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Abstract
This paper presents a novel estimation method for coarse alignment of a marine strapdown inertial navigation system
(SINS) under mooring conditions. The properties of gravitational motion are used to improve the accuracy of coarse
alignment. The parametric motion of gravitational apparent is a circle that is on the surface of a sphere. The location
of this parametric circle is dependent on the definition of the reference frames and the initial angles of SINS. In
the method proposed here the initial direct cosine matrix is calculated only from the location of the gravity motion
parametric circle. The novelty of this paper is to provide a new method for estimating the gravity motion trajectory
in inertial frame, as well as direct extraction of the initial direct cosine matrix from this estimated trajectory.
Simulation and testing show that the proposed method is suitable for coarse alignment in mooring conditions.

1. Introduction

Alignment is the process whereby the orientation of the axes of a strapdown inertial navigation system
(SINS) is determined with respect to the reference axis system (Titterton and Weston, 2004). Initial
alignment of SINS at sea is one of the difficult issues of navigation (Titterton and Weston, 2004).
In conventional methods, angular velocity and gravity vector information are used to calculate initial
conditions. When a ship is moored, due to the movement of waves, the output of the gyroscopes becomes
disturbed, thereby making it difficult to derive the angular velocity of the Earth. Therefore, the usual
methods for situations where there are high external disturbances are not suitable. In these conditions,
the use of gravity information in the inertial frame improves the time and accuracy. In general, initial
alignment algorithms for SINS at sea consist of two main parts: coarse and fine alignment algorithms
(Gu et al., 2008). In the case of initial alignment at sea, due to the nonlinear equations and the large
initial heading error, a coarse alignment prior to a fine alignment is usually used to apply the equation
linearisation methods to the precise initial alignment process (Sun and Sun, 2010). The aim is to reduce
the initial input error to the precise process. The allowed range of an initial heading error existing in a
precise linearised algorithm is usually considered to be a few degrees (Gu et al., 2008). In the initial
alignment process of navigation systems in the case of using nonlinear equations without linearisation,
the coarse alignment process can be neglected. Of course, the lower the initial heading error existing in
the fine alignment process, the less time it takes to obtain the desired heading precision. In the literature
there are generally two methods for calculating the matrix of initial conditions: the dual vector method
and Wahba’s least squares estimation method (Zhao et al., 2016). In the dual vector method, the velocity
vector pairs in the physical frame and the integral of gravitational acceleration in the inertial frame are
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used and the calculations are performed algebraically. In Wahba’s method, the least squares estimation
is used to calculate the initial alignment quaternions with the minimum variance in the adaptation of the
velocity vector of the physical frame and the integral of gravitational acceleration in the inertial frame.
With these two methods, different filters are commonly used to smooth and eliminate disturbances.
The coarse initial alignment approach is mainly based on the measurement of gravitational acceleration
changes to estimate the heading angle. Extensive discussions on the idea of alignment have been based
on the observation of the gravitational apparent motion. The initial alignment method with vector
operations is based on the geometric relationship between motion vectors at different moments. In this
method, the direct cosine matrix between the inertial and the navigation coordinates is obtained through
vector operations. The direct cosine matrix between the body and the navigation coordinates is then
determined. In this method too, the accuracy of the initial alignment is affected by the measurement
noise. The amplitude of the noise increases as the vectors are subtracted. In the literature, the low-pass
filter was used for the measured data and good results were obtained. However, finding low-pass filters
for all environments with synthetic noise is a difficult task.

In Sun and Sun (2010) the initial alignment for the SINS uses pure gravity displacement in the
inertial coordinates. In this structure, the output gyroscope is first used to trace the body coordinates.
Then the measurement of the accelerometer is imaged in inertial coordinates to determine the direction
of the apparent gravity motion. Based on vector calculations on this route, the direct cosine matrix
between the inertial and navigation coordinates is calculated. In order to correctly identify the pure
gravity motion from the measurement of the accelerometers involving random noise, in addition to
avoiding collinear vectors in vector operations, a reconstruction algorithm for identifying parameters
and extracting the pure gravity is designed and simulated (Tan et al., 2015).

This paper proposes a new solution for the initial alignment of SINS at sea. In this method, the
apparent motion of gravity is used in the inertial frame, and circular fitting is used to find the direct
cosine matrix between the navigation and the body frame. What distinguishes the proposed method
from other methods is that the calculations of the initial alignment are performed directly from the angle
between the circles related to the gravitational apparent motion. Typical methods use a data derivative
which has many problems, but the proposed method does not require the use of a data derivative.
The simulation and test results show that the proposed alignment method can be used in mooring
conditions.

The remainder of this paper is structured as follows. In Section 2, reference coordinates frames are
defined. In Section 3, the principles of the proposed initial alignment are outlined. In Section 4, the
proposed circular fitting problem is fully examined. Section 5 describes how to extract the direct cosine
matrix from the fit circles. In Sections 6 and 7, the simulation and test results are analysed. Section 8
summarises and concludes.

2. Reference frame definitions

The reference frames used in this paper are as follows:

A. Body coordinate frame (b): The origin of this frame is centred on the centre of the vehicle. Its 𝑥𝑏 axis
points forward, and its 𝑧𝑏 axis points downward. The 𝑦𝑏 axis is determined by the right-hand rule.

B. Navigation coordinate frame (n): The origin of this frame is centred on the centre of the vehicle. Its
𝑥𝑛 axis points to the north. Its 𝑦𝑛 axis points east. The 𝑧𝑛 axis is pointing downward.

C. Inertial coordinate frame (i): The axes of this frame are defined orthogonally and with the
right-hand rule. This frame is fixed to the inertial space. The 𝑖𝑏0 coordinate frame is an inertial
frame that is defined at the first moment to match the body frame.

D. Earth coordinate frame (e): A rotating coordinate system with the Earth whose 𝑧𝑒 axis corresponds
to the axis of rotation of the Earth and whose 𝑥𝑒 and 𝑦𝑒 axes are on the plane of the Earth’s
equator.
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3. Principle of coarse alignment

Gravitational apparent motion is defined as the track of gravity at a fixed point rotating with the Earth
when the observation is processed in an inertial frame (Liu et al., 2014).

The direct cosine matrix, between body and navigation frame, can be described as follows:

𝐶𝑛
𝑏 = 𝐶𝑛

𝑒𝐶
𝑒
𝑖 𝐶

𝑖
𝑖𝑏0𝐶

𝑖𝑏0
𝑏 (1)

where 𝐶𝑖𝑏0
𝑏 is the direct cosine matrix between the body frame b and the inertial frame 𝑖𝑏0 and can be

achieved using the output of gyroscopes (the output of gyroscopes is the angular velocity of a body with
respect to inertia). Its initial value, according to the frame definition, is:

𝐶𝑖𝑏0
𝑏 (0) = 𝐼3×3 (2)

Also, 𝐶𝑛
𝑒 according to the frame definition is as follows:

𝐶𝑛
𝑒 =

⎡⎢⎢⎢⎢⎣
− sin 𝐿 0 cos 𝐿

0 1 0
− cos 𝐿 0 − sin 𝐿

⎤⎥⎥⎥⎥⎦
(3)

and 𝐶𝑒
𝑖 :

𝐶𝑒
𝑖 =

⎡⎢⎢⎢⎢⎣
cos𝜔𝑖𝑒𝑡 sin𝜔𝑖𝑒𝑡 0
− sin𝜔𝑖𝑒𝑡 cos𝜔𝑖𝑒𝑡 0

0 0 1

⎤⎥⎥⎥⎥⎦
(4)

where 𝜔𝑖𝑒 is the Earth’s rotational rate.
Because the i frame and the 𝑖𝑏0 frame are both inertial frames, the relationship between them is

unchanged with time. Thus, 𝐶𝑖
𝑖𝑏0 is a constant matrix. In order to find 𝐶𝑛

𝑏 matrix, only 𝐶𝑖
𝑖𝑏0 is unknown.

As the Earth moves from west to the east, the apparent of gravity anywhere on the Earth is a cone. In
this paper, we define a new vision of gravity motion. If we see the three-dimensional space of gravity
vector parametric change in an inertial frame: (1) with Equations (1–4) the parametric trajectory of
gravity vector is a circle; (2) because the magnitude of gravity in all frames is constant, this circle is on
the surface of a sphere; (3) the radius of the sphere is the magnitude of gravity g𝐷 and its centre is the
origin; (4) the radius of the circle is g𝐷 sin 𝐿 with L being the latitude; (5) the centre of the circle is on
the surface of another sphere with radius g𝐷 cos 𝐿; (6) in inertial space, a circle in 𝑖𝑏0 inertial frame is
rotated towards the circle in 𝑖 inertial frame.

With orientation of 𝑖𝑏0 frame parametric circle with respect to 𝑖 frame parametric circle in inertial
space, the direct cosine matrix between these two frames can be calculated.

The gravity vector in the inertial frame is:

g𝑖 = 𝐶𝑖
𝑛g𝑛, g𝑛 =

[
0 0 g𝐷

]𝑇 (5)

According to Equation (5), we can calculate the parametric motion of gravity in i frame with no need
for accelerometer data.

g𝑖 = 𝐶𝑖
𝑛

⎡⎢⎢⎢⎢⎣
0
0

g𝐷

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
−cos 𝐿 cos𝜔𝑖𝑒𝑡
−cos 𝐿 sin𝜔𝑖𝑒𝑡

−sin 𝐿

⎤⎥⎥⎥⎥⎦
g𝐷 (6)

and:

𝑓 𝑖𝑏0 = 𝐶𝑖𝑏0
𝑏 𝑓 𝑏 (7)
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where 𝑓 𝑏 is the output of accelerometers in the body frame. With Equation (6) and Figure 1 we have
the i frame parametric circle:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g𝑖𝑥 (𝑡) = −g𝐷 cos 𝐿 cos𝜔𝑖𝑒𝑡

g𝑖𝑦 (𝑡) = −g𝐷 cos 𝐿 sin𝜔𝑖𝑒𝑡

g𝑖𝑧 (𝑡) = −g𝐷 sin 𝐿

(8)

Because of the shape in 𝑖𝑏0 frame, and according to Figure 2 only rotated respect to circle of i frame,
this shape is a circle and with equation (6) we see that the rotation of g𝑖 is the linear combination of[
cos𝜔𝑖𝑒𝑡 sin𝜔𝑖𝑒𝑡 1

]
. As a result, the general equation of the 𝑖𝑏0 frame parametric circle is:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑓 𝑖𝑏0
𝑥 (𝑡) = 𝐴1 cos𝜔𝑖𝑒𝑡 + 𝐵1 sin𝜔𝑖𝑒𝑡 + 𝐶1

𝑓 𝑖𝑏0
𝑦 (𝑡) = 𝐴2 cos𝜔𝑖𝑒𝑡 + 𝐵2 sin𝜔𝑖𝑒𝑡 + 𝐶2

𝑓 𝑖𝑏0
𝑧 (𝑡) = 𝐴3 cos𝜔𝑖𝑒𝑡 + 𝐵3 sin𝜔𝑖𝑒𝑡 + 𝐶3

(9)

The purpose of the next section of this paper is to find the unknown parameters of Equation (9) and
then to directly calculate the direct cosine matrix between these two inertial frames.

4. Parametric circle fitting in space

In this section, we want to find 𝑓 𝑖𝑏0 parameters from measurement data. 𝑓 𝑖𝑏0 data are in a plane with
noise and perturbations. To find parametric circle estimation:

A. The plane containing the 𝑓 𝑖𝑏0 points is estimated.
B. The points are transferred to a vertical normal vector plane (finding a direct cosine matrix for this

transformation).
C. With nonlinear least square error method, parameters for nonlinear circle fitting are estimated.
D. Parametric circle equation is transferred to the original plane.

The novelty of this paper in estimating this parametric circle is the point-to-point transfer to the
parametric circle. This process has been done by adding an initial phase to the estimated circle in
Section 4.3.

4.1. Finding the plane containing the 𝑓 𝑖𝑏0 points

In general, 𝑓 𝑖𝑏0 points are on a plane. Suppose that the plane equation is as shown below:

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 1 (10)

With m points, to calculate the plane parameters:

[𝐴𝐵𝐶]
⎡⎢⎢⎢⎢⎢⎢⎣

𝑓 𝑖𝑏0
𝑥 (𝑡𝑖)
𝑓 𝑖𝑏0
𝑦 (𝑡𝑖)
𝑓 𝑖𝑏0
𝑧 (𝑡𝑖)

⎤⎥⎥⎥⎥⎥⎥⎦3×𝑚

= [1]1×𝑚 (11)

Parameters A, B and C are elements of the normal vector (𝑁) of the plane. Using the linear least
square error method, we can estimate the plane parameters.
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4.2. Transferring the plane

The normal vector of the estimated plane must be rotated, where only the third element has a nonzero
value. To transform the plane to a horizontal plane, we must find the transformation matrix that changes
the plane normal vector to a vertical vector. For this purpose, we use QR factorisation for the normal
vector. The QR factorization is a linear algebra operation that factors a matrix into an orthogonal
component, which is a basis for the row space of the matrix, and a triangular component. In this case,
vector 𝑅3×1 becomes an upper triangular matrix (only the first element of its three elements is nonzero)
and 𝑄3×3 matrix is an orthogonal transformation matrix.

𝑁3×1 = 𝑄3×3𝑅3×1 (12)

Now, by changing the column of matrix Q, we have matrix U, which transforms the plane normal
vector to a vertical vector.

𝑈 =

[
𝑄2 𝑄3 𝑄1
↓ ↓ ↓

]𝑇
,𝑈𝑁 = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 (13)

Since the normal vector becomes vertical by the U transformation matrix, if 𝑓 𝑖𝑏0 points multiply to
this matrix (U), the points plane transforms to a plane that is parallel to the 𝑥𝑒𝑦𝑒 plane.

4.3. Estimation of parametric circle equation

The parametric equation of the circle on the two-dimensional space is defined as follows:

𝑥 = 𝑥0 + 𝑟 cos(𝜔𝑡 + 𝜑0)
𝑦 = 𝑦0 + 𝑟 sin(𝜔𝑡 + 𝜑0) (14)

Since the points are estimated one by one in time, it is possible that the points have a rotation;
therefore, we placed the initial phase in Equation (14). The values of 𝑥0 and 𝑦0 are zero, and we know
the value of the radius, so in Equation (14) we only need to find the phase of the parametric circle.

By considering the constant gravitational vector, and according to Figure 3 the radius of the circle is
computed through the following equation.

𝑧0 = −g𝐷 sin 𝐿

𝑟 =
√

g𝐷
2 − 𝑧02 = |g𝐷 cos 𝐿 |

(15)

Then, we solve the nonlinear least square problem using the Gauss-Newton method (Nelles, 2002).
With the assumption:

𝑓 1𝑖 = 𝑥𝑖1 − 𝑥(𝜑0)
𝑓 2𝑖 = 𝑥𝑖2 − 𝑦(𝜑0) (16)

and

𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓 11
...
𝑓 1𝑚

𝑓 21
...
𝑓 2𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦2𝑚×1

(17)

The distance of 𝑑𝑖 from 𝑝𝑖 (𝑥𝑖1, 𝑥𝑖2) is:

𝑑2
𝑖 = [( 𝑓 1𝑖)2 + ( 𝑓 2𝑖)2] (18)
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Finally, 𝜑0 is obtained from minimising the following cost function:

𝑚∑
𝑖=1

𝑑2
𝑖 = 𝑚𝑖𝑛 (19)

The Jacobean matrix is constructed as:

𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕 𝑓 11

𝜕𝜑0

...

𝜕 𝑓 1𝑚

𝜕𝜑0

𝜕 𝑓 21

𝜕𝜑0

...

𝜕 𝑓 2𝑚

𝜕𝜑0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦2𝑚×1

(20)

Hence, using the Gauss-Newton method we have:

𝜑0𝑘 = 𝜑0𝑘−1 − ℎ(𝐽𝑇𝑘−1𝐽𝑘−1)−1𝐽𝑇𝑘−1 𝑓𝑘−1 (21)

In which h is step parameter, and using the recursive method we could compute 𝜑0. For the initial
value of 𝜑0 we can calculate the mean values of 𝑥𝑖 and 𝑦𝑖 for some seconds of time and the initial value
of 𝜑0 is obtained from the following equations:

𝑥𝑖𝑚 =

∑𝑚
𝑖=1 𝑥𝑖

𝑚
, 𝑦𝑖𝑚 =

∑𝑚
𝑖=1 𝑦𝑖

𝑚

𝜑00 = tan−1 (𝑦𝑖𝑚, 𝑥𝑖𝑚)
(22)

Because the Gauss-Newton optimisation method is a local method, there may be many global
solutions to the problem. When using a local optimisation method, the desired convergence occurs
if the initial values selected are appropriate. In this case, because the initial phase is approximately
approximate according to Equation (22), the local optimisation method provides a good answer and
there is no need for global optimisation methods.

If the number of the points used in the initial alignment is less than 5 min, the computed initial value
for 𝜑0 is sufficient and using the Gauss-Newton method does not improve the accuracy of the alignment.

Now, all the parameters in Equation (14) are determined. Using triangular equations, we have:

𝑥𝑖 = 𝑥0 + 𝑟 cos𝜔𝑖𝑒𝑡𝑖 cos 𝜑0 − 𝑟 sin𝜔𝑖𝑒𝑡𝑖 sin 𝜑0
𝑦𝑖 = 𝑦0 + 𝑟 sin𝜔𝑖𝑒𝑡𝑖 cos 𝜑0 + 𝑟 cos𝜔𝑖𝑒𝑡𝑖 sin 𝜑0

(23)

and parametric equations of the circle in the horizontal plane are obtained. This equation is transformed
to the main plane by using the inverse of the transformation matrix in Equation (13):

g𝑖𝑏0 = 𝑈𝑇

⎡⎢⎢⎢⎢⎣
𝑥0 + 𝑟 cos𝜔𝑖𝑒𝑡𝑖 cos 𝜑0 − 𝑟 sin𝜔𝑖𝑒𝑡𝑖 sin 𝜑0
𝑦0 + 𝑟 sin𝜔𝑖𝑒𝑡𝑖 cos 𝜑0 + 𝑟 cos𝜔𝑖𝑒𝑡𝑖 sin 𝜑0

𝑧0

⎤⎥⎥⎥⎥⎦
(24)

and the favourite parametric equations are obtained.
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5. Calculating the direct cosine matrix

We can rewrite the parametric g𝑖 equation as the following:

g𝑖 =
⎡⎢⎢⎢⎢⎣
−g𝐷 cos 𝐿 0 0

0 −g𝐷 cos 𝐿 0
0 0 −g𝐷 sin 𝐿

⎤⎥⎥⎥⎥⎦︸����������������������������������������︷︷����������������������������������������︸
𝐶g𝑖

⎡⎢⎢⎢⎢⎣
cos𝜔𝑖𝑒𝑡
sin𝜔𝑖𝑒𝑡

1

⎤⎥⎥⎥⎥⎦
(25)

Also the parametric equation of g𝑖𝑏0 is:

g𝑖𝑏0 = 𝑈𝑇

⎡⎢⎢⎢⎢⎣
𝑟 cos 𝜑0 −𝑟 sin 𝜑0 𝑥0
𝑟 sin 𝜑0 𝑟 cos 𝜑0 𝑦0

0 0 𝑧0

⎤⎥⎥⎥⎥⎦︸������������������������︷︷������������������������︸
𝐶g𝑖𝑏0

⎡⎢⎢⎢⎢⎣
cos𝜔𝑖𝑒𝑡
sin𝜔𝑖𝑒𝑡

1

⎤⎥⎥⎥⎥⎦
(26)

and we have:

g𝑖𝑏0 = 𝐶𝑖𝑏0
𝑖 g𝑖 (27)

By substitution we reach:

𝐶𝑔𝑖𝑏0

⎡⎢⎢⎢⎢⎣
cos𝜔𝑖𝑒𝑡
sin𝜔𝑖𝑒𝑡

1

⎤⎥⎥⎥⎥⎦
= 𝐶𝑖𝑏0

𝑖 𝐶𝑔𝑖

⎡⎢⎢⎢⎢⎣
cos𝜔𝑖𝑒𝑡
sin𝜔𝑖𝑒𝑡

1

⎤⎥⎥⎥⎥⎦
(28)

As a result:

𝐶g𝑖𝑏0 = 𝐶𝑖𝑏0
𝑖 𝐶g𝑖 (29)

Finally:

𝐶𝑖𝑏0
𝑖 = 𝐶g𝑖𝑏0 𝐶g𝑖

−1 (30)

and the unknown direct cosine matrix of section 3 is obtained. Now we have transferred the matrix from
the body to the navigation frame in the first instance from the following equation:

𝐶𝑛
𝑏 (0) = 𝐶𝑛

𝑖 (0) 𝐶𝑖
𝑖𝑏0 𝐶

𝑖𝑏0
𝑏 (0) (31)

and we have:
𝐶𝑖𝑏0
𝑏 (0) = 𝐼

𝐶𝑛
𝑖 (0) = 𝐶𝑛

𝑒 =

⎡⎢⎢⎢⎢⎣
− sin 𝐿 0 cos 𝐿

0 1 0
− cos 𝐿 0 − sin 𝐿

⎤⎥⎥⎥⎥⎦
(32)

As a result:

𝐶𝑛
𝑏 (0) =

⎡⎢⎢⎢⎢⎣
− sin 𝐿 0 cos 𝐿

0 1 0
− cos 𝐿 0 − sin 𝐿

⎤⎥⎥⎥⎥⎦
𝐶𝑖𝑏0𝑇
𝑖 (33)

By determining this matrix, the initial Euler angles are determined.
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Figure 1. Parametric motion of gravity in the inertial frame in different circles caused by different
initial Euler angles. The circles and their centres are on the surface of two spheres.

6. Simulation

In the case of initial alignment at sea using inertial sensors, the accuracy to be achieved depends on many
parameters. Among these parameters are the specifications of the inertial sensors used. For this research,
the important parameters are specified in Table 1 and it is assumed that the calibration compensations
are performed thoroughly on the sensors. This calibration compensation can be done using methods such
as those in Rahimi and Nikkhah (2020). Another parameter is the time required to achieve the desired
accuracy. As time goes on, accuracy usually approaches the accuracy of static environmental conditions.
Another important parameter is the amount of turbulence due to the environmental conditions of the sea.
Achieving the desired accuracy is an important issue in different sea conditions. In the initial alignment
based on the specifications of the sensors, the achievable accuracy based on the latitude is determined
by Equation (34) (Titterton and Weston, 2004).

Δ𝜓 =
𝑏𝑔𝑦𝑟𝑜

𝜔𝑖𝑒
𝑆𝑒𝑐𝐿 + 𝑏𝑎𝑐𝑐

g
tan 𝐿 (34)

where 𝑏𝑔𝑦𝑟𝑜 is the gyroscope bias, 𝑏𝑎𝑐𝑐 is the accelerometer bias, L is the test position latitude, 𝜔𝑖𝑒 is
the magnitude of the angular velocity of the Earth, g is the magnitude of the gravitational acceleration
at the test position, and Δ𝜓 is the initial alignment heading angle error.

Based on Equation (34) and also based on the accelerometer specifications mentioned in Table 1, for
different bias stability values of gyroscopes, accuracy can be achieved in the heading angle, as shown in
Figure 4. Also based on Equation (34) and based on the gyroscope specifications mentioned in Table 1,
for different bias values of accelerometers, accuracy can be achieved in the heading angle as shown in
Figure 5.

As shown in Figures 4 and 5, for 35 degrees latitude (test position) and for 0·01 degrees per h
gyroscope bias stability and 0·1 mg accelerometer bias (according to Table 1), the expected accuracy at
the heading angle is 0·05 degrees. To verify the proposed algorithm a simulation was conducted.

6.1. Sensor model

The model of inertial measurement unit (IMU) used in our simulation has parameters as shown in
Table 1. The IMU used in this test is based on the specifications of Table 1 and was constructed by the
electronics centre of K. N. Toosi University of Technology. It is shown in Figure 6.
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Figure 2. 𝑔𝑖 , 𝑓 𝑖𝑏0 and rotated 𝑓 𝑖𝑏0 circles in inertial frame. 𝑓 𝑖𝑏0 for 𝜓 = 30◦, 𝜑 = 7◦ and 𝜃 = 10◦
initial angle of SINS.

Figure 3. The radius of parametric motion of gravity circle in inertial frame.

6.2. Sea turbulence model

In order to simulate the designed algorithm, there is a need for a model of sea turbulence. Different
models have been suggested for this purpose in the literature. In this section, the models used in some
papers are presented and one of them is selected for use in this research. In Gu et al. (2008) it is assumed
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Table 1. Parameter values for IMU error model.

Parameter values for accelerometer error model
Fixed bias 100 𝜇g
Velocity random walk 0·05 m/s/

√
h

Scale factor error 50 ppm
Input axis misalignment 10 arc sec

Parameter values for gyroscope error model
Fixed drift 0·01 deg/hr
Angular random walk (ARW) 0·01 deg/

√
h

Scale factor error 20 ppm
Input axis misalignment 5 arc sec

Figure 4. The accuracy that can be achieved in the heading angle, for different bias stability of
gyroscopes.

that the ship is in an anchorage and the angles of its heading, pitch and roll are changed as follows:

𝜓 = 30◦ + 5◦ cos
(
2𝜋
7
𝑡 + 𝜋

3

)

𝜃 = 7◦ cos
(
2𝜋
5
𝑡 + 𝜋

4

)

𝜙 = 10◦ cos
(
2𝜋
6
𝑡 + 𝜋

7

)
(35)
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Figure 5. The accuracy that can be achieved in the heading angle, for different bias of accelerometers.

Figure 6. K. N. Toosi IMU FOG gyroscopes and Q-FLEX accelerometers (Rahimi et al., 2020), with
details in Table 1.

where 𝜓 is the heading angle, 𝜃 is the pitch angle and 𝜑 is the roll angle. Also, its velocity changes as
follows

𝑉𝐷𝑖
= 𝐴𝐷𝑖

+ 𝜔𝐷𝑖
cos(𝜔𝐷𝑖

𝑡 + 𝜑𝐷𝑖
) (36)

where 𝑖 = 𝑥,𝑦,𝑧, 𝐴𝐷𝑥
= 0·02𝑚, 𝐴𝐷𝑦

= 0·03𝑚, 𝐴𝐷𝑧
= 0·3𝑚, 𝜔𝐷𝑖

= 2𝜋/𝑇𝐷𝑖
, 𝑇𝐷𝑥

= 7𝑠, 𝑇𝐷𝑦
= 6𝑠,

𝑇𝐷𝑧
= 8𝑠 and 𝜑𝐷𝑖

is considered a normal distribution in the interval
[
0 2𝜋

]
. Perturbation velocities due
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to high frequency vibrations are considered as follows:

𝑉𝐷𝐻𝑖
=

𝐴𝐷𝐻𝑖

2𝜋 𝑓𝐷𝐻𝑖

+ cos(2𝜋 𝑓𝐷𝐻𝑖
𝑡 + 𝜑𝐷𝐻𝑖

) (37)

where 𝑖 = 𝑥,𝑦,𝑧, 𝐴𝐷𝐻𝑥
= 4·2g, 𝐴𝐷𝐻𝑦

= 3·8g, 𝐴𝐷𝐻𝑧
= 4·0g, 𝑓𝐷𝐻𝑥

= 300𝐻𝑧, 𝑓𝐷𝐻𝑦
= 250𝐻𝑧,

𝑓𝐷𝐻𝑧
= 400𝐻𝑧 and 𝜑𝐷𝐻𝑖

is considered a normal distribution in the interval
[
0 2𝜋

]
.

In Sun and Sun (2010) it is assumed that the ship is at anchor and the angles of its heading, pitch and
roll are changed as follows:

𝜓 = 10◦ cos
(
2𝜋
6
𝑡

)

𝜃 = 6◦ cos
(
2𝜋
8
𝑡

)

𝜙 = 12◦ cos
(
2𝜋
10
𝑡

) (38)

where 𝜓 is the heading angle, 𝜃 is the pitch angle and 𝜑 is the roll angle. Also, its velocity changes as
follows:

𝑉𝑖 = 𝐴𝑖 + 2𝜋
𝑇𝑖

cos
(
2𝜋
𝑇𝑖
𝑡 + 𝜑𝑖

)
(39)

where 𝑖 = 𝑥,𝑦,𝑧means the north, east and down in the navigational frame, and 𝐴𝑥 = 0·02𝑚, 𝐴𝑦 = 0·02𝑚,
𝐴𝑧 = 0·35𝑚, 𝑇𝑥 = 7 𝑠, 𝑇𝑦 = 6 𝑠, 𝑇𝑧 = 8 𝑠, and 𝜑𝑖 is a normal distribution in the interval

[
0 2𝜋

]
.

Gao et al. (2011) also provide a model that is almost the same as that of Sun and Sun (2010). In
Chang et al. (2013), only the attitude model is pointed out. Because of the validity and completeness of
the simulation in Gu et al. (2008), their model is used in this paper for simulations.

6.3. Wahba’s method

To compare the proposed method with the conventional least square method, Wahba’s method is used in
this section. Grace Wahba proposed the Wahba issue in 1965 (Wahba, 1965). This problem, a weighted
least square, is used to calculate the initial quaternion in the alignment of navigation systems, and is as
follows:

Consider a set of m points:

{𝑣1, 𝑣2, . . . , 𝑣𝑚} 𝑎𝑛𝑑 {𝑤1, 𝑤2, . . . , 𝑤𝑚} 𝑚 ≥ 2 (40)

where 𝑣𝑖 points are in the first frame and 𝑤𝑖 points are in the second frame. We want to find a conversion
matrix from first frame to second frame through the least square method. Find the conversion matrix R
such that it minimises the following weighted error function:

𝑒𝑟𝑟2 =
1
2

𝑚∑
𝑖=1

𝑎𝑖 | |𝑅𝑣𝑖 − 𝑤𝑖 | |2 (41)

where 𝑎𝑖 is a non-negative weight, 𝑣𝑖 and 𝑤𝑖 are vectors. For our problem, the two categories of vectors
are the acceleration of the body frame and the acceleration vector in the navigation frame. Weights can
be considered as unit.

There are many ways to solve this problem of least squares weighted error. The Q-Davenport method
is one of the best ways to solve this problem. This method is computationally stable and does not create
a singularity. This method uses quaternion to determine the attitude (Markley and Mortari, 1999).

https://doi.org/10.1017/S0373463321000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463321000151


586 Hossein Rahimi and Amir Ali Nikkhah

Figure 7. Trend of convergence of phase angle error for static testing.

By sorting the Wahba error function quadratically, the situation becomes such that the error function
becomes as follows:

𝑒𝑟𝑟2(𝑞) = 𝑞𝑇𝐾𝑞 (42)

where in:

𝐾 =

[
𝜎 𝑧𝑇

𝑧 𝐵 + 𝐵𝑇 − 𝜎𝐼
]

(43)

𝑧 =
𝑚∑
𝑖=1

𝑣𝑖 × 𝑤𝑖 (44)

𝐵 =
𝑚∑
𝑖=1

𝑣𝑖𝑤𝑖
𝑇 (45)

𝜎 = 𝑡𝑟𝑎𝑐𝑒(𝐵) (46)

The quaternion that minimises this weight function is the eigenvector resulting from the largest
positive eigenvalue of the matrix K.

6.4. Static simulation

To understand the results of the proposed algorithm, in the first step we assume that the conditions are
static and we have only the IMU sensor errors. Data update rate is 100 Hz and we use 200 s data for
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Figure 8. Initial angles error of the proposed coarse alignment for 100 simulation runs in static
conditions.

100 simulation runs. Given that the proposed algorithm uses the Gauss-Newton nonlinear estimation
method to find the phase angle of rotation, the convergence trend of phase angle error for static test
is shown in Figure 7. As can be seen from Figure 7, full convergence has occurred after 20 epochs.
Figure 8 shows the result of initial angle error for 100 simulation runs.

Figure 9 shows the result of initial angle error for 100 simulation runs in static condition with Wahba’s
method.

The proposed algorithm error statistics are listed in Table 2. The Wahba’s method error statistics are
listed in Table 3. The simulation results of the proposed method in static conditions are not improved
compared with Wahba’s method. In addition, the proposed method does not improve on the usual
methods of static conditions.

6.5. Mooring simulation

In the simulation, it is assumed that the ship is in moored condition, and we have the IMU sensor errors.
Data update rate is 100 Hz and we use 200 s data for 100 simulation runs. Given that the proposed
algorithm uses the Gauss-Newton nonlinear estimation method to find the phase angle of rotation, the
convergence trend of phase angle error for mooring testing is shown in Figure 10.

As can be seen from Figure 10, full convergence has occurred after 20 epochs. Figure 11 shows the
results of the initial angle error for 100 mooring simulation runs. Figure 12 shows the results of initial
angle error for 100 simulation runs in mooring condition with Wahba’s method. Mooring simulation
error statistics are listed in Table 4. Mooring simulation error statistics with Wahba’s method are listed
in Table 5.

In the simulation of the moored state, the proposed method has a few improvements compared with
Wahba’s method.
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Figure 9. Initial angles error of Wahba’s method alignment for 100 simulation runs in static conditions.

Table 2. Statistics for proposed algorithm static simulation results.

Error

Angle Mean (degree) STD (degree) Max (degree) Min (degree)

Roll −0·049 0·0621 0·1022 −0·170
Pitch 0·0144 0·0689 0·1928 −0·117
Heading 0·0243 0·0428 0·1532 −0·093

Table 3. Statistics for Wahba’s method static simulation results.

Error

Angle Mean (degree) STD (degree) Max (degree) Min (degree)

Roll −0·058 0·0516 0·0480 −0·177
Pitch 0·0284 0·0582 0·1576 −0·099
Heading 0·0075 0·0589 0·1135 −0·114

7. Mooring experiment

To verify the coarse alignment algorithm, practical experiments were conducted. The IMU with Table 1
parameters is used for this purpose. In order to validate the proposed algorithm, a test is performed with
the turntable. We run the turntable 15 times for the simulation of mooring conditions. Data update rate
is 100 Hz and we use 200 s data. The roll, pitch and heading errors of the initial alignments are shown
in Figure 13.
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Figure 10. Trend of convergence of phase angle error for mooring test.

Figure 11. Initial angles error of the proposed coarse alignment for 100 simulation runs in mooring
conditions.
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Figure 12. Initial angles error of Wahba’s method alignment for 100 simulation runs in mooring
conditions.

Table 4. Statistics for mooring simulation results.

Error

Angle Mean (degree) STD (degree) Max (degree) Min (degree)

Roll 0·1072 0·0652 0·2796 −0·040
Pitch 0·1613 0·0447 0·2784 0·0467
Heading 0·2309 0·0666 0·4059 0·0832

Table 5. Statistics for Wahba’s method mooring simulation results.

Error

Angle Mean (degree) STD (degree) Max (degree) Min (degree)

Roll 0·1331 0·1143 0·3760 −0·135
Pitch −0·199 0·0650 −0·033 −0·352
Heading 0·2639 0·1076 0·516 −0·019
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Figure 13. Initial angles error of the proposed coarse alignment for 15 test runs in mooring conditions.

Figure 14. Initial angles error of Wahba’s coarse alignment for 15 test runs in mooring conditions.
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Table 6. Statistics for proposed algorithm mooring results.

Error

Angle Mean (degree) STD (degree) Max (degree) Min (degree)

Roll −1·451 0·184 −1·043 −1·719
Pitch −0·968 0·0903 −0·777 −1·141
Heading 1·1881 0·3407 1·7242 0·4418

Table 7. Statistics for Wahba’s method mooring results.

Error

Angle Mean (degree) STD (degree) Max (degree) Min (degree)

Roll 1·4746 0·6372 2·7884 0·6640
Pitch −1·245 0·5133 −0·408 −1·958
Heading 1·334 0·7142 2·7955 0·5052

Figure 14 shows the result of initial angle error for 15 runs in mooring condition with Wahba’s
method.

In this section, a two-axis turntable has been used. IMU is installed on this turntable. Before moving
the turntable, the initial values of the angles are specified. Further, the mooring movements of the sea
are performed on the turntable. At the end of the time, the initial values of the angles extracted from the
algorithm are compared with the initial angles of the table and the errors are extracted. The error statistics
are listed in Table 6. Mooring condition error statistics with Wahba’s method are listed in Table 7.

From Figure 13 and Table 6, it is clear that the attitude and heading errors of the initial coarse
alignment are less than 1·8 degrees and hence fulfil the requirement for the initial coarse alignment of
navigation systems. The reason for the worse results from tests compared with simulations is probably
the IMU calibration errors, as well as the nonlinear parameters of the IMU.

In the simulation of mooring conditions with the two-axis turntable, the proposed method has a few
improvements relative to Wahba’s method.

In the proposed initial alignment process, these three parameters should always be considered:

A. Environmental conditions
B. The degree of accuracy
C. The time of initial alignment.

A change in any one of the above parameters usually causes a change in the others. For example,
increasing the initial alignment time reduces the effects of environmental conditions, and as a result, the
accuracy of the proposed algorithm increases and approaches the expected accuracy according to the
sensor specifications. In addition, if the environmental conditions change, in order to keep the accuracy
constant, it is necessary to change the time of the initial alignment.

Because the proposed algorithm is coarse and the accuracy is sufficient up to a few degrees, a fixed
time of 5 min is considered and as a result, the accuracy of the algorithm results changes according to
different sea conditions. It is clear that in the test environmental conditions, accuracy increases with
increasing initial alignment time. However, with more increase of time, the accuracy depends only on
the specifications of the sensors used, and with increasing time, there is not much increase in accuracy.
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8. Conclusions

When a ship is moored, the method of static ground coarse alignment cannot be used in the marine
SINS. Therefore, the initial alignment with the classic method leads to an inaccurate calculation of the
initial attitude angles. This paper proposes a new approach for marine SINS coarse alignment. Using
the parametric motion of the gravity vector properties in the inertial frame with the circular path of
the motion and characteristics like radius and centre of the parametric circle, the initial direct cosine
matrix was estimated using the nonlinear least square error method with suitable accuracy. Since the
variation of gravity is disregarded in the proposed method, the sensor noise does not have an effect
on the accuracy, and the results of the attitude and heading computation are improved. The results of
the simulation and mooring experiments indicate that the novel proposed method is effective for coarse
alignment in mooring conditions.
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