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In memoriam Alfredo Lorenzi 1944-2013

We consider a diffuse interface model of tumour growth proposed by A. Hawkins-Daruud

et al. ((2013) J. Math. Biol. 67 1457–1485). This model consists of the Cahn–Hilliard equa-

tion for the tumour cell fraction ϕ nonlinearly coupled with a reaction–diffusion equation

for ψ, which represents the nutrient-rich extracellular water volume fraction. The coup-

ling is expressed through a suitable proliferation function p(ϕ) multiplied by the differences

of the chemical potentials for ϕ and ψ. The system is equipped with no-flux boundary

conditions which give the conservation of the total mass, that is, the spatial average of

ϕ + ψ. Here, we prove the existence of a weak solution to the associated Cauchy problem,

provided that the potential F and p satisfy sufficiently general conditions. Then we show

that the weak solution is unique and continuously depends on the initial data, provided

that p satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of

a strong solution and that any weak solution regularizes in finite time. Finally, we prove

the existence of the global attractor in a phase space characterized by an a priori bounded

energy.

Key words: diffuse interface; tumour growth; Cahn–Hilliard equations; reaction–diffusion

equations; weak solutions; well-posedness; global attractors

1 Introduction

Modelling tumour growth dynamic has recently become a major issue in applied mathem-

atics (see, for instance, [11,25], cf. also [2,29]). The models can be divided into two broad

categories: continuum models and discrete or cellular automata models (however, see,

e.g., [11, Chap.7] for hybrid continuum-discrete models). Concerning the former ones, the

necessity of dealing with multiple interacting constituents has led to the consideration of
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diffuse-interface models based on continuum mixture theory (see, for instance, [10, 28, 34]

and references therein, cf. also [7,13,20]). Such models generally consist of Cahn–Hilliard

equations with transport and reaction terms which govern various types of cell concen-

trations. The reaction terms depend on the nutrient concentration (e.g., oxygen) which

obeys an advection-reaction-diffusion equation coupled with the Cahn–Hilliard equations.

The cell velocities satisfy a generalized Darcy’s (or Brinkman’s) law where, besides the

pressure gradient, there is also the so-called Korteweg force due to the cell concentration.

Numerical simulations of diffuse-interface model for tumour growth have been carried

out in several papers (see, for instance, [11, Chap. 8] and references therein). Nonetheless,

a rigorous mathematical analysis of the resulting systems of differential equations is still

in its infancy. In particular, to the best of our knowledge, the first related papers are con-

cerned with the so-called Cahn–Hilliard–Hele–Shaw system (see [24], cf. also [5,32,33]) in

which the nutrient is neglected. Moreover, a very recent contribution (see [8]) is devoted

to analyze an approximation of a model recently proposed in [21] (see also [22, 35]). In

this model, velocities are set to zero and the state variables are reduced to the tumour cell

fraction ϕ and the nutrient-rich extracellular water fraction ψ. The corresponding PDE

system is given by

ϕt = Δμ+ p(ϕ)(ψ − μ), (1.1)

μ = −Δϕ+ F ′(ϕ), (1.2)

ψt = Δψ − p(ϕ)(ψ − μ), (1.3)

in Ω × (0,∞), where Ω ⊂ �3 is a bounded smooth domain. Here F is the typical

double-well associated with the Ginzburg–Landau free-energy functional, while p is a

proliferation function which must be nonnegative and may have, for instance, the form

p(s) = p0(1 − s2)χ[−1,1](s) for s ∈ �, p0 > 0. Here, χ[−1,1] represents the indicator function

of [−1, 1]. However, in this paper we suppose p to be, at least, Lipschitz continuous, but

we allow it to satisfy a suitable growth condition (cf. (3.4)). Also, it is worth observing that

more general potentials F , possibly depending on ψ as well, might be taken into account

since they are relevant from the modelling viewpoint (cf. [21] and references therein). This

could be the subject of a future work.

System (1.1)–(1.3) is equipped with the no-flux boundary conditions

∂nϕ = ∂nμ = ∂nψ = 0 on ∂Ω × (0,∞), (1.4)

and initial conditions

ϕ(0) = ϕ0, ψ(0) = ψ0 in Ω. (1.5)

In [8], the authors consider a relaxed model in which the chemical potential μ contains a

viscous term αϕt, α > 0 and equation (1.1) has an additional term αμt which requires a

further initial condition. For this model, existence and uniqueness of a variational solution

is proven under very general conditions on F , while p is taken to be globally bounded

and Lipschitz continuous. Then, imposing substantial restrictions on F (e.g., polynomial

growth of order 4), the authors prove the existence of a sequence {αn} and a sequence

of solutions which converges to a weak solution to problem (1.1)–(1.5) as αn goes to 0.
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Such a solution is more regular than the weak solution to (1.1)–(1.5) and it is also unique,

provided that ϕ0 is smooth enough.

Here, we want to analyse problem (1.1)–(1.5) without any regularizing term. More

precisely, it is not difficult to check that system (1.1)–(1.3) with (1.4) is characterized by

the total energy balance law (see [21, (10)])

d

dt
E(ϕ,ψ) + ‖∇μ‖2 + ‖∇ψ‖2 +

∫
Ω

p(ϕ)(μ− ψ)2 = 0, (1.6)

where the energy E is given by

E(ϕ,ψ) :=
1

2
‖∇ϕ‖2 +

1

2
‖ψ‖2 +

∫
Ω

F(ϕ). (1.7)

Therefore, it seems natural to find a solution assuming that the initial data have just

finite energy. This is our first result, namely, existence of a weak solution of finite energy.

The assumptions on F and p are more general than the ones in [8] for the case α = 0.

In particular, in the present contribution p can have a polynomially controlled growth.

Concerning F , we can take any C2 and λ1-convex potential satisfying |F ′| � λ2F + λ3 for

some non-negative constants λ1, λ2, λ3. For instance, F(s) = exp(s) or F with arbitrary

polynomial growth. Also, with a further restriction on the growth of p′ and assuming F

to have a polynomially controlled growth, we can establish the continuous dependence

on the initial data (and so the uniqueness of weak solutions).

The proof is obtained by suitably approximating the potential F with a coercive

quadratic potential Fm and finding an approximating solution of such a problem through

a Faedo–Galerkin scheme. The crucial point is then to obtain appropriate a priori estimates

to pass to the limit via compactness results with respect to m. In particular, a bootstrap

argument is used in order to derive the optimal regularity estimate for ϕ, which is

necessary in order to prove the continuous dependence estimate as well as for the analysis

of the global longtime behaviour. For similar double approximation techniques the reader

is referred to, e.g., [12, 15].

Then, we prove a regularity result which helps us to investigate the global longtime

behaviour of the solutions. Concerning this issue, observe that conditions (1.4) imply the

conservation of the total mass∫
Ω

(
ϕ(t) + ψ(t)

)
=

∫
Ω

(ϕ0 + ψ0), ∀t � 0. (1.8)

However, we are not able to obtain independent global bounds for the spatial averages of

ϕ(t) and ψ(t). On account of this fact, we can show that (1.1)–(1.4) generates a dynamical

system taking as phase space a bounded set in the finite energy space with a constraint

on the total mass. We can thus prove that such a system has a global attractor.

This is just a preliminary step towards the theoretical analysis of more refined models.

For instance, one may include the fluid velocity either given as a datum or satisfying a

generalized Darcy’s (or Brinkman’s) law. Also, one should take a logarithmic potential

F , which is physically more relevant, and non-constant (possibly degenerate) mobility in

the Cahn–Hilliard equation. On the other hand, the free energy functional may contain a

non-local spatial interaction in place of the usual term |∇ϕ|2 giving rise to a convolution
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operator acting on ϕ in place of Δϕ in (1.2) (see, for instance, [34], cf. also [17, 18]).

These are just some examples of challenging extensions of the simplified model expressed

by (1.1)–(1.3).

1.1 Plan of the paper

In Section 2, we define the notation and we recall a useful inequality. In Section 3, we

prove that Problem (1.1)–(1.5) admits a unique weak solution (which continuously depends

on the data) under proper assumptions on the nonlinearities F and p. In Section 4, we

establish a regularity result for Problem (1.1)–(1.5) that holds under the same condition

on p which ensures uniqueness. This result turns out to be crucial in order to eventually

prove the existence of the global attractor.

2 Notation and preliminaries

Let Ω be a sufficiently regular, bounded domain in �3, let T > 0 and set Q = Ω × (0, T ).

Then, we define H := L2(Ω) and V := H1(Ω) and denote by ‖ · ‖, (·, ·) the norm and the

scalar product in H , respectively. If X is a (real) Banach space, the notation 〈·, ·〉 will be

used to denote the duality pairing between X and its dual X ′, while (·, ·)X will denote

the scalar product in X. For every f ∈ V ′, f will stand for the average of f over Ω, i.e.,

f := |Ω|−1〈f, 1〉. Here, |Ω| is the Lebesgue measure of Ω.

Since it is convenient to rewrite the equations (1.1) and (1.3) as abstract equations

in the framework of the Hilbert triplet (V ,H, V ′), we introduce the Riesz isomorphism

A : V → V ′ associated to the standard scalar product of V , that is,

〈Au, v〉 := (u, v)V =

∫
Ω

(∇u · ∇v + uv) ∀u, v ∈ V . (2.1)

We notice that Au = −Δu+ u if u ∈ D(A) := {ϕ ∈ H2(Ω) : ∂nϕ = 0 on ∂Ω} and that the

restriction of A to D(A) is an isomorphism from D(A) onto H . We also remark that

〈Au, A−1v∗〉 = 〈v∗, u〉, ∀u ∈ V and v∗ ∈ V ′,

〈u∗, A−1v∗〉 = (u∗, v∗)V ′ , ∀u∗, v∗ ∈ V ′

where (·, ·)V ′ is the dual scalar product in V ′ associated to the standard one in V , and

recall that 〈v∗, u〉 =
∫
Ω
v∗u if v∗ ∈ H and we have

d

dt
‖v∗‖2

V ′ = 2〈∂tv
∗, A−1v∗〉, ∀v∗ ∈ H1(0, T ;V ′).

Moreover, by a classical spectral theorem there exist a sequence of eigenvalues λj with

0 < λ1 � λ2 � · · · and λj → ∞, and a family of eigenfunctions wj ∈ D(A) such that

Awj = λjwj . The family of wj is an orthonormal basis in H and it is also orthogonal in

V and D(A).

We shall repeatedly use the following Gagliardo–Nirenberg inequality in dimension 3

(see, e.g., [4, 14, 16, 27] for more details)
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Lemma 1 Let 1 � p1, p2 � ∞, 0 � r < l (r, l ∈ �) and assume that

θ :=
3/m− 3/p1 − r

3/p2 − 3/p1 − l
∈ [r/l, 1).

Then

‖u‖Wr,m(Ω) � c‖u‖1−θ
Lp1 (Ω)‖u‖θ

W l,p2 (Ω), ∀u ∈ Wl,p2 ∩ Lp1 (Ω). (2.2)

3 Existence and uniqueness of weak solutions

In this section, we prove that Problem (1.1)–(1.5) admits a weak solution, provided that F

and p have polynomial growth with given orders ρ and q, respectively. The upper bounds

on ρ and q in Theorem 1 ensure the existence of a weak solution with optimal regularity

for ϕ, i.e., ϕ ∈ L2(0, T ;H3(Ω)). Such assumptions can be relaxed if only existence of the

weak solution is required (cf. Corollary 1). An additional restriction on the proliferation

function p allows us to prove uniqueness as well as a continuous dependence estimate on

the initial data for weak solutions. In any case, our assumptions on F and p are more

general than those made in [21] (cf. also [8] when α = 0).

Let us begin with the existence result, which will be proven, for the case where

the growth ρ of F is greater than 4, by means of a double approximation procedure,

namely by first exploiting the Faedo–Galerkin scheme to prove existence for ρ � 4

and then by approximating F with a sequence of potentials having growth which is at

most 4.

The assumptions we need for the existence are the following

(F) F ∈ C2(�) can be written as

F(s) = F0(s) + λ(s), (3.1)

where F0 ∈ C2(�) and λ ∈ C2(�) satisfies |λ′′(s)| � α, for all s ∈ �, and for some

constant α � 0. Moreover, we assume

c1(1 + |s|ρ−2) � F ′′
0 (s) � c2(1 + |s|ρ−2), (3.2)

F(s) � c3|s| − c4, (3.3)

for all s ∈ �, with c1, c2, c3 > 0, c4 ∈ � and with ρ ∈ [2, 6).

(P) p ∈ C
0,1
loc(�) satisfies

0 � p(s) � c5(1 + |s|q), (3.4)

for all s ∈ �, with c5 > 0 and with q ∈ [1, 9).

Before stating the existence result, let us introduce the definition of weak solution to

Problem (1.1)–(1.5).
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Definition 1 Let ϕ0 ∈ V , ψ0 ∈ H and 0 < T < ∞ be given. Then, a pair [ϕ,ψ] is a weak

solution to (1.1)–(1.5) on [0, T ] if

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), ϕt ∈ Lr(0, T ;D(A−1)), (3.5)

μ := −Δϕ+ F ′(ϕ) ∈ L2(0, T ;V ), (3.6)

ψ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ψt ∈ Lr(0, T ;D(A−1)), (3.7)

for some r > 1, and the following identities are satisfied

〈ϕt, χ〉 + (∇μ,∇χ) =
(
p(ϕ)(ψ − μ), χ

)
, (3.8)

〈ψt, ξ〉 + (∇ψ,∇ξ) = −
(
p(ϕ)(ψ − μ), ξ

)
, (3.9)

for all χ, ξ ∈ D(A) and for almost all t ∈ (0, T ), together with the initial conditions (1.5).

Remark 1 Notice that the regularity properties of weak solution imply that

ϕ ∈ Cw([0, T ];V ), ψ ∈ Cw([0, T ];H).

Hence, the initial conditions (1.5) make sense. Moreover, we point out that the required

regularity for ∂Ω in order to prove our theorems is at least C2,1. For instance, we need

some regularity for the eigenfunctions (see proof of Theorem 1) as well as when we deduce

that ϕ ∈ L2(0, T ;H2(Ω)) (cf. (3.5)).

Theorem 1 Assume that (F) and (P) are satisfied. Let ϕ0 ∈ V and ψ0 ∈ H . Then, for

every T > 0, Problem (1.1)–(1.5) admits a weak solution on [0, T ] such that

ϕ ∈ L2(0, T ;H3(Ω)), (3.10)

F(ϕ) ∈ L∞(
0, T ;L1(Ω)

)
,

√
p(ϕ)(μ− ψ) ∈ L2(0, T ;H), (3.11)

which satisfies the following energy inequality

E(ϕ,ψ) +

∫ t

0

(
‖∇μ‖2 + ‖∇ψ‖2

)
dτ+

∫ t

0

∫
Ω

p(ϕ)(μ− ψ)2 � E(ϕ0, ψ0), ∀t > 0, (3.12)

where E is given by (1.7). Furthermore, if q � 4, then we have

ϕt, ψt ∈ L2(0, T ;V ′), (3.13)

and (3.12) holds with the equality sign. Moreover, in this case the weak formulation (3.8),

(3.9) is satisfied also for all χ, ξ ∈ V .

Remark 2 The bound ρ < 6 is required only to gain the optimal regularity ϕ ∈
L2(0, T ;H3(Ω)). Actually, we should only require ρ � 6. However, due to technical

reasons, we are not able to perform our bootstrap technique in the case ρ = 6 (cf. Step II

in the proof of Theorem 1). Nevertheless, the existence of a weak solution (without this

optimal regularity) can be proven under more general assumptions on F (together with

https://doi.org/10.1017/S0956792514000436 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000436


On a diffuse interface model of tumour growth 221

a slight restriction on q), in particular, for F with polynomial growth of arbitrary order

(see Corollary 1).

The following lemma will turn out to be useful in the proof of Theorem 1 (cf. Step II).

Indeed, it allows us to suitably approximate a regular potential having general ρ−growth

(in particular in the case of ρ > 4) and satisfying conditions (3.2), (3.3) with a sequence

of regular potentials having quadratic growth.

Lemma 2 Assume that F satisfies (F) with ρ > 2. Then there exists a sequence of Fm ∈
C2(�) satisfying

|Fm(s)| � αm(1 + s2), ∀s ∈ �,

for some constant αm � 0, such that Fm(s) → F(s) pointwise for all s ∈ � as m → +∞ and

fulfilling, for every m ∈ �, the bounds

|Fm(s)| � k0|F(s)|, |F ′
m(s)| � k1|F ′(s)|, |F ′′

m(s)| � k2|F ′′(s)|, ∀s ∈ �, (3.14)

and the equi-coercivity conditions

Fm(s) � k3s
2 − k4, F ′′

m(s) � −k5, ∀s ∈ �, (3.15)

where ki, i = 0, . . . , 5 are some positive constants depending on F and ρ only.

Proof Without loss of generality, we set F0(0) = F ′
0(0) = 0 (this condition can always

be assumed by redefining the function λ). Set H0 = F ′
0 and let H0m be the Yosida

regularization of H0 defined by (cf., e.g., [6, p. 28])

H0m(s) = m
(
s− Jm(s)

)
, Jm(s) =

(
I +

1

m
H0

)−1

(s), ∀s ∈ �.

Introduce now

F0m(s) =

∫ s

0

H0m(σ)dσ,

for all s ∈ �, and set

Fm(s) = F0m(s) + λ(s).

Let us check that the sequence of Fm satisfies all the stated conditions. We shall use

standard results from the theory of maximal monotone operators (applied to the single-

valued monotone function H0 defined on the whole of �).

First, notice that H0m is Lipschitz continuous with Lipschitz constant equal to m, and

then |H0m(s)| � m|s|, for all s ∈ �, where we have used the fact that H0m(0) = Jm(0) = 0,

since F ′
0(0) = 0. Therefore,

|F0m(s)| �
1

2
ms2, ∀s ∈ �,

which implies that Fm has at most quadratic growth for each m.
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Moreover, we have |H0m(s)| � |H0(s)| = |F ′
0(s)| and also H0m(s) → H0(s) = F ′

0(s), for all

s ∈ � as m → +∞. Therefore, by the Lebesgue theorem, we deduce

F0m(s) →
∫ s

0

F ′
0(σ)dσ = F0(s), as m → +∞

and this implies that Fm(s) → F(s) for all s ∈ � as m → +∞.

Next, the bound (3.14)1 is immediate, since, for all s ∈ � we have

|F0m(s)| �
∣∣∣ ∫ s

0

|H0m(σ)|dσ
∣∣∣ �

∣∣∣ ∫ s

0

|F ′
0(σ)|dσ

∣∣∣ = F0(s),

|F ′
0m(s)| = |H0m(s)| � |H0(s)| = |F ′

0(s)|.

Also, we can take the growth condition (3.2) into account. As far as (3.14)3 is concerned,

notice first that we have F ′′
0m(s) = H ′

0m(s) = m(1 − J ′
m(s)). Moreover, from

r +
1

m
H0(r) = s ⇐⇒ r = Jm(s), (3.16)

we deduce

J ′
m(s) =

1

1 + 1
m
F ′′

0

(
Jm(s)

) .
Hence, we have

F ′′
0m(s) =

F ′′
0

(
Jm(s)

)
1 + 1

m
F ′′

0

(
Jm(s)

) � F ′′
0

(
Jm(s)

)
� c2

(
1 + |Jm(s)|ρ−2

)
� c2

(
1 + |s|ρ−2

)
�
c2

c1
F ′′

0 (s), ∀s ∈ �.

Bound (3.14)3 then follows from this last estimate and (3.2).

Furthermore, we have

F ′′
0m(s) �

F ′′
0

(
Jm(s)

)
1 + F ′′

0

(
Jm(s)

) �
c1

1 + c1
, ∀s ∈ �, ∀m,

and this, together with the assumption on λ, yields (3.15)2. Let us finally check that also

(3.15)1 holds. To this end we first recall the following property: let β > 0 and γ ∈ � be

two constants such that

F0(s) � βs2 − γ, ∀s ∈ �.

Then, we have

F0m(s) �
β

2
s2 − γ, ∀s ∈ �,

and for all m � m0(β). We give the proof for the reader’s convenience. Observe that

F0m(s) =
1

2m
H2

0m(s) + F0(Jm(s)) �
1

2m
H2

0m(s) + βJ2
m(s) − γ

=
1

2m
H2

0m(s) + β
(
s− 1

m
H0m(s)

)2

− γ �
1

4m
H2

0m(s) + β
(
1 − 4β

m

)
s2 − γ

�
β

2
s2 − γ,
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provided we choose m � m0(β) := 8β.

Using now (3.2) and the fact that ρ > 2, we can write

F0(s) � ĉ1(|s|ρ + s2) �
ĉ1

δ
s2 − Cδ,

where δ > 0 will be fixed later. By employing the property recalled above and the fact

that we have λ(s) � −αs2 − α̃, we deduce

Fm(s) = F0m(s) + λ(s) �
( ĉ1

2δ
− α

)
s2 − Cδ,

which holds for all s ∈ � and for all m � 8ĉ1/δ. Let us choose, e.g., δ = ĉ1/2(1 + α).

Therefore, we have

Fm(s) � s2 − C, ∀s ∈ �, ∀m � m0,

where m0 = 16(1+α). Hence, (3.15)1 is proven and the proof of the lemma is complete. �

Proof of Theorem 1. Step I (case ρ � 4).

Let us first prove the existence of a weak solution with optimal regularity (3.10) under

the assumption that F has growth of power 4 at most. We shall use a Faedo–Galerkin

approximation method. Let us then take the family {wj}j�1 of the eigenfunctions of A as a

Galerkin basis in V , and let Pn be the orthogonal projectors in H onto the n-dimensional

subspace Wn := 〈w1, . . . wn〉 spanned by the first n eigenfunctions. For n ∈ � fixed, we

look for three functions of the form

ϕn(t) :=

n∑
k=1

ank(t)wk, ψn(t) :=

n∑
k=1

bnk(t)wk, μn(t) :=

n∑
k=1

cnk(t)wk

that solve the following approximating problem

(ϕ′
n, wj) + (∇μn,∇wj) =

(
p(ϕn)(ψn − μn), wj

)
, (3.17)

(μn, wj) = (∇ϕn,∇wj) +
(
F ′(ϕn), wj

)
, (3.18)

(ψ′
n, wj) + (∇ψn,∇wj) = −

(
p(ϕn)(ψn − μn), wj

)
, (3.19)

ϕn(0) = ϕ0n, ψn(0) = ψ0n, (3.20)

for j = 1, . . . , n, where ϕ0n := Pnϕ0 and ψ0n := Pnψ0 (prime denotes the derivative with

respect to time).

It is easy to see that solving the approximate problem (3.17)–(3.20) is equivalent to

solving a Cauchy problem for a system of 2n ordinary differential equations in the 2n

unknowns anj , b
n
j . Since F ′ ∈ C1 and p ∈ C

0,1
loc , the Cauchy–Lipschitz theorem ensures

that there exists T ∗
n ∈ (0,∞] such that this system has a unique maximal solution

an := (an1, . . . , a
n
n), bn := (bn1, . . . , b

n
n) on [0, T ∗

n ) with an, bn ∈ C1([0, T ∗
n ); �n). Hence, the

approximate problem (3.17)–(3.20) admits a unique solution ϕn, ψn, μn ∈ C1([0, T ∗
n ); Wn).

We now deduce the basic estimates on the sequence of approximating solutions. In

particular, these estimates will guarantee that T ∗
n = ∞ for every n ∈ �.
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Multiply then (3.17) by cnj , (3.18) by anj
′, (3.19) by bnj and sum the resulting identities

over j = 1, . . . , n. We get the following energy identity satisfied by the solution of the

approximate problem

d

dt

(1

2
‖∇ϕn‖2 +

1

2
‖ψn‖2 +

∫
Ω

F(ϕn)
)

+ ‖∇μn‖2 + ‖∇ψn‖2 +

∫
Ω

p(ϕn)(μn − ψn)
2 = 0.

(3.21)

By integrating (3.21) in time between 0 and t, using (F), (P) and the assumptions on the

initial data we immediately deduce the following estimates

‖ϕn‖L∞(0,T ;V ) � C, ‖ψn‖L∞(0,T ;H)∩L2(0,T ;V ) � C, (3.22)

‖∇μn‖L2(0,T ;H) � C, ‖
√
p(ϕn)(ψn − μn)‖L2(0,T ;H) � C, (3.23)

‖F(ϕn)‖L∞(0,T ;L1(Ω)) � C. (3.24)

where henceforth C = C
(
‖ϕ0‖V , ‖ψ0‖

)
denotes a non-negative constant depending on the

norms of the initial data (and on F , Ω).

Let us now control the sequence of the averages of μn. From (3.18) we get

|(μn, 1)| = |(F ′(ϕn), 1)| � c6
(
F(ϕn), 1

)
+ c7 � C, (3.25)

where c6, c7 are two non-negative constants depending only on F , Ω and where we have

used assumption (F) and (3.24). Therefore, the sequence of μn is bounded in L∞(0, T ) and

this bound, together with the first of (3.23), yields

‖μn‖L2(0,T ;V ) � C. (3.26)

We now prove that the sequence of ϕn is controlled in L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)).

Indeed, notice first that (3.18) can be written as

μn = −Δϕn + PnF
′(ϕn). (3.27)

Observe now that ‖PnF ′(ϕn)‖ � ‖F ′(ϕn)‖. Thus, the sequence of ϕn is bounded in

L∞(0, T ;L6(Ω)), we deduce from (3.2) the bound

‖F ′(ϕn)‖L∞(0,T ;H) � C. (3.28)

Hence, (3.27) and (3.26) give that the sequence of −Δϕn + ϕn is bounded in L2(0, T ;H)

and, on account of the homogeneous Neumann boundary condition for ϕn, a classical

elliptic regularity result implies

‖ϕn‖L∞(0,T ;V )∩L2(0,T ;H2(Ω)) � C. (3.29)

By using inequality (2.2), we deduce from (3.29) that the sequence of ϕn is bounded in

L10(Q) and moreover the sequence of ∇ϕn is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ) ↪→
L10/3(Q). On the other hand, note that ‖A1/2u‖2 = (Au, u) = ‖∇u‖2+‖u‖2, for all u ∈ D(A).

Hence ‖A1/2u‖ � ‖∇u‖ (which holds, by density, also for all u ∈ V = D(A1/2)). Therefore,
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we have

‖∇
(
PnF

′(ϕn)
)
‖ � ‖A1/2PnF

′(ϕn)‖ = ‖PnA1/2F ′(ϕn)‖ � ‖∇F ′(ϕn)‖ + ‖F ′(ϕn)‖,

and hence (3.2) together with (3.28) and (3.22)1 give

‖PnF ′(ϕn)‖L2(0,T ;V ) � ‖F ′′(ϕn)∇ϕn‖L2(Q) + ‖F ′(ϕn)‖L2(Q)

� ‖F ′′(ϕn)‖L5(Q)‖∇ϕn‖L10/3(Q) + ‖F ′(ϕn)‖L2(Q)

� c
(
1 + ‖ϕn‖2

L10(Q)

)
‖∇ϕn‖L10/3(Q) + ‖F ′(ϕn)‖L2(Q)

� C.

Using (3.26) and the elliptic regularity result again, we infer from (3.27) that

‖ϕn‖L∞(0,T ;V )∩L2(0,T ;H3(Ω)) � C. (3.30)

We now deduce the estimates for the sequences of time derivatives ϕ′
n and ψ′

n. Take

χ ∈ D(A) ↪→ L∞(Ω) and write it as χ = χ1 +χ2, where χ1 = Pnχ ∈ Wn and χ2 ∈ (I−Pn)χ ∈
W⊥

n (recall that χ1, χ2 are orthogonal in H , V and D(A)). Then, from (3.17) we have

〈ϕ′
n, χ〉 = 〈ϕ′

n, χ1〉 = −(∇μn,∇χ1) +
(
p(ϕn)(ψn − μn), χ1

)
, (3.31)

and a similar identity follows from (3.19). Observe that

|
(
p(ϕn)(ψn − μn), χ1

)
| � ‖p(ϕn)‖L6/5(Ω)‖ψn − μn‖L6(Ω)‖χ1‖L∞(Ω)

� c‖p(ϕn)‖L6/5(Ω)‖ψn − μn‖L6(Ω)‖χ‖D(A).

The term (ψn − μn) is controlled in L2(0, T ;L6(Ω)), then we need to control the sequence

of p(ϕn) in Lσ(0, T ;L6/5(Ω)) with some σ > 2 in order to get the control of the sequences

of ϕ′
n, ψ

′
n in Lr(0, T ;D(A−1)) with some r > 1. To this aim notice that from assumption

(P) it follows that

‖p(ϕn)‖Lσ(0,T ;L6/5+ε(Ω)) � c(1 + ‖ϕn‖qLσq(0,T ;L6q/5+εq(Ω))
), (3.32)

where σ > 2 and ε > 0. On the other hand, we know that the sequence of ϕn is bounded

in L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) (cf. (3.30)), and, thanks to inequality (2.2), we have the

following embedding

L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) ↪→ L8θ/(θ−6)(0, T ;Lθ(Ω)), for 6 � θ � ∞. (3.33)

Hence, choosing θ = 54/5, we obtain

‖ϕn‖L18(0,T ;L54/5(Ω)) � C. (3.34)

Recalling that q < 9, we can then fix σ > 2 and ε > 0 such that σq � 18 and

6q/5 + εq � 54/5 (both σ and ε depending on q). Thus, we have L18(0, T ;L54/5(Ω)) ↪→
Lσq(0, T ;L6q/5+εq(Ω)). Therefore, on account of (3.32) and (3.34), we get the desired

control of p(ϕn) in Lσ(0, T ;L6/5(Ω)) with some σ > 2. Summing up, we have proven the
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following bounds

‖ϕ′
n‖Lr(0,T ;D(A−1)) � C, ‖ψ′

n‖Lr(0,T ;D(A−1)) � C, for some r > 1, (3.35)

where we have used (3.32) and (3.23)1 in (3.31) to get the first bound and (3.32) and

(3.22)2 to obtain the second bound.

We now deduce from estimates (3.22), (3.26), (3.30) and (3.35) the existence of three

functions ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)), ψ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and μ ∈
L2(0, T ;V ), with ϕt, ψt ∈ Lr(0, T ;D(A−1)) which are the (weak) limits (up to subsequences)

of ϕn, ψn, μn and ϕ′
n, ψ

′
n, respectively. In order to pass to the limit in the approximate

problem, we first observe that thanks to the compact embedding

L∞(0, T ;V ) ∩W 1,r(0, T ;D(A−1)) ↪→↪→ C([0, T ];Lκ(Ω)), 2 � κ < 6

given by the Aubin–Lions lemma (see, e.g., [23]), we deduce that, up to a subsequence,

ϕn → ϕ pointwise almost everywhere in Q = Ω × (0, T ). Then, since (ψn − μn) converges

weakly to (ψ − μ) in L2(0, T ;L6(Ω)), in order to pass to the limit in
(
p(ϕn)(ψn − μn), wj

)
on the right-hand side of (3.17) and (3.19) it is enough that p(ϕn) converges strongly to

p(ϕ) in L2(0, T ;L6/5(Ω)) (up to a subsequence). But we know that p(ϕn) → p(ϕ) pointwise

almost everywhere in Q and furthermore, from (3.32), (3.34) and the from embedding

L18(0, T ;L54/5(Ω)) ↪→ Lσq(0, T ;L6q/5+εq(Ω)) (with σ > 2 and ε > 0 fixed as above), we

have p(ϕn) ⇀ p(ϕ) weakly in Lσ(0, T ;L6/5+ε(Ω)). Hence we deduce

p(ϕn) → p(ϕ), strongly in L2(0, T ;L6/5(Ω)). (3.36)

This convergence, combined with the weak convergence (μn − ψn) ⇀ (μ − ψ) in

L2(0, T ;L6(Ω)), allows us to pass to the limit in the non-linear term on the right-hand

side of (3.17) and (3.19) (recall that wj ∈ C1(Ω), assuming that ∂Ω is smooth enough, e.g.,

C2,1). By means of the convergences deduced above we can therefore pass to the limit

in the approximate problem (3.17)–(3.20) and deduce that ϕ,ψ, μ satisfy (3.8)–(3.9). The

argument is standard and the details are left to the reader.

The energy inequality (3.12) can be proven by integrating in time (3.21) between 0 and

t and passing to the limit as n → ∞ in the resulting identity. The only non-trivial point is

the following inequality∫ t

0

∫
Ω

p(ϕ)(μ− ψ)2 � lim inf
n→∞

∫ t

0

∫
Ω

p(ϕn)(μn − ψn)
2. (3.37)

We know from (3.33) written for θ = 14, that the sequence of ϕn is bounded in L14(Q) and

hence, on account of (P), the sequence of
√
p(ϕn) is bounded in L28/q(Q). Since ϕn → ϕ

also pointwise almost everywhere in Q, then we have
√
p(ϕn) →

√
p(ϕ) strongly in Lγ(Q),

for every γ < 28/q. In particular, we have
√
p(ϕn) →

√
p(ϕ) strongly in L3(Q). Therefore,

we have √
p(ϕn)(μn − ψn) ⇀

√
p(ϕ)(μ− ψ), in L6/5(Q),

and, due (3.23)2, this last weak convergence is also in L2(Q). Hence, (3.37) follows.
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Moreover, if q � 4 we can easily deduce the regularity ϕt, ψt ∈ L2(0, T ;V ′) by com-

parison in the variational formulation of (1.1) and (1.3). Indeed, estimating the term

p(ϕ)(ψ − μ) in V ′, we get

‖p(ϕ)(ψ − μ)‖V ′ � c‖p(ϕ)‖L3/2(Ω)‖ψ − μ‖L6(Ω). (3.38)

But, since q � 4 and ϕ ∈ L∞(0, T ;L6(Ω)), then assumption (P) implies that we have

p(ϕ) ∈ L∞(0, T ;L3/2(Ω)) and therefore, on account of (3.6) and of (3.7)1, (3.38) gives

p(ϕ)(ψ − μ) ∈ L2(0, T ;V ′).

Hence, (3.13) follows immediately.

Finally, let us take χ = μ and ξ = ψ in the variational formulation (3.8), (3.9) of

(1.1) and (1.3) (with test functions χ, ξ now in V ), respectively, and sum the resulting

identities. The choices for χ and ξ are allowed since we have μ, ψ ∈ L2(0, T ;V ). Next,

let us recall (3.13) for ϕt, ψt, (3.10) and (3.7) for ϕ,ψ, and the chain rule applied to the

product 〈ϕt, F ′(ϕ)〉, noting that F ′(ϕ) ∈ L2(0, T ;V ), to write the identities

〈ϕt, μ〉 =
1

2

d

dt
‖∇ϕ‖2 +

d

dt

∫
Ω

F(ϕ), 〈ψt, ψ〉 =
1

2

d

dt
‖ψ‖2. (3.39)

Here, we have used [9, Proposition 4.2] and the fact that (3.2) ensures that F is a quadratic

perturbation of a convex function. Observe that the first term on the right-hand side of

(3.39)1 can be justified by means of a regularization argument which employs the time

convolution of ϕ by a family of mollifiers (see, e.g., proof of [31, Lemma 4.1]). Summing

up, we obtain

d

dt

(1

2
‖∇ϕ‖2 +

1

2
‖ψ‖2 +

∫
Ω

F(ϕ)
)

+ ‖∇μ‖2 + ‖∇ψ‖2 +

∫
Ω

p(ϕ)(μ− ψ)2 = 0. (3.40)

By integrating the energy identity (3.40) in time between 0 and t we deduce (3.12) with

the equal sign for all t > 0. This completes the proof of the theorem for the case ρ � 4.

Step II (case 4 < ρ < 6).

In this case, we first approximate the potential F with a sequence of potentials Fm ∈
C2(�) satisfying the conditions stated in Lemma 2.

Let us now consider problem (1.1)–(1.5) with F replaced by Fm and call it Problem Pm.

Since Fm satisfies condition (F) with ρ � 4 (each Fm has quadratic growth on �) then, for

each m ∈ �, Step I ensures the existence of a weak solution [ϕm, ψm] to Problem Pm such

that ϕm ∈ L∞(0, T ;V ) ∩L2(0, T ;H3(Ω)), ψm ∈ L∞(0, T ;H) ∩L2(0, T ;V ), μm ∈ L2(0, T ;V )

and satisfying the energy inequality (3.12).

Due to (3.12) (written for each solution ϕm, ψm with Fm in place of F), assumptions

(F) and (P), (3.14)1 and (3.15), we can argue as for the Faedo–Galerkin approximating

solutions [ϕn, ψn] (cf. Step I) and we can still recover the basic estimates (3.22), (3.26)

for the sequences of ϕm and ψm (notice that in Problem Pm the initial conditions are not

approximated).

We now show that the sequence ϕm is still controlled in L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)).

This bound will be achieved through an iteration argument.

https://doi.org/10.1017/S0956792514000436 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000436


228 S. Frigeri et al.

Notice first that the sequence ϕm is bounded in L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)). Indeed,

by multiplying the identity μm = −Δϕm + F ′
m(ϕm) by Δϕm we obtain

‖Δϕm‖2 = −(μm, Δϕm) + (F ′
m(ϕm), Δϕm)

�
1

2
‖μm‖2 +

1

2
‖Δϕm‖2 −

∫
Ω

F ′′
m(ϕm)|∇ϕm|2.

By using (3.15)2, this last estimate yields

‖Δϕm‖2 � ‖μm‖2 + 2k5‖∇ϕm‖2. (3.41)

The desired bound of ϕm in L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) then follows from (3.41) by

applying the basic estimates (3.22), (3.26) and elliptic regularity.

Using the obtained bound and interpolation (cf. (3.47) below), we see that the sequence

of ϕm is bounded in L2(ρ−1)(0, T ;L6(ρ−1)/(ρ−3)(Ω)) as well. Hence, (3.2) together with (3.14)2
imply that the sequence of F ′

m(ϕm) is bounded in L2(0, T ;L6/(ρ−3)(Ω)). Therefore, from (1.2)

and (3.26) we infer that the sequence of −Δϕm + ϕm is bounded in L2(0, T ;L6/(ρ−3)(Ω)).

Then, by using elliptic regularity theory (see, e.g., [1, 19, 26]) we get

‖ϕm‖
L∞(0,T ;V )∩L2(0,T ;W

2, 6
ρ−3 (Ω))

� C. (3.42)

Thanks to inequality (2.2), we deduce from (3.42) that the sequence of ϕm is bounded

in L2(11−ρ)(Q). Moreover, ∇ϕm is bounded in L∞(0, T ;H) ∩ L2(0, T ;W 1,6/(ρ−3)(Ω)) ↪→
L2(11−ρ)/3(Q). Therefore, using (3.14)3 and (3.2) we get

‖∇F ′
m(ϕm)‖Ls0 (Q) � k2‖F ′′(ϕm)∇ϕm‖Ls0 (Q)

� k2‖F ′′(ϕm)‖L2(11−ρ)/(ρ−2)(Q)‖∇ϕm‖L2(11−ρ)/3(Q)

� c
(
1 + ‖ϕm‖ρ−2

L2(11−ρ)(Q)

)
‖∇ϕm‖L2(11−ρ)/3(Q)

� C, s0 =
2(11 − ρ)

ρ+ 1
.

In addition, we know that the sequence of F ′
m(ϕm) is bounded in L2(0, T ;L6/(ρ−3)(Ω)).

Let us now first consider the case 4 < ρ � 5. In this case we have s0 ∈ [2, 14/5) and since

F ′
m(ϕm) is bounded in L2(0, T ;L2(Ω)), we obtain

‖F ′
m(ϕm)‖L2(0,T ;V ) � C.

By comparison in (1.2) and using (3.26) and elliptic regularity again, we deduce the

desired bound

‖ϕm‖L∞(0,T ;V )∩L2(0,T ;H3(Ω)) � C. (3.43)

On the other hand, if 5 < ρ < 6, then s0 ∈ (10/7, 2). In this case, the sequence of F ′
m(ϕm)

is still bounded in L2(0, T ;L2(Ω)), but we have

‖F ′
m(ϕm)‖Ls0 (0,T ;W 1,s0 (Ω)) � C.
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By comparison in (1.2) and using (3.26) and elliptic regularity again, we now deduce

‖ϕm‖L∞(0,T ;V )∩Ls0 (0,T ;W 3,s0 (Ω)) � C. (3.44)

In this case, we can repeat the argument above and improve the estimates for the sequence

of ϕm by means of a bootstrap procedure performed for a finite number of steps. Indeed,

observe first that, thanks to (2.2), we have (for any s ∈ (1, 2])

�s := L∞(0, T ;V ) ∩ Ls(0, T ;W 3,s(Ω)) ↪→ L7s(Q), (3.45)

�s := L∞(0, T ;H) ∩ Ls(0, T ;W 2,s(Ω)) ↪→ L
7
3 s(Q). (3.46)

Taking (3.44)–(3.46) into account, the sequences of ϕm and ∇ϕm are bounded in L7s0 (Q)

and in L7s0/3(Q), respectively. Hence, by means of (3.2) and (3.14)3, we have

‖∇F ′
m(ϕm)‖L7s0/(ρ+1)(Q) � k2‖F ′′(ϕm)∇ϕm‖L7s0/(ρ+1)(Q) � C.

On the other hand, F ′
m(ϕm) is bounded in L2(0, T ;L2(Ω)) and hence also in Ls1 (Q), where

s1 = min{2, 7s0/(ρ+ 1)}. We therefore deduce that

‖F ′
m(ϕm)‖Ls1 (0,T ;W 1,s1 (Ω)) � C, s1 := min

{
2,

7

ρ+ 1
s0

}
.

If s1 = 2, then by comparison in (1.2) and using (3.26) and elliptic regularity, we get the

desired bound for the sequence of ϕm in L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)). If s1 < 2 then, by

comparison in (1.2) and using (3.26) and elliptic regularity, we infer

‖ϕm‖L∞(0,T ;V )∩Ls1 (0,T ;W 3,s1 (Ω)) � C.

Repeating the argument, we now have the sequences of ϕm and ∇ϕm bounded in �s1

and in �s1 , respectively, and hence ‖∇F ′
m(ϕm)‖L7s1/(ρ+1)(Q) � C . Moreover, we know that the

sequence of F ′
m(ϕm) is bounded in Ls2 (Q), where s2 = min{2, 7s1/(ρ+ 1)}. This implies

‖F ′
m(ϕm)‖Ls2 (0,T ;W 1,s2 (Ω)) � C, s2 := min

{
2,

( 7

ρ+ 1

)2

s0

}
.

Again, if s2 = 2 we get the desired claim; otherwise, by using elliptic regularity we infer

that the sequence of ϕm is bounded in �s2 and we repeat the previous argument. By

iterating the procedure k times we get

‖F ′
m(ϕm)‖Lsk (0,T ;W 1,sk (Ω)) � C, sk := min

{
2,

( 7

ρ+ 1

)k
s0

}
.

Since ρ < 6, after a finite number of steps, as soon as we get sk = 2, the bootstrap procedure

ends yielding the bound of the sequence of ϕm in L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) (which

cannot be improved since the regularity of ϕm is related through (1.2) to μm ∈ L2(0, T ;V )).

As far as the estimates for the sequences of time derivatives ϕ′
m, ψ′

m are concerned,

the argument is exactly the same as for the sequences of time derivatives ϕ′
n, ψ

′
n of the

Faedo–Galerkin approximating solutions (cf. Step I). Hence, (3.35) still holds for ϕ′
m, ψ′

m.

Finally, the passage to the limit in Problem Pm (notice that F ′
m(ϕm) → F ′(ϕ) pointwise
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almost everywhere in Q), the proof of the energy inequality (3.12) for q ∈ [1, 9), the proofs

of (3.13) and of the energy identity for q � 4 can be carried out along as done at the end of

Step I. �

The existence of a weak solution without the optimal regularity ϕ ∈ L2(0, T ;H3(Ω)) can

still be ensured under a more general assumption on F , provided we impose a slight

restriction (i.e., q < 7) on the growth of p. More precisely, we have the following

Corollary 1 Assume that F ∈ C2(�) satisfies

(F)1 F ′′(s) � −λ1,

(F)2 |F ′(s)| � λ2F(s) + λ3,

for all s ∈ �, where λ1, λ2, λ3 are some non-negative constants. Moreover, assume that

p ∈ C
0,1
loc (�) satisfies (3.4) with q ∈ [1, 7). Let ϕ0 ∈ V and ψ0 ∈ H . Then, for every T > 0,

Problem (1.1)–(1.5) admits a weak solution on [0, T ] satisfying (3.5)–(3.7), (3.11) and the

energy inequality (3.12). Finally, if q � 4, then we have (3.13) and (3.12) holds with the

equality sign.

Proof We can follow the Faedo–Galerkin approximation procedure in Step I of the proof

of Theorem 1, assuming first that ϕ0 ∈ D(A) in order to control the sequence of
∫
Ω
F(ϕ0n)

in the identity obtained by integrating (3.21) in time. Existence of weak solution in the

case ϕ0 ∈ V can then be recovered by means of a density argument. The basic estimates

(3.22)–(3.24) still hold, as well as the controls (3.25), ensured by (F)2, and (3.26). As far as

estimate (3.29) is concerned, this can now be recovered by using (F)1. Indeed, multiplying

(3.27) by Δϕn in H we get

‖Δϕn‖2 = −(μn, Δϕn) +
(
PnF

′(ϕn), Δϕn
)

= −(μn, Δϕn) −
∫
Ω

F ′′(ϕn)|∇ϕn|2,

which yields

‖Δϕn‖2 � ‖μn‖2 + 2λ1‖∇ϕn‖2.

Estimate (3.29) then follows from this last inequality by using (3.26), the first of (3.22)

and elliptic regularity.

Next, in order to get the control of the sequences of time derivatives ϕ′
n, ψ

′
n in the

space Lr(0, T ;D(A−1)), for some r > 1, and in order to pass to the limit in the approximate

problem (3.17)–(3.20) we can still argue as in Step I of the proof of Theorem 1, with the

difference that now we can only rely on the control given by (3.29), together with the

following embedding

L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ↪→ L4η/(η−6)(0, T ;Lη(Ω)), for 6 � η � ∞. (3.47)

Indeed, by using (3.47) with η = 42/5 we can easily see that, since q ∈ [1, 7), estimates

(3.35) and the strong convergence (3.36) still hold.
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As far as the energy inequality (3.12) is concerned, let us observe that the sequence of

ϕn is now bounded in L10(Q) (cf. (3.29) and (3.47) with η = 10). Hence, on account of

(3.4) and of pointwise convergence we have
√
p(ϕn) →

√
p(ϕ) strongly in Lδ(Q), for every

δ < 20/q. In particular we have
√
p(ϕn) →

√
p(ϕ) strongly in L5/2(Q), which implies that√

p(ϕn)(μn − ψn) ⇀
√
p(ϕ)(μ− ψ), in L10/9(Q).

Due to (3.23)3, this weak convergence also holds in L2(Q) and still yields (3.37) and then

(3.12) as well.

Finally, assume that q � 4. By arguing as in Step I of the proof of Theorem 1 we again

deduce (3.13). In order to prove that (3.12) holds with the equality sign, let us first observe

that from assumption (F) we have F ′′(s) � −c∗, for some c∗ ∈ �, and therefore we can

write F as

F(s) = G0(s) − c∗
s2

2
,

where G0 ∈ C2(�) is convex. Introduce now the functional G0 : H → � ∪ {+∞} given by

G0(ϕ) =

∫
Ω

(
1

2
|∇ϕ|2 + G0(ϕ)

)
, if ϕ ∈ V and G0(ϕ) ∈ L1(Ω),

and G0(ϕ) = +∞ otherwise. Then, G0 is convex and lower semicontinuous on H and we

have (see, e.g., [3, Proposition 2.8])

∂G0(ϕ) = −Δϕ+ G′
0(ϕ), ∀ϕ ∈ D(∂G0) = D(A).

Since ∂G0(ϕ) = −Δϕ+ G′
0(ϕ) = μ+ c∗ϕ ∈ L2(0, T ;V ), then we can apply [9, Proposition

4.2] and write

〈ϕt, μ〉 = 〈ϕt, ∂G0(ϕ) − c∗ϕ〉 =
d

dt
G0(ϕ) − c∗

2

d

dt
‖ϕ‖2 =

d

dt

∫
Ω

(
1

2
|∇ϕ|2 + F(ϕ)

)
.

This identity allows us to recover (3.40), and hence (3.12) with the equality sign, by arguing

exactly as at the end of Step I of the proof of Theorem 1. �

The next result is concerned with the uniqueness of weak solutions and their continuous

dependence with respect to the initial data. In order to prove this result, assumption (F)

still suffices, but we need to strengthen (P) as follows

(P1) Let p ∈ C
0,1
loc (�) be such that p � 0 and

|p′(s)| � c5(1 + |s|q−1),

for almost any s ∈ �, with 1 � q � 4.

Then we have

Theorem 2 Assume that (F) and (P1) are satisfied. Let ϕ0 ∈ V and ψ0 ∈ H . Then, for

every T > 0 the weak solution to Problem (1.1)–(1.5) on [0, T ] given by Theorem 1 is
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unique. Moreover, let [ϕ0i, ψ0i] ∈ V × H be two initial data and [ϕi, ψi], i = 1, 2 be the

corresponding weak solutions. Then, the following continuous dependence estimate holds

‖ϕ2(t) − ϕ1(t)‖V ′ + ‖ψ2(t) − ψ1(t)‖V ′ + ‖ϕ2 − ϕ1‖L2(0,t;V ) + ‖ψ2 − ψ1‖L2(0,t;H)

� Λ(t)
(
‖ϕ02 − ϕ01‖V ′ + ‖ψ02 − ψ01‖V ′

)
, ∀t ∈ [0, T ],

where Λ is a continuous positive function which depends on the norms of the initial data and

on F , p, Ω and T .

Remark 3 Notice that the restriction 1 � q � 4 on the growth of p which is needed to

establish the uniqueness is exactly the same condition which ensures the validity of the

energy identity (3.40) which is proven in Theorem 1.

Proof Let us rewrite the chemical potential μ and (3.8)–(3.9) in the following form

〈ϕt, χ〉 + (∇μ,∇χ) + (μ, χ) =
(
p(ϕ)ψ −

(
p(ϕ) − 1

)
μ, χ

)
, (3.48)

μ = Aϕ+ G′(ϕ), (3.49)

〈ψt, ξ〉 + (∇ψ,∇ξ) + (ψ, ξ) = −
((
p(ϕ) − 1

)
ψ + p(ϕ)μ, ξ

)
, (3.50)

for all χ, ξ ∈ V , where G(s) := F(s) − 1
2
s2.

We now write system (3.48)–(3.50) for two weak solutions [ϕi, ψi], i = 1, 2, and take the

difference of each equation. Setting ϕ := ϕ2 −ϕ1, ψ := ψ2 −ψ1 and μ := μ2 −μ1, we have

〈ϕt, χ〉 + (∇μ,∇χ) + (μ, χ)

=
((
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2) + p(ϕ1)ψ −

(
p(ϕ1) − 1

)
μ, χ

)
, (3.51)

μ = Aϕ+ G′(ϕ2) − G′(ϕ1), (3.52)

〈ψt, ξ〉 + (∇ψ,∇ξ) + (ψ, ξ)

= −
((
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2) −

(
p(ϕ1) − 1

)
ψ + p(ϕ1)μ, ξ

)
, (3.53)

for all χ, ξ ∈ V . Let us take χ = A−1ϕ in (3.51) and ξ = A−1ψ in (3.53) and sum the

resulting identities. Taking also (3.52) into account, we get

1

2

d

dt
‖ϕ‖2

V ′ + ‖ϕ‖2
V +

(
G′(ϕ2) − G′(ϕ1), ϕ

)
+

1

2

d

dt
‖ψ‖2

V ′ + ‖ψ‖2

=
((
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2) + p(ϕ1)ψ −

(
p(ϕ1) − 1

)
μ, A−1ϕ

)
+

(
−

(
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2) −

(
p(ϕ1) − 1

)
ψ + p(ϕ1)μ, A

−1ψ
)
. (3.54)

We now need to estimate the terms on the right-hand side. Observe first that(
p(ϕ1)ψ −

(
p(ϕ1) − 1

)
μ, A−1ϕ

)
�

(
‖p(ϕ1)(ψ − μ)‖V ′ + ‖μ‖V ′

)
‖ϕ‖V ′ . (3.55)

We have to estimate in V ′ the term p(ϕ1)(ψ − μ). Let us first estimate p(ϕ1)χ in V . By

using assumption (P1) we get

‖p(ϕ1)∇χ‖ � c
(
1 + ‖ϕ1‖qL∞(Ω)

)
‖∇χ‖. (3.56)
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Moreover, we have

‖p′(ϕ1)∇ϕ1χ‖ � ‖p′(ϕ1)∇ϕ1‖L3(Ω)‖χ‖L6(Ω) � ‖p′(ϕ1)∇ϕ1‖L3(Ω)‖χ‖V . (3.57)

However, ∇ϕ1 ∈ L∞(0, T ;H) ∩ L2(0, T ;H2(Ω)) ↪→ L8(0, T ;L3(Ω)). On the other hand,

ϕ1 ∈ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) ↪→ L8(0, T ;L∞(Ω)) (cf. (3.33) with θ = ∞). Thus,

thanks to assumption (P1), we also have p′(ϕ1) ∈ L8/(q−1)(0, T ;L∞(Ω)). Hence, we find

p′(ϕ1)∇ϕ1 ∈ L8/q(0, T ;L3(Ω)). (3.58)

Moreover, observe that

‖p(ϕ1)χ‖ � c‖p(ϕ1)‖L3(Ω)‖χ‖V , (3.59)

and

‖p(ϕ1)‖L3(Ω) � c
(
1 + ‖ϕ1‖q

L3q(Ω)

)
. (3.60)

Observing that ϕ1 ∈ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) ↪→ L8q/(q−2)(0, T ;L3q(Ω)) (cf. (3.33)),

then we have

p(ϕ1) ∈ L8/(q−2)(0, T ;L3(Ω)). (3.61)

By collecting (3.56)–(3.61) we get

‖p(ϕ1)χ‖V � α1(t)‖χ‖V ,

where the function α1 is given by

α1(t) := c
(
‖p

(
ϕ1(t)

)
‖L3(Ω) + ‖ϕ1(t)‖qL∞(Ω) + ‖p′(ϕ1(t)

)
∇ϕ1(t)‖L3(Ω) + 1

)
,

and, since q � 4, we have α1 ∈ L2(0, T ). Therefore, we obtain

|〈p(ϕ1)(ψ − μ), χ〉| � |
(
(ψ − μ), p(ϕ1)χ

)
| � α1(t)‖ψ − μ‖V ′ ‖χ‖V ,

which yields

‖p(ϕ1)(ψ − μ)‖V ′ � α1(t)‖ψ − μ‖V ′ . (3.62)

By combining (3.55) with (3.62) we deduce

(
p(ϕ1)ψ −

(
p(ϕ1) − 1

)
μ, A−1ϕ

)
� α1(t)

(
‖ψ‖V ′ + ‖μ‖V ′

)
‖ϕ‖V ′ . (3.63)

For the estimate of μ in V ′, by means of assumption (F) and using the continuous

embedding L6/5(Ω) ↪→ V ′, it is easy to see that

‖μ‖V ′ � ‖ϕ‖V + ‖G′(ϕ2) − G′(ϕ1)‖V ′

� ‖ϕ‖V + c
(
1 + ‖ϕ1‖ρ−2

L3(ρ−2)/2(Ω)
+ ‖ϕ2‖ρ−2

L3(ρ−2)/2(Ω)

)
‖ϕ‖L6(Ω)
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� c
(
1 + ‖ϕ1‖ρ−2

V + ‖ϕ2‖ρ−2
V

)
‖ϕ‖V � Γ‖ϕ‖V , (3.64)

since 3(ρ − 2)/2 � 6, because ρ < 6. In the last inequality, we have used (3.5)1. In

(3.64) and also in the estimates below, Γ denotes a positive constant that depends on the

norms of the initial data of the two solutions, i.e., Γ = Γ
(
‖ϕ01‖V , ‖ϕ02‖V , ‖ψ01‖, ‖ψ02‖

)
(of course, Γ depends also on F and Ω). The value of Γ may change even within the

same line. From (3.63) and (3.64) we get

|
(
p(ϕ1)ψ −

(
p(ϕ1) − 1

)
μ, A−1ϕ

)
| � α1(t)Γ

(
‖ψ‖V ′ + ‖ϕ‖V

)
‖ϕ‖V ′

�
1

10
‖ϕ‖2

V + Γα2
1(t)

(
‖ψ‖2

V ′ + ‖ϕ‖2
V ′

)
. (3.65)

The next term on the right-hand side of (3.54) to be estimated is the following

|
((
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2), A

−1ϕ
)
| � ‖(p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2)‖V ′ ‖ϕ‖V ′ . (3.66)

Let us first control the term (
(
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2) in V ′. We have, for every χ ∈ V ,

|〈
(
p(ϕ1) − p(ϕ2)

)
(ψ2 − μ2), χ〉

)
| � ‖p(ϕ1) − p(ϕ2)‖‖ψ2 − μ2‖L3‖χ‖L6

� c‖p(ϕ1) − p(ϕ2)‖‖ψ2 − μ2‖L3‖χ‖V . (3.67)

On the other hand, thanks to (P1), we obtain

‖p(ϕ2) − p(ϕ1)‖ � c
(
1 + ‖ϕ1‖q−1

L∞(Ω) + ‖ϕ2‖q−1
L∞(Ω)

)
‖ϕ‖

� c
(
1 + ‖ϕ1‖q−1

L∞(Ω) + ‖ϕ2‖q−1
L∞(Ω)

)
‖ϕ‖1/2

V ′ ‖ϕ‖1/2
V . (3.68)

Moreover, by using (2.2) and the interpolation inequality ‖μ2‖ � ‖μ2‖1/2
V ′ ‖μ2‖1/2

V , we get

‖μ2‖L3(Ω) � c‖μ2‖1/2‖μ2‖1/2
V � c‖μ2‖1/4

V ′ ‖μ2‖3/4
V � Γ‖μ2‖3/4

V , (3.69)

where in the last estimate we have exploited the inequality ‖μ2‖V ′ � Γ (1 + ‖ϕ2‖V ) � Γ

which can be deduced by arguing as in (3.64). Hence, from (3.67)–(3.69) we infer

‖(p(ϕ2) − p(ϕ1)
)
(ψ2 − μ2)‖V ′ � α2(t)‖ϕ‖1/2

V ′ ‖ϕ‖1/2
V , (3.70)

where

α2(t) := c
(
1 + ‖ϕ1(t)‖q−1

L∞(Ω) + ‖ϕ2(t)‖q−1
L∞(Ω)

)(
‖ψ2(t)‖L3(Ω)+Γ‖μ2(t)‖3/4

V

)
. (3.71)

Observe that α2 ∈ L4/3(0, T ) since q � 4. Indeed, both factors in (3.71) are in L8/3(0, T ),

recalling that ϕ1, ϕ2 ∈ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) ↪→ L8(0, T ;L∞(Ω)) and properties

(3.5)–(3.7) (in particular we have ψ2 ∈ L10/3(Q)). Hence, from (3.66) we get

|
((
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2), A

−1ϕ
)
| � α2(t)‖ϕ‖1/2

V ‖ϕ‖3/2
V ′

�
1

10
‖ϕ‖2

V + α
4/3
2 (t)‖ϕ‖2

V ′ . (3.72)
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We now estimate the following term (cf. the right-hand side of (3.54))

|
(
−

(
p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2), A

−1ψ
)
| � ‖(p(ϕ2) − p(ϕ1)

)
(ψ2 − μ2)‖V ′ ‖A−1ψ‖V

=‖(p(ϕ2) − p(ϕ1)
)
(ψ2 − μ2)‖V ′ ‖ψ‖V ′

� α2(t)‖ϕ‖1/2
V ′ ‖ϕ‖1/2

V ‖ψ‖V ′

�
1

10
‖ϕ‖2

V + α
4/3
2 (t)‖ϕ‖2/3

V ′ ‖ψ‖4/3
V ′

�
1

10
‖ϕ‖2

V + α
4/3
2 (t)

(
‖ϕ‖2

V ′ + ‖ψ‖2
V ′

)
, (3.73)

where, in the third inequality, (3.70) has been used. We now estimate the last term on the

right-hand side of (3.54)

|
(

−
(
p(ϕ1) − 1

)
ψ + p(ϕ1)μ, A

−1ψ
)
| �

(
‖p(ϕ1)(ψ − μ)‖V ′ + ‖ψ‖V ′

)
‖ψ‖V ′

�
(
α1‖ψ − μ‖V ′ + ‖ψ‖V ′

)
‖ψ‖V ′

� (1 + α1)‖ψ‖2
V ′ + α1Γ‖ϕ‖V‖ψ‖V ′

�
1

10
‖ϕ‖2

V + Γ (1 + α2
1)‖ψ‖2

V ′ , (3.74)

where we have used (3.62) in the second inequality and (3.64) in the third inequality.

Moreover, setting β̂ := α+ 1 − c1, we have

(
G′(ϕ2) − G′(ϕ1), ϕ

)
� −β̂‖ϕ‖2 � − 1

10
‖ϕ‖2

V − c‖ϕ‖2
V ′ . (3.75)

Finally, plugging estimates (3.65) and (3.72)–(3.75) into (3.54) yields the following

differential inequality

d

dt

(
‖ϕ‖2

V ′ + ‖ψ‖2
V ′

)
+ ‖ϕ‖2

V + ‖ψ‖2 � γ̂
(

‖ϕ‖2
V ′ + ‖ψ‖2

V ′

)
, (3.76)

where

γ̂ := Γ
(
α2

1 + α
4/3
2 + 1

)
∈ L1(0, T ).

An application of Gronwall’s inequality to (3.76) ends the proof. �

4 Strong solutions and the global attractor

Here, we establish a regularity result for Problem (1.1)–(1.5) that holds under the same

condition on p which ensures uniqueness (cf. (P1)). This result will be used to deduce

some uniform in time higher-order estimates which will be crucial in order to prove the

existence of the global attractor.

Theorem 3 Suppose (F) and (P1) hold. Let ϕ0 ∈ H3(Ω) and ψ0 ∈ V . Then, for every

T > 0, the solution [ϕ,ψ] to Problem (1.1)–(1.5) on [0, T ] given by Theorem 1 satisfies
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ϕ ∈ L∞(0, T ;H3(Ω)), ϕt ∈ L2(0, T ;V ),

μ ∈ L∞(0, T ;V ),

ψ ∈ L∞(0, T ;V ), ψt ∈ L2(0, T ;H).

Proof The proof is carried out by deducing formally some higher-order identities and

estimates which can be justified rigorously by means of a suitable approximation procedure

(see the proof of Theorem 1).

Testing (1.1) by μt in H and using (1.2), we find

1

2

d

dt
‖∇μ‖2 + ‖∇ϕt‖2 +

∫
Ω

F ′′(ϕ)ϕ2
t =

(
p(ϕ)(ψ − μ), μt

)
,

whence

1

2

d

dt
‖∇μ‖2 + ‖∇ϕt‖2 +

∫
Ω

F ′′(ϕ)ϕ2
t +

1

2

d

dt

∫
Ω

p(ϕ)μ2 =
1

2

∫
Ω

p′(ϕ)ϕtμ
2 +

(
p(ϕ)ψ, μt

)
.

(4.1)

Test now (1.3) by ψt in H to get

‖ψt‖2 = −1

2

d

dt
‖∇ψ‖2 − 1

2

d

dt

∫
Ω

p(ϕ)ψ2 +
1

2

∫
Ω

p′(ϕ)ϕtψ
2 +

(
p(ϕ)μ, ψt

)
. (4.2)

By summing (4.1) with (4.2) we obtain

1

2

d

dt
‖∇μ‖2 + ‖∇ϕt‖2 +

∫
Ω

F ′′(ϕ)ϕ2
t +

1

2

d

dt

∫
Ω

p(ϕ)μ2

+ ‖ψt‖2 +
1

2

d

dt
‖∇ψ‖2 +

1

2

d

dt

∫
Ω

p(ϕ)ψ2

=
1

2

∫
Ω

p′(ϕ)ϕtμ
2 +

d

dt

∫
Ω

p(ϕ)ψμ−
∫
Ω

p′(ϕ)ϕtψμ+
1

2

∫
Ω

p′(ϕ)ϕtψ
2,

so that

1

2

d

dt

(
‖∇μ‖2 + ‖∇ψ‖2 +

∫
Ω

p(ϕ)(μ− ψ)2
)

+ ‖∇ϕt‖2 +

∫
Ω

F ′′(ϕ)ϕ2
t + ‖ψt‖2

=
1

2

∫
Ω

p′(ϕ)ϕt(μ− ψ)2. (4.3)

Observe now that∣∣∣1
2

∫
Ω

p′(ϕ)ϕt(μ− ψ)2
∣∣∣ �

1

2
‖p′(ϕ)‖‖ϕt‖L6(Ω)‖μ− ψ‖2

L6(Ω) � c‖p′(ϕ)‖‖ϕt‖V‖μ− ψ‖2
V . (4.4)

Moreover, we have (using (1.1) and (1.4))

‖ϕt‖V � (1 + cΩ)‖∇ϕt‖ + |Ω|1/2|ϕt|

� (1 + cΩ)‖∇ϕt‖ +
1

|Ω|1/2
∣∣∣ ∫

Ω

p(ϕ)(μ− ψ)
∣∣∣
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� (1 + cΩ)‖∇ϕt‖ +
1

|Ω|1/2
‖p(ϕ)‖L6/5(Ω)‖μ− ψ‖L6(Ω), (4.5)

where cΩ is the constant appearing in the Poincaré–Wirtinger inequality. Hence, by

combining (4.4) with (4.5), we get, applying, in particular, the Young inequality with

exponents 4 and 4/3 in the last line,

∣∣∣1
2

∫
Ω

p′(ϕ)ϕt(μ− ψ)2
∣∣∣ � c‖p′(ϕ)‖

(
‖∇ϕt‖ + ‖p(ϕ)‖L6/5(Ω)‖μ− ψ‖V

)(
‖μ‖2

V + ‖ψ‖2
V

)
�

1

2
‖∇ϕt‖2 + c‖p′(ϕ)‖2

(
‖μ‖4

V + ‖ψ‖4
V

)
+ c‖p′(ϕ)‖‖p(ϕ)‖L6/5(Ω)

(
‖μ‖3

V + ‖ψ‖3
V

)
�

1

2
‖∇ϕt‖2 + c

(
1 + ‖p′(ϕ)‖2

)(
‖μ‖4

V + ‖ψ‖4
V

)
+ c‖p′(ϕ)‖4‖p(ϕ)‖4

L6/5(Ω). (4.6)

Thanks to (P1) and to (3.5)1 we can see that p′(ϕ) is controlled in L∞(0, T ;H). Moreover,

we know that ϕ is bounded in L18(0, T ;L54/5(Ω)) (cf. (3.34)) and ϕ is also bounded in

L4q(0, T ;L6q/5(Ω)) since q � 4, Thanks to this bound, assumption (P1) entails that p(ϕ)

is controlled in L4(0, T ;L6/5(Ω)). Thus, we have

‖p′(ϕ)‖L∞(0,T ;H) � Γ , ‖p(ϕ)‖L4(0,T ;L6/5(Ω)) � Γ , (4.7)

where henceforth Γ = Γ
(
‖ϕ0‖V , ‖ψ0‖

)
will denote a positive constant that depends on

the norms of the initial data (and on F , p, Ω).

Furthermore, we have

‖μ‖V � (1 + cΩ)‖∇μ‖ + |Ω|1/2|μ| � (1 + cΩ)‖∇μ‖ + Γ , (4.8)

‖ψ‖V � ‖∇ψ‖ + Γ . (4.9)

By plugging estimate (4.6) into (4.3) and using (4.7)–(4.9) and (3.3), we get

1

2

d

dt

(
‖∇μ‖2 + ‖∇ψ‖2 +

∫
Ω

p(ϕ)(μ− ψ)2
)

+
1

2
‖∇ϕt‖2 + ‖ψt‖2 � c3‖ϕt‖2

+ Γ
(
‖μ‖2

V‖∇μ‖2 + ‖ψ‖2
V‖∇ψ‖2

)
+ Γ

(
‖μ‖2

V + ‖ψ‖2
V + ‖p(ϕ)‖4

L6/5(Ω)

)
. (4.10)

We now need an estimate for the L2-norm of ϕt in (4.10). This can be obtained by testing

(1.1) by ϕt in H , integrating by parts in Ω and using (1.2). This yields

‖ϕt‖2 = (μ, Δϕt) +
(
p(ϕ)(ψ − μ), ϕt

)
= −1

2

d

dt
‖Δϕ‖2 −

∫
Ω

F ′′(ϕ)∇ϕ · ∇ϕt +
(
p(ϕ)(ψ − μ), ϕt

)
.

Hence, we have

1

2

d

dt
‖Δϕ‖2 +

1

2
‖ϕt‖2 �

∣∣∣ ∫
Ω

F ′′(ϕ)∇ϕ · ∇ϕt
∣∣∣ +

1

2
‖p(ϕ)‖2

L3(Ω)‖μ− ψ‖2
L6(Ω)

� ‖F ′′(ϕ)‖L7/2(Ω)‖∇ϕ‖L14/3(Ω)‖∇ϕt‖ + c‖p(ϕ)‖2
L3(Ω)

(
‖μ‖2

V + ‖ψ‖2
V

)
�

1

8c3
‖∇ϕt‖2 + c‖F ′′(ϕ)‖2

L7/2(Ω)‖∇ϕ‖2
L14/3(Ω) + c‖p(ϕ)‖2

L3(Ω)

(
‖μ‖2

V + ‖ψ‖2
V

)
. (4.11)
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Recalling that ϕ is bounded in L14(Q) (cf. (3.30) and (3.33) with θ = 14), (F) implies that

F ′′(ϕ) is bounded in L7/2(Q) (note that ρ < 6). Moreover, ∇ϕ is bounded in L14/3(Q) (cf.

(3.30) and (3.46) with s = 2). Therefore the second term on the right-hand side of the last

inequality in (4.11) is bounded in L1(0, T ).

Furthermore, ϕ is also bounded in L8(0, T ;L∞(Ω)) (cf. (3.30) and (3.33) with θ = ∞)

and, for q � 4, (P1) implies that p(ϕ) is bounded in L2(0, T ;L3(Ω)).

By combining (4.10) with (4.11), also on account of (4.8) and (4.9), we obtain the

following differential inequality

1

2

d

dt

(
‖∇μ‖2 + ‖∇ψ‖2 + 2c3‖Δϕ‖2 +

∫
Ω

p(ϕ)(μ− ψ)2
)

+
1

4
‖∇ϕt‖2 + ‖ψt‖2

� σ1

(
‖∇μ‖2 + ‖∇ψ‖2

)
+ σ2, (4.12)

where

σ1 := c‖p(ϕ)‖2
L3(Ω), σ2 := c‖F ′′(ϕ)‖2

L7/2(Ω)‖∇ϕ‖2
L14/3(Ω) + Γ‖p(ϕ)‖2

L3(Ω). (4.13)

Notice that

‖σ1‖L1(0,T ) � Γ , ‖σ2‖L1(0,T ) � Γ .

Using Gronwall’s lemma and recalling the assumptions on the initial data (in particular,

ϕ0 ∈ H3(Ω) implies that μ(0) ∈ V ) from (4.12) we get that ∇μ and Δϕ belong to

L∞(0, T ;H), ψ ∈ L∞(0, T ;V ), ∇ϕt and ψt belong to L2(0, T ;H). Also, thanks to (F), we

have that F ′(ϕ) ∈ L∞(0, T ;H). Therefore, μ ∈ L∞(0, T ;H) so that

μ ∈ L∞(0, T ;V ). (4.14)

Moreover, due to elliptic regularity result for homogeneous Neumann problems, we deduce

ϕ ∈ L∞(0, T ;H2(Ω)). From this property and (4.14) we infer we have also

ϕ ∈ L∞(0, T ;H3(Ω)). (4.15)

Indeed, since ϕ ∈ L∞(0, T ;H2(Ω)), we have F ′(ϕ) ∈ L∞(0, T ;V ). From (4.14) we then get

Δϕ ∈ L∞(0, T ;V ) and (4.15) follows by standard elliptic regularity.

Finally, as far as ϕt is concerned, by integrating (4.11) in time between 0 and t we get

ϕt ∈ L2(0, T ;H) and this bound together with the bound for ∇ϕt deduced above imply

ϕt ∈ L2(0, T ;V ). �

We now show that (1.1)–(1.4) define a dynamical system on a suitable phase space.

Let M > 0 be given. Set

WM := {w = [ϕ,ψ] ∈ V ×H : E(w) � M}.

and endow WM with the metric

dWM
(w2, w1) := ‖ϕ2 − ϕ1‖V + ‖ψ2 − ψ1‖, ∀wi := [ϕi, ψi] ∈ WM, i = 1, 2,
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so that it is a complete metric space. As a consequence of Theorems 1 and 2, assuming

that (F) and (P1) are satisfied, we can define a semigroup {SM(t)}t�0 of closed operators

on WM (cf. [30]) by setting

[ϕ(t), ψ(t)] = SM(t)[ϕ0, ψ0], ∀t � 0,

where [ϕ,ψ] is the unique (weak) solution to Problem (1.1)–(1.5).

Notice that we have the total mass constraint

|ϕ(t) + ψ(t)| = |ϕ0 + ψ0| � Q(M), ∀t � 0,

where henceforth by Q = Q(M) we denote a non-negative continuous monotone increasing

function of M (which may also depend on F , p and Ω). Such a function may change even

within the same line.

Theorem 4 Let (F) and (P1) be satisfied. Then the dynamical system (WM, {SM(t)}t�0)

possesses the global attractor.

Proof The proof is carried out by showing the existence of a compact (in WM) absorbing

set BM for the semigroup {SM(t)}t�0. This fact will allow us to apply a general result on

the existence of global attractors for semigroup of closed operators proven in [30].

Let us first write (4.12) in the form

dΦ

dt
+

1

4
‖∇ϕt‖2 + ‖ψt‖2 � σ1Φ+ σ2, (4.16)

where

Φ :=
1

2
‖∇μ‖2 +

1

2
‖∇ψ‖2 + c3‖Δϕ‖2 +

1

2

∫
Ω

p(ϕ)(μ− ψ)2,

and σ1 and σ2 are defined as in (4.13). Notice that, since Γ = Γ
(
‖ϕ0‖V , ‖ψ0‖

)
and since

[ϕ0, ψ0] ∈ WM , then the constant Γ that bounds the L1−norm of σ2 will depend only on

M.

Integrating the energy identity (3.40) between t and t+ 1, we get, for all t � 0,

∫ t+1

t

‖∇μ‖2dτ � M,

∫ t+1

t

‖∇ψ‖2dτ � M,

∫ t+1

t

∫
Ω

p(ϕ)(μ− ψ)2 � M. (4.17)

Recalling that q � 4, we deduce from (P1) that

∫ t+1

t

σ1(τ)dτ � c
(
1 + ‖ϕ‖2q

L2q(t,t+1;L3q(Ω))

)
� c

(
1 + ‖ϕ‖2q

L∞(t,t+1;V ) + ‖ϕ‖2q
L2(t,t+1;H3(Ω))

)
� Q(M). (4.18)
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Moreover, on account of (F) and (P1), we obtain

∫ t+1

t

σ2(τ)dτ � c‖F ′′(ϕ)‖2
L7/2(t,t+1;L7/2(Ω))‖∇ϕ‖2

L14/3(t,t+1;L14/3(Ω)) + Q(M)

� c
(
1 + ‖ϕ‖2(ρ−2)

L7(ρ−2)/2(t,t+1;L7(ρ−2)/2(Ω)

)
‖∇ϕ‖2

L14/3(t,t+1;L14/3(Ω)) + Q(M)

� c
(
1 + ‖ϕ‖2(ρ−2)

L∞(t,t+1;V ) + ‖ϕ‖2(ρ−2)
L2(t,t+1;H3(Ω))

)(
‖∇ϕ‖2

L∞(t,t+1;H) + ‖∇ϕ‖2
L2(t,t+1;H2(Ω))

)
+ Q(M) � c

(
1 + ‖ϕ‖2(ρ−1)

L∞(t,t+1;V ) + ‖ϕ‖2(ρ−1)
L2(t,t+1;H3(Ω))

)
+ Q(M) � Q(M). (4.19)

In (4.18) and (4.19), we have used the fact that the L2(t, t+1;H3(Ω))−norm of ϕ can be

controlled, uniformly in time, in terms of ‖ϕ0‖V , ‖ψ0‖ and hence of M, when 4 < ρ < 6.

Indeed, we can use the iteration argument outlined in the proof of Theorem 1 (cf. Step

II; if ρ = 4 no iteration is needed).

Therefore, we have (see (4.17))

∫ t+1

t

Φ(τ)dτ �
3M

2
+ c3

∫ t+1

t

‖Δϕ(τ)‖2dτ � Q(M). (4.20)

Thanks to (4.18)–(4.20) we can now apply the uniform Gronwall’s lemma to (4.16) and

obtain

Φ(t) � Q(M), ∀t � 1. (4.21)

On the other hand, the definition of the phase space WM and (3.3) yield

‖ϕ(t)‖Lρ(Ω) � Q(M), ‖ψ(t)‖ � Q(M), ∀t � 0. (4.22)

Hence, we deduce from (4.21) and (4.22) that

‖ϕ(t)‖H2(Ω) � Q(M), ∀t � 1. (4.23)

Moreover, (4.21) and (4.23) give

‖μ(t)‖V � Q(M), ∀t � 1.

Also, using (4.23) once more, we have

‖∇F ′(ϕ(t))‖ � ‖F ′′(ϕ(t))∇ϕ(t)‖ � Q(M), ∀t � 1.

The last two bounds, (1.2) and elliptic regularity imply

‖ϕ(t)‖H3(Ω) � Q(M), ∀t � 1. (4.24)

Finally, from (4.21) and (4.22)2, we get

‖ψ(t)‖V � Q(M), ∀t � 1. (4.25)
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Thanks to (4.24) and (4.25), we have thus proven that there exists Λ = Λ(M) > 0 such

that

BM := {w := [ϕ,ψ] ∈ H3(Ω) ×H1(Ω) : ‖ϕ‖H3(Ω) � Λ, ‖ψ‖H1(Ω) � Λ, E(w) � M}

is an absorbing set for the semigroup {SM(t)}t�0 in WM . Since BM is also compact in

WM , the conclusion follows from [30, Theorem 2]. �

5 Conclusions

We provided some theoretical results for a thermodynamically consistent phase field

model of tumour growth proposed in [20]. The same contribution contains a numerical

scheme as well as some numerical simulations. A formal asymptotic analysis is carried

out in [22] to identify the corresponding sharp interface problem. The first theoretical

results concerning existence and uniqueness of solutions are proven in [8]. Our first main

result is a well-posedness theorem for weak solutions which are just energy bounded. The

growth assumptions on the potential F and the proliferation function are more general

than the ones in [8]. We point out that the existence of a solution is obtained through

an approximation scheme which might be helpful also for numerical approximations. A

further main result is based on the dissipative nature of the model, namely, the fact

that the total energy decreases in time. More precisely, we demonstrate the existence of

a global attractor in a suitable phase space with bounded total energy. This requires,

in particular, to show some regularity property of the solution itself. We think that

establishing the well-posedness of this model is a step towards its validation. Moreover,

our rigorous results on the dissipative longterm dynamics can play a role in designing

more appropriate numerical schemes and/or in understanding numerical simulations.
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