an extra term 3/

√
π(γ (θ (0)))x due to the variation of the surface

tension coefficient on the free surface.
Multiplying (2.43) by r, integrating over r and using (2.41), (2.42) and (2.44), one

can obtain the following leading-order momentum equation

Re(u(0)t + u(0)u(0)x )=
1
R2
(µ(θ (0))R2u(0)x )x −

1√
π

(
γ (θ (0))

R

)
x

+ 2√
π

(γ (θ (0)))x

R
+ Bo.

(2.45)
After some simple calculations, the second and third terms on the right-hand side of
(2.45) can be combined into a single term. Hence (2.45) yields

Re(u(0)t + u(0)u(0)x )=
1
A
(µ(θ (0))Au(0)x )x +

1
A
(γ (θ (0))

√
A)x + Bo. (2.46)
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730 D. He, J. J. Wylie, H. Huang and R. M. Miura

Moreover, the mass conservation equation can be easily obtained by substituting (2.41)
into the dimensionless kinematic boundary condition (2.24), which is given by

At + (Au(0))x = 0. (2.47)

For notational brevity we drop the superscript zero and obtain the following leading-
order system for the mass, momentum and heat equations

At + (Au)x = 0, (2.48)

Re(ut + uux)= 1
A
(µ(θ)Aux + γ (θ)

√
A)x + Bo, (2.49)

θt + uθx = H H(x, θ)√
A

+ 1
PeA

(Aθx)x. (2.50)

The above derivation has been performed for conductive heat transfer in the interior
of the thread and Newton’s model for heat transfer on the free surface, but if
other models of heat transfer are adopted, only the right-hand side of (2.50) will
be affected. We note that, even as pinching is approached, these long-wavelength
equations precisely capture the relevant contributions to the Navier–Stokes equation
(Eggers 1993).

In addition, the dimensionless functions describing the temperature variation of
viscosity and surface tension are

µ(θ)= e−bθ and γ (θ)= 1− aθ, (2.51a,b)

respectively, where
b= βθ̄, a= αθ̄. (2.52a,b)

Equations (2.48)–(2.50) are also subject to initial and boundary conditions. In this
paper, we will consider the following conditions. Initially, the thread has an arbitrary
shape, an arbitrary temperature profile and zero velocity, that is

A(x, 0)= A0(x), θ(x, 0)= θ0(x) and u(x, 0)= 0. (2.53a−c)

At the free end of the thread, there is a constant extensional force

µ(θ)Aux + γ (θ)
√

A=F at x= `(t), (2.54)

where
F = F√

πγ̂ R̂
, (2.55)

and F compares the imposed extensional force and surface tension force. Here `(t)
is the location of the free end of the thread which must be obtained by solving

d`
dt
= u(`(t), t). (2.56)

At the upper boundary, the zero velocity condition applies,

u= 0 at x= 0. (2.57)

We will further assume that the thread is initially located between x= 0 and x= 1, so
that (2.56) has the initial condition `(0)= 1.
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Extension of a viscous thread 731

In order to have an idea of the order of magnitude of the various dimensionless
quantities in a realistic setting, we consider scales that are appropriate for polymer
processing (Roe 1968; Wu 1969, 1970; Vlachopoulos 2003; Vlachopoulos &
Polychronopoulos 2012; Ashby & Jones 2013; Denn 2014)

θ̂ ∼ 102 K, ρ ∼ 103 kg m−3, R̂∼ 10−4 m, l∼ 10−2 m, γ̂ ∼ 10−2 N m−1,

µ̂∼ 102 kg m−1 s−1, cp ∼ 103 J K−1 kg−1, k∼ 1 W m−1 K−1,

hw ∼ 10 W m−2 K−1, θ̄ ∼ 102 K.


(2.58)

In different applications, the applied extensional force can take widely varying values.
For example, the force is zero in purely gravity-driven extrusion, while the force
may be very large if extremely rapid stretching is required. We will consider the
case in which the force is of comparable order to the weight of the thread, namely
F ∼ 10−6 N. In addition, for most polymers, αγ̂ has the order from 10−5 m−1 K−1

to 10−4 N m−1 K−1 (Roe 1968; Wu 1969, 1970), while β typically has the order
from 10−2 K−1 to 10−1 K−1 (Vlachopoulos 2003; Vlachopoulos & Polychronopoulos
2012).

These scales give the following order-of-magnitude estimates for the dimensionless
parameters:

Pe=O(102), ε=O(10−2), Re=O(10−3), Bo=O(1),
F =O(1), a=O(10−1)−O(1), b=O(1)−O(10), H =O(1).

}
(2.59)

The size of the axial diffusion term in (2.50) is Pe−1, which is O(10−2) and hence is
small, and we will neglect it in what follows. For any small non-zero Re, Wylie et al.
(2011) have shown that if A becomes sufficiently small, then inertial effects cannot be
neglected. We will therefore retain the inertial terms. As mentioned, for most materials,
the variation of viscosity with temperature is more rapid than the variation of surface
temperature, and this implies b>a. Broadly similar estimates can be obtained for glass
manufacturing at very high temperatures between the working point and the melting
point where its viscosity is 10–103 Pa s (Bingham 2010).

We note that the above derivation assumes a Newtonian fluid. Of course, some
polymers can exhibit viscoelastic behaviour under certain flow conditions. However,
Ashby & Jones (2013) pointed out that typical linear polymers are well approximated
as a Newtonian viscous fluid for temperatures above 100 ◦C. Moreover, viscoelastic
effects are generally neglected for polyester and nylon processing (Denn 2014), and
we will therefore neglect viscoelastic effects in this paper. We note that the derivation
of (2.48)–(2.50) requires ε2Pe� 1 and ε2Re� 1.

3. Lagrangian form of the model equations
We transform the above system from Eulerian coordinates (x, t) into Lagrangian

coordinates (ξ , τ ), where τ = t is time. Each fluid element is labelled by its initial
location ξ and fluid elements travel with fluid velocity xτ = u. Then,

∂

∂τ
= ∂

∂t
+ u

∂

∂x
(3.1)

and
∂

∂ξ
= ∂x
∂ξ

∂

∂x
. (3.2)
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The initial conditions are given by

A(ξ , 0)= A0(ξ), u(ξ , 0)= 0, θ(ξ, 0)= θ0(ξ), x(ξ , 0)= ξ . (3.3a−d)

Applying (3.1)–(3.2) to the conservation of mass (2.48), we obtain

Aτ + A
uξ
xξ
= 0. (3.4)

Using u= xτ , (3.4) can be rewritten as (Axξ )τ = 0. Integrating with respect to τ and
applying the initial condition (3.3), we obtain Axξ = A0. Thus, (3.2) becomes

∂

∂ξ
= A0

A
∂

∂x
, (3.5)

and so (2.48)–(2.50) become

Aτ + A2

A0
uξ = 0, (3.6)

Reuτ = 1
A0
(−µ(θ)Aτ + γ (θ)

√
A)ξ + Bo, (3.7)

θτ = H H(x, θ)√
A

. (3.8)

In order to compute the location of a given fluid element, one must solve

xξ = A0

A
. (3.9)

At the upper boundary, the zero velocity condition is

u= 0 at ξ = 0. (3.10)

Transforming the free boundary condition (2.54) into Lagrangian coordinates and
recalling that the free end of the thread is at ξ = 1, we obtain

−µ(θ)Aτ + γ (θ)
√

A=F at ξ = 1, (3.11)

which states that the stretching force at the free end of the thread is F .

4. Analytical solutions for zero inertia with a spatially uniform heater
We now consider the case of arbitrary initial shape A0(ξ), arbitrary initial

temperature profile θ0(ξ), zero inertia Re = 0 and a spatially uniform heater
H(x, θ) = H(θ). In this case, the cross-sectional area and temperature for each
fluid element evolve independently of all other fluid elements and we can obtain
analytical solutions. Neglecting the inertial term by setting Re = 0 in (3.7), we can
integrate with respect to ξ and after using the boundary condition (3.11), we obtain

Aτ = γ (θ)
√

A−F ∗(ξ)
µ(θ)

for 0 6 ξ 6 1, (4.1)

where

F ∗(ξ)=F + Bo
∫ 1

ξ

A0(ξ
′) dξ ′. (4.2)
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Extension of a viscous thread 733

Examining (4.1), we easily see that viscosity affects the time scale of the thread
evolution but not the sign of Aτ , whereas the surface tension coefficient can determine
the sign of Aτ , that is whether the thread thins or thickens. Thus, even relatively
modest changes in surface tension can have important consequence for the thread
dynamics.

Since H(x, θ)=H(θ), equation (3.8) becomes

θτ = H H(θ)√
A

. (4.3)

Dividing (4.1) by (4.3) we obtain a Bernoulli-type ordinary differential equation

∂A
∂θ
= 2g(θ)A− 2F ∗(ξ)h(θ)

√
A, (4.4)

where

g(θ)= γ (θ)

2µ(θ)H H(θ)
and h(θ)= 1

2µ(θ)H H(θ)
. (4.5a,b)

The solution of (4.4) subject to the boundary condition (3.3) is

A= exp
[

2
∫ θ

θ0(ξ)

g(θ ′) dθ ′
] {√

A0(ξ)−F ∗(ξ)G(θ, θ0(ξ))
}2
, (4.6)

where

G(θ, θ0(ξ))=
∫ θ

θ0(ξ)

h(θ ′) exp

[
−
∫ θ ′

θ0(ξ)

g(θ ′′) dθ ′′
]

dθ ′. (4.7)

For the case of heating (H > 0), θ will be an increasing function of time. Whereas,
for the case of cooling (H < 0), θ will be a decreasing function of time. Therefore,
in both cases, the expression G(ξ , θ) defined in (4.7) is an increasing function of
time. We also note that G(ξ , θ) is zero at τ = 0. Equation (4.6) reflects the fact
that the cross-section varies due to two mechanisms. First, the cross-section tends
to increase due to surface tension. This is reflected in the exponential term which
increases monotonically. Second, the cross-section tends to decrease as a result of
gravity and the imposed fulling force. This is reflected in the F ∗(ξ)G(θ ′, θ0(ξ)) term.
In some sense, G represents the relative importance of thinning (due to gravity and
the imposed fulling force) and broadening (due to surface tension). We note that if
expressed in dimensional terms, G−1 has the same units as surface tension.

Substituting (4.6) into (4.3), we obtain a separable equation that has solution

τ =
∫ θ

θ0(ξ)

1
H H(θ ′)

exp

[∫ θ ′

θ0(ξ)

g(θ ′′) dθ ′′
] {√

A0(ξ)−F ∗(ξ)G(θ ′, θ0(ξ))
}

dθ ′. (4.8)

For each fluid element (labelled by ξ ), equation (4.6) gives A as a function of θ and
ξ while (4.8) gives τ as a function of θ and ξ . Therefore, when combined, (4.6) and
(4.8) implicitly define A and θ as functions of ξ and τ .
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4.1. Dynamics of a single fluid element
We now consider the various types of behaviour that (4.6) and (4.8) can exhibit. In
analysing these two equations, it is important to note that if the cross-sectional area A
of any of the fluid elements were to become zero, then the thread would experience
a topological change and the two ends of the thread would no longer be connected to
one another. If this were to occur, the thread would no longer transmit the extensional
force F throughout its length and so (4.1) would no longer be valid. In fact, for
any small non-zero Re, Wylie et al. (2011) have shown that if A becomes sufficiently
small, then the inertial effects cannot be neglected. Hence, the following analysis will
only be valid as long as A is sufficiently large for all fluid elements.

4.1.1. Early time dynamics
The early time behaviour of (4.6) and (4.8) is straightforward to address using

(4.1). If F ∗(ξ) < γ (θ0(ξ))
√

A0(ξ), then A will initially increase, whereas if F ∗(ξ) >
γ (θ0(ξ))

√
A0(ξ), then A will initially decrease. In the case F ∗(ξ)= γ (θ0(ξ))

√
A0(ξ),

Aτ is initially zero. However, since surface tension decreases with temperature, A will
increase (decrease) subject to cooling (heating).

4.1.2. Critical force for pinching
Using (4.6), the question of whether A can become zero depends on whether G

can increase to the value
√

A0(ξ)/F ∗(ξ). Examining (4.3), we see that as τ→∞, a
steady state might be achieved in which either H(θ)→ 0 or A→∞. The only value
of θ for which H(θ)= 0 is θ = θh. Moreover, from (4.6), we see that A must remain
bounded if θ is bounded away from θh. This implies that the only way that a steady
state of (4.3) can be achieved is if θ = θh and hence θ→ θh as τ→∞. Hence, for a
given fluid element, G will increase until the fluid element equilibrates with the heater
temperature, that is θ = θh. However, this can only occur if A does not become zero.
From (4.6), we hence require

√
A0(ξ)−F ∗(ξ)G(θh, θ0(ξ)) > 0 so that A will always

be bounded away from zero. We therefore define the critical force

Fc(ξ)≡
√

A0(ξ)

G(θh, θ0(ξ))
, (4.9)

below which the cross-section will never become zero at the location ξ . For values of
F ∗(ξ) >Fc(ξ), equations (4.6) and (4.8), if they remain valid, predict that the cross-
sectional area A will become zero at a finite time, τ∗(ξ). When A = 0, we can use
(4.6) to obtain the value of θ = θ∗(ξ) by solving

√
A0(ξ)−F ∗(ξ)G(θ∗(ξ), θ0(ξ))= 0.

Then τ∗(ξ) can be obtained by simply substituting θ = θ∗(ξ) into (4.8).
It is interesting to note that, if F ∗(ξ) >Fc(ξ), then θ∗(ξ) 6= θh and H(θ∗(ξ)) 6= 0.

That is, if (4.6) and (4.8) remain valid, the thread does not, in general, equilibrate with
the heater. Using (4.3), we also see that θτ →∞ as τ → τ∗(ξ). In fact, from (4.1),
we see that Aτ tends to a negative constant as A→ 0 since θ→ θ∗(ξ) and A→ 0 as
τ→ τ∗(ξ). Thus, A∼ τ∗(ξ)− τ as τ→ τ∗(ξ). Using (4.3), this implies that θ − θ∗(ξ)
tends to zero like

√
τ∗(ξ)− τ .

This phenomenon is based on the assumption that Re=0. For Re>0, equations (4.6)
and (4.8) will break down when A becomes sufficiently small (see Wylie et al. 2011
for the isothermal case of 0< Re� 1). When this occurs, the thread will experience
the type of surface-tension-driven pinching described by Eggers (1993) and Eggers &
Villermaux (2008). For this type of pinching, the radius (rather than the area) tends to
zero linearly with τ and so using (4.3) we see that H(θ)→H(θ∗(ξ))= 0 as pinching
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FIGURE 2. Cooling. (a) Evolution of cross-sectional area A with different F ∗,
(b) evolution of temperature θ with different F ∗. Parameters and conditions: a=0.1, b=1,
H =−1, H = 1, Fc = 2.6692.

is approached. Therefore, although the Re= 0 equations suggest that the thread need
not equilibrate with the heater at pinching, for any non-zero Re, the thread must
equilibrate to the heater as it pinches.

In summary, for a fixed location ξ , the relation between F ∗(ξ) and γ (θ0(ξ))
√

A0(ξ)

determines the initial growth or decay for A, whereas the relation between F ∗(ξ) and
Fc(ξ) determines whether A can ever become zero.

4.1.3. Numerical examples
We now illustrate the above conclusions by considering some examples for a

fluid element at a location ξ with θ0(ξ) = 0, A0(ξ) = 1. Here, and for all numerical
examples in this paper, we set H = 1. These values of θ0 and A0 imply that A will
initially increase if F ∗ < 1 and decrease if F ∗ > 1. For simplicity, we will consider
heating and cooling of the form H(θ)=±1, which corresponds to the case in which
the equilibration temperature is assumed to be sufficiently far from the operating
temperatures that any changes in temperature do not significantly change the heat
flux. Similar results are obtained if one uses the full expression for H(θ).

Cooling. In figure 2, we show the results for a cooled thread for which the viscosity
varies more rapidly with temperature than the surface tension does (b > a). The
cooling causes both the surface tension and viscosity to increase as time progresses.
Using a = 0.1 and b = 1 and substituting θh =∞ into (4.9) gives Fc = 2.6692. For
F ∗ = 3 > Fc, A decreases monotonically to zero in a finite time and θτ → −∞
as A→ 0, as predicted above. For F ∗ < 1, surface tension always dominates the
stretching force in (4.1) and so A monotonically increases. Moreover, as the thread
cools, the surface tension increasingly dominates the stretching force and the viscosity
increases faster than the surface tension. Therefore, Aτ decreases as time increases.
For Fc > F ∗ = 1.1 > 1, the stretching force initially dominates and A decreases.
However, as the thread cools, the surface tension γ (θ) increases faster than

√
A

decreases in (4.1) and eventually γ (θ)
√

A>F ∗ and thereafter A increases.

Heating. In figure 3, we also consider the case where viscosity varies more rapidly
with temperature than the surface tension does (b > a), but with heating rather than
cooling. The heating causes both the surface tension and viscosity to decrease as
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FIGURE 3. Heating. (a) Evolution of cross-sectional area A with different F ∗,
(b) evolution of temperature θ with different F ∗. Parameters and conditions: a=0.1, b=1,
H = 1, H = 1, Fc = 0.8997.

time progresses. Using a = 0.1 and b = 1 and substituting θh = ∞ into (4.9) gives
Fc = 0.8997. For F ∗ < Fc = 0.8997, A will monotonically increase. Moreover,
as the thread heats up, the surface tension, γ (θ), decreases more slowly than

√
A

increases in (4.1) and hence γ (θ)
√

A − F ∗ increases with time. In addition, the
viscosity decreases with time and hence Aτ increases with time. For F ∗ > 1, A
monotonically decreases until it becomes zero in a finite time. For 1>F ∗ >Fc, the
surface tension initially dominates and A increases. However, as the thread heats up,
the surface tension γ (θ) decreases faster than

√
A increases in (4.1) and eventually

γ (θ)
√

A<F ∗ and thereafter A decreases until it becomes zero in a finite time.
The above study describes the dynamics of a single fluid element. All of the fluid

elements evolve independently and so the dynamics appears to be simple, but the
collective behaviour can still lead to a number of subtle effects. This is due to the
fact that the condition for pinching depends on the evolution of viscosity and surface
tension as a function of temperature. Therefore, in order to understand the dynamics
of the thread, one needs to consider the dynamics of all of the fluid elements together,
as described in the following subsection.

4.2. Dynamics of stretching of the fluid filament
The pinching condition for a single fluid element at location ξ is F ∗(ξ) >
Fc(ξ), or alternatively F > Fc(ξ) − Bo

∫ 1
ξ

A0(ξ
′) dξ ′. Therefore, the critical

force for the entire filament is given by minξ (Fc(ξ) − Bo
∫ 1
ξ

A0(ξ
′) dξ ′). For

F >minξ (Fc(ξ)− Bo
∫ 1
ξ

A0(ξ
′) dξ ′), the thread will pinch. In order to find the time

at which the thread pinches, one needs to find the fluid element that first achieves
A= 0, which corresponds to finding minξ τ∗(ξ). The location of the pinching is then
given by finding the value of ξ at which this is achieved, namely argminξ τ∗(ξ).

We now consider a set of examples that involve both heating and cooling with a
viscosity that varies more rapidly with temperature than surface tension. The basic
mechanisms involving thermal effects are broadly similar for both zero and non-zero
Bo threads. Therefore, we mostly focus on results for Bo= 0 in this paper. However,
we give two examples with Bo 6= 0 (figures 13 and 14) in the final examples at the
end of § 5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

42
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.426


Extension of a viscous thread 737

 0.5

 0

1.0

1.5

2.0

2.5

3.0

3.5

 0.5

 0

1.0

1.5

2.0

2.5

(a) (b)

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

A

x x

FIGURE 4. Results in Eulerian coordinates for heating with θ0(ξ)=1 and where A0(ξ) has
a minimum point. (a) Evolution of cross-sectional area A, (b) evolution of temperature θ .
Parameters and conditions used: a= 0.1, b= 1, H = 1, H = 1, A0(ξ)= 0.5+ 2(ξ − 0.5)2,
θ0(ξ)= 0, F = 0.645>Fc(ξ = 0.5), Bo= 0.
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FIGURE 5. Results in Lagrangian coordinates for heating with θ0(ξ)= 1 and where A0(ξ)
has a minimum point. (a) Evolution of cross-sectional area A, (b) evolution of temperature
θ . Parameters and conditions used: a= 0.1, b= 1, H= 1, H = 1, A0(ξ)= 0.5+ 2(ξ − 0.5)2,
θ0(ξ)= 0, F = 0.645>Fc(ξ = 0.5), Bo= 0. Note that the evolution of A near ξ = 0.5 is
non-monotonic.

4.2.1. Uniform heating
We first consider the case of uniform heating with two different initial conditions.

In figures 4 and 5, we show results for an example with uniform heating in which
the initial temperature is zero and the initial cross-section has a minimum at its
midpoint. Figure 4 shows the results in Eulerian coordinates while figure 5 shows
the results in Lagrangian coordinates. As one can see from figure 4, it is very hard
to visualize the early time evolution clearly in Eulerian coordinates since the thread
is dramatically stretched as pinching is approached. Therefore, in the rest part of the
paper, we present all the results in Lagrangian coordinates except for the example
(figure 12) in which spatially non-uniform heating is applied.

From figure 5, one can easily find that the cross-section of all of the fluid elements
initially increases due to the small extensional force. However, the thread is thinner
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FIGURE 6. Results for heating when θ0(ξ) has a local maximum and A0(ξ) = 1.
(a) Evolution of cross-sectional area A, (b) evolution of temperature θ . Parameters and
conditions used: a = 0.1, b = 1, H = 1, H = 1, A0(ξ) = 1, θ0(ξ) = exp(−(ξ − 0.5)2),
F = 0.84<Fc(ξ = 0.5), Bo= 0.

in the middle and the fluid elements located there heat up more rapidly than the
fluid elements near the two ends. This leads to the surface tension coefficient for
the fluid elements near the middle to eventually become sufficiently small that the
stretching force dominates and the thread eventually pinches in the middle. The fluid
elements near the ends, by contrast, cannot heat up sufficiently for the pulling force
to overcome the surface tension and they therefore increase monotonically.

As our second example, we show the results in figure 6 for uniform heating in
which the initial cross-section is uniform and the initial temperature has a maximum
at its midpoint. In this case, the stretching force is sufficiently small that the cross-
section of all fluid elements increases indefinitely. Perhaps surprisingly, the largest
cross-section is neither found at the middle nor the ends of the thread. By examining
(4.1), we see that this occurs as the result of two competing mechanisms. As the fluid
elements heat up, the viscosity decreases more rapidly than the surface tension. On the
one hand, if γ (θ)

√
A is sufficiently large compared with F , then the dominant effect

of higher temperatures on the right-hand side of (4.1) will be to decrease the viscosity
and hence the hotter elements will grow faster than the cooler elements. This explains
why the fluid elements at the ends grow more slowly than their neighbours. On the
other hand, if γ (θ)

√
A is only slightly larger than F , then the dominant effect of

higher temperatures will be to reduce the numerator in the right-hand side of (4.1)
and hence the hotter elements will grow more slowly than the cooler elements. This
explains why the fluid elements in the middle grow more slowly than their neighbours.
These two effects combine to generate the two local maxima observed in figure 6.

4.2.2. Uniform cooling
In figure 7, we show results for an example with uniform cooling in which the

initial cross-section is uniform and the initial temperature has a maximum at its
midpoint. In this case, the stretching force is sufficiently large that all fluid elements
will monotonically thin with time. The hottest fluid elements that are initially near
the middle have smaller surface tension than the fluid elements near the ends. This
means that they are more strongly affected by the stretching force and hence thin
more rapidly. Since these elements have thinner cross-section, they are more rapidly
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FIGURE 7. Results for cooling when θ0(ξ) has a local maximum and A0(ξ) = 1.
(a) Evolution of cross-sectional area A, (b) evolution of temperature θ . Parameters and
conditions used: a = 0.1, b = 1, H = −1, H = 1, A0(ξ) = 1, θ0(ξ) = −(ξ − 0.5)2,
F = 3>Fc(ξ = 0.5), Bo= 0.

affected by the external cooling than the fluid elements that were initially cooler.
When pinching occurs, the fluid elements in the middle become the coolest in the
entire thread as observed in figure 7.

5. Inertial effects
When Re= 0 and H=H(θ), all the fluid elements evolve independently and satisfy

(4.1) and (4.3). However, when Re 6= 0, this is no longer true. The effects of inertia
can be most readily understood by considering the integral of (3.7) with respect to ξ .
After applying the boundary condition of fixed extensional force at the free end point
ξ = 1, we obtain

F + Bo
∫ 1

ξ

A0(ξ
′) dξ ′ − Re

∂

∂τ

[∫ 1

ξ

A0(ξ
′)u(ξ ′, τ ) dξ ′

]
=−µ(θ)Aτ + γ (θ)

√
A. (5.1)

If Re= 0, the effective stretching force on the left-hand side of (5.1) is the function
F ∗(ξ). This corresponds to the stretching force imposed at the free end point being
perfectly transmitted throughout the length of the thread. If Re 6= 0, then the effective
stretching force will be modified by the integral on the left-hand side of (5.1). For
Re� 1, this effective force modification will be small and the motion will be well
approximated by the Re = 0 solution unless the extension of the thread becomes
sufficiently large that the acceleration ∂u/∂τ becomes of O(Re−1), which corresponds
to A becoming small. When this occurs, the stretching force will not be transmitted
effectively through the regions of small A and the stretching will be reduced.

We now show the results of numerical simulations that illustrate the phenomena
that can occur when inertia is included. In order to solve (3.6)–(3.9) numerically, we
spatially discretized (3.6)–(3.8) using second-order central differences. We then solved
the resulting system of ordinary differential equations with a standard numerical
solver. At each time step, we integrated (3.9) using a trapezoid rule to obtain the
relation between the Lagrangian and Eulerian coordinates. We note that if the heater is
spatially uniform, then (3.9) decouples from (3.6)–(3.8). The grid points are uniformly
distributed in the Lagrangian coordinate and so if the thread becomes highly extended
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FIGURE 8. Numerical results for a thread with initially uniform radius and temperature
subjected to spatially uniform heating. (a) Evolution of A. (b) Evolution of θ . Parameters
and conditions used: a = 0.1, b = 1, A0(ξ) = 1, θ0(ξ) = 0, F = 1.0005, Re = 0.001,
H = 2− θ , H = 1, Bo= 0.

in some regions, then the distance between neighbouring grid points in Eulerian space
will become large. This phenomena has been shown to lead to numerical inaccuracies
(Stokes & Tuck 2004) when dealing with the Lagrangian equations. In order to
prevent this, if the grid spacing exceeded a threshold, we used linear interpolation to
add additional grid points in the affected regions.

5.1. Thinning under spatially uniform conditions
We begin by considering the case in which A0(ξ)= 1 and θ0(ξ)= 0 with a spatially
uniform heater and an extensional force larger than the critical value. If inertia is
completely neglected, then all fluid elements will behave in an identical way and the
thread will thin in a spatially uniform way. For Re = 0.001 used in figure 8, the
early evolution is well approximated by spatially uniform thinning. However, when
the thread thins sufficiently, inertial effects reduce the effective stretching force as one
moves away from the pulled end. This implies that the rate of thinning will be largest
at the pulled end and so A will first become zero at the free end of the thread. This
is seen to occur in the later stages of stretching in figure 8.

5.2. Thinning under non-uniform initial temperature
In this subsection, we will use a set of examples to illustrate that the pinching
location for a preheated thread with non-zero Reynolds number is determined by
three different mechanisms: extensional force-driven pinching, surface-tension-driven
pinching and largest-temperature-gradient-driven pinching.

Extensional force-driven pinching versus surface-tension-driven pinching. We consider
a case with an initially uniform cross-section, A0(ξ)= 1, a spatially uniform heater, a
stretching force greater than the critical value and an initial temperature profile with
the maximum at the upper boundary of the thread. For a small Re= 0.01 (figure 9a),
the motion is very similar to the Re= 0 behaviour until the thread becomes thin, the
thread then undergoes surface-tension-driven pinching at the upper boundary of the
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FIGURE 9. Numerical results for a uniform thread whose initial temperature θ0(ξ) is
maximum at the upper boundary point ξ = 0. (a,b) Re= 0.01 (small Re), pinching happens
at the hottest point, i.e. ξ = 0. (c,d) Re= 10 (relatively large Re), pinching happens at the
pulled end. Parameters and conditions used: a= 0.1, b= 1, A0(ξ)= 1, θ0(ξ)= 2(1− ξ 2),
F = 1.1, H(θ)=−θ , H = 1, Bo= 0.

thread. However, for a larger Re= 10, the situation is different (figure 9c). The inertial
effects are significant even in the early stages of pulling and this means that the
stretching force is far from being uniformly transmitted through the length of the
thread. This implies that stretching is much more significant near the pulled end of
the thread and this causes the cross-sectional area to become zero at the pulled end.
Hence, for small Re the thread will pinch at the hottest point, whereas for larger Re
the thread will pinch at the pulled end.

Extensional force-driven pinching versus largest-temperature-gradient-driven pinching.
In this case, we will show that another mechanism can also affect the place where
the pinching occurs. Again, we consider an initially uniform cross-section, A0(ξ)= 1,
a spatially uniform heater and a stretching force greater than the critical value.
However, in this case, we adopt an initial temperature profile that is uniformly
hot near the upper boundary of the thread and uniformly cool near the pulled end.
The two constant regions are joined together by a thin transition region. For a
relatively large Re = 20 (figure 10c), the behaviour is similar to that shown in the
previous example, with significant thinning near the pulled end of the thread until
the cross-sectional area becomes zero there. However, for a relatively small Re = 1
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FIGURE 10. Numerical results for a thread whose initial temperature θ0(ξ) is two different
constants near the two end points and has a rapid transition near ξ = 0.5. (a,b) Re = 1
(relatively small Re), pinching happens at the fluid element that initially had a large
temperature gradient, i.e. ξ = 0.5. (c,d) Re = 20 (relatively large Re), pinching happens
at the pulled end. Parameters and conditions used: a = 0.1, b = 1, A0(ξ) = 1, θ0(ξ) =
2(1+ tanh((0.5− ξ)/ε)), ε = 0.04, F = 1.1, H(θ)=−θ , H = 1, Bo= 0.

(figure 10a), the behaviour is quite different. Using (3.6), we can rewrite (3.7) for
Bo= 0 in the form

Reuτ = 1
A0

(
µ(θ)

A2

A0
uξ + γ (θ)

√
A
)
ξ

. (5.2)

Since we chose initial conditions u(ξ , 0)= 0 and A(ξ , 0)= 1, we see that during the
very early stages of the dynamics, the right-hand side of (5.2) is dominated by the
surface tension force term (γ (θ)

√
A)ξ . For the temperature profile we have chosen,

the surface tension will be small and constant near the upper boundary of the thread,
large and constant near the pulled end of the thread and have a large slope in the
thin transition region. This gradient in the surface tension will initially cause an
acceleration of the fluid elements in the transition region towards the pulled end of
the thread. Since mass must be conserved, this acceleration causes thinning of the
fluid elements on the hot side of the transition region and broadening of the fluid
elements on the cool side of the region. Therefore, during the initial stages, there is
a local minimum in the cross-section on the hot side of the transition region and a
local maximum on the cool side. The thread then is stretched by the imposed force
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until a fluid element on the hot side of the transition region experiences pinching. We
note that if the initial temperature profile had been such that the thread was cooler
near the upper boundary and hotter near the pulled end, then the surface tension
would have been initially large near the upper boundary and small near the pulled
end. This would induce accelerations in the transition regions away from the pulled
end. Therefore, we would also observe pinching in the fluid elements on the hot side
of the transition region.

Extensional force-driven pinching versus largest-temperature-gradient-driven pinching
versus surface-tension-driven pinching. On the one hand, figure 9 illustrated how
pinching can occur in the hottest region for a small Re and at the pulled end for
a larger Re. On the other hand, figure 10 illustrated how pinching can occur near
the large temperature gradients for a relatively small Re and at the pulled end for
a relatively large Re. Therefore, there are three possible mechanisms: at a relatively
large Re, the force transmission is weak and the thread will tend to pinch at the
pulled end; for a relatively small Re the hottest part of the thread will have the
lowest viscosity and weakest surface tension and so will tend to pinch there; and for
an intermediate Re, if there are large gradients in temperature, accelerations can be
induced that lead to pinching in fluid elements near the large gradients.

We now consider an example that includes a competition between all three of
the mechanisms illustrated in the previous two examples. To do this, we take an
initial temperature profile with a maximum at the upper boundary of the thread but
with a sharp transition to lower temperatures (see the initial temperature function
θ0(ξ) in figure 11b). For a small Re= 0.01, the acceleration induced near the sharp
transition is sufficiently small that the minimum cross-section is always located at
the upper boundary (at the hottest point) and the thread ultimately pinches there
(figure 11a). We note that at early times, the cross-sectional area of all of the fluid
elements decreases with time. In fact, during early times, A is well approximated
by the inertialess evolution equation (4.1) and there are no significant accelerations
induced by the temperature gradients. This is because Re is small and A = O(1).
However, at later times, when A becomes smaller, accelerations do become significant
and cause the thread to thin on the hot side of the transition and thicken on the cool
side of the transition, but the effect is too weak to cause pinching to occur on the
hot side of the transition. For an intermediate Re= 1, the acceleration induced by the
surface tension gradient is large enough that the minimum cross-section occurs near
the transition and the thread therefore pinches near the transition region (figure 11c).
Finally, for a relatively large Re = 20, the transmission of the stretching force is
sufficiently weak that the thread pinches at the pulled end (figure 11e). We have
therefore shown that the location at which pinching occurs is quite subtly affected
by Re.

5.3. Thinning under non-uniform heating
In this subsection, we present results for the case of a non-uniform heater in figure 12.
We will use an example to illustrate that the competition seen in the above examples
can also occur in this case. We consider initial conditions that are spatially uniform,
A0(ξ) = 1 and θ0(ξ) = 0 with an extensional force larger than the critical value.
We choose a heater profile that has a high heating rate in a finite region near the
upper boundary of the thread with a local maximum at the upper boundary and a
rapid transition to a lower heating rate outside of the finite region, see figure 12.
In some ways, the dynamics is very similar to the preheated case, but there is an
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FIGURE 11. Numerical results for a thread whose initial temperature θ0(ξ) is maximum
at the upper boundary point ξ = 0 and has a rapid transition down to zero near ξ = 0.5.
(a,b) Re= 0.01 (small Re), pinching happens at the hottest point, i.e. ξ = 0. (c,d) Re= 1
(intermediate Re), pinching happens for a fluid element that was initially near the large
temperature gradient, i.e. ξ = 0.5. (e, f ) Re = 20 (relatively large Re), pinching happens
at the pulled end. Parameters and conditions used: a = 0.1, b = 1, A0(ξ) = 1, θ0(ξ) =
8/3(1− ξ 2)(1+ tanh((0.5− ξ)/ε))/2, ε = 0.01, F = 1.1, H(θ)=−θ , H = 1, Bo= 0.

important difference. Fluid elements that start in the region with large heating rate
heat up and experience lower surface tension and have lower viscosities and hence
thin more rapidly than fluid elements that start in the region with lower heating rate.
However, this thinning causes the fluid elements to extend and hence move out of the
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FIGURE 12. Numerical results for a thread with initially uniform radius and uniform
temperature but with spatially non-uniform heating, where the external heater temperature
θh is maximum at the upper boundary x= 0 and has a rapid transition to zero near x= 0.5.
(a,b) Re= 0.01 (small Re), pinching happens at the hottest point, i.e. x= 0. (c,d) Re= 10
(moderately large Re), pinching happens for a fluid element that was initially near the
large temperature gradient x = 0.5. (e, f ) Re = 100 (large Re), pinching happens at the
pulled end. Parameters and conditions used: a= 0.1, b= 1, A0(ξ)= 1, θ0(ξ)= 0, F = 1.05,
H(θ)= 1.05(1− 3x2)(1+ tanh((0.5− x)/ε))− θ , ε = 0.04, H = 1, Bo= 0.

region with large heating rate. Only the fluid elements very close to the centreline
experience strong heating for extended lengths of times. This results in a smoothing
effect on the temperature profiles in the thread and tends to reduce the magnitude
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FIGURE 13. Numerical results for a thread falling under gravity with non-zero stretching
force and initially uniform temperature. (a,b) Re= 0.1 (small Re), pinching occurs at the
top, i.e. ξ = 0. (c,d) Re= 10 (relatively large Re), pinching occurs at the pulled end, i.e.
ξ = 1. Parameters and conditions used: a = 0.1, b = 1, A0(ξ) = 1, θ0(ξ) = 0, F = 1.1,
H(θ)= 3− θ , H = 1, Bo= 1.

of the mechanism associated with temperature gradients that caused pinching in the
preheated case. If the heating rate does not have an especially large spatial gradient,
then small Re solutions will pinch at the upper boundary and large Re solutions will
pinch at the pulled end point. Nevertheless, if we choose the transition zone in the
heating rate to be sufficiently narrow, the surface-tension-gradient effect will cause
pinching to occur to fluid elements that started near the edge of the transition zone,
see figure 12.

5.4. Thinning with non-zero gravity
Finally, in this subsection, we consider two examples with non-zero Bo as shown in
figures 13 and 14. Figure 13 shows the case in which the thread is falling under
gravity with a non-zero stretching force. The thread has initially uniform temperature
and radius and is subjected to spatially uniform external heating from the environment.
The stretching force applied at the pulled end is chosen to be greater than the critical
value so that pinching would occur at the free end in the absence of gravity. The
results are qualitatively similar to the Bo= 0 case in the sense that, depending on Re,
pinching can happen either at the top or at the pulled end. For Re=0, the dynamics of
the cross-sectional area is determined by (4.1) and (4.2) and the maximum extensional
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FIGURE 14. Numerical results for a thread falling under gravity with zero stretching
force and non-uniform initial temperature, where the initial temperature θ0(ξ) has a rapid
transition near ξ = 0.5. (a,b) Re= 1 (small Re), pinching happens at the top end due to
the weight of the thread. (c,d) Re= 100 (large Re), pinching occurs at a fluid element that
was initially near the large temperature gradient. Parameters and conditions used: a= 0.1,
b= 1, A0(ξ)= 1, θ0(ξ)= 3(1+ tanh((0.5− ξ)/ε))/2, ε= 0.005, F = 0, H(θ)=−θ , H = 1,
Bo= 0.5.

force occurs at the top of the thread where the supported weight is maximal. This
means that an initially uniform thread with uniform heating will always pinch at the
top. For sufficiently small Re, inertia plays a small role and pinching is observed to
occur at the top (figure 13a). For larger Re, the force applied at the end of the thread
is not uniformly transmitted through the thread. Inertia also acts to reduce the effective
stretching force due to gravity. This means that the stretching force at the top will be
reduced by inertia. At the free end of the thread, the force is fixed and so inertia has
no effect. Therefore, for sufficiently large Re, we expect that pinching will happen at
the pulled end. This is observed for Re= 10 in figure 13(c).

In figure 14, we consider a case with initially uniform radius and uniform
environment, but an initial temperature profile with a sharp transition. However,
rather than using a non-zero extensional force at the pulled end with zero gravity (as
we used in figures 8–11), we use zero extensional force F = 0 and non-zero gravity
Bo 6= 0. Since F = 0, the effective stretching force at the free end is zero so that
pinching cannot happen at the pulled end. Therefore, there are only two mechanisms
that can lead to pinching rather than three mechanisms seen in figure 11. Pinching
can happen due to the weight of the thread at low Re (figure 14a) or due to the flow
induced by temperature variations at high Re (figure 14c).
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6. Conclusions
In this paper, we have studied a model of a long and thin viscous thread for which

both viscosity and surface tension depend on temperature. Our methodology allows us
to study threads that are extending by falling under their own weight, by being pulled
by an external force applied at the end point or by a combination of both of these
two. By adopting a Lagrangian framework, we have obtained analytical solutions for
zero Reynolds number solutions with uniform external heating. Our results are valid
for arbitrary initial cross-sectional area and temperature profiles. We have derived
the criterion that determines whether a thread will exhibit surface-tension-driven
pinching. Moreover, we have shown that these solutions show a surprisingly rich set
of dynamics. In particular, for heated threads, the cross-sectional area can thicken
at early times and then thin and ultimately pinch. In contrast, for cooled threads,
the cross-sectional area can thin at early times and then thicken at later times. We
have also derived expressions for the parameter ranges in which this non-monotonic
behaviour occurs. The solutions also exhibit non-monotonic behaviour in space. In
the case of heating, a thread with initially uniform cross-section and an initial local
minimum in the temperature profile can develop two local maxima and a local
minimum in the cross-section. For similar initial conditions in the case of cooling,
the temperature profile can evolve from having an initial local maximum to having
two local maxima separated by a local minimum.

We have also obtained numerical solutions for the case in which inertial effects are
included. Results show that inertia can play multiple roles in the dynamics and that the
location at which pinching occurs can be subtly affected by inertia. In particular, for
sufficiently low Reynolds number, the location of the pinching (if it occurs at all) will
happen at a location close to the pinching location for the zero Reynolds number case.
For sufficiently large Reynolds number, if there is a non-zero pulling force applied to
the end of the thread, the thread can pinch at the end at which the force is applied.
This is due to the fact that inertia reduces the effective pulling force that is transmitted
through the thread and hence reduces the effective stretching in the bulk of the thread.
However, if there is zero pulling force applied to the end of the thread and the thread
thins purely due to falling under its own weight, pinching will never occur at the
free end no matter how large the Reynolds number. Finally, for intermediate Reynolds
numbers, if there is a sufficiently abrupt change in the initial temperature it can induce
accelerations of the fluid elements in the region in which temperature changes occur.
This can lead to a local maximum and minimum to develop in the cross-section that
ultimately can lead to pinching that occurs at the fluid elements that were initially
located near the abrupt temperature change.

Therefore, in the case of a thread with a non-zero pulling force applied to the end
of the thread, there are three separate mechanisms that can lead to very different
kinds of pinching for different values of the Reynolds number. And in the case of
a thread with a zero pulling force applied to the end of the thread, there are only
two mechanisms that can occur. The case of non-uniform external heating has very
similar mechanisms. These results have important consequences when determining
the appropriate operating conditions under which the extension of fibres can be
undertaken so that surface-tension-driven pinching does not occur. This is clearly of
major importance in applications. We also note that inertia tends to decrease the force
transmission through the thread so that zero Reynolds number solutions give a useful
lower bound on the applied force for pinching to occur.

In the paper, we have focused on the case in which heat loss and gain is governed
by Newton’s heat transfer law. For more complicated heat transfer models that may
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include the effects of radiative and convective heating and cooling from the surface,
the analysis in this paper carries over directly. The only difference will be in the
function H(x, θ) that characterises the heat transport.

We point out that the methodology used in this paper can be easily extended to the
case of an axisymmetric hollow tube. Using similar techniques to those used in this
paper, we can derive the long-wavelength equations for the cross-sectional area of the
tube, the ratio of inner and outer radius, the axial velocity and the temperature. If we
neglect the inertial term, we can also obtain some analytical results similar to those in
this paper. Furthermore, one can then readily show that the ratio of inner and outer
radius is always decreasing. We omit the detailed derivation and analysis here. We
note that the above results obtained for tubes represent an extension of the results in
Huang et al. (2007), who neglected surface tension effects.

Finally, we mention that the problem with constant surface tension has been studied
for a general non-axisymmetric thread with an arbitrary number of holes by Stokes
et al. (2014). Using a similar approach to Cummings & Howell (1999), they showed
that the cross-plane flow decouples from the axial flow and the solution can be found
in a particularly convenient way. For a non-axisymmetric thread with temperature-
dependent surface tension and viscosity, one can use a similar approach to show that
the cross-plane flow evolves independently of the axial flow. One can hence obtain a
model for the cross-sectional area, axial velocity and temperature similar to (3.6)–(3.8),
where the surface tension term in the momentum equation will involve the total
boundary length from the cross-plane problem (see Stokes et al. 2014). Therefore,
the problem for non-axisymmetric threads with temperature-dependent surface tension
and viscosity can also be solved in a convenient way.
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