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Bluntness and incidence effects in hypersonic
flows with large separated regions

A. Khraibut1,† and S.L. Gai1

1University of New South Wales, Canberra, Northcott Drive, Campbell, ACT 2612, Australia

(Received 1 December 2021; revised 26 May 2022; accepted 6 July 2022)

This paper describes a numerical investigation on the effects of small to large bluntness
as well as the angle of incidence on the leading-edge separation in a laminar hypersonic
flow. The results show that both bluntness and incidence strongly influence separation
characteristics. A combined bluntness and incidence parameter is proposed and applied to
plateau pressures in the separated region and is shown to demarcate effects of small and
large bluntness at different angles of incidence. The investigation also showed profound
changes in the internal structure of the separation bubble with changes in incidence and
bluntness. The significance of the relationship between the two shear stress minima and
the separation length is highlighted.
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1. Introduction

The combined effects of bluntness, viscous interaction and incidence in a hypersonic flow
over flat plates have been comprehensively addressed in the past in the pioneering paper
by Cheng et al. (1961). Subsequently, Kemp (1968) proposed a modification to Cheng’s
theory which took into account the effects of γ , the specific heat ratio. This modified
theory showed better agreement with experimental data particularly for positive angles
of incidence and small bluntness. However, deviations from theory became significant
with an increase in bluntness. Incidence and viscous effects, but without bluntness, have
also been investigated by Stollery (1970, 1972). These studies, however, were restricted to
attached flows with no separation. The experimental investigations by Holden (1971) and
Mallinson, Gai & Mudford (1996), on the other hand, have investigated bluntness effects
on separation but they only dealt with zero incidence and had a well-developed boundary
layer before separation. Other notable studies investigating leading-edge bluntness effects
on separation are by Townsend (1966), Gray (1967) and Gray & Rhudy (1973).
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Figure 1. Schematic of separated flows under hypersonic flow conditions: (a) compression corner at an
incidence; (b) leading-edge separation.

A very recent paper by Cao et al. (2021) also discusses leading-edge bluntness effects
on separation and stability in a laminar hypersonic compression corner flow.

A particular type of separation that is of interest in the present paper is the so called
leading-edge separation (figure 1), first studied by Chapman, Kuehn & Larson (1958) as
part of their comprehensive study of separation over various geometries. Chapman and
his associates used the leading-edge separation model to formulate and then confirm by
experiments, their isentropic recompression theory. In both the theory and experiments
the leading edge was assumed sharp. These investigations were confined to supersonic
Mach numbers and moderate Reynolds numbers. Apart from Chapman’s investigations,
there have not been many studies of leading-edge separation other than by Brower (1961),
Kenworthy (1978) and Schneider (2004).

Recently, however, Khraibut et al. (2017); Khraibut, Gai & Neely (2019) used a
similar geometry (figure 2) to study large steady separation and its properties in laminar
hypersonic flows. The angle of incidence of the leading edge, α, in their study was kept at
30◦ to the oncoming stream. While the first paper (Khraibut et al. 2017) investigated the
case of a sharp leading edge, the second (Khraibut et al. 2019) addressed the effects of
small to nearly moderate bluntness on separation. In the present study, the investigation
is extended to cases of moderate to large bluntness effects and includes the effect of
changes to the angle of incidence on separation. As will be shown in this paper, changes
to bluntness and small changes in incidence do affect the flow drastically, which has
relevance to designs of hypersonic vehicles when they operate at off-design conditions.
For the present study, we retain the same geometry and dimensions as in Khraibut et al.
(2019).

In their study of the leading-edge separation problem, Chapman et al. (1958) used
the change in angle of incidence to change the Mach number approaching the shock
interaction and separation. These angles of incidence were sufficiently large to produce
steady separated flows (see figure 1). In order to increase the approach Mach number
before interaction/separation, the angle of incidence was increased positive clockwise so
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Figure 2. Leading-edge geometry considered by Khraibut et al. (2019) and the baseline in the present study.

that the leading-edge shock wave was immediately followed by a strong expansion on the
leeside (surface AB).

Blunt leading edges are required to reduce thermal loads on hypersonic vehicles such as
nose regions of slender bodies or leading edges of wings and control surfaces. They are
also required sometimes to accommodate cooling systems. Depending on the particular
requirement, a bluntness can be small or large. There is sufficient evidence in the literature
to show that depending on whether the bluntness is small or large, it can affect the
flow phenomena such as boundary layer transition and separation downstream (Holden
1971; Schneider 2004). In fact, the flow around the leading edge in a hypersonic flow
is a complicated interplay between bluntness and viscous effects and as such there have
been many criteria in the literature (see, for example, Cheng et al. 1961; Dewey 1965;
Holden 1971; Mallinson et al. 1996) to properly define bluntness. It was Cheng et al.
(1961) who first defined a parameter β that describes both bluntness and viscous effects
as χeke

−2/3, where χe is a viscous interaction parameter and ke is a parameter controlling
the inviscid-bluntness effect. In general, when β > 1, it implies small bluntness, while
a β < 0.1 implies large bluntness. The intermediate range can be loosely termed small
to moderate bluntness. Dewey (1965) has defined small and large bluntness in terms of
the parameter 1.1(λ∞/t)1/2(x/t)1/6, which takes into account rarefied hypersonic flow
conditions. Here, λ∞ is the free-stream molecular mean free path, t is the leading-edge
nose thickness (see figure 3) and x is the distance along the surface from the leading edge.
Dewey defines large bluntness when this parameter is equal to or less than 0.1 and small
bluntness when this parameter is equal to or greater than 1. Dewey has also shown that
his parameter of defining small and large bluntness is equivalent to the β parameter of
Cheng et al. (1961). Stollery (1970), on the other hand, defines small and large bluntness
simply in terms of Reynolds number based on the leading-edge thickness and free-stream
conditions, the Mach number and the hypersonic viscous interaction parameter χ̄ ; thus,

Ret � M3

χ̄1/2 . (1.1)

In the present study we investigate the effects of small and large bluntness on the
leading-edge separation, based on the Stollery’s criterion, then we separately consider the
effect of the angle of incidence of the leading-edge separation geometry by varying the
angle between ±5◦ from the baseline case. We then propose a new parameter to describe
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Figure 3. Flow around a blunt slender body.

both the bluntness and incidence effects, which does not require a strong shock or blast
wave analogy as in the previous studies.

2. Background

The leading edge or nose region of a blunt slender body in a high-Mach-number
hypersonic flow is characterised by a strong bow shock behind which is a high temperature
gas layer called the entropy layer ye. The fluid in the entropy layer is typically inviscid and
rotational with its thickness much larger than that of the adjoining boundary layer δ∗. The
entropy layer, at its outer edge, is bounded by a thin shock layer (ys−ye). In the present
paper, we will confine our interest mainly to the nose region s/r = O(1), where s is the
distance along the surface of the nose from the stagnation point and r is the nose radius.
The Reynolds number based on free-stream conditions and thickness of the leading edge
(t = 2r) is assumed to be moderate to large (102 to 103). In order to study the effects of
bluntness and incidence on separation per se, we assume that the boundary layer has not
developed sufficiently so that it is embedded within the entropy layer and that the normal
pressure gradient within the entropy layer may not necessarily be small.

In the general case of a blunt nosed flat plate at an incidence, we need to consider the
effects of (a) incidence (body shape), (b) bluntness (entropy layer) and (c) displacement
of the boundary layer (δ∗), but for the case of a sharp flat plate with an incidence, Stollery
(1972) shows that

dye

dx
= dyw

dx
+ dδ∗

dx
, (2.1)

where ye denotes the equivalent body shape, yw the geometric body shape and δ∗ is
the boundary layer displacement thickness (see figure 3). In the case of leading-edge
separation (figure 1) there is very little boundary layer growth prior to separation, so we
mainly need to consider the incidence and without bluntness, i.e.

dye

dx
≈ dyw

dx
, (2.2)

which includes the entropy layer from the body to the shock, which is directly related to
the profile thickness. It should be noted that due to flow separation from the vicinity of the
leading edge, the entropy layer is soon swallowed by the emanating shear layer.

The flow in front of a two-dimensional blunt slender body exposed to a hypersonic
stream is generally analysed in terms of the blast wave analogy (see Sedov 1946;
Taylor 1950; Lin 1954; Cheng & Pallone 1956; Lees & Kubota 1956). Based on the
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blast wave analogy, these authors have shown that the shock shape varies as x2/3 and
the pressure as t2/3, where x and t are the axial distance and the leading-edge thickness,
respectively. In the plane blast wave analogy, (Cheng & Pallone 1956) showed that the
plate pressure for air (γ = 7/5) is

p
pe

≈ 0.112M2
( t

x

)2/3
k2/3, (2.3)

where pe is the pressure at the edge of the entropy layer and k is the nose drag coefficient,

k = D
1
2ρu2t

, (2.4)

with D being the drag and the shock shape ys is

ys

t
≈ 0.85

(x
t

)2/3
k1/3. (2.5)

The use of the blast wave analogy in the analysis of nose bluntness effect assumes a
strong shock and an unyawed slender body. It also involves empirical values for nose drag
coefficient and various other constants (see Cheng & Pallone 1956). It is important to note
in the present context of leading-edge separation the comment by Dewey (1965), i.e. in
the immediate vicinity of the leading edge (x/t ≤ 5), the validity of the blast wave theory
becomes increasingly questionable with the flow field being strongly influenced by the
rapidly developing boundary layer and shoulder expansion.

In his analysis of the blunt leading-edge problem, Oguchi (1963) does not directly use
the blast wave analogy, although he tacitly makes the strong shock assumption. He assumes
that the flow behind the shock wave can be divided into an inviscid shock layer and an
entropy layer within which is embedded a thin boundary layer. He further assumes that
the transverse pressure gradient in the entropy layer is negligible so that the entropy layer
is solved using the boundary layer approach, but with the outer edge conditions of the
entropy layer approximately matching the outer inviscid hypersonic flow. He then obtains
the relations for the shock shape and plate pressure relations, respectively, as

ys

t
= a

(x
t

)2/3
(2.6)

and
p
pe

= 8γ

9(γ + 1)
Ka2M2

( t
x

)2/3
, (2.7)

with K as defined in Oguchi (1963) and the shock layer thickness parameter a as a function
of x. Oguchi, however, showed that a varies slowly with x provided that the boundary layer
thickness is much smaller than the entropy layer, but a constant value can be attained
depending on the parameter M

√
C/Ret, where Ret is a Reynolds number based on nose

thickness and C is the Chapman–Rubesin constant, and wall-to-stagnation temperature
ratio Tw/To . Overall, Oguchi’s pressure data agreed reasonably well with Cheng et al.
(1961) experimental data but the heat transfer data were considerably underpredicted.

3. A generalized bluntness parameter at zero incidence

The three parameters of significance in hypersonic inviscid–viscous interacting flows over
blunt slender bodies at incidence, as identified by Cheng et al. (1961) and subsequently
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by Stollery (1970), are Mα or M2α2, Aχ̄ and Kε , which, respectively, denote the angle of
incidence, displacement and bluntness effects. Cheng et al. (1961) combined these effects
into a single parameter,

Γ =
(

KεM
2χ2

ε

)
α, (3.1)

where Kε and χε are the bluntness and viscous effects, respectively (see Cheng et al.
1961), and α is the angle of incidence. The same paper by Cheng et al. also states that
Γ ∼ (Ret/M2)α.

Stollery (1970), on the other hand, suggests M2α2/Aχ̄ as a correlating parameter to
include viscous and incidence effects but does not consider bluntness effects.

Herein, we propose a parameter to describe bluntness effects without recourse to a
strong shock wave or blast wave analogy. We define B as a ratio of viscous and bluntness
effects such that

B = χε

M
√

C/Ret
. (3.2)

Here χε = ε[0.664 + 1.73(Tw/To)]χ̄ , with ε = γ − 1/γ + 1 and Tw/To is again the ratio
of the wall-to-stagnation temperature so that (3.2) takes into account the effects of both γ

and wall temperature, and in terms of the usual hypersonic viscous interaction parameter
χ̄ = M3√C/Rex, where Rex is the streamwise Reynolds number, (3.2) is rewritten as

B = Aχ̄

M
√

C/Ret
, (3.3)

where A = ε[0.664 + 1.73(Tw/To)]. The importance of the leading-edge thickness
Reynolds number in the flow over a blunt flat plate has been discussed by Cheng et al.
(1961), and as mentioned earlier, Oguchi (1963) has used the parameter M

√
C/Ret in his

analysis of his blunt leading-edge problem and showed its relevance in the derivation of
shock shape and pressure.

Substituting the expression for χ̄ , (3.3) can then be simplified to

B = AM2
( t

x

)1/2
, (3.4)

which shows a quadratic variation of B with leading-edge thickness.
Note that the parameter B in (3.4) contains the effect of wall temperature, specific heat

ratio as well as the Mach number. This can be compared with the bluntness parameter Kε

by Cheng et al. (1961), based on the strong shock and plane blast wave analogy, or the
empirical bluntness parameter 0.016M3(t/x)1/2 used by Hammitt & Bogdonoff (1956), to
correlate the pressure distributions over a blunt flat plate at zero incidence.

For typical values of thickness, say 2000 and 200 µm, corresponding to nose radii of
1000 and 100 µm with γ = 1.4, Tw/To = 0.1, M = 10, and a characteristic length Le =
20 mm, the values of B are 0.917 and 0.29, respectively. We can then roughly classify
B ≥ 1 as large bluntness and B � 1 as small bluntness, and bluntness effects can be said
to be appreciable when B > 1. This parameter can be incorporated in a parameter that
describes the effects of incidence as will be shown later.

4. A bluntness parameter with incidence

In high-Mach number and moderate-to-high-Reynolds number flow on a flat plate
sufficiently downstream of the leading edge, inviscid hypersonic region, entropy layer,
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and a thin boundary layer are distinct and contiguous regions and the transverse pressure
gradient across the boundary layer and the entropy layer is negligible (Oguchi 1963;
Stollery 1970).

However, in the vicinity of the nose region of a blunt leading edge, a region of particular
interest here, this may not always be true as the local Reynolds number can be quite low
as a result of hot gas behind the bow shock. This is evident from the inspection of the
parameter M

√
C/Ret, which can be expressed as

M

√
C

Rex

(
Rex

Ret

)1/2

= V
(x

t

)1/2
, (4.1)

where V is the hypersonic rarefaction parameter. If, as in the vicinity of the nose region,
(x/t) = O(1), then V ≈ M

√
C/Ret. This implies that considerable rarefaction effects, such

as slip and a temperature jump, may exist and a negligible transverse pressure gradient
assumption may not be valid. Importance of rarefaction effects in the vicinity of the leading
edge is also consistent with the paper by Dewey (1965).

Taking the cue from Γ ∼ (Ret/M2)α in Cheng et al. (1961), we express the combined
effects of incidence, viscous and the proposed bluntness B parameter as

K =
(

B
Aχ̄

)2

α. (4.2)

Note that,
Ret

M2 =
(

B
Aχ̄

)2

, (4.3)

and the parameter K should be able to correlate pressures on inclined blunt leading-edge
flat plates.

5. Numerical simulations

5.1. Grid independence with the effect of bluntness
Effects of small-to-moderate bluntness (r = 15 and 100 µm) on leading-edge separation
were previously investigated in Khraibut et al. (2019). Here, we investigate the effect of
increasing the nose bluntness to r = 500 and 1000 µm on the same geometry and flow
conditions.

The numerical solutions in the present study were obtained using the compressible
Navier–Stokes solver, US3D, which has been extensively applied to numerous hypersonic
flow simulations (see, for example, Nompelis & Candler 2014; Candler et al. 2015) as
well as hypersonic leading-edge separation problems previously studied by Khraibut et al.
(2017, 2019). Details of the solver and numerical methodology can be found in these
papers, and in the present paper we have used the same boundary conditions and perfect
gas assumptions. Here, too, the nose has been modelled as a semi-circle, superposed on
the leading edge of the baseline geometry, and, thus, the expansion surface AB (figure 2)
is fixed at 20 mm in length. For both r = 500 µm and r = 1000 µm nose radii cases, we
have used a total of three grids for each bluntness case, and a summary of the grids used
in the study is given in table 1, where i is the number of nodes on the expansion and
compression surfaces, j is the transverse number of nodes to the surface, nr is the number
of nodes along the circumference of the leading edge, 
hw is a fixed first cell height and
i × j is the total number of cells in the entire domain.
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Grid i j nr 
hw (µm) i × j (Million)

1 3306 401 130 2 1.465
2 4958 600 191 1 3.29
3 7438 901 235 0.5 7.2

Table 1. Summary of grids used in grid convergence study (r∗ = 500 µm).

The flow conditions used in the present study are the same as those used in the
earlier papers by Khraibut et al. (2017, 2019), based on condition E generated in the
free-piston-driven shock tunnel, T-ADFA: M∞ = 9.66, u∞ = 2503 m s−1, T∞ = 165 K,
ρ∞ = 0.0061Kg m−3 and Re/m = 1.34 × 106, based on reservoir conditions To = 3341
K and po = 11.7 MPa for air and Tw/To = 0.1, where M, u, ρ and Re are the Mach
number, velocity, density and Reynolds number, respectively; p and T are the pressure and
temperature, respectively, and subscripts ‘∞’, ‘o’ and ‘w’ denote free stream, reservoir
and wall, respectively.

Figures 4 and 5 show the convergence data for r = 500 µm and r = 1000 µm cases,
respectively, based on the surface pressure and shear stress distributions along the
geometry. In figures 4(a) and 5(a) the pressure p∗ is the ratio of surface pressure, pw,
to free-stream pressure, while τ ∗ in figures 4(b) and 5(b) is the shear stress on the body
surface normalised to the dynamic pressure, and the abscissa is the wetted distance, s,
divided by the characteristic length, AB, (see figure 2). The curves show the iteratively
converged solutions as monitored by the drop in root-mean-square residuals. For both
the r = 500 and 1000 µm bluntness cases, these residuals showed little variation after
a five-order drop in magnitude. It should be pointing out that the simulations in these
instances were carried out using an implicit time integration scheme and by fixing the
Courant–Friedrichs–Lewy (CFL) number across the domain (i.e. they are steady-state
solutions). In both bluntness cases, the coarsest grid (green) shows some variation near
the peaks of the pressure and shear stress curves while the medium and fine grids seem
unchanged. Insets in figures 4 and 5 show the same data in the region between s∗ = 0 and
3.2 to highlight the details.

In table 2 we similarly show the convergence data at separation, s∗
S, and reattachment, s∗

R,
for both nose radii, and for the separation length l∗sep, which is the difference between the
two. Note again that the lengths are normalised by the characteristic length Le = 20 mm
and that s∗

S and s∗
R were both taken directly from the shear stress data as it first crosses from

positive to negative at separation, and last from negative to positive at reattachment. In this
table we note that the difference in the consecutive solutions reduce with grid refinement
but it is larger for s∗

S, as it moves closer towards the leading edge in finer grids, and less
than 2 % for both s∗

R and l∗sep.

5.2. Grid independence with the effect of incidence
To consider grid independence with incidence, convergence of both the smallest (r =
15 µm ) and largest (r = 1000 µm) bluntness cases were monitored. In these simulations,
the incidence was varied by varying the flow velocity vector by ±5◦ from the baseline
case at α = 30◦. In the smallest bluntness case, the steady-state solutions were obtained by
varying the CFL number across the domain. In the largest bluntness case with α = 30◦ and
35◦ incidences, the steady-state solutions were also obtained in the same way. In the largest
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Figure 4. Grid convergence of the blunt leading-edge separation geometry (r = 500 µm): (a) surface pressure
p∗ and (b) shear stress τ ∗, which are normalised by the free-stream and dynamic pressure, respectively. Note
that s∗ is the wetted distance and s is normalised by the characteristic length, Le = 20 mm. Legend: grid 1
(green); grid 2 (red); grid 3 (blue); the grey outline is the wall. Here and throughout S is separation and R
is reattachment. The arrows point in the direction of grid refinement and the inset is a close-up of the region
between s∗ = 0−3.2.

bluntness case at α = 25◦, however, we have observed periodicity of the steady-state
solutions so that time-accurate simulations were also carried out. To obtain time-accurate
solutions, the time step was fixed across the domain and an implicit point relaxation
technique was used with a second-order time integration (see Candler et al. 2015). In
this case, the maximum time step was kept at 4.5 × 10−9 s in the simulations and the total
simulation runtime was extended to t = 14.28 ms without reaching a steady state.

In figure 6 we show the time evolution of the pressure and shear stress distributions for
the largest bluntness case at α = 25◦ (plots (a) and (b), respectively). The legend in these
figures show the time taken for each curve in milliseconds (ms). Note that both the pressure
and shear stress are sensitive to the time evolution of the solution. In figure 6(b), which
shows the separation and reattachment locations, we note that both locations become fixed
within 7.6 ms and that further evolution in time does not change the length of separation
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Figure 5. Grid convergence of the blunt leading-edge separation geometry (r = 1000 µm): (a) surface
pressure p∗ and (b) shear stress τ ∗, which are normalised by the free-stream and dynamic pressure, respectively.
Note that s∗ is the wetted distance and s is normalised by the characteristic length, Le = 20 mm. Legend: grid
1 (green); grid 2 (red); grid 3 (blue); the grey outline is the wall. Here and throughout S is separation and R
is reattachment. The arrows point in the direction of grid refinement and the inset is a close-up of the region
between s∗ = 0 − 3.2.

r = 500 µm r = 1000 µm

Grid s∗
S s∗

R l∗sep Grid s∗
S s∗

R l∗sep

1 0.00258 4.533 4.530 1 0.00877 5.364 5.355
2 0.00168 4.576 4.574 2 0.00887 5.272 5.263
3 0.00157 4.573 4.571 3 0.00906 5.256 5.247

Table 2. Convergence of separation, reattachment and separation length for the different nose radii.

or the second shear stress minimum (before reattachment), but causes the movement of
secondary vortices in the corner region.

Figure 7 shows the corresponding flow visualisation based on contours of the
density gradients for the same case and times t = 10, 12.07, 13.02, 14.02 and 14.28 ms
corresponding to the last five curves in figure 6. The figure is a close-up of the separated
region so that the major flow features are emphasised. In the figure the leading edge and
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Figure 6. Time evolution of the surface data with r = 1000 µm and α = 25◦: (a) surface pressure; (b) shear
stress. Note that p∗ and τ ∗ are normalised by the free-stream and dynamic pressure, respectively. Note that s∗
is the wetted distance and s is normalised by the characteristic length, Le = 20 mm. The legend is the time in
milliseconds (ms), the grey line is the surface, and ‘S’ and ‘R’ are the locations of separation and reattachment,
respectively.

separation shocks are denoted by LES and SS, respectively, and ‘S’ is the location of
separation. Above the separated region, we note compression waves (shocklets) emanating
from the shear layer corresponding to number of vortices. The main point to note here
is the presence of three secondary vortices, which are formed as the reverse boundary
layer (RBL) separates and encounters the primary vortex. The larger vortex ‘1’, which is
predominantly on the expansion surface is anchored by the shear layer and the surface
by a saddle point (red squares), while the smaller vortices ‘2’ and ‘3’ are located on the
compression surface under vortex ‘1’ and under the primary vortex, respectively. We note
that from tracking the vortices saddle point that no steady-state solution is reached by the
end of the computational time ≈ 14.28 ms. Unsteadiness of secondary vortices has been
predicted in the previous numerical studies by Neiland, Sokolov & Shvedchenko (2008)
and Shvedchenko (2009) on compression corner geometry. In the present study, it is shown
that unsteadiness can be caused in a leading-edge separation geometry by variations of the
angle of incidence.
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Figure 7. Flow structure based on the magnitude of the density gradients at α = 25◦: r = 1000 µm case
with time t. Results are shown for (a) t = 10 ms; (b) t = 12.07 ms; (c) t = 13.02 ms; (d) t = 14.02 ms;
(e) t = 14.28 ms. Symbols: ‘S’ is separation, LES is leading-edge shock wave, SS is separation shock wave,
1–3 are the index of the secondary vortices and RBL denotes reverse boundary layer. Red square: saddle point.
Here x and y are Cartesian coordinates in metres. Major streamlines are superposed on the contours.

947 A5-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.605


Bluntness and incidence effects in hypersonic flows

50
15

10

5

0 0.05 0.100

40

30

20

10

0 1 2 3 4 5 6

0.04

0.02

0 0.05 0.10

S

S
R R

0

0.03

0.02

0.01

0

0 1 2 3 4 5 6

τ∗

p∗

s∗

(b)

(a)

Figure 8. Bluntness effects on surface parameters at the baseline incidence of α = 30◦: (a) pressure; (b) shear
stress. Legend: r = 15 µm (blue); r = 100 µm (green); r = 500 µm (red); r = 1000 µm (grey). Note that p∗
and τ ∗ are the normalised pressure and shear stress by the free-stream and dynamic pressure, respectively.
Note that s∗ is the surface distance and s is normalised by the characteristic length, Le = 20 mm. Here and
throughout S is separation and R is reattachment. Insets are the leading-edge region.

6. Results and discussion

6.1. Effects of leading-edge bluntness
Figure 8 shows flow features and distributions of wall pressure (8a) and shear stress
(8b) with changing nose radius from small (nominally sharp, r = 15 µm) to the largest
bluntness (r = 1000 µm) at the baseline angle of α = 30◦, including the cases of r = 100
and 500 µm.

Figure 9 shows contours of the density gradient with major streamlines superposed
with some salient features of the flow. They cover the full range from nominally sharp to
moderate to large bluntness in terms of the criterion suggested by Stollery (1970) and based
on present flow conditions of M = 9.66 and χ̄ = 3.8. With these stipulations, r = 500 µm
approximately demarcates the boundary between ‘large’ and ‘small’ bluntness effects.
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Figure 9. Flow structure based on magnitude of the density gradients at α = 30◦. (a) r = 15 µm;
(b) r = 100 µm; (c) r = 500 µm; (d) r = 100 µm. Here and throughout S is separation and R is reattachment,
LES is leading-edge shock wave, SS is separation shock wave, TP is triple point, RS is recompression shock
wave, ‘1’ is corner vortex and ‘2’ is a secondary wall eddy. Notice that figures (c) and (d) are plotted in
difference scales compared with (a) and (b) due to the difference sizes of separation. x and y are Cartesian
coordinates in metres. Major streamlines are superposed on the contours.

Referring to the first two cases r = 15 µm and 100 µm in figure 9(a,b), they are based
on the data given previously in Khraibut et al. (2019), while the results of the larger r =
500 µm and 1000 µm bluntness cases (plots (c) and (d) in the same figure) are based on
the grid independence study given above. The main feature to note for the r = 500 µm
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and r = 1000 µm cases is the occurrence of multiple counter-rotating vortices instead of
a large corner vortex embedded within the primary vortex. The vortices appear to grow
as the reverse boundary layer encounters the vortical flow and the shear layer is distorted
which gives rise to compression waves (shocklets) above the shear layer.

This becomes more obvious when we examine again the insets in figure 8, which
show the surface pressure and shear stress for the range of bluntness cases presently
studied (r = 15–1000 µm). We observe that when the leading-edge radius is increased, the
separation point moves towards the curved part of the nose, just upstream of the shoulder
for the largest nose radius and the size of separation also increases. This is all consistent
with the visualisation based on the global density gradients in figure 9.

It is interesting to note in figure 8(a) that the increase of length of separation relates
to the magnitude of the second shear stress minimum just before reattachment, which
becomes shallower with increasing bluntness so much so that, for the two larger nose
radii, the two minima (just after separation and before reattachment) are almost equal.
This shallowing and stretching of the shear stress minimum results in the squeezing and
stretching of the primary vortex (see figure 9) with increased bluntness. It is also worth
pointing out that the shear stress pattern observed here, as the bluntness is increased, is
very similar to the one seen with increasing wall temperature (see Khraibut et al. 2017), in
terms of the length of separation and shallowing of the second shear stress minimum.
Note however that increasing nose bluntness seems to have an opposite effect on the
fragmentation of vortices compared with increasing wall temperature.

Examining the corresponding pressure distribution (figure 8b), we further note that
pressure gradients become substantially milder as reattachment is approached and pushed
downstream with an increase in bluntness. This is attributed to the strong favourable
pressure gradient induced at the blunt leading edge as the nose radius is increased.

6.2. The entropy layer
For a flat plate with a blunt leading edge and zero angle of incidence in a hypersonic
flow, the shock shape can be expressed by the relation (Cheng & Pallone 1956) as given
earlier in (2.5). This relation was based on the extensive helium data of Hammitt &
Bogdonoff (1956) and its general validity was later confirmed by Cheng et al. (1961) in
their experiments with air. Both Hammitt & Bogdonoff (1956) and Cheng et al. (1961) data
covered a large range of bluntness Reynolds numbers, Ret, thus confirming its validity
for large and small bluntness values as well as for both adiabatic and cold walls. The
equation’s applicability for flows at varying angles of incidence, such as the present case,
however, needs further justification. Cheng et al. (1961) and Stollery (1970) both have
shown that in the vicinity of the leading edge, incidence effects, in relation to both heat
transfer and pressure, are quite small and only become dominant sufficiently downstream
of the leading edge. In the case of a leading-edge separation, that shock shape relation
(ys/t) should at least be approximately valid, while noting that observations made in these
studies were mainly based from measurements and calculations on the windward side,
while the flow being discussed here relates to the leeward side (surface AB in figure 2).

An estimate of the entropy layer thickness can be made from the shock layer thickness,
based on the assumption that the boundary layer thickness is small, which is justified in
a leading-edge separation and a cooled wall case. For a blunt flat plate, Oguchi (1963)
suggests an entropy layer and a shock layer thickness ratio of 0.4 (2.5) so that in the
present case, the entropy layer thickness is of the order of 0.76 mm. Figure 10, which
shows contours of the density gradients and pressures for nose radii r = 15–1000 µm,
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Figure 10. Flow contours of the leading-edge region for r = 15, 100, 500, 1000 µm bluntness cases (see
top–bottom). Symbols: ‘S’ is separation, LES is the leading-edge shock wave, SS is the separation shock wave,
DSL is the dividing streamline, ‘i’ is the beginning of shock-viscous interaction. On the left, figures (a–d) are
contours of the density gradients and on the right, figures (e–h) are the pressures in pascals. The legend in
the pressure figures is scaled to show the range on the leeward side. Here x and y are Cartesian coordinates in
metres. Major streamlines are superposed on the contours.

also shows that the flow is affected by the expansion around the shoulder, but that the
overall influence of expansion on shock shape, away from the nose region, is small.

Figure 10 shows how increasing the leading edge bluntness increases the shock strengths
in the leading edge and separation regions (LES and SS, respectively), which is evidenced
by the increase of colour intensity of the contours of density gradients (left figures) at
these locations with increased bluntness. Note also that in the large r = 500 and 1000 µm
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Figure 11. Bluntness effects on the interaction profile (‘i’ in figure 10) taken along the wall normal n:
(a) pressure; (b) velocity; (c) vorticity in the z-direction. Subscripts are consistent with figure 3. Lines:
r = 15 µm (blue); r = 100 µm (green); r = 500 µm (red); r = 1000 µm (grey). Coordinates are shown in
figure 11(c).

bluntness cases, the separation moves upstream but remains on the leeward side, which
in the figure is noted by movement of the shock-viscous interaction region ‘i’ on the
circumference of the leading edge.

Figure 11 shows the pressure (11a), velocity (11b) and vorticity (11c) profiles at the
interaction ‘i’ for the smallest to largest nose radii. In this figure p and ux are normalised by
the free-stream values, and the vorticity, ωz = du/dy − dv/dx, is multiplied by the radius
divided by the free-stream velocity. The profiles were taken along the normal as shown in
figure 11(c), where the abscissa = 0 is the wall (subscript ‘w’) and unity at the edge of the
entropy layer (subscript ‘e’).

Considering pressure profiles in figure 11(a), first, we note that the pressure stays nearly
constant along the entropy layer and only begins to show significant changes with the
larger r = 500 and 1000 µm bluntness cases. This, in conjunction with the visualisation
in figure 10, seems to be caused by the delay in separation in the smaller bluntness cases,
away from the leeside expansion and downstream of the bow shock. As a result, the
boundary layer is also more developed in the smaller bluntness cases and the pressure
range is a lower order than the larger r = 500 and 1000 µm cases.

The corresponding velocity profiles for the same cases are shown in figure 11(b). Here,
profiles of the smallest 15 and 100 µm bluntness cases show the fuller boundary layer
growth prior to separation with its thickness reducing with an increase of bluntness.
In the larger bluntness r = 500 µm and 1000 µm cases, that pattern continues so that
the boundary layer is very thin as the separation occurs very close to the stagnation
point in these two cases and the velocity profile is largely constant across the entropy
layer.

In figure 11(c), which shows vorticity profiles for the largest r = 500 and 1000 µm
bluntness cases, the vorticity drops from a maximum near the surface to a constant
at 20–30 % of the distance from the wall to the edge of the entropy layer, while
the two smaller bluntness cases show these profiles reduce from the maximum value
to a constant at about 60 % in the r = 15 µm bluntness case and 40 % in the r =
100 µm bluntness case. These results are consistent with results from the velocity
profiles in figure 11(b) with respect to changes in the boundary layer thickness due to
bluntness.
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Figure 12. Flow structure variation for r = 15 µm at α: (a) 25◦; (b) 30◦; (c) 35◦. Here and throughout S is
separation and R is reattachment, LES is leading-edge shock wave, TP is the triple point, SS is separation shock
wave, ‘1 and 2’ are secondary vortices due to the separation of the reverse boundary layer (RBL). Here x and y
are Cartesian coordinates in metres. Major streamlines are superposed on the contours.

6.3. Effects of incidence on small bluntness
In this section we elucidate the visualisation data obtained from numerical simulations.
These visualisations are useful in providing further information on complex flow features
of the effects of incidence on separation. Figure 12 shows contours of the density gradient
for the three angles of incidence α = 25◦, 30◦ and 35◦ of the nominally sharp r = 15 µm
case. Streamlines and major flow features, such as length of separation, triple points, shock
waves and vortices, are also shown in the figure. In the case of the lowest angle of incidence
α = 25◦ in figure 12(a), there are multiple vortices embedded within the separated region.
The primary separation is denoted by locations S and R, while a smaller secondary vortex
exists mainly on the expansion surface ‘1’ and eddy ‘2’ emerges from the vertex. With the
increase of incidence to α = 30◦ in figure 12(b), the primary vortex grows and stretches
on the compression surface, while stretching the secondary vortex ‘1.’ In this case, corner
eddy ‘2’ also amalgamates with vortex ‘1.’ In general, the flow and shocks appear relieved
in this case compared with the lower α = 25◦ incidence. With an additional increase of
incidence to α = 35◦ (figure 12c), still, new features emerge in the flow. Firstly, vortex ‘1’
splits into two smaller eddies disposed on either side of the corner. Secondly, the separating
reverse boundary layer experiences a further relief, from the intensity of the contours,
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Figure 13. Contours of density gradients and pressure near the leading edge for r = 15 µm at various angles
of incidence, α: (a) 25◦; (b) 30◦; (c) 35◦. Symbols: ‘S’ is separation, LES is leading-edge shock wave, SS is
separation shock wave and ‘1’ is the corner vortex. The pressure figures on the bottom are in pascals. Here x
and y are Cartesian coordinates in metres. Major streamlines are superposed on the contours.

while the shocks become weaker and primary separation continues to grow and stretch
over the compression surface.

In terms of the external flow above the shear layer, both bow and separation shocks
reduce in strength with incidence and the effect of that is seen on the movement of
separation downstream on the leeside (surface AB in figure 2). In the smallest incidence
case, as a results of separation being closest to the leading edge, the bow and separation
shocks are merged but move away from each other with increasing strength of the
expansion with an increase of incidence. This is clearly illustrated in figure 13 showing
visualisation (based on the magnitude of density gradients and pressures) of the flow in
the nose region of the same cases.

The effect of incidence on the pressure and shear stress for the same nominally sharp
case of 15 µm and angles of incidence is illustrated in figures 14(a) and 14(b), respectively.
An immediate effect of incidence on the shear stress is in the downstream movement of
the separation ‘S’ and reattachment ‘R’ with an increase of incidence, also leading to a
small overall increase in the length of separation. This confirms the visual results shown in
figures 12 and 13. In the reattachment region, in the smallest α = 25◦ incidence case, also,
the shear stress and pressure show two distinct peaks corresponding to the intersection of
the leading edge–separation shock with the separation–reattachment shock and expansion,
which forms an Edney type VI interaction. With the increase of incidence from 30◦ to 35◦,
these peaks eventually reduce to a single broad peak in both the pressure and shear stress
curves in the 35◦ incidence case. We also note that the shocks weaken with an increase
of incidence. As with the effect of bluntness, pressure gradients in the reattachment also
become milder with larger incidence. The shear stress distribution in the neck region, on
the other hand, becomes shallower so the second minimum τ2 progressively reduces in
magnitude to about a third from α = 25◦ to 35◦. Thus, the effect of incidence on the
surface parameters is similar to that seen earlier with bluntness.

947 A5-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

60
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.605


A. Khraibut and S.L. Gai

80

60

40

20

0.03

0.02

0.01

0

0 1 2 3 4

0 1 2 3 4

4

2

0.010

0.005

0

0 0.1 0.2

0 0.1 0.2

S

S

R

p∗

τ∗

s∗

(a)

(b)

Figure 14. Incidence effects on surface parameters for the r = 15 µm case: (a) pressure; (b) shear stress.
Legend: α = 250 (blue); α = 300 (black); α = 350 (red). Note that p∗ and τ ∗ are the normalised pressure
and shear stress by the free-stream and dynamic pressure, respectively. Note that s∗ is the surface distance
and s is normalised by the characteristic length, Le = 20 mm. Here and throughout S is separation and R is
reattachment. Insets are the leading-edge region.

6.4. Effects of incidence on large bluntness
In this section the combined effect of incidence and bluntness are considered for the case
with the nose largest radius of 1000 µm for the same angles of incidence. In the density
gradient contours in figure 15, there are dramatic changes in the flow structure compared
with the nominally sharp case. With the 25◦ incidence (figure 15a), the main separation
bubble consists of a main vortex and two other vortices: ‘1’ and ‘2’ near the corner. In this
case, an interesting feature to note is the emergence of a saddle point on the crest of vortex
‘1’ with the primary vortex, which as seen in the earlier convergence studies oscillates
between a maximum and a minimum.

As the incidence increases to 30◦ (figure 15b), a slight increase in the separation length
is observed while the shock strengths are reduced. In this case, vortex ‘1’ grows and
pushes the primary vortex and vortex ‘2’ is formed below vortex ‘1.’ Compared with
the 25◦ incidence case, the primary vortex at 30◦ incidence is ‘squashed’ and elongated
by the corner vortex ‘1.’ The reverse boundary layer similarly is weaker and dissipates
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Figure 15. Variation of flow structure for r = 1000 µm at α: (a) 25◦ at t = 14.28 ms; (b) 30◦; (c) 35◦. Here
and throughout S is separation and R is reattachment, LES is leading-edge shock wave, SS is separation shock
wave, ‘1–3’ are secondary vortices due to the separation of the reverse boundary layer (RBL). Here x and y are
Cartesian coordinates in metres. Major streamlines are superposed on the contours.

into the primary vortex. With a further increase in incidence to 35◦, (figure 15c), the
separation region is drastically reduced and devoid of compression waves (shocklets) or
any other multiple structures. The possible reasons for these flow features become clearer
by examining contours of the density gradient and pressure near the leading edge in
figure 16.

For the 35◦ incidence case, we note the separation has moved downstream so there are no
secondary vortices or compression waves emanating from the shear layer (figure 16f (top)).
Furthermore, with the increase in incidence the overall size of separation is reduced as a
result of the combined and cumulative effect of a weakened bow shock and strong shoulder
expansion which moves the separation downstream. At the same time, the front stagnation
point shifts towards the windward side so that the effect of expansion on the leeward side is
strongest. The figure furthermore shows that with the downstream movement of separation
at the 35◦ incidence, the streamline curvature is distinctly concave to the oncoming flow
and that the curvature increases with the decrease in incidence.

Figure 17 shows non-dimensional shear stress (17a) and surface pressure (17b) at the
three angles of incidence for the largest bluntness case. In the α = 25◦ case, the data
are shown at t = 14.28 ms, which is the end of the computational time. Note from
the earlier grid independent study (figure 6) the separation length remains steady after
t = 7.6 ms while the internal vortices change with time, so that the following discussion
is valid. As in the nominally sharp case, we note several notable differences in the shear
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Figure 16. Contours of density gradients and pressure in the leading-edge region for the largest bluntness case
(r = 1000 µm) at various angles of incidence, α: (a) 25◦; (b) 30◦; (c) 35◦. Symbols: ‘S’ is separation, LES is
leading-edge shock wave, SS is separation shock wave, ‘1’ is the corner vortex. Pressure figures on the bottom
are in pascals. Here x and y are Cartesian coordinates in metres. Major streamlines are superposed on the
contours.

stress data. Firstly, the smallest 25◦ and baseline 30◦ incidence cases are associated with
large separated regions with a shallower second shear stress minimum, while the 35◦
incidence case shows the reverse effect on both parameters. This is similarly reflected
in the surface pressures in figure 17(a), wherein the plateau pressure in the separated
region after separation is the lowest for the largest 35◦ incidence and highest for the
smallest 25◦ incidence. As the shock strength reduces with an increase of incidence, we
also note that the peaks in the pressure after reattachment become indistinguishable but
more pronounced in the shear stress.

In the insets of figures 17(a) and 17(b), the surface pressure and shear stress data in
the nose region reflect the previous results. The steep fall in shear stress for the 25◦ and
30◦ incidence shows that the separation is abrupt, while in the largest 35◦ incidence it
takes place gradually after a boundary layer has sufficiently developed. This corresponds
to the reduction seen in the pressure plateau after separation from ≈ 17p∞ in the lowest
incidence to ≈ 2.6p∞ in the highest incidence.

6.5. Profiles prior to separation
Transverse profiles of pressure, velocity and vorticity similar to those in figure 11
are shown in figure 18 for the three angles of incidence for the large bluntness
case (r = 1000 µm). These profiles are again taken at the beginning of shock-viscous
interaction ‘i’ ahead of separation. In the 25◦ and 30◦ incidence cases, as the separation
position changes only slightly, profiles of the pressure, p/p∞, velocity, ux/u∞, and
vorticity, wzr/u∞, seem similar, while in the 35◦ incidence, for which the separation
occurs well downstream on the expansion surface, they are quite different.

The main feature to note in the pressure profiles (figure 18a) is that transverse gradients
are present for all incidences, and the lowest pressures in the 35◦ incidence suggests that
the effect of expansion is strongest. The velocity profiles (figure 18b), on the other hand,
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Figure 17. Incidence effects on surface parameters for the r = 1000 µm case: (a) shear stress; (b) pressure.
Legend: α = 250 at t = 14.28 ms (blue); α = 300 (black); α = 350 (red). Note that τ ∗ and p∗ are the
normalised shear stress and pressure by the dynamic pressure and free stream, respectively. Note that s∗ is
the surface distance and s is normalised by the characteristic length, Le = 20 mm. Here and throughout S is
separation and R is reattachment. Insets are the leading-edge region. The grey line is the wall.
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Figure 18. Flow profiles of pressure (a), velocity (b) and vorticity (c) at the beginning of the interaction ‘i’ and
at various angles of incidence in the largest bluntness (r = 1000 µm) case: α = 25◦ (blue); α = 30◦ (black);
α = 35◦ (red). Wall normal is measured from the wall (subscript ‘o’) to the edge of the entropy layer (subscript
‘e’). Parameters are normalised by the edge value of the entropy layer.
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Figure 19. Variation of non-dimensional plateau pressure (Cheng et al. 1961) with new combined
bluntness-incidence parameter K for the three angles of incidence (α = 25◦–35◦). Here r = 15 µm (blue
diamonds) and r = 1000 µm (green circles).

which show the boundary layer growth at each incidence, also show that the boundary
layer is fuller (and thicker) in the largest incidence, and the effect of expansion, in the
same figure, is seen by an overshoot in the profile, after which the bow shock reduces the
velocity at nearly 0.2 of the distance, from the surface to the edge of the entropy layer.
The vorticity profiles in figure 18(c) are consistent with velocity profiles in that they are
maximum at the surface then approach zero at the edge of the entropy layer. In the 35◦
incidence there is a corresponding overshoot in the vorticity overshoot at nearly 0.2 of the
distance from the surface to the edge of the entropy layer after which the vorticity remains
nearly constant.

Figure 19 shows the non-dimensional plateau pressure pp in the separated region for the
smallest and the largest bluntness (blue diamonds and green circles, respectively) in terms
of the parameter K for the three angles of incidence, based on (4.2) and (4.3). We have
used this parameter to correlate the plateau pressure, pp, with an inclined flat plate in the
literature as it is a more relevant quantity in the context of leading-edge separation. We
first observe with the smallest bluntness, of which the incidence effects are dominant, that
K < 1 and the variation of pp with K is nearly linear. In the largest bluntness case,
conversely, we note that K > 10 and the drop in pp is more abrupt so that where the
bluntness effect is dominant, as in this case, the changes in K with α are small. What
this shows is that there is a clear demarcation between incidence affects on small and large
bluntness. In general, one can say K < 1 for small and K � 1 for large bluntness.

6.6. Free interaction, length of separation and shear stress minima
According to Chapman et al. (1958), free interaction is a feature of flow wherein the flow
is free from ‘direct’ influence of the downstream geometry. However, they state in the
same paper that it does not necessarily preclude processes that are not free from ‘indirect’
influence of the downstream flow. As the separation in the present case consists of a
primary vortex, which is stretched and pushed downstream, and secondary vortices that
are formed by the separation of the reverse boundary layer are pushed upstream so that
the separation and reattachment are not entirely independent of each other. It is therefore
instructive to compare the different effects on length of separation with the ratio of shear
stress minima, which seem to correlate (see tables 3–5). As noted earlier, the leading-edge
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Tw (K) p∗
s l∗sep τ2/τ1

165 0.488 2.241 2.365
300 0.616 2.394 1.992
800 1.318 2.716 1.602
2771.23 2.888 3.887 1.161

Table 3. Effect of wall temperature (r = 15 µm; α = 30◦) on separation pressure, length of separation and
ratio of the shear stress minima. Here l∗sep is normalised by the characteristic length (Le = 20 mm).

r (µm) p∗
s l∗sep τ2/τ1

15 0.817 2.368 2.608
100 2.955 2.948 2.012
500 6.261 4.057 1.107
1000 8.498 4.7075 1.077

Table 4. Effect of leading-edge nose bluntness (Tw = 300 K; α = 30◦) on separation pressure, length of
separation and ratio of the shear stress minima.

r = 15 µm r = 1000 µm

α, ◦ p∗
s l∗sep τ2/τ1 α, ◦ p∗

s l∗sep τ2/τ1

25 1.400 2.090 3.130 25 14.950 4.370 1.250
30 0.850 2.340 2.600 30 8.500 4.710 1.080
35 0.450 2.520 2.120 35 1.100 1.590 3.200

Table 5. Effect of incidence (Tw = 300 K) on separation pressure, length of separation and ratio of the shear
stress minima.

separation is a limiting case when the distance from the leading edge to separation goes
to zero (Délery & Marvin 1986). Under such circumstances, the boundary layer separates
before becoming fully developed and the separation is not a strictly free interaction. This
is evident from examining the separation pressures p∗

s (normalised by the free-stream
pressure).

Tables 3–5 show the effects of bluntness, incidence and wall temperature. We note that,
for the wall temperature and nose bluntness cases, the separation length increases with
an increase of separation pressure while the effect of incidence is quite different. With
incidence, in the smallest bluntness cases the separation length reduces with a decrease of
separation pressure, and in the largest bluntness case it increases with an increase of p∗

s
from α = 25◦ to 30◦, then reduces with a further decrease of p∗

s at α = 35◦. The reason for
this reversal in the largest bluntness case at α = 35◦ can be explained when we examine
the relationship between the separation length and ratio of shear stress minima for this
and the other scenarios in tables 3–5. Note that in these tables, l∗sep has been normalised
by the characteristic length (Le = 20 mm). We note that when the ratio of the two shear
stress minima approaches unity, the length of separation is maximum, and when the ratio is
large (i.e. the shear stress distribution is asymmetric), the length of separation is reduced.
Once τ2/τ1 reaches a minimum, the only possible way for the growth of the length of
separation is in the reverse direction. Figure 20 shows the variation of τ2/τ1 with l∗sep for
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Figure 20. Effect of wall temperature, bluntness and incidence on the variation of τ2/τ1 and length of
separation, l∗sep. Black circles: Tw = 165, 300, 800, 2770 K; blue crosses: r = 15, 100, 500, 1000 µm; red
diamonds: α = 25◦, 30◦, 35◦ (r = 15 µm); green triangles: α = 25◦, 30◦, 35◦ (r = 1000 µm). Here l∗sep is
normalised by the characteristic length (Le = 20 mm).

the different effects and it is consistent with these observations. Here, the wall temperature
and bluntness effects showed a nonlinear drop in τ2/τ1 with an increase in l∗sep, and the
smallest bluntness case showed a linear drop with varying incidence. The largest bluntness
case showed a similar linear decrease in τ2/τ1 with l∗sep, but we note that l∗sep experiences
a reversal of direction for τ2/τ1 ≈ 1.

7. Conclusions

This paper presents a numerical investigation on the effects of small to large bluntness
as well as incidence on leading-edge separation in a laminar hypersonic flow. It has
been found that both bluntness of the leading edge and incidence profoundly influence
flow separation characteristics, both its size and internal bubble structure. Although
leading-edge bluntness and incidence effects on flat plates have been addressed in the past,
notably by Cheng et al. (1961), Kemp (1968) and Stollery (1970) and bluntness effects on
separation at zero incidence by Holden (1971), the present paper has studied many features
of moderate to large nose bluntness and incidence in a hypersonic flow with large separated
regions not studied before.

A simplified bluntness and incidence parameter, which is only a function of the
Reynolds number based on nose thickness and Mach numbers is suggested. The
significance of this parameter is in that it does not rely on the strong shock and plane blast
wave analogy. This parameter has also been applied to large separated flows at various
angles of incidence and nose radii by comparing the plateau pressures.

Our investigation showed several interesting flow features of hypersonic flows with
large separated regions when bluntness is large and the incidence is varied. It was noted
that in this particular case the flow was quite unsteady with vigorous movement of the
fragmented secondary vortices embedded within the main separation bubble, while the
size of separation remained unchanged. It was also noted that these fragmented vortices
emanated shocklets in the shear layer and with the increase in incidence both the secondary
vortices and strength of the compression waves weakened. And perhaps for the first time,
the significance of shear stress minima in describing large separation flows is highlighted.
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