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Lorena López-Hernanz and Rudy Rosas

Compositio Math. 156 (2020), 869–880.

doi:10.1112/S0010437X20007071

https://doi.org/10.1112/S0010437X20007071 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007071
https://doi.org/10.1112/S0010437X20007071


Compositio Math. 156 (2020) 869–880

doi:10.1112/S0010437X20007071

Characteristic directions of two-dimensional
biholomorphisms
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Abstract

We prove that for each characteristic direction [v] of a tangent to the identity
diffeomorphism of order k + 1 in (C2, 0) there exist either an analytic curve of fixed
points tangent to [v] or k parabolic manifolds where all the orbits are tangent to [v],
and that at least one of these parabolic manifolds is or contains a parabolic curve.

1. Introduction

Let F ∈ Diff(C2, 0) be a tangent to the identity diffeomorphism of order k + 1,

F (z) = z + Fk+1(z) + Fk+2(z) + · · · ,

where Fj(z) is a two-dimensional vector of homogeneous polynomials of degree j and Fk+1(z) 6= 0.
A characteristic direction of F is an element [v] ∈ P1

C such that Fk+1(v) = λv for some λ ∈ C; it
is called degenerate if λ = 0, and non-degenerate otherwise. Characteristic directions are those
complex directions along which some stable dynamics of F can exist.

◦ If there exists an irreducible analytic curve pointwise fixed by F , then its tangent line
at 0 ∈ C2 is a characteristic direction of F . More generally, assume that there exists an
irreducible analytic curve C invariant by F in the sense of germs; that is, C and F (C) define
the same germ at 0 ∈ C2. Then the tangent line of C at 0 ∈ C2 is also a characteristic
direction of F .

◦ If an orbit {Fn(p)} of F is tangent to some complex direction [v] at 0 ∈ C2, then [v] is a
characteristic direction of F (see [Hak98, Proposition 2.3]).

The following natural question arises: does every characteristic direction [v] of F have some stable
dynamics associated to it? This question has been addressed by several authors. Écalle [Eca85]
and Hakim [Hak98] gave a positive answer in the case where [v] is non-degenerate, showing that
there exist at least k parabolic curves tangent to [v]. In the case where [v] is degenerate, there
are partial answers by Molino [Mol09], Vivas [Viv12] and López et al. [LS18, LRRS19], among
others, which guarantee, under some additional hypotheses, the existence of parabolic curves
tangent to [v] or of parabolic domains along [v]. In the particular case where F has an isolated
fixed point at the origin, even if all of its characteristic directions are degenerate, Abate proved
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in [Aba01] (see also [BCL08]) that one of the characteristic directions of F supports at least k
parabolic curves.

In this paper we give a complete positive answer to the question above. Our result is the
following theorem.

Theorem 1. Let F ∈ Diff(C2, 0) be a tangent to the identity diffeomorphism of order k+1, and
let [v] be a characteristic direction of F . Then at least one of the following possibilities holds.

(1) There exists an analytic curve pointwise fixed by F and tangent to [v].

(2) There exist at least k invariant sets Ω1, . . . ,Ωk, where each Ωi is either a parabolic curve
tangent to [v] or a parabolic domain along [v] and such that all the orbits in Ω1∪· · ·∪Ωk are
mutually asymptotic. Moreover, at least one of the invariant sets Ωj is a parabolic curve.

(3) There exist at least k parabolic domains Ω1, . . . ,Ωk along [v], where each Ωi is foliated by
parabolic curves and such that all the orbits in Ω1 ∪ · · · ∪ Ωk are mutually asymptotic.

In particular, if F has an isolated fixed point then for any characteristic direction [v] there is a
parabolic curve tangent to [v].

In [ABDPR16], Astorg et al. provide examples of polynomial diffeomorphisms in C2 of the
form

P (x, y) =

(
x+

π2

4
y + x2 +O(x3), y − y2 +O(y3)

)
having a wandering Fatou component, and wonder whether these diffeomorphisms have any
parabolic curves other than the one contained in (y = 0); applying Theorem 1, we will show in
Example 4.6 that they do. As another consequence of our results, we will obtain in Corollary 4.5
a generalization of a result by Molino [Mol09].

In the final section we will analyze the particular case of characteristic directions with non-
vanishing index, giving a positive answer to a conjecture by Abate in [Aba15].

2. Formal vector fields

In this section we recall some classical results on the resolution of formal vector fields and the
existence of separatrices (see, for instance, [CS87] or [CCD13]). Consider a formal vector field in
(C2, 0),

X = A(x, y)
∂

∂x
+B(x, y)

∂

∂y
,

where A,B ∈ C[[x, y]]. We say that X is non-singular if A or B is a unit, otherwise we say that
X is singular. If A and B have no common factor, we say that X is saturated. Any vector field
X can be written, in a unique way up to multiplication by a unit, as

X = fX̄,

where f ∈ C[[x, y]] and X̄ is a saturated vector field. The formal curve (f) is the singular locus
of X and the vector field X̄ is the saturation of X. We say that X is strictly singular if its
saturation is singular.

An irreducible formal curve S = (g) is a separatrix of X if X(g) ∈ S. A separatrix of X is
called strict if it is also a separatrix of the saturation of X; otherwise, it is called non-strict. Any
component of the singular locus of X is a separatrix of X; these separatrices are called fixed.
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Clearly, a non-strict separatrix is necessarily fixed. If X is non-singular at the origin, then the

formal integral curve through the origin is the only separatrix of X.

Assume that X is singular, let π : (M,D) → (C2, 0) be the blow-up at the origin and, for any

q ∈ D = π−1(0), denote by Xq the transform of X by π at q, that is, the unique formal vector

field Xq in (M, q) such that dπ · Xq = X. Write A(x, y) = Ak+1(x, y) + Ak+2(x, y) + · · · and

B(x, y) = Bk+1(x, y) + Bk+2(x, y) + · · · as sums of homogeneous polynomials, where (Ak+1,

Bk+1) 6= 0, and put

PX(x, y) = xBk+1(x, y)− yAk+1(x, y).

Note that if q ∈ D is a point where the transform of X is strictly singular, then q corresponds to

a zero of PX , and that the tangent line of a separatrix of X is also a zero of PX . If PX ≡ 0, we say

that X is dicritical, otherwise it is non-dicritical. When X is dicritical, the exceptional divisor

D is a non-strict separatrix of Xq for all q ∈ D and X has infinitely many strict separatrices.

When X is non-dicritical, D is a strict separatrix of Xq for every point q ∈ D; moreover, each

zero of the polynomial PX either is the tangent line of a fixed separatrix of X or corresponds to

a point q ∈ D such that Xq is strictly singular.

Reduced vector fields

Consider a singular saturated formal vector field X in (C2, 0). We say that X is reduced if the

eigenvalues λ1, λ2 of its linear part satisfy λ1 6= 0 and λ2/λ1 6∈ Q>0; if λ2 6= 0 we say that X

is non-degenerate, otherwise X is called a saddle-node. Reduced vector fields have exactly two

formal separatrices, which are non-singular and transverse. Each of these separatrices is tangent

to an eigenspace of the linear part of X: it is called strong if it is tangent to an eigenspace of

a non-zero eigenvalue, otherwise it is called weak. Thus, a non-degenerate vector field has two

strong separatrices, whereas a saddle-node has a strong one and a weak one. If X is reduced,

π : (M,D) → (C2, 0) is the blow-up at the origin and q ∈ D corresponds to a separatrix S of

X, then the saturation of the transform of X at q is reduced: non-degenerate if S is a strong

separatrix and a saddle-node if S is a weak separatrix.

Resolution and Camacho–Sad theorem

Let X be a singular formal vector field in (C2, 0). By Seidenberg’s theorem [Sei68], there exists a

finite composition π : (M,E) → (C2, 0) of blow-ups at strictly singular points such that for any

point q ∈ E = π−1(0) the saturation of the transform of X at q is either non-singular or reduced.

Any map π as above is called a resolution of X; as may be expected, there exists a unique minimal

such π, which is called the minimal resolution of X. A strict separatrix S of X is called weak

if after a resolution of X the saturation X̄q of the transform of X at the point q corresponding

to S is reduced and the strict transform of S is a weak separatrix of X̄q; otherwise, it is called

strong. It is easy to see that this definition does not depend on the resolution. Note that in the

definition of strong separatrices, besides those whose strict transform is a strong separatrix of

a reduced saturation of a transform of X after resolution, we also include those whose strict

transform after resolution is the integral curve of a non-singular saturation of a transform of X;

it is easy to see that any of the separatrices of the latter type becomes a separatrix of the former

type after an additional blow-up. The Camacho–Sad theorem [CS82] guarantees the existence of

at least one strict separatrix of X, which moreover is strong.
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3. Diffeomorphisms

Let F ∈ Diff(C2, 0) be a tangent to the identity diffeomorphism of order k + 1, and write

F (z) = z + Fk+1(z) + Fk+2(z) + · · · ,

where Fj(z) is a vector of homogeneous polynomials of degree j and Fk+1(z) = (pk+1(z),
qk+1(z)) 6= 0. Clearly, the characteristic directions of F are the zeros of the polynomial
xqk+1(x, y) − ypk+1(x, y), writing z = (x, y). It is well known that there exists a unique formal
vector field X in (C2, 0) of order at least two such that F = expX, where

expX =

( ∞∑
n=0

Xn(x)

n!
,
∞∑
n=0

Xn(y)

n!

)
.

This vector field is called the infinitesimal generator of F and denoted by logF .
An irreducible formal curve S = (g) is a separatrix of F if g ◦ F ∈ S; it is fixed if there is

a convergent generator h ∈ S such that the set h = 0 is pointwise fixed by F . The following
properties relating the separatrices of F and logF are well known (see, for example, [Rib05] or
[BCL08]): a formal curve is a separatrix of F if and only if it is a separatrix of logF , and it is
a fixed separatrix of F if and only if it is a fixed separatrix of logF . In particular, the reduced
singular locus of logF is convergent and coincides with the set of fixed points of F . Moreover,
the order of logF is exactly k + 1, and its jet of order k + 1 is

pk+1(x, y)
∂

∂x
+ qk+1(x, y)

∂

∂y
.

Therefore, the polynomial xqk+1(x, y)−ypk+1(x, y), whose zeros are the characteristic directions
of F , coincides with the polynomial PlogF (x, y) defined in § 2.

Let π : (M,D) → (C2, 0) be the blow-up at the origin and let q ∈ D be a point corresponding
to a characteristic direction of F . There exists a unique diffeomorphism Fq ∈ Diff(M, q), called
the transform of F by π at q, such that π ◦Fq = F ◦π. This diffeomorphism Fq is tangent to the
identity, its order is greater than or equal to the order of F and its infinitesimal generator is
the transform of logF by π at q (see [BCL08]).

An orbit O of F has the property of iterated tangents if O converges to the origin and satisfies
the following property: if π1 : (M1, D1) → (C2, 0) is the blow-up at the origin, then π−11 (O)
converges to a point p1 ∈ D1; if π2 : (M2, D2) → (M1, p1) is the blow-up at p1, then π−12 (π−11 (O))
converges to a point p2 ∈ D2, and so on. The sequence {pn} is called the sequence of iterated
tangents of O. Two orbits O1 and O2 of F are mutually asymptotic if O1 and O2 have the
property of iterated tangents and their sequences of iterated tangents coincide. When an orbit
O has the property of iterated tangents and its sequence of iterated tangents coincides with the
sequence of infinitely near points of a formal curve S, we say that O is asymptotic to S; in this
case, S is necessarily a separatrix of F (see [LRRS19]).

Parabolic curves and parabolic domains
Let F ∈ Diff(C2, 0) be a tangent to the identity diffeomorphism. A parabolic curve (respectively,
a parabolic domain) of F is a simply connected complex manifold Ω ⊂ C2 of dimension one
(respectively, two) with 0 ∈ ∂Ω which is positively invariant by F and such that Fn

→ 0 as
n → 0 uniformly on compact subsets of Ω; if every positive orbit in Ω is tangent to a direction
[v] ∈ P1

C, we say that Ω is a parabolic curve tangent to [v] (respectively, a parabolic domain
along [v]).
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The following theorem, proved by López, Raissy, Ribón and Sanz in [LRRS19], relates the
existence of separatrices to the existence of parabolic curves.

Theorem 3.1 [LRRS19, Theorem 7.1]. Let F ∈ Diff(C2, 0) be a tangent to the identity
diffeomorphism of order k + 1 and let S be a separatrix of F . Then either S is fixed or there
exist at least k invariant sets Ω1, . . . ,Ωk, where each Ωi is either a parabolic curve or a parabolic
domain of F and such that every orbit in Ω1 ∪ · · · ∪ Ωk is asymptotic to S. Moreover, at least
one of the sets Ωj is a parabolic curve.

4. Proof of Theorem 1

Let F ∈ Diff(C2, 0) be tangent to the identity and let [v] be a characteristic direction of F . Let
π : (M,D) → (C2, 0) be the blow-up at 0 ∈ C2, and let q ∈ D be the point corresponding to [v].
Denote by X the infinitesimal generator of F and let Xq be the transform of X by π at q. If Xq

has a separatrix S different from D, then S defines a separatrix of X and Theorem 3.1 finishes
the proof. Otherwise, D is the only separatrix of Xq, and by the Camacho–Sad theorem it is a
strict separatrix of Xq, so X is non-dicritical. Hence, since [v] is a characteristic direction of F ,
either there is a fixed separatrix tangent to [v], and we are done, or Xq is strictly singular. Thus
Theorem 1 is an immediate consequence of the following result.

Theorem 4.1. Let F ∈ Diff(C2, 0) be tangent to the identity of order k + 1 and such that
logF is strictly singular. Assume that logF has exactly one strict separatrix S, which moreover
is non-singular. Then there exist at least k parabolic domains Ω1, . . . ,Ωk with the following
properties.

(1) For each j, there exists an injective holomorphic map φj : Ωj → C2 such that

φj ◦ F ◦ φ−1j (x, y) = (x+ 1, y).

(2) For all µ ∈ C and all j, the set φj(Ωj) ∩ {y = µ} is simply connected. Therefore, Ωj is
foliated by parabolic curves defined by the sets y = µ, for µ ∈ C.

(3) All the orbits in Ω1 ∪ · · · ∪ Ωk are mutually asymptotic. Moreover, after a finite number of
blow-ups they become asymptotic to the same component of the exceptional divisor.

The proof of Theorem 4.1 is based on Lemma 4.2 below. We say thatX contains a saddle-node
if for some resolution π of X there exists a point in the exceptional divisor at which the saturation
of the transform of X is a saddle-node; it is easy to see that this property does not depend on
the choice of the resolution.

Lemma 4.2. Let X be a singular saturated formal vector field in (C2, 0). If X has exactly one
separatrix S, which moreover is non-singular, then X contains a saddle-node.

In the case of an analytic vector field, Lemma 4.2 is a direct consequence of a result by
Camacho, Lins Neto and Sad in [CLS84, Theorem 2], and their proof also works in the formal
context. Alternatively, we can deduce the formal statement from the analytic one considering
an appropriate truncation of the vector field. In any case, we will provide an alternative proof
of the lemma by induction, and for technical reasons we will include the following result, which
also appears in [CLS84, Lemma 1, p. 162].
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Lemma 4.3. Let X be a saturated formal vector field in (C2, 0). Suppose that X has exactly
two separatrices S1 and S2, which moreover are non-singular and transverse. Then either X is
reduced or X contains a saddle-node.

Proof of Lemmas 4.2 and 4.3. Both lemmas are clearly true if X is reduced. Suppose that they
hold for vector fields whose minimal resolution is obtained with at most n > 0 blow-ups. Let
X be as in Lemma 4.2 and suppose that the minimal resolution of X is obtained after n + 1
blow-ups. Let π be the blow-up at the origin and let D be the exceptional divisor. Clearly X
is non-dicritical, otherwise X would have infinitely many separatrices. Let p be the point in D
corresponding to the tangent of S. Since the transform Xp of X at p has two strict separatrices,
it is strictly singular. Suppose first that the transform Xq is strictly singular for some other point
q ∈ D \ {p}. Note that D is the only separatrix of the saturation X̄q of Xq, otherwise X would
have a separatrix different from S. Therefore, by the inductive hypothesis Lemma 4.2 holds for
X̄q, so X̄q contains a saddle-node and therefore X contains a saddle-node. Assume then that p is
the only point in D such that Xp is strictly singular. Since S is non-singular, its strict transform
by π is transverse to D, so by the inductive hypothesis Lemma 4.3 holds for the saturation X̄p

of Xp. If X̄p contains a saddle-node, then X contains a saddle-node and we are done. We assume
then that X̄p is reduced. Take coordinates (x, t) at p such that π(x, t) = (x, tx). If

Ak+1(x, y)
∂

∂x
+Bk+1(x, y)

∂

∂y

is the first non-zero jet of X, then

X̄p = O(x)
∂

∂x
+ [PX(1, t) +O(x)]

∂

∂t
,

where PX(x, y) = xBk+1(x, y)− yAk+1(x, y). Since PX has order at least two and p is the only
point in D such that Xp is strictly singular, we have that PX(1, t) has order at least two at t = 0.
Then

X̄p = O(x)
∂

∂x
+ [O(t2) +O(x)]

∂

∂t

and its linear part is of the form

O(x)
∂

∂x
+O(x)

∂

∂t
.

Therefore, since X̄p is reduced, it is necessarily a saddle-node and we are done. Consider now
a vector field X as in Lemma 4.3 whose resolution is obtained after n + 1 blow-ups, and let
π : (M,D) → (C2, 0) be the blow-up at the origin. Clearly X is again non-dicritical, the strict
transforms of S1 and S2 are transverse to D at points p1 and p2, respectively, and the transforms
Xp1 and Xp2 of X are strictly singular. Suppose that the transform Xq is strictly singular at
some point q ∈ D \ {p1, p2}. Observe that D is the only separatrix of the saturation X̄q of Xq,
otherwise X would have a separatrix different from S1 and S2. Then, by the inductive hypothesis,
Lemma 4.2 holds for X̄q and therefore X̄q contains a saddle-node. Thus, we assume that p1 and
p2 are the only points in D such that Xp1 and Xp2 are strictly singular. Again by the inductive
hypothesis, Lemma 4.3 holds for their saturations X̄p1 and X̄p2 . If X̄p1 or X̄p2 is not reduced,
X contains a saddle-node. We assume then that X̄p1 and X̄p2 are reduced. If X̄p1 or X̄p2 is a
saddle-node, X contains a saddle-node. Otherwise, X̄p1 and X̄p2 are non-degenerate. In this case,
taking formal coordinates so that S1 and S2 are the coordinate axes, a simple computation on
the expression of Xp1 and Xp2 shows that the order of X is one and that X is reduced. 2
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Proof of Theorem 4.1. Write X = logF and let π : (M,E) → (C2, 0) be a resolution of X. By
Lemma 4.2, there exists a point q ∈ E = π−1(0) such that the saturation X̄q of the transform
Xq of X at q is a saddle-node. Observe that, since the order of X is k + 1 > 2, the components
of E at q are contained in the singular locus of Xq, each of them with multiplicity at least k.
Up to some additional blow-ups, we can assume that they are the only fixed separatrices of Xq.
Suppose that the weak separatrix Sw of X̄q is not contained in the exceptional divisor. Then Sw
defines a strict separatrix of X, which coincides with S since S is the only strict separatrix of X.
This is impossible, since by the Camacho–Sad theorem the only strict separatrix of X cannot
be a weak separatrix. Therefore Sw is contained in E and so it is contained in the singular
locus of Xq. Consider holomorphic coordinates (z, u) at q such that Sw = {z = 0}. Clearly, one
component of E is then given by {z = 0}; if q belongs to two components of E, we can assume
that the other one is given by {u = 0}. Then the vector field Xq can be written in the form

Xq = zrum
[
z(a+G(z, u))

∂

∂z
+ (bz +H(z, u))

∂

∂u

]
, (1)

where r > k > 1, m > 0, a 6= 0, b ∈ C and G,H ∈ C[[z, u]] satisfy ordG > 1, ordH > 2 and
H 6∈ zC[[z, u]]. Hence, the transform Fq of F at q, which is equal to expXq, has the form

Fq = (z + zr+1um[a+O(z, u)], u+ zrum[cup+1 +O(z, up+2)]),

with c 6= 0 and p > 1. Diffeomorphisms of this kind are studied by Vivas in [Viv12, p. 2032]; she
proves that, after a linear change of coordinates so that a = c = −1, there exists a domain Ω̃ of
the form

Ω̃ = {(z, u) ∈ C2 : |zrum − ε| < ε, |arg(zrum)| < η, |up − δ| < δ, |z| < |u|M},

for some ε, δ < 1/2 and η > 0 sufficiently small and some M > 2 sufficiently large, whose
connected components Ω̃1, . . . , Ω̃rp are parabolic domains of Fq, and which moreover satisfies the
following properties:

(1) for any j = 1, . . . , rp, there exists an injective holomorphic map ϕj : Ω̃j → C2 such that
ϕj ◦ Fq ◦ ϕ−1j (x, y) = (x+ 1, y);

(2) for any µ ∈ C and any j = 1, . . . , rp, the set ϕj(Ω̃j) ∩ {y = µ} is simply connected.

Clearly, the images by π of the sets Ω̃1, . . . , Ω̃rp are parabolic domains of F satisfying the first

two properties of Theorem 4.1. To prove the third, we will show that any orbit in Ω̃ is asymptotic
to z = 0. Consider a point (z, u) ∈ Ω̃, and denote its orbit by {(zn, un)}. Observe first that, since
|z| < |u|M and M > 2, we have

zr1u
m
1 = zrum[1− rzrum + zrumO(u, zu−1)]

= zrum − r(zrum)2 + (zrum)2O(u),

so, arguing as in the classical Leau–Fatou flower theorem [Lea97, Fat19], we obtain that {zrnumn }
converges tangentially to the direction R+. Consider an integer N ∈ N. We have that

|zn+1|
|un+1|N

=
|zn|
|un|N

|1− zrnumn + zrnu
m
n O(un, znu

−1
n )|

=
|zn|
|un|N

|1− zrnumn + zrnu
m
n O(un)|.
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Since Re(zrnu
m
n ) > 0, un → 0 and {zrnumn } converges to 0 with R+ as tangent direction, we can

assume that |zrnumn |, arg(zrnu
m
n ) and |un| are small enough so that the term |1−zrnumn +zrnu

m
n O(un)|

above is bounded by 1 for all n > n0 = n0(N). This shows that |zn| 6 C|un|N for all n > n0, with
C = |zn0 |/|un0 |N , so the orbit is asymptotic to z = 0. This ends the proof of Theorem 4.1. 2

Remark 4.4. It is worth noting that in case (2) of Theorem 1 all the orbits in Ω1 ∪ · · · ∪ Ωk

are asymptotic to a separatrix of F , whereas in case (3) (which corresponds to the situation of
Theorem 4.1) all the orbits in Ω1 ∪ · · · ∪ Ωk have the property of iterated tangents, but are not
asymptotic to any formal curve. Contrary to what we have in case (3), at the moment we cannot
guarantee that the parabolic domains appearing in case (2) are foliated by parabolic curves.

As a corollary of Theorems 3.1 and 4.1 we obtain the following result, which generalizes
Molino’s main theorem in [Mol09, Theorem 1.6]. Before stating it, we recall some definitions (see
[Mol09] or [Aba15]). Let E be a smooth connected Riemann surface in a complex surface M and
let F be a diffeomorphism defined in a neighborhood of E in M and fixing E pointwise. Given
a point p ∈ E, if we take holomorphic coordinates (x, y) such that E = {x = 0}, we can write
F (x, y) = (x + xnu(x, y), y + xnv(x, y)), where n ∈ N and the functions u and v are not both
divisible by x. We say that F is tangential if u is divisible by x; this definition does not depend
on p ∈ E or on the choice of coordinates at p. A point p ∈ E is singular for F if both functions
u and v vanish at p, and is a corner if the fixed point set of F has more than one branch at p.
Observe that if p is singular for F then the germ Fp of F at p is tangent to the identity and
its infinitesimal generator logFp is strictly singular. In this case, the fact of F being tangential
means that E is a strict separatrix of logFp.

Corollary 4.5. Let E be a smooth Riemann surface in a complex surface M , and let F be a
tangential germ of a diffeomorphism of M fixing E pointwise and whose order of contact with E
is k+ 1. Let p ∈ E be a singular point of F which is not a corner. Then there exists a parabolic
curve of F at p. More precisely, at least one of the following possibilities holds.

(1) There exist k invariant sets Ω1, . . . ,Ωk of F at p, where each Ωi is either a parabolic curve
or a parabolic domain and such that all the orbits in Ω1∪· · ·∪Ωk are mutually asymptotic.
Moreover, at least one of the invariant sets Ωj is a parabolic curve.

(2) There exist k parabolic domains Ω1, . . . ,Ωk of F at p, where each Ωi is foliated by parabolic
curves and such that all the orbits in Ω1 ∪ · · · ∪ Ωk are mutually asymptotic.

Proof. Let Fp be the germ of F at p, which is a tangent to the identity diffeomorphism of order
k+ 1. Since E is smooth, E defines a non-singular germ of a curve at p. The conditions of F and
p mean that logFp is strictly singular, that E is a strict separatrix of logFp and that there is
no other fixed separatrix of logFp. Therefore the result follows immediately from Theorem 3.1
if there is another strict separatrix of logFp and from Theorem 4.1 otherwise. 2

Example 4.6. In [ABDPR16], Astorg et al. show the existence of polynomial diffeomorphisms in
C2 possessing a wandering Fatou component. These diffeomorphisms have the form

P (x, y) =

(
x+

π2

4
y + x2 +O(x3), y − y2 +O(y3)

)
,

and the authors wonder in [ABDPR16, p. 275] if there are any parabolic curves apart from the
one contained in the separatrix S = (y = 0). If π is the blow-up at the origin and q ∈ π−1(0) is

876

https://doi.org/10.1112/S0010437X20007071 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007071


Characteristic directions of two-dimensional biholomorphisms

the point corresponding to the direction [1 : 0], which is the only invariant line of DP (0), the
transform of P by π at q has the form

Pq(x, t) =

(
x+ x2 +

π2

4
xt+O(x3), t− xt− π2

4
t2 +O(x2t, xt2, t3)

)
,

so it has three characteristic directions: [1 : 0], [0 : 1] and [−π2/4 : 1]. The first two are non-
degenerate and give rise to two parabolic curves: the first is contained in (t = 0), so it corresponds
to the parabolic curve contained in S after blow-down; and the second is contained in the
exceptional divisor π−1(0), so it disappears after blow-down. Since P has an isolated fixed point
at the origin, Pq has no curve of fixed points tangent to [−π2/4 : 1]. Then, by Theorem 1, there
is at least one parabolic curve of Pq tangent to that direction, which after blow-down defines a
parabolic curve of P not contained in S.

5. Characteristic directions with non-vanishing index

In this section we will focus on characteristic directions with non-vanishing index, which were
studied under an additional assumption by Molino in [Mol09]. We begin by recalling the definition
of the Camacho–Sad index of a vector field relative to a separatrix. Although the index can be
defined for an arbitrary separatrix (see, for example, [Bru97]) we will only be interested in the
case of non-singular ones. Consider a formal vector field X in (C2, 0) and let S be a non-singular
strict separatrix of X. In appropriate formal coordinates (x, y) we have that S = (y), so the
saturation X̄ of X can be written as

X̄ = A(x, y)
∂

∂x
+ yB(x, y)

∂

∂y
,

with A,B ∈ C[[x, y]]. The Camacho–Sad index of X relative to S is defined as

CS(X,S) = Res0

(
B(x, 0)

A(x, 0)

)
.

Let F ∈ Diff(C2, 0) be a tangent to the identity diffeomorphism. Let S be a non-singular
separatrix of F , and assume that it is a strict separatrix of logF . The residual index of F along
S, introduced by Abate in [Aba01], can be defined as

ι(F, S) = CS(logF, S).

We will prove the following result, which gives a positive answer to a conjecture by Abate in
[Aba15, Conjecture 3.9].

Theorem 5.1. Let F ∈ Diff(C2, 0) be a tangent to the identity diffeomorphism of order k + 1,
and let [v] be a characteristic direction of F . Let π be the blow-up at the origin, p ∈ D = π−1(0)
be the point corresponding to [v] and Fp be the transform of F at p. If logF is non-dicritical
and ι(Fp, D) 6= 0, then at least one of the following possibilities holds.

(1) There exists an analytic curve pointwise fixed by F and tangent to [v].

(2) There exist at least k parabolic curves tangent to [v] where all the orbits are asymptotic to
a strong separatrix of logF .

(3) There exist at least k parabolic domains along [v] which are foliated by parabolic curves
and where all the orbits are mutually asymptotic.
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In particular, if F has an isolated fixed point then there exist at least k parabolic curves tangent
to [v].

The proof of Theorem 5.1 is based on Lemma 5.2. Consider a singular formal vector field
X, and let π be a resolution of X. We say, following the terminology of [MS04], that X is a
second type vector field if none of the saddle-nodes appearing in the resolution π have their weak
separatrices contained in the exceptional divisor; it is easy to see that this definition does not
depend on the choice of the resolution.

Lemma 5.2. Let X be a second type formal vector field in (C2, 0).

(a) If X has exactly one strong separatrix S, which moreover is non-singular, then CS(X,S) = 0.

(b) If X has exactly two strong separatrices S1 and S2, which moreover are non-singular and
transverse, then CS(X,S1) CS(X,S2) = 1.

Before proving Lemma 5.2, we recall some of the properties of the Camacho–Sad index (see
[CS82]).

(1) If X is not strictly singular and S is the formal integral curve through 0 of the saturation
of X, then clearly CS(X,S) = 0.

(2) If π is the blow-up at the origin, S̃ is the strict transform of S, p = S̃ ∩ π−1(0) and Xp is
the transform of X at p, then

CS(Xp, S̃) = CS(X,S)− 1.

(3) If X is non-dicritical, π is the blow-up at the origin and D is the exceptional divisor, then∑
q∈D

CS(Xq, D) = −1,

where Xq is the transform of X at q.

(4) Suppose that the saturation X̄ of X is reduced, and let S1 and S2 be its separatrices.

– If X̄ is non-degenerate, then CS(X,S1) CS(X,S2) = 1.

– If X̄ is a saddle-node and S1 is the strong separatrix, then CS(X,S1) = 0.

Proof of Lemma 5.2. Observe first that any vector field satisfying the hypothesis of (a) or (b)
is non-dicritical, otherwise it would have infinitely many strong separatrices. By properties (1)
and (4) above, the lemma is true if the saturation of X is non-singular or reduced. Suppose that
it holds for vector fields whose minimal resolution is obtained with at most n > 0 blow-ups. Let
X be as in (a) and suppose that its minimal resolution is obtained after n + 1 blow-ups. Let π
be the blow-up at the origin and let D be the exceptional divisor. Let S̃ be the strict transform
of S and p = S̃ ∩D. Observe that D is a strict separatrix of the transform Xp of X at p, since X
is non-dicritical, and that it is a strong separatrix of Xp, since X is a second type vector field.
Let q ∈ D \{p} be any point such that the transform Xq of X at q is strictly singular. Since X is
non-dicritical, D is a strict separatrix of Xq. Moreover, none of the other separatrices of Xq are
strong, otherwise X would have a strong separatrix different from S. Then, by the Camacho–Sad
theorem, D is a strong separatrix of Xq. Therefore, by the inductive hypothesis, the lemma holds
for Xq, so CS(Xq, D) = 0. Then, by property (3) above we deduce that CS(Xp, D) = −1. Note
that D and the strict transform S̃ of S are the only strong separatrices of Xp, otherwise X would
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have a strong separatrix different from S. Then by the inductive hypothesis the lemma holds for
Xp, so we obtain that CS(Xp, S̃) = −1 and therefore CS(X,S) = 0, by property (2). Consider
now a vector field X as in (b) whose minimal resolution is obtained after n + 1 blow-ups, and
let π be the blow-up at the origin. Let p1 and p2 be the points in the exceptional divisor D
corresponding to the tangents of S1 and S2, respectively. Let q be any point in D \ {p1, p2}
such that the transform Xq of X at q is strictly singular. As in the previous case, D is a strict
separatrix of Xq and none of the other separatrices of Xq are strong, so D is a strong separatrix
of Xq. Then by the inductive hypothesis the lemma holds for Xq, and therefore CS(Xq, D) = 0.
By property (3), we obtain

CS(Xp1 , D) + CS(Xp2 , D) = −1,

where Xp1 and Xp2 are the transforms of X at p1 and p2. Observe that, since X is a second
type vector field, D is necessarily a strong separatrix of Xp1 and Xp2 . Then by the inductive
hypothesis the lemma holds for Xp1 and Xp2 , and therefore we have

CS(Xp1 , S̃1) CS(Xp1 , D) = CS(Xp2 , S̃2) CS(Xp2 , D) = 1,

where S̃1 and S̃2 are the strict transforms of S1 and S2, respectively. From the last two equations
we easily obtain, using property (2), that CS(X,S1) CS(X,S2) = 1. 2

Proof of Theorem 5.1. Denote Xp = logFp and let Π : (M,E) → (C2, 0) be a resolution of
Xp. Suppose first that Xp has a strong separatrix S different from D. If S is fixed, we are
done. Otherwise, up to an additional blow-up in the case where the transform of X at the
point corresponding to S is not strictly singular, there exists a point q belonging to exactly one
component of E such that the saturation of the transform Xq of Xp at q is reduced and its strong
separatrix, which is the strict transform of S, is transverse to E. Up to some additional blow-ups
so that E is the only fixed separatrix of Xq, there are some local coordinates (x, y) at q such
that E = {x = 0} and such that Xq is written as

Xq = xr
[
(λ1x+G(x, y))

∂

∂x
+ (λ2y +H(x, y))

∂

∂y

]
with r > k, λ1 6= 0, λ2 ∈ C and G,H ∈ C[[x, y]], with λ2/λ1 6∈ Q>0 and ordG, ordH > 2.
Then, [1, 0] is a non-degenerate characteristic direction of the transform Fq = expXq of Fp at q

and the existence of k parabolic curves follows from the Écalle–Hakim theorem [Eca85, Hak98].
Assume now that Xp has no strong separatrices different from D. Then, by the Camacho–Sad
theorem, D is a strong separatrix of Xp, so Xp cannot be a second type vector field, otherwise
CS(Xp, D) = ι(Fp, D) = 0 by Lemma 5.2. Therefore, there exists a point q ∈ E such that the
saturation of the transform Xq of Xp at q is a saddle-node whose weak separatrix is contained
in E, and, arguing exactly as in the proof of Theorem 4.1, we can find coordinates (z, u) at q
such that Xq is written as in (1) and the existence of k parabolic domains follows from Vivas’s
results in [Viv12]. 2
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LS18 L. López-Hernanz and F. Sanz Sánchez, Parabolic curves of diffeomorphisms asymptotic to
formal invariant curves, J. Reine Angew. Math. 739 (2018), 277–296.

MS04 J. F. Mattei and E. Salem, Modules formels locaux de feuilletages holomorphes, Preprint
(2004), arXiv:math/0402256.

Mol09 L. Molino, The dynamics of maps tangent to the identity and with nonvanishing index, Trans.
Amer. Math. Soc. 361 (2009), 1597–1623.

Rib05 J. Ribón, Families of diffeomorphisms without periodic curves, Michigan Math. J. 53 (2005),
243–256.

Sei68 A. Seidenberg, Reduction of the singularities of the differential equation Ady = Bdx, Amer.
J. Math. 90 (1968), 248–269.

Viv12 L. Vivas, Degenerate characteristic directions for maps tangent to the identity, Indiana Univ.
Math. J. 61 (2012), 2019–2040.
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