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The problem of a suspension droplet falling under gravity was examined for
polydisperse droplets composed of a mixture of particles with different densities
and sizes. The study was conducted using both simulations based on oseenlet particle
interactions and laboratory experiments. The hydrodynamic interactions of the particles
within the suspension droplet allow a polydisperse collection of particles to fall as
a coherent droplet, even for cases where the difference in particle terminal velocity
would cause them to separate quickly from each other in the absence of hydrodynamic
interactions. However, a gradual segregation phenomenon is observed in which
particles with lower terminal velocity preferentially leave the suspension droplet by
entering into the droplet tail, whereas particles with higher terminal velocity remain
for longer periods of time within the droplet. When computations and experiments
are performed for bidisperse mixtures, a point is eventually reached where all of the
lighter/smaller particles are ejected into the droplet tail and the droplet continues to
fall with only the heavier/larger particles.
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1. Introduction
A suspension droplet is a cluster of particles held in suspension in a surrounding

fluid. If the particle density is different from that of the surrounding fluid, the
suspension droplet either falls or rises (for heavier or lighter particles, respectively)
in the presence of a gravitational field. This problem has generated significant
interest in the fluid mechanics community, in part because it is an apparently simple
problem that leads to highly complex and interesting dynamics and in part because,
at sufficiently high particle concentrations, it is a flow field that is dominated by
the hydrodynamic interaction between the particles. The problem is relevant to a
number of geophysical and environmental applications in which clusters of heavy
particles generate turbulence as they sink in a lighter fluid. For instance, in direct
numerical simulations of homogeneous turbulence of a particulate fluid under gravity,
Elghobashi & Truesdell (1993) found that a primary source of turbulence generation
was associated with groups of particles falling under gravity. Similar physics occurs
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for buoyant plumes of particles that are lighter than the surrounding fluid (Hurley &
Physick 1993). Suspension droplet dynamics is also relevant to applications involving
smoke inhalation in the human lung. A number of investigators have observed that,
in cases with high particle concentrations, the penetration of particles into the lung in
inhaled cigarette smoke is significantly greater than predicted based on single-particle
settling velocities (Martonen 1992; Phalen et al. 1994; Robinson & Yu 2001). One
explanation that has been proposed for this difference is that smoke particles move
through the upper airway region in the form of a suspension cloud, where the
hydrodynamic interaction of particles within this cloud allows the particles to travel
more rapidly relative to the surrounding fluid than would be the case for isolated
particles. The ability to accurately model the degree of penetration of particles into
the lung is very important in understanding the health effects of inhaling cigarette
smoke, as well as related problems of inhalable drug dispersal and silicon dust
inhalation in construction and mining operations.

The dynamics of a small number of settling particles falling under gravity has been
examined in a number of studies (Bretherton 1964; Hocking 1964; Jayaweera, Mason
& Slack 1964; Vasseur & Cox 1977; Ekiel-Jeżewska & Felderhof 2005, 2006), which
have led to identification of different stable and unstable particle configurations. As
the number of particles increases, dynamical systems approaches become increasingly
difficult and the problem must instead be approached as one of suspension dynamics,
although computational approaches continue to solve for the system at the individual
particle level. The droplet dynamics is typically characterized by two different
Reynolds numbers, called the droplet Reynolds number Red = 2rdUd,HR/ν (also
sometimes called the cloud Reynolds number) and the particle Reynolds number
Rep = 2rpU/ν. Here, rp and rd are the particle and droplet radii, respectively, ν is
the fluid kinematic viscosity, Ud,HR is a theoretical estimate of the droplet settling
velocity based on the initial number of particles in the droplet, and U is the settling
velocity of an isolated particle in an otherwise stagnant fluid.

The settling of an initially spherical particle suspension droplet under gravity was
examined by Nitsche & Batchelor (1997) for low-Reynolds-number clouds using both
experiments and numerical simulations. The numerical simulations were performed
by representing each particle by the sum of a stokeslet and a doublet that induce
a velocity field on all other particles. This computational approach requires that
both the droplet and the particle Reynolds numbers are small compared to unity.
Nitsche & Batchelor observed that the suspension droplet settles significantly more
rapidly than would be predicted for a cloud of non-interacting particles due to the
fluid motion induced by the particle settling. They also showed that a reasonable
approximation for the suspension droplet settling velocity can be obtained from the
Hadamard–Rybczyński (HR) solution for a spherical droplet of an immiscible fluid
immersed in another fluid at low Reynolds number (see also Ekiel-Jeżewska, Metzger
& Guazzelli 2006).

As the suspension droplet falls downwards, a series of transitions in the flow
pattern takes place (Adachi, Kiriyama & Yoshioka 1978; Noh & Fernando 1993). As
originally described by Adachi et al. (1978), the particle cloud in certain cases adopts
a toroidal shape, which breaks up into some number of offspring droplets, where
the offspring droplets then repeat this process. The evolution of a suspension droplet
into a toroidal shape is analogous to a similar process that occurs for a droplet of
a heavy liquid immersed in a lighter liquid (Kojima, Hinch & Acrivos 1984). These
transitions were examined in detail both experimentally and using stokeslet-based
simulations by Machu et al. (2001) and Metzger, Nicolas & Guazzelli (2007) for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

11
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.111


Particle segregation in falling polydisperse suspension droplets 81

low-Reynolds-number droplets with spherical particles and by Park et al. (2010) for
suspensions formed of fibres.

Subramanian & Koch (2008) examined different regimes of suspension droplet
dynamics based on the particle Reynolds number, the particle volume concentration
φ, and the droplet size. For cases where rd/rp < (φRep)

−1/3, the droplet is said to be
in a Stokes droplet regime, for which both the particle and droplet Reynolds numbers
are small. For (φRep)

−1/3< rd/rp<Re−1
p , the droplet is in a macro-scale inertia regime,

for which the inertia of individual particles is negligible (i.e. Rep� 1), but the inertia
of the droplet as a whole is finite (i.e. Red = O(1)). For rd/rp > Re−1

p , the droplet
is in a micro-scale inertia regime, for which the inertial screening length `= rp/Rep
is of the same order as (or larger than) the droplet radius rd. Subramanian & Koch
(2008) argued that for cases falling in the latter two regimes, and for which the
particle Reynolds number and the particle concentration are small, a more accurate
computational approach is obtained by replacing the stokeslet and the potential
doublet in the simulation approach of Nitsche & Batchelor (1997) with the steady
Oseen solution for flow past a sphere. The fact that the velocity solution from the
oseenlet-based approach is uniformly valid with distance away from the sphere is
particularly valuable when computing interactions between the particles in the tail
with each other and with the droplet, as in this case distances between interacting
particles can be much larger than the droplet radius. This oseenlet-based approach
was used by Pignatel, Nicolas & Guazzelli (2011), along with experiments, to explore
the effect of finite droplet inertia on suspension droplet dynamics and breakup.

Other computational investigations have used a distributed body force approach to
examine suspension droplet flows with finite inertia. For instance, Bosse et al. (2005)
approximated the fluid–particle interaction force as a distributed body force on a grid,
from which they solved for the induced flow field using a pseudospectral technique.
Chen & Marshall (1999) employed a vorticity-based method in which the curl of the
fluid–particle interaction force acts as a source term in the vorticity transport equation.
The solution was obtained (in two dimensions) using a Lagrangian approach that
employed a combination of vortex blobs and point particles. A related vorticity-based
method was employed in three dimensions by Walther & Koumoutsakos (2001), in
which a vortex-in-cell method was used to compute the velocity field.

All of the papers described above consider suspensions formed of monodisperse
particles, with uniform particle diameter, density, etc. In a polydisperse mixture,
where particle properties differ, the sedimentation process will generally lead to
particle segregation due to differences in particle settling velocity. Consequently, the
particles within a settling polydisperse suspension droplet would rapidly segregate in
the absence of hydrodynamic interaction between the particles. In the presence of
hydrodynamic interaction, the recirculating flow field within the suspension droplet
acts to inhibit particle segregation, provided that the heterogeneities between the
particles are sufficiently small and the particle concentration sufficiently high. The
ability of hydrodynamic interaction to inhibit segregation within slightly polydisperse
particle droplets was first noted by Abade & Cunha (2007), who used stokeslet-based
simulations to approximate particle hydrodynamic interactions. An expression for
the maximum fall velocity of a polydisperse droplet was recently derived by Bülow,
Nirschl & Dörfler (2015), who also present simulations using the stokeslet-based
method showing breakup of polydisperse droplets over long times.

The current paper uses a combination of oseenlet-based simulations and laboratory
experiments to examine particle segregation in falling polydisperse suspension droplets.
As noted in the previous paragraph, hydrodynamic interactions inhibit particle
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segregation in falling polydisperse droplets, but it does not completely eliminate
segregation. We specifically focus on the relationship between particle segregation
and the particle leakage phenomenon in sedimenting droplets. The simulations and
experiments are both subject to a number of limitations, and as a consequence cover
different ranges of parameter values. Specifically, the oseenlet-based computation
method (like the stokeslet-based method used for vanishing Red) is valid only
for small particle concentrations and small particle Reynolds numbers Rep. In the
experiments, we seek to initialize the flow field as a sphere of well-mixed polydisperse
particles in a stationary liquid bath. A cluster of particles placed at the top of the
liquid bath is observed to form a structure that reasonably resembles this idealization
at sufficiently low droplet Reynolds numbers and high particle concentrations.
However, at low particle concentrations, we have experienced difficulty in obtaining
a well-mixed spherical structure at the onset of the experiments. These limitations
force the simulations to focus on low-concentration clusters and the experiments
to focus on high-concentration clusters, although both approaches have values of
the droplet Reynolds number near unity and both are conducted at small particle
Reynolds numbers. The parameters used for both the reported computations and
experiments lie near the boundary rd/rp < (φRep)

−1/3 of the macro-scale inertia and
Stokes droplet regimes of suspension droplet behaviour, as described by Subramanian
& Koch (2008). It is of interest that, despite the differences in particle concentration,
both experiments and computations exhibit a similar mechanism leading to particle
segregation from the suspension droplet.

The computational method used in the paper is described in § 2.1, followed by
a summary of computational results for monodisperse and polydisperse mixtures.
We have examined a wide assortment of polydisperse mixtures, including bidisperse
mixtures with two different particle densities, bidisperse mixtures with two different
particle sizes, and polydisperse mixtures with a distribution of particle size and density.
The mechanics in all cases examined are similar, depending only on differences in
terminal velocity between the particles. For brevity, § 2 focuses on bidisperse mixtures
with two different particle densities. An experimental investigation is presented in § 3
for settling of suspension clouds with bidisperse particle mixtures with particles of
different sizes and densities. Conclusions are presented in § 4.

2. Computational method and results
2.1. Oseenlet simulation method for particle hydrodynamic interaction

Computation of the particle interactions using stokeslets requires that both the particle
Reynolds number Rep and the cloud Reynolds number Red be small compared to unity.
The latter restriction arises from the fact that the Stokes equation is only valid within
distances from the particle centre that are small compared with the inertial screening
length `= rp/Rep. A uniformly valid solution for the flow around a particle with low
particle Reynolds number is given by the Oseen solution (Proudman & Pearson 1957),
from which the flow field generated by a spherical particle with radius rp translating
with a velocity USex relative to the surrounding fluid at low particle Reynolds number
can be written in a local spherical coordinate system, with the polar axis (θ = 0)
coincident with the direction of particle motion, as
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ur =
USr2

p

r2

{
− rp

2r
cos θ − 3(1− cos θ)r

4rp
exp

(
−ReSr(1+ cos θ)

2rp

)
+ 3

2Rep

[
1− exp

(
−ReSr(1+ cos θ)

2rp

)]}
(2.1)

uθ = −USrp

r
sin θ

[
r2

p

4r2
+ 3

4
exp

(
−ReSr(1+ cos θ)

2rp

)]
. (2.2)

In this equation, ReS = 2rpUS/ν is the instantaneous particle Reynolds number based
on the particle slip velocity US ≡ |v− u|, where v is the particle velocity and u is
the fluid velocity at the particle centre (evaluated as if the particle were not present).
This solution approaches the Stokes solution for flow past a sphere within a region
r� ` near to the particle, but at large distances r� ` the velocity field approaches
that of a potential point source, with decay rate of O(1/r2). The fluid emitted from
this source is recovered in a back-flow region located within a thin wake near θ =π,
within which the velocity magnitude decays as O(1/r).

The fluid velocity ui at the centre of particle i, where i= 1, . . . , N, is obtained at
each time step by solution of a matrix equation of the form

ui =
∑
j6=i

W (xi, xj)(vj − uj). (2.3)

The matrix W is obtained using (2.1) and (2.2) after rotating the local spherical
coordinate system into a global coordinate frame. Since the particle Stokes number
is very small in the current simulations, it is reasonable to assume that the particle
inertia is negligible and that particle drag and reduced gravity terms are approximately
in balance. We therefore adopt the same approximation used by numerous previous
investigators (Nitsche & Batchelor 1997; Subramanian & Koch 2008; Pignatel et al.
2011) and set the fluid slip velocity US equal to the particle terminal velocity U in
an otherwise stationary fluid (and ReS and Rep become identical).

The governing equations for the suspension droplet motion can be non-dimensionalized
by selecting the characteristic fluid length and velocity scales as the initial droplet
diameter L and the terminal settling speed U of an isolated particle of nominal size
and density, where the latter is given by

U = d2gR

18νχ
, (2.4)

and gR= (1−χ)g is the reduced gravitational acceleration and χ =ρf /ρp is the density
ratio. For computations with variable size and density particles, it is convenient to
define a nominal particle density ρ̄p and diameter d̄ by

ρ̄p = 1
N

N∑
n=1

ρn, d̄=
(

1
N

N∑
n=1

d2
n

)1/2

, (2.5a,b)

where N is the total number of particles. The nominal particle diameter is specified
by averaging the square of the diameter to ensure that the average particle terminal
velocity will be equal to that for particles whose diameter is equal to the nominal
value d̄. For a mixture, the density ratio χ = ρf /ρ̄p is based on the nominal particle
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density. The Froude number Fr=U/
√

gRL and the Stokes number St= ρ̄pd̄2U/18µL
for this flow can be expressed in terms of the particle Reynolds number as

St= Fr2 = Rep

18χ

(
d̄
L

)
. (2.6)

The results plotted in the paper are in terms of dimensionless variables in which all
length scales are non-dimensionalized by the droplet diameter L, all velocity scales are
non-dimensionalized by particle terminal velocity U (computed using (2.4) with the
nominal particle diameter and density), and all time scales are non-dimensionalized
using L/U. Dimensionless variables are denoted by an asterisk.

2.2. Suspension droplets with monodisperse particles
For monodisperse particles, the independent dimensionless parameters of the flow
include droplet Reynolds number Red, dimensionless particle diameter ε ≡ d̄/L,
density ratio χ = ρf /ρp, and the initial number of particles N0 contained within
the droplet. Several previous studies of monodisperse suspension droplets have been
reported, which detail how the droplet fall velocity and shape change with variation
of these parameters (Nitsche & Batchelor 1997; Metzger et al. 2007; Subramanian &
Koch 2008; Pignatel et al. 2011). An important characteristic noted in this literature
is the tendency of the falling suspension droplet to develop a tail formed of particles
that leak away from the droplet near the droplet rear.

Results are reported in the current section for a case with Red=1.4, d̄/L=0.04, χ =
1/3 and N0= 300, which serves as a baseline for the polydisperse droplet simulations.
The initial particle concentration is given by φ0 = N0(d̄/L)3 ∼= 0.019 and the particle
Reynolds number is Rep = 0.004, so the conditions required for use of the oseenlet
simulation approach are well satisfied. A time series showing formation of the droplet
tail for this baseline case is given in figure 1. The suspension droplet initially has the
form of a sphere, but a tail of trailing particles shed from the rear of the droplet
gradually develops. The tail grows progressively longer with time since the particles
within the tail fall at nearly the terminal velocity for an isolated particle, whereas
the particles within the droplet fall at a much faster speed due to the hydrodynamic
interaction between the particles. The droplet shape becomes deformed in time, with
a slight flattening of the ball-like shape in the vertical direction. The fluid velocity
field in a frame travelling with the droplet is similar to that shown by Pignatel et al.
(2011). The flow surrounding the droplet has a toroidal structure qualitatively similar
to a Hill’s spherical vortex, with stagnation points at the front and back.

The dimensionless fall velocity of the particles within the droplet, U∗d , and the
current number of particles in the droplet, N(t), are plotted in figure 2 as functions
of dimensionless time. In order to allow some deformation of the suspension droplet,
we use an effective droplet diameter equal to 1.25 to determine which particles
are in the droplet, which is 25 % larger than the nominal droplet diameter. All
particles are observed to fall within the droplet for a short time at the beginning of
the computation (approximately t∗ < 0.5), following which formation of the droplet
tail leads to a gradual decrease in number of particles within the droplet. The fall
velocity reaches a maximum value at about t∗ = 0.5, which is also the time at which
the particle tail starts to form. The peak magnitude of the fall velocity is substantially
greater than unity, indicating that the suspension droplet falls much faster than an
isolated particle. The droplet fall velocity decreases for dimensionless times t∗ greater
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(a) (b) (c) (d ) (e)

FIGURE 1. Plot showing the formation of a tail behind a falling monodisperse suspension
droplet with Red = 1.4. Images are shown at times (a) t∗= 0, (b) 0.2, (c) 0.4, (d) 0.6 and
(e) 0.8.
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FIGURE 2. Time variations of (a) the dimensionless droplet fall velocity, (b) the number
of particles remaining in the droplet and (c) the ratio of the average droplet fall velocity
to the theoretical estimate (2.9). The plots are for monodisperse particles with droplet
Reynolds numbers Red = 1.4. The dashed line in (c) corresponds to the theoretical HR
solution given by (2.9).

than 0.5 as the particles gradually move from the droplet into the tail and the tail
grows progressively longer.

A simple theoretical expression for droplet fall velocity is obtained by treating the
particle suspension as a droplet of another (immiscible) fluid with effective density ρd

and viscosity µd. The solution for drag on a fluid droplet suspended in an immiscible
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liquid was given independently by Hadamard (1911) and Rybczyński (1911) as

Ud,HR = (ρd − ρf )gL2

12µf

(
µf +µd

µf + 3
2µd

)
. (2.7)

The density difference in (2.7) can be written in terms of the particle volume
concentration φ = Nε3 within the droplet as ρd − ρf = φ(ρp − ρf ). The effective
viscosity is given for small concentrations by the Einstein expression

µd =µf (1+ 5
2φ). (2.8)

Linearizing (2.7) for small concentration values and dividing by the isolated particle
fall velocity U yields

U∗d,HR ≡
Ud,HR

U
= 6

5
Nε, (2.9)

where N is the number of particles in the droplet. A plot of the ratio U∗d(t)/[ 65 N(t)ε]
of the computed and theoretical droplet fall velocity as a function of time is given
in figure 2(c). The computed value of this ratio is initially close to unity, and then
it decreases gradually in time to about 0.9. The oscillations in value of this ratio
observed in the figure are a consequence of shape oscillations of the suspension
droplet. Pignatel et al. (2011) showed that the finite inertia causes this ratio to
decrease below unity and that the value of this ratio can be expressed as a function
of the normalized inertial length `∗ ≡ ε/Rep. For the case considered in the current
computation `∗= 10, for which the correlation plotted by Pignatel et al. (2011) gives
U∗d(t)/[ 65 N(t)ε] = 0.97.

Two measures of the length of the particle tail are shown in figure 3 – the root-
mean-square (r.m.s.) position y∗rms of the particles in the y direction and the ratio
(y∗max− y∗min)/4. For particles that are uniformly distributed between y∗max and y∗min, these
two measures would be equal, so the difference between these measures provides an
indication of the skewness of the particle distribution. The value of y∗rms remains close
to the value for a uniform sphere for t∗ < 1, after which the growth of the droplet
tail causes y∗rms to increase nearly linearly with time. The value of (y∗max − y∗min)/4 is
larger than the corresponding value of y∗rms, as the presence of the droplet implies a
large number of particles with values of y∗ near y∗min. Over time, the two measures
approach each other as an increasing number of the particles are drawn out into the
tail region.

2.3. Suspension droplets with polydisperse particles
Computations for a wide range of polydisperse suspension droplets have been
conducted, including bidisperse cases with different sizes or densities and as well as
cases with a distribution of both particle size and density. In the absence of collisions
and particle inertia, the particles communicate only through their terminal velocity
relative to the surrounding fluid, which as indicated by (2.4) is influenced both by
the particle diameter and by the difference between the particle and fluid densities.
A particle dispersity measure for bidisperse mixtures can be defined in terms of the
particle terminal velocity as

β ≡ 1
N

N∑
n=1

|Un − Ū|
Ū

, (2.10)
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FIGURE 3. Plot showing the time variation of the r.m.s. y position (solid line) and the
value of (y∗max − y∗min)/4 (dashed line) for a monodisperse droplet.

where Un denotes the terminal velocity of particles of type n and Ū is the mean
terminal velocity. For the sake of brevity, the current section presents results for a
representative series of cases where half the particles have one density value and
the other half have a different density value. The dispersity measure (2.10) for this
case reduces to β ≡ |ρp2 − ρp1|/2ρ̄p. A full report of the different computational cases
examined is given in the thesis by Faletra (2014).

An analytical approximation for the maximum fall velocity of a polydisperse
suspension droplet was given by Bülow et al. (2015), which can be written as

Ud,HR =
N∑

n=1

6
5
εnUn, (2.11)

where εn= dn/(2rd) is the dimensionless diameter of particles of type n. In the current
section we choose |ρp2 − ρ̄p| = |ρ̄p − ρp1|, so that the maximum droplet fall velocity
given by (2.11) is the same for all cases examined.

We begin by examining the effect of droplet concentration on the segregation
phenomenon by simulating droplet settling for cases in which the initial number of
particles N0 varies between 50 and 1000, where all other parameters are held constant
at β = 0.5, d̄/L= 0.04, χ = 1/3, Red = 1.4 and Rep = 0.004. A typical case in which
particle hydrodynamic interaction has a strong effect on inhibiting particle segregation
is that of N0 = 300. The early evolution of the droplet in this case is shown in a
time series in figure 4. Similar to the simulations for monodisperse particles, the
suspension droplet falls with nearly a spherical shape with a tail of trailing particles
shed from the rear of the droplet. As time passes, the tail grows progressively longer
because the particles in the tail fall at approximately the terminal velocity of an
isolated particle, whereas the particles in the droplet fall much faster due to the
hydrodynamic interaction between the particles in the droplet. Owing to the strong
particle hydrodynamic interactions, some of the light particles are able to remain
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(a) (b) (c) (d) (e)

FIGURE 4. Time series of a droplet with N0= 300, showing preferential leakage of lighter
particles into the droplet tail, for a case with particles with two densities with β = 0.5.
Images are shown at times (a) t∗ = 0, (b) 0.2, (c) 0.4, (d) 0.6 and (e) 1.0. The light
particles are shown in blue and the heavy particles in red.

inside the suspension droplet for a long period of time. At the same time, it is clear
that the lighter particles have a much higher probability of passing into the droplet
tail than do the heavier particles, particularly near the start of the computation. The
heavier particles do eventually start to enter into the tail, but at a lower rate than the
lighter particles. At long time, a point is reached where all of the light particles are
removed from the droplet and form a very long tail, after which the rate at which
particles enter into the tail decreases significantly.

For small numbers of particles (e.g. N0 = 50 or 100), the weak hydrodynamic
interaction between the particles is insufficient to significantly slow down the
separation of light and heavy particles that occurs due to the difference in terminal
velocity. The particles of the two densities separate as two dispersed clouds before
the suspension droplet has fallen more than a few droplet diameters. A comparison
of cases with different initial concentration values is given in figure 5, in which
the percentage of initial particles that remain in the droplet is plotted as a function
of time for cases with N0 = 50, 100, 300 and 1000. These percentages are shown
separately for the light particles and the heavy particles. The results for cases with
N0 = 50 and 100 are almost the same, and both are typical of cases in which the
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FIGURE 5. Percentage of initial particles remaining in the droplet as a function of
dimensionless time for different values of the initial particle number N0. Heavy particles
(solid lines) and light particles (dashed lines) are shown for a series of cases with β= 0.5
and Red = 1.4. Colours correspond to cases with N0 = 50 (red), 100 (green), 300 (blue)
and 1000 (black).

amount of hydrodynamic interaction is too small to significantly inhibit particle
segregation. An increase in value of N0 above 100 results in delay of the separation
of light particles from the droplet and an increase in the rate of separation of heavy
particles from the droplet. The delay in separation of light particles is due to the
strong recirculating flow surrounding the droplet, which acts to suspend particles with
different terminal velocities. The increase in rate of transport of the heavier particles
into the tail for large values of N0 is opposite to the trends observed for leakage
rate in monodisperse suspension droplets, for which the leakage rate decreases with
increase in N0 (Metzger et al. 2007; Pignatel et al. 2011). We speculate that the
increase in leakage rate for the polydisperse cases with large N0 is a consequence
of the disturbance to the heavy particles caused by relative motion with the lighter
particles. The cases with large N0 values are more susceptible to these disturbances
because the light particles remain in the droplet for a longer time period than is the
case with smaller values of N0.

Cases in which the suspension droplet dynamics are dominated by hydrodynamic
interaction between the particles are of particular interest, since these cases provide an
illustration of the ability of hydrodynamic interaction to inhibit particle segregation. To
explore such problems further, results are reported for a series of computations with
different values of β, but with all other parameters fixed to the same values as used for
the simulation shown in figure 4. The average particle fall velocity v∗ave =−dy∗ave/dt∗
is plotted as a function of time in figure 6(a) for values of β ranging between 0.1 and
0.9. This velocity is computed separately for the light and heavy particles, which are
plotted in figure 6(a) using dashed and solid curves, respectively. The fall velocity of
all particles reaches a maximum value at about t∗= 0.4, with roughly the same value
for both light and heavy particles. The value of v∗ave decreases with time after this
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FIGURE 6. Effect of density difference on time variation of (a) the average fall velocity,
(b) the r.m.s. value of y, (c) the percentage of light particles remaining in the droplet
(based on total number initially in droplet) and (d) the mixing measure Glight for the light
particles. Results in (a) and (b) are shown for both the heavy particles (solid lines) and
the light particles (dashed lines) with N0 = 300. In all four panels, curves are shown for
β values of 0.1 (red lines, A), 0.3 (green lines, B), 0.5 (blue lines, C), 0.7 (orange lines,
D) and 0.9 (black lines, E).

peak value is achieved, which is associated with the decrease in number of particles
in the droplet as a result of tail formation. Because the light particles have a greater
tendency to move into the tail than do the heavy particles, the average fall velocity
of the light particles decreases with time more quickly than for the heavy particles.
Since the isolated particle fall velocity (and hence also the fall velocity of particles
in the tail) decreases with decrease in particle density ρn, the average fall velocity of
the light particles in figure 6(a) decreases as β increases. For the case with β = 0.9,
the light particles have lower density than the surrounding fluid and the long-time
value of v∗ave for these particles is negative (indicating that the particles rise upwards
in the fluid). The fall velocity for the heavy particles is observed to have a similar
value for all values of β examined.

The degree of particle spread in the vertical direction is quantified using the
r.m.s. position of the particles in the y direction, y∗rms, which is plotted as a function
of time in figure 6(b). Small values of y∗rms can be achieved either if particles all
remain in the droplet or if particles are quickly removed from the droplet and pass
into the tail. The largest values of y∗rms occur when particles move very slowly from
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the droplet into the tail. The rate of passage of the light particles from the droplet
into the tail can be quantified by plotting the percentage of the initial light particles
that remain in the droplet as a function of time, shown in figure 6(c). The results
indicate a monotonic increase in the segregation rate as the value of β increases.

By observing the difference in the value of y∗rms for the heavy and light particles
in figure 6(b), we can infer the different extents to which the two types of particles
have become spread out into the droplet tail. For the case with β = 0.1, there is only
a slight difference in density between the two particles types, and the values of y∗rms in
figure 6(b) consequently remain fairly close to each other, with the y∗rms values for the
lighter particles slightly higher due to their greater tendency to pass into the droplet
tail. Cases with β values ranging from 0.3 to 0.9 exhibit very different values of y∗rms
between the two particle types. For the heavy particles, particles with densities closest
to the nominal density (small β) have the smallest values of y∗rms, and particles with
higher densities (larger β) have larger values of y∗rms. A similar trend holds during the
initial part of the calculation for the lighter particles. However, as time progresses,
the value of y∗rms for the light particles is observed to asymptote to a nearly constant
value. Both this asymptotic value and the time at which this flattening of the y∗rms curve
occurs decrease as β increases. In this asymptotic state, all of the lighter particles have
been removed from the droplet and passed into the tail. Since all of the light particles
in the tail fall at approximately the same speed, the value of y∗rms for the light particles
remains approximately constant in this state.

There are numerous mixing and segregation indices used in the literature, many
of which are adopted for specific problems (Jain, Ottino & Lueptow 2005; Li &
McCarthy 2005). A mixing index proposed for discrete element method (DEM)
simulations by Asmar, Langston & Matchett (2002) would seem to be applicable for
the problem addressed in the current paper. In this paper, a generalized mean mixing
index is defined for a given coordinate direction (say, y) as

Gi =

1
Ni

Ni∑
j=1

(yj − yref )

1
Ntot

Ntot∑
k=1

(yk − yref )

, (2.12)

where yref is taken as the minimum value of y occupied by any of the particles. The
numerator of (2.12) is a sum over all Ni particles of type i, whereas the denominator
is a sum over all Ntot particles in the system. A value of G equal to unity indicates
that particle type i is distributed within the solution domain in a similar manner to all
of the other particles. A value of G less than unity indicates that particles of type i
tend to have lower value of y than the average value for the entire particle set, and
a value greater than unity indicates that particles of type i tend to have higher values
of y than the average value for the entire particle set.

The mixing measure Glight for the light particles is plotted as a function of time for
different values of β in figure 6(d). The initial value of Glight is equal to unity for all
cases, indicating that the initial condition is well mixed. For small values of t∗, the
value of Glight increases with time as the lighter particles preferentially segregate into
the droplet tail. At a point around t∗≈ 1.5, a maximum value of Glight is attained, after
which the mixing measure gradually decreases for the remainder of the computation as
the heavier particles begin to enter into the droplet tail in larger numbers. For β6 0.5,
the value of the mixing measure is found to exhibit a marked increase with increase
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FIGURE 7. Comparison of (a) average particle position y∗ave and (b) droplet width measure
s for oseenlet-based simulations (solid lines) and stokeslet-based simulations (dashed lines)
for a case with β = 0.5.

in β, indicating that the extent of particle segregation becomes substantially greater
as the density difference between the particles increases. The trend breaks down for
β >0.5, where we notice that the three cases with β=0.5, 0.7 and 0.9 all have similar
values of the mixing measure.

It is of interest to compare the differences between computational results for
polydisperse droplets with the stokeslet and oseenlet simulation methods. A similar
comparison was reported for monodisperse droplets by Pignatel et al. (2011), who
found that stokeslet- and oseenlet-based simulations produced similar results for values
of the normalized inertial length `∗ > 50, but exhibited significant differences for
values of `∗ significantly less than 50. For the current bidisperse droplet simulations
`∗= 10, and so differences between the two simulation approaches would be expected.
A comparison between results of a simulation with β = 0.5 with the oseenlet- and
stokeslet-based simulations is given in figure 7 for the average y position y∗ave and
for a measure of droplet size defined by s ≡ [(xmax − xmin)

2 + (zmax − zmin)
2]1/2. It is

clear from figure 7 that the oseenlet simulations have a slower fall velocity, which is
associated with a more rapid increase in droplet size (and hence decrease in particle
concentration) in the oseenlet simulations compared to the stokeslet simulations. It is
noted that, after subtracting the uniform flow, the far-field flow in the Oseen solution
for flow past a sphere consists of a potential source with O(1/r2) velocity magnitude
decay for all angles except for the narrow wake region immediately behind the
sphere, within which there exists an inflowing velocity directed towards the sphere
with O(1/r) velocity magnitude decay. This flow field contrasts with the symmetric
streamlines exhibited by the Stokes solution of the same problem. As discussed by
Subramanian & Koch (2008), the source flow in the Oseen solution introduces a
weak repulsion of the particles within the droplet, which over time causes the droplet
size to increase. Aside from this difference, however, the nature of the segregation
phenomenon was similar for the two simulation approaches, and indeed segregation
measures such as the mixing measure Glight and the percentage of light particles
remaining in the droplet as a function of time (as shown in figure 6) are nearly
identical for the two simulation approaches.
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A

F

E

C

B

D

FIGURE 8. (Colour online) Diagram of the experimental set-up including (A) the black
background, (B) the injection syringe, (C) the lighting system, (D) the video camera,
(E) the ruler and (F) the vessel.

3. Experimental method and results
3.1. Experimental method

A series of experiments were conducted in which a particle suspension droplet settles
in a container filled with a transparent fluid. A diagram of the experimental set-up
is given in figure 8. The vessel used in the experiments has inner cross-sectional
dimensions of 9 cm by 9 cm, and was filled with the working fluid to a height of
28 cm. The fluid used in the experiments consisted of a mixture of water-soluble
UCONN oil and water to create a fluid with a kinematic viscosity of 174 ×
10−6 m2 s−1 and a density of 0.95 g cm−3. The container was illuminated from
the side with white light from four 6400K fluorescent tubes. A ruler with millimetre
scale spanning the container height was attached to the other side, and the container
was placed in front of a black background. The video camera used to capture the
images of the falling droplet was a Sony HDR-SR12 with a frame rate of 30 frames
per second.

Combinations of four different types of spherical particles were used in the
experiments, the characteristics of which are given in table 1. The particle size
distributions were measured using a digital imaging system (Image Pro Plus 6.0,
Media Cybernetics), where the diameter given in table 1 is the mean diameter and
the uncertainty stated is equal to one standard deviation, with sample sizes between
70 and 100 particles. The particle density was calculated by measuring the mass of a
sample of particles and dividing it by the measured volume of the same sample. The
mass was measured with a scale that has a precision of 0.0001 g, and the volume
was measured by putting the sample into a graduated cylinder with a 0.2 ml scale
and adding a known volume of water into the graduated cylinder. The error in the
density value that is given is calculated using the standard error propagation equation
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Particle Material Colour Diameter Density Isolated particle fall
label (mm) (g cm−3) velocity (mm s−1)

A Glass Gold 0.36± 0.03 2.44± 0.10 0.39± 0.1
B Glass Red 0.78± 0.05 2.55± 0.16 1.7± 0.3
C Aluminium Silver 0.77± 0.01 2.86± 0.35 2.1± 0.1
D Chrome steel Silver 0.96± 0.01 8.94± 1.9 13.0± 0.2

TABLE 1. Characteristics of particles used in the experiments.

from the known uncertainty of the mass and volume measurements. The measured
values of both the particle diameters and densities were found to be consistent
with manufacturer specified values. The terminal settling velocity of each particle is
determined by measuring the position and time from a series of time-stamped frames
pulled from a video of the falling particle, with a time precision of 0.03 s and a
length precision of 1 mm. The average particle velocity is calculated by averaging
the velocity from 20 samples, and the uncertainty is equal to one standard deviation
from the mean.

The particle suspension was formed by first measuring out the two sets of particles
to be used in the given experiment. The particle number ratio, N1/N2, for all of the
experiments was set equal to unity. To estimate particle number, tweezers were used
to count out 100 particles of each particle type, and the mass of the 100 particles was
recorded with an accuracy of 0.0001 g. Using these values, the number of particles
in a sample was obtained by measuring the sample’s mass and dividing by the mass
per particle. Once an equal number of particles of each type were measured, both sets
of particles were put in a small closable container and the container was vigorously
shaken. The particles were then put into a syringe with a 4 mm diameter opening and,
with the syringe extended to leave empty space for mixing, the syringe was vigorously
shaken to ensure that the particles were well mixed. Fluid from the vessel was then
added to the particles in the syringe, and the syringe was vigorously shaken again
to ensure an even distribution of the two types of particles within the suspension.
The particle suspension was injected into the fluid in the test vessel by holding the
syringe vertically with the syringe tip about 1 cm above the surface of the fluid. The
suspension was manually injected into the container by applying slight pressure to
the syringe, causing a droplet to slowly form at the end of the syringe. The droplet
falls into the fluid when the weight of the droplet exceeds the surface tension force
between the droplet and the syringe.

The number of particles in the suspension droplet was estimated by measuring
the mass of a series of droplets that were dripped onto a surface, using the same
approach for droplet generation as used in the experiments. Sample sizes of 21, 20
and 28 were used for experiment sets 1, 2 and 3, respectively. The known droplet
concentration was then used to calculate the approximate number of each particle
type in each sample droplet. The average total number of particles in a droplet and
the associated r.m.s. uncertainty were computed from the sample, giving the values
listed in table 2. Each droplet consisted of approximately even amounts of N1 and
N2, with an uncertainty equal to half of the uncertainty for N0 listed in table 2.

3.2. Experimental results
Experimental runs were first performed in a vessel filled with a lower-viscosity fluid to
examine the evolution of a suspension droplet with much lower particle concentration.
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Set Particles in β α Avg. L Avg. ρ̄p d̄ Avg. N0
suspension (mm) Red (g cm−3) (mm)

1 A & B 0.022 1.43 4.1 0.69 2.495 0.61 156± 18
2 B & C 0.057 0.02 4.2 0.87 2.705 0.775 85± 10
3 B & D 0.556 0.24 3.7 1.94 5.75 0.87 44± 9

TABLE 2. Parameters characterizing the experimental datasets. The average values of the
initial particle droplet diameter L, the droplet Reynolds number Red, and the initial number
of particles N0 are averaged over the different experimental runs.

The lower-viscosity fluid allowed for the falling particles to spread out more with the
initial impact and form a suspension droplet with a much lower initial concentration.
Similar to what was observed in the computations with low particle concentrations
(figure 5), the two types of particles immediately start to separate from each other
and there is no droplet tail formation. Because the particles are spread out from each
other, there is significantly less hydrodynamic interaction between the falling particles,
which is the driving mechanism for tail formation.

As we are primarily interested in particle segregation in cases with significant
particle hydrodynamic interaction, the primary focus of the experiments was on
cases with sufficiently large particle concentration that the entire particle set settles
downwards as a single droplet, with the exception of the thin tail that trails behind
the droplet. Three sets of experiments were performed, with multiple runs performed
for each set. The characteristics of each set are listed in table 2. In experiment set 1,
the particles have the same density but different particle radii. In experiment
set 2, the particles have nearly the same radius, but different densities. In
experiment set 3, both the particle radius and density are different. The mean values
of L and Red were determined by averaging results from five, nine and eight runs
for experimental sets 1, 2 and 3, respectively. In some of the experimental runs, the
droplet was initially teardrop-shaped instead of spherical, as a result of its injection
into the fluid in the vessel. In such cases, the particles that enter the fluid last are the
ones contained in the rear of the teardrop, and are observed to quickly break apart
from the droplet, leaving a roughly spherical droplet composed of the remaining
particles. All of the experimental analysis starts with the droplet in this spherical
shape, and does not include the particles that were separated from the droplet at the
time of initial injection.

Runs with experimental set 1 were conducted to study the problem of a falling
suspension droplet containing particles of two different sizes, with α≡ |rp2 − rp1|/d̄=
1.43. Figure 9 shows a time series of frames of the settling suspension droplet falling,
where the large particles (red) are about 2.2 times larger than the small particles
(gold). The tail that forms behind the droplet consists of both small and large particle
sizes, but the small particles are more numerous in the tail region than the large
particles. Runs with experimental set 2, shown in figure 10, were conducted to study
the problem of a falling suspension droplet containing particles of two different
densities, with β = 0.067. The heavy particles (silver) are 14 % heavier than the light
particles (red). The droplet tail contains both heavy and light particles, but the light
particles are significantly more numerous. Experimental set 3, shown in figure 11,
compares particles with a substantial difference in both particle size and density, with
α = 0.44 and β = 0.473. The tail behind the droplet consists of only smaller/lighter
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(a) (b) (c) (d ) (e)

FIGURE 9. Photos of the particle positions of a falling droplet, with initial droplet
diameter L= 3.8 mm, in experimental set 1 at dimensional times (s): (a) t= 0, (b) t= 0.8,
(c) t= 1.8, (d) t= 3.8 and (e) t= 4.3. The large particles (red) are about 2.2 times larger
than the small particles (gold).

particles for the initial part of the run, until eventually one larger/heavier particle
enters the tail.

Plots of the droplet fall velocity with time are shown in figure 12(a) for experiment
sets 1–3. To calculate the velocity, position and time data are obtained from a series of
time-stamped video frames with a time precision of 0.03 s and a length precision of
1 mm. The uncertainty of the experimental droplet fall velocity is computed using the
standard propagation-of-error equation from the measured uncertainty in the change in
particle distance and the change in time, and is found to be 1.0, 1.0 and 8.7 mm s−1

for sets 1, 2 and 3, respectively. As was also observed in the computational study
discussed in § 2, the droplet velocity decreases with time due to the loss of particles
from the droplet as the particles migrate into the tail.

The percentage of each particle type that is contained in the tail was calculated
as a function of time. The uncertainty in the time is 0.03 s, and the uncertainty in
the particle count is one particle. The experimental values varied significantly between
different runs from the same experimental set due to variation in the initialization of
the droplets. The mean values are plotted in figure 13(a–c) for all of the experiment
sets. The standard deviation of these values is recorded as 3.0 for the dashed line
and 5.5 for the solid line in figure 13(a), 6.4 for the dashed line and 3.1 for the
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(a) (b) (c) (d )

FIGURE 10. Photos of the particle positions of a falling droplet, with initial droplet
diameter L= 4 mm, in experimental set 2 at dimensional times (s): (a) t= 0, (b) t= 1.2
(c) t = 2.7 and (d) t = 4.2. The heavy particles (silver) are 14 % heavier than the light
particles (red).

solid line in figure 13(b), and 10.3 for the dashed line and 1.5 for the solid line
in figure 13(c). Similarly large variation between runs of the same set also occurred
in the experiments of Metzger et al. (2007). The plots in figure 13 are consistent
with our previous computational observation that the lighter/smaller particles were the
dominant particles in the tail, and that the percentage of larger/heavier particles in the
tail decreases with increasing values of β and α.

The experimental droplet fall velocity was divided by the theoretical solution
(2.9) and is plotted with time in figure 12(b). The droplet fall velocity is non-
dimensionalized by dividing by the average isolated particle settling speed for the
different particle types that make up the droplet. These isolated settling speeds were
obtained empirically, and are listed in table 2. The droplet diameter is measured
with digital imaging software and has an uncertainty of 1 mm. The number of
particles in the droplet with time is calculated by subtracting the number of particles
counted in the tail at that time from the initial number of particles in the droplet.
The uncertainty of the experimental droplet fall velocity divided by the theoretical
solution (2.9) is computed using the standard propagation-of-error equation from the
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(a) (b) (c) (d ) (e)

FIGURE 11. Photos of the particle positions of a falling droplet, with initial droplet
diameter L=3.5 mm, in experimental set 3 at dimensional times (s): (a) t=0, (b) t=0.44,
(c) t= 0.94, (d) t= 1.4 and (e) t= 1.74. The large/heavy particles (silver) are 27 % larger
and 3.2 times heavier than the small/light particles (red).

measured uncertainty in the fall velocity and the number of particles, and is found
to be 0.16, 0.03 and 0.25 for sets 1, 2 and 3, respectively. Figure 12(b) shows that
the value of the experimental droplet fall velocity divided by the theoretical solution
remains approximately constant with time at mean values of approximately 0.65, 0.58
and 0.85 for sets 1, 2 and 3, respectively. The experimental values of this velocity
ratio are close to the value obtained computationally using the oseenlet-based method,
as shown in figure 2(c).

4. Conclusions
An investigation of the segregation of polydisperse particles of different sizes and

densities in a settling suspension droplet was performed using both computations and
experiments. The computations approximated the particle hydrodynamic interaction
using an oseenlet-based simulation method that allows finite (non-small) values of the
droplet Reynolds number, while still requiring that the particle Reynolds number is
small. The experiments were conducted by observing the fall of suspension droplets
formed of binary particle mixtures consisting of particles with different sizes and
densities in a viscous fluid.
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FIGURE 12. (a) Experimental droplet fall velocity versus time for experimental set 1
(squares), set 2 (circles) and set 3 (triangles). The lines are fits to the data. (b) Droplet
fall velocity divided by the theoretical HR solution in (2.9).
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FIGURE 13. Plots showing the percentage pT of each type of particle contained in the
vertical tail as a function of dimensionless time for (a) experimental set 1, (b) set 2
and (c) set 3. Percentages are based on the total number of each type of particle. Solid
lines represent heavier (or larger) particles and dashed lines represent lighter (or smaller)
particles.

The computational method requires low values of particle concentration and the
experimental procedure requires high concentration values for polydisperse mixtures,
so the results of the two could not be directly compared. Nevertheless, there is strong
qualitative agreement between the experimental and computational results with regard
to the qualitative behaviour of the flow. Both computations and experiments were
performed for parameter values consistent with the macro-scale inertia regime of
suspension droplet motion, and for both cases the particle hydrodynamic interactions
were sufficiently important that the droplet settling speed was approximately an
order of magnitude larger than the terminal velocity of an isolated particle. The
computed fall velocity of the suspension droplet was compared against an approximate
theoretical solution, and the ratio of the computed to the theoretical values of droplet
fall velocity are found to be consistent both with experimental results from our study
and with experimental and computational solutions obtained by other investigators.

The dynamics of bidisperse suspension droplets depends strongly on the particle
concentration. For low concentrations, the amount of particle hydrodynamic interaction
is insufficient to oppose the gravitational separation of the particles, and the particle
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type with larger terminal velocity quickly pulls away from the slower particles, leaving
a deformed cloud of the slower particles behind. When the particle concentration is
sufficiently large, the particle hydrodynamic interaction is sufficient to hold particles
of both types together within the suspension droplet, thus inhibiting particle separation
and allowing the droplet to settle as a single unit. A falling suspension droplet with
high concentration develops a thin tail of trailing particles that slowly leak out from
the rear portion of the droplet. A novel segregation mechanism is observed to occur by
which the particles with smaller terminal velocity have a preferential tendency to be
transported into the droplet tail, whereas particles with higher terminal velocity have
a higher tendency to remain within the suspension droplet.

The essential problem examined in this paper concerns the inhibition of particle
segregation by the hydrodynamic interaction of the particles in a situation where
the particle terminal velocity differs within the mixture. This difference in terminal
velocity acts to try to pull apart the mixture (enhancing segregation), whereas the
hydrodynamic interaction acts to hold the mixture together (suppressing segregation).
However, even in cases with strong hydrodynamic interaction, segregation still occurs
within certain regions of the mixture near the edges of the suspension droplet, and
particularly near the droplet rear stagnation point. This basic problem occurs in many
different particulate flow problems in which particle agglomerates or clusters are
transported relative to the surrounding fluid. The model problem examined in the
current paper should provide insight into the ability of clusters formed of a mixture
of different particle sizes and densities to hold their structure even in the presence of
differences in drag and other fluid forces, which attempt to tear the cluster apart.
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