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Abstract

Let q ≥ 2 be an integer, {Xn}n≥1 a stochastic process with state space {0, . . . , q − 1}, and
F the cumulative distribution function (CDF) of

∑∞
n=1 Xnq−n. We show that stationarity

of {Xn}n≥1 is equivalent to a functional equation obeyed by F, and use this to charac-
terize the characteristic function of X and the structure of F in terms of its Lebesgue
decomposition. More precisely, while the absolutely continuous component of F can
only be the uniform distribution on the unit interval, its discrete component can only be
a countable convex combination of certain explicitly computable CDFs for probability
distributions with finite support. We also show that dF is a Rajchman measure if and
only if F is the uniform CDF on [0, 1].

Keywords: Functional equation; Lebesgue decomposition; Minkowski’s question-mark
function; mixture distribution; Rajchman measure; singular function
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1. Introduction

Consider a random variable X on the unit interval [0, 1] which is given by the base-q
expansion

X := (0.X1X2 . . . )q :=
∞∑

n=1

Xnq−n, (1.1)

where q ∈N (the set of natural numbers), and where the digits {Xn}n≥1 form a stochastic pro-
cess with values in {0, . . . , q − 1}. The case where the Xn are independent and identically
distributed (i.i.d.) has been much studied in the literature (see Sections 1.1 and 1.3). The present
paper deals with the more general case where {Xn}n≥1 is stationary, i.e. when {Xn}n≥1 and
{Xn}n≥2 are identically distributed – for short we refer to this setting as stationarity. As we will
see, under stationarity there is almost surely a one-to-one correspondence between {Xn}n≥1

Received 29 March 2021; revision received 10 January 2022.
∗ Postal address: Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
∗∗ Postal address: Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

931

https://doi.org/10.1017/jpr.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.6
https://orcid.org/0000-0003-2700-8785
https://orcid.org/0000-0002-0008-6890
https://orcid.org/0000-0002-8786-9977
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2022.6&domain=pdf
https://doi.org/10.1017/jpr.2022.6


932 H. D. CORNEAN ET AL.

and X, and we will study various properties of the cumulative distribution function (CDF) of X
given by

F(x) := P(X ≤ x), x ∈R, (1.2)

and its associated probability measure dF.

1.1. Background

Assuming the Xn are i.i.d., the stochastic process {Xn}n≥1 is a so-called Bernoulli scheme.
Then, in the dyadic case q = 2, ignoring the trivial case with P(X1 = 0) = 1 or P(X1 = 1) = 1,
only two different things can happen: if the digits 0 and 1 are equally likely, then F is the
uniform CDF (on [0, 1]); otherwise, F is singular (i.e. F is non-constant and differentiable
almost everywhere with F′(x) = 0), continuous, and strictly increasing on [0, 1], cf. [20, 22,
24]. In the triadic case q = 3, if 0 and 2 are equally likely and P(X1 = 1) = 0, then F is the
Cantor function, cf. [3, Problem 31.2]. This function is also singular continuous, but piecewise
constant and only increasing on the Cantor set. In fact, interestingly, the measures dF in all
the Bernoulli schemes for any q are again all singular with respect to one another (this seems
to be a folk theorem, but see [2, Section 14]) and only one is absolutely continuous relative
to Lebesgue measure, and that is the one where all j ∈ {0, . . . , q − 1} are equally likely. In the
latter case, dF is Lebesgue measure itself on [0, 1].

Harris in [8] considered the case where q ≥ 2 and {Xn}n≥1 is stationary and of a mixing type.
He showed that either F is the uniform CDF, or F has a single jump of magnitude 1 at one of
the points k/(q − 1), k = 0, . . . , q − 1, or F is singular continuous. A similar result has been
shown in [6] under the assumption that {Xn}n≥1 is stationary and ergodic, namely that either F
is the uniform CDF, or F has k jumps of magnitude k−1, or F is singular continuous.

It is well known that if the Xn are i.i.d., then F is the uniform CDF if and only if dF is
a Rajchman measure [9, 18, 22]. Recall that a Rajchman measure is a finite measure whose
characteristic function EeitX tends to zero as t → ±∞. Rajchman measures have received much
attention in the Fourier analysis community (see the review article [13]) and the behavior of
the characteristic function of singular continuous probability measures at infinity are of general
interest in quantum mechanics (see [1] and references therein). To the best of our knowledge
it has yet not been clarified in the literature whether, under stationarity and when F is not the
uniform CDF on [0, 1], there is a case where dF is a Rajchman measure.

1.2. Our results

In this paper, Theorem 2.1 provides a complete characterization of stationarity in terms of
a functional equation for F without using the extra assumptions of [8] and [6]. This leads to
Theorem 2.2, which characterizes stationarity in terms of the characteristic function of X, and
the asymptotic behavior of the characteristic function at ±∞ is treated in the stationary case. In
particular, we show that none of the measures dF arising are Rajchman measures, except when
dF is Lebesgue measure on [0, 1]. Furthermore, Theorem 2.3 describes stationarity in terms
of a Lebesgue decomposition result for F. Here, it is known that the absolutely continuous
component of F can only be the uniform CDF (see [15, Theorems 1 and 2]), but we give a
simpler proof (see Proposition 2.2). In addition, we prove that the atomic component of F can
only be a countable convex combination of certain explicitly computable CDFs for probability
distributions with finite support.

For ease of presentation, the proofs of our theorems and propositions are deferred to
Section 3. Moreover, Section 3 provides an interesting example of a function not belonging to
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L1 (Example 3.1) and another interesting example of a non-measurable function (Example 3.2),
both of which satisfy an important requirement (but not all requirements) of a putative
probability density function for X in the stationary case.

1.3. Future work

From Theorem 2.3 it is reasonable to expect that many well-known stationary stochas-
tic processes with a finite state space correspond to singular continuous F. Assuming that
the Xn only take values 0 and 1, a natural generalization of (1.1) would be to consider
X =∑∞

n=1 Xnλ
n, where λ ∈ (0, 1). Let νλ denote the probability distribution of the affine trans-

formation
∑∞

n=1(2Xn − 1)λn−1 = (2/λ)X − 1/(1 − λ). If the Xn are i.i.d., νλ is a Bernoulli
convolution. This is a much studied case in the literature, and in particular the absolute conti-
nuity or singularity and the Hausdorff dimension of the support of νλ as a function of λ have
been of interest (see [16, 25] and references therein). We leave it as an open problem to study
the absolute continuity or singularity of νλ in the more general case where {Xn}n≥1 is stationary
and 1/λ is not an integer (the present paper covers only the case where q = 1/λ is an integer).
Also, in the stationary case and for any λ ∈ (0, 1), it would be interesting to study the Hausdorff
dimension of the support of νλ.

Define the function f (x1, x2, . . . ) := ∑
n≥1 xnλ

n = x with x1, x2, . . . ∈ {0, 1}, and for m =
1, 2, . . ., consider the 2m closed intervals of length λm+1/(1 − λ) and having left end points∑m

n=1 xnλ
n with x1, . . . , xm ∈ {0, 1}. These 2m intervals cover the range of f , which contains

the state space of X. For 0<λ< 1
2 the 2m intervals are disjoint, so it follows that f is injec-

tive and the range of f has Lebesgue measure zero, since 2mλm+1/(1 − λ) → 0 as m → ∞.
Consequently, if 0<λ< 1

2 , the CDF of X is purely singular (no matter whether {Xn}n≥1 is
stationary or not). Thus, the case with 1

2 <λ< 1 is more interesting and difficult, but a good
starting point could be to study the stationary case.

In a follow-up paper we will consider the categorization of Markov chain models, renewal
processes, and mixtures of these in terms of the Lebesgue decomposition of the correspond-
ing F. Furthermore, in some examples of that paper we will derive closed-form expressions
for F.

2. Main results

2.1. Characterization of stationarity by a functional equation for F

Recall that any number x ∈ [0, 1] has a base-q expansion x = (0.x1x2 . . . )q with x1, x2, . . . ∈
{0, . . . , q − 1}. This expansion is unique except when x is a base-q fraction in (0, 1), that is,
when for some (necessarily unique) n ∈N we have either xn < xn+1 = xn+2 = · · · = q − 1 or
xn > xn+1 = xn+2 = · · · = 0; we refer to n as the order of x and denote the set of all base-q
fractions in (0, 1) by Qq.

Here is the first main result of our paper.

Theorem 2.1. We have the following:

(I) Stationarity of {Xn}n≥1 holds if and only if, for all x ∈Qq, we have

F(x) = F(0) +
q−1∑
j=0

[F((x + j)/q) − F(j/q)]. (2.1)
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(II) Suppose that F̃ is a CDF for a probability distribution on [0, 1] such that F̃ satisfies
(2.1) for all x ∈Qq. Then there exists a unique stationary stochastic process {X̃n}n≥1

on {0, . . . , q − 1} such that (0.X̃1X̃2 . . . )q follows F̃. Furthermore, F̃ is continuous at
all x ∈Qq, and F̃ satisfies the functional equation in (2.1) for all x ∈ [0, 1] (not just for
x ∈Qq).

Remark 2.1. Functional equations for the characterization of singular functions have been
used in various non-probabilistic contexts, cf. [12]. Our stationarity equation (2.1) is equivalent
to special cases noticed in [12], namely in connection to the de Rham–Takács (see the last
sentence in [12, Section 5C]) and the Cantor function (see the last sentence in [12, Section
5A]); however, it was not noticed in [12] that (2.1) provides a characterization of stationarity
as we show in Theorem 2.1.

Remark 2.2. Clearly, when the Xn are i.i.d., (2.1) is satisfied, and for the examples of i.i.d.
Xn discussed in Section 1.1, F was either the uniform CDF on [0, 1] or a singular continuous
function.

Apart from these examples, the best-known example of a singular continuous CDF is prob-
ably Minkowski’s question-mark function (Fragefunktion ?(x)) restricted to [0, 1]; see, e.g.,
[4, 5, 12, 14]. Recall that for two reduced fractions p/q> r/s such that ps − rq = 1 (i.e. two
consecutive Farey fractions), Minkowski’s question-mark function is recursively defined by

?(0/1) = 0, ?(1/1) = 1, ?

(
p + r

q + s

)
= (?(p/q)+?(r/s))/2,

and extended to any x ∈ [0, 1] by continuity. As later shown in Corollary 2.1, the ?-function
does not satisfy (2.1) for any q ≥ 2. Hence, if the ?-function is studied in the framework of
(1.1) and (1.2), the process {Xn}n≥1 would not be stationary.

In the case of a Bernoulli scheme it is well known that dF is self-similar in the sense of
Hutchinson, see [9, 10, 23]. For completeness we remind the reader that dF is self-similar
if there exist p0, . . . , pn > 0 with

∑n
j=0 pj = 1 and contractions S0, . . . , Sn on R such that

dF(E) =∑n
j=0 pjdF(S−1

j (E)), for all Borel sets E ⊂R. When n = q − 1 and Sj(x) = (x + j)/q
for j = 0, . . . , q − 1, we show in the next proposition that self-similarity occurs if and only if
the Xn are i.i.d.

Proposition 2.1. Under stationarity the Xn are i.i.d. if and only if

F(x) =
q−1∑
j=0

P(X1 = j)F(qx − j), x ∈ [0, 1]. (2.2)

As any CDF is differentiable almost everywhere, we next consider the derivative of F
when F satisfies (2.1). As usual, we let L1([0, 1]) be the set of complex absolutely inte-
grable Borel functions defined on [0, 1]. Note that F′(x) exists outside a set of Lebesgue
measure zero, M ⊂ [0, 1], and, for all x not belonging to M ∪ {x ∈ [0, 1] : x ∈ qM − j for some
j ∈ {0, . . . , q − 1}}, it follows from (2.1) that F′(x) = q−1 ∑q−1

j=0 F′((x + j)/q), for almost all
x ∈ [0, 1]. Proposition 2.2 shows that F′ is almost everywhere on [0, 1] equal to a constant
c ∈ [0, 1] (with c = 1 if and only if F is absolutely continuous), and hence that the only
purely absolutely continuous dF is Lebesgue measure. Proposition 2.2 is a consequence of
[15, Theorems 1 and 2], where the author considers absolutely continuous measures which are
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invariant under the transformation T(x) = βx (mod 1) where β > 1. In Section 3.3 we give a
proof for Proposition 2.2 which is simpler than the one in [15] due to the fact that q is integer.

Proposition 2.2. Let f ∈ L1([0, 1]) be such that, for almost all x ∈ [0, 1] (with respect to
Lebesgue measure),

f (x) = q−1
q−1∑
j=0

f ((x + j)/q). (2.3)

Then f is almost everywhere a (complex) constant equal to
∫ 1

0 f (x) dx.

In Section 3.3 we construct remarkable examples of functions f �∈ L1([0, 1]) where (2.3) is
satisfied, but in one case f is not absolutely integrable and in another case f is not measurable.

2.2. Characterization of stationarity by the characteristic function of X

Next, we characterize stationarity of {Xn}n≥1 in terms of the characteristic function of X
given by f (t) := ∫

eitx dF(x), t ∈R. In particular, we discuss when dF is a Rajchman measure,
meaning that f (t) → 0 as t → ±∞, cf. Section 1.1.

Theorem 2.2.

(I) Let X̃ be a random variable on [0, 1] with CDF F̃ and characteristic function f̃ . Then F̃
satisfies (2.1) if and only if, for all k ∈Z, f̃ (2πkq) = f̃ (2πk).

(II) If F satisfies (2.1), then limt→∞ f (t) exists if and only if there exists c ∈ [0, 1] such that,
for all x ∈ [0, 1], F(x) = (1 − c)x + cH(x). In this case, c = limt→∞ f (t). In particular,
dF is a Rajchman measure if and only if F is the uniform CDF on [0, 1].

By the Riemann–Lebesgue lemma, if dF is absolutely continuous relative to Lebesgue mea-
sure, then it is also a Rajchman measure. Thus, a corollary to Theorem 2.2(II) is that if F is
a CDF satisfying (2.1), then dF is absolutely continuous with respect to Lebesgue measure if
and only if F is the uniform CDF on [0, 1]. But a more direct argument for this is to apply
Proposition 2.2; see the beginning of Section 3.5.

Salem in [22] asked whether the measure d? corresponding to Minkowski’s question-mark
function restricted to [0, 1] is a Rajchman measure. It has recently been shown that d? is indeed
a Rajchman measure [11, 17]. Combining this with Theorem 2.2(II), we obtain the following
corollary.

Corollary 2.1. Minkowski’s question-mark function does not satisfy (2.1) for any integer
q ≥ 2. In particular, if Minkowski’s question-mark function equals the CDF of a random
variable as in (1.1), then the stochastic process {Xn}n≥1 cannot be stationary.

2.3. Characterization of stationarity by a decomposition result for F

The theorem below characterizes stationarity of {Xn}n≥1 by properties of each part of the
Lebesgue decomposition of F. It is a generalization of results obtained in [8] and [6]; our proof
in Section 3.5 is based on Theorem 2.1, Proposition 2.2, Theorem 2.2, and a technical result
(Lemma 3.3).

We need the following notation and concepts. We call s ∈ [0, 1] a purely repeating
base-q number of order n if the base-q expansion of s is of the form s = (0.t1 . . . tn)q :=
(0.t1 . . . tnt1 . . . tn . . . )q =∑n

j=1 tjq−j/(1 − q−n), where n is the smallest possible positive inte-
ger and t1, . . . , tn ∈ {0, . . . , q − 1}. A purely repeating base-q number cannot be a base-q
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TABLE 1. All cycles up to equivalence when q ∈ {2, 3} and n ∈ {1, 2, 3}.
q = 2 q = 3

n = 1 0, 1 0, 1
2 , 1

n = 2
( 1

3 ,
2
3

) ( 1
8 ,

3
8

)
,
( 2

8 ,
6
8

)
,
( 5

8 ,
7
8

)
n = 3

( 1
7 ,

2
7 ,

4
7

)
,
( 3

7 ,
5
7 ,

6
7

) ( 1
26 ,

3
26 ,

9
26

)
,
( 2

26 ,
6

26 ,
18
26

)
,
( 4

26 ,
12
26 ,

10
26

)
,
( 5

26 ,
15
26 ,

19
26

)
,( 7

26 ,
21
26 ,

11
26

)
,
( 8

26 ,
24
26 ,

20
26

)
,
( 14

26 ,
16
26 ,

22
26

)
,
( 17

26 ,
25
26 ,

23
26

)

fraction; if Sj(x) := (x + j)/q then the purely repeating number (0.t1 . . . tn)q is the unique fixed
point of the function St1 ◦ · · · ◦ Stn . For any n ∈N we call (s1, . . . , sn) a cycle of order n ∈N

if, for some integers t1, . . . , tn ∈ {0, . . . , q − 1},
s1 = (0.t1t2 . . . tn)q, s2 = (0.tnt1 . . . tn−1)q, . . . , sn = (0.t2 . . . tnt1)q, (2.4)

and s1, . . . , sn are pairwise distinct. Note that for two cycles (s1, . . . , sn) and (s′
1, . . . , s′

m), the
sets {s1, . . . , sn} and {s′

1, . . . , s′
m} are either equal or disjoint. Table 1 shows the cycles up to

the order of elements for q = 2, 3 and n = 1, 2, 3. Moreover, let H be the Heaviside function
defined by H(x) = 0 for x< 0 and H(x) = 1 for x ≥ 0. Finally, we say that F is a mixture of an
at most countable number of CDFs if there exist CDFs F1, F2, . . . and a discrete probability
distribution (θ1, θ2, . . . ) such that F̃ =∑

i θiFi.

Theorem 2.3. F satisfies the stationarity equation (2.1) if and only if F is a mixture of
three CDFs F1, F2, F3 whose corresponding probability distributions are mutually singular
measures concentrated on [0, 1] such that F1, F2, F3 satisfy the following statements (I)–(III):

(I) F1 is the uniform CDF on [0, 1], that is, F1(x) = x for x ∈ [0, 1].

(II) F2 is a mixture of an at most countable number of CDFs of the form

Fs1,...,sn (x) := 1

n

n∑
j=1

H(x − sj), x ∈R, (2.5)

where (s1, . . . , sn) is a cycle of order n.

(III) F3 is singular continuous and satisfies (2.1) (with F replaced by F3).

Moreover, we have:

(IV) F1 and F2 also satisfy (2.1) (with F replaced by F1 and F2, respectively).

The CDF Fs1,...,sn given by (2.5) is just the empirical CDF at the points in the cycle
(s1, . . . , sn). Thus, the following corollary follows immediately from (2.5).

Corollary 2.2. Let (s1, . . . , sn) be a cycle of order n, defined by t1, . . . , tn ∈ {0, . . . , q − 1} as
given in (2.4), and assume that X follows Fs1,...,sn given by (2.5).

(I) If n = 1, then X1 = X2 = · · · = t1 almost surely.

(II) If n ≥ 2, then the distribution of {Xm}m≥1 is completely determined by the fact
that (X1, . . . , Xn−1) is uniformly distributed on {(t1, . . . , tn−1), (tn, t1, . . . , tn−2), . . .,
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(t2, . . . , tn)}, since almost surely {Xm}m≥1 is in a one-to-one correspondence with
X and

(X1, . . . , Xn−1) = (t1, . . . , tn−1) ⇒ X = s1 = (0.t1 . . . tn)q,

(X1, . . . , Xn−1) = (tn, t1, . . . , tn−2) ⇒ X = s2 = (0.tnt1 . . . tn−1)q,

...

(X1, . . . , Xn−1) = (t2, . . . , tn) ⇒ X = sn = (0.t2 . . . tnt1)q.

Remark 2.3. Corollary 2.2 shows that the stochastic process corresponding to a CDF as in
(2.5) is a Markov chain of order n − 1, but essentially it is equivalent to a uniform distribution
on n elements. Thus, a stationary stochastic process {Xn}n≥1 corresponding to a mixture of
CDFs as in (2.5) will be rather trivial. Hence, by Theorem 2.3, it only remains to understand
those stationary stochastic processes {Xn}n≥1 which generate a singular continuous CDF F.
This will be the topic of our follow-up paper mentioned at the very end of Section 1.

3. Proofs and further results

3.1. Proof of Theorem 2.1

Before proving Theorem 2.1, we need the following two lemmas.

Lemma 3.1. Suppose that {Xn}n≥1 is stationary. Then the probability of all Xn having the same
value starting from some n0 > 1 and at least one Xm having a different value for some m< n0
is zero:

P

( ⋃
0<m<n0<∞

{Xm �= Xn0 = Xn0+1 = · · · }
)

= 0. (3.1)

Proof. It suffices to verify that, for integers 0<m< n0 <∞,

P
(
Xm �= Xn0 = Xn0+1 = · · · )= 0, (3.2)

where, without loss of generality, we may assume that m = n0 − 1. For any k ∈ {0, . . . , q − 1},
we have, by the law of total probability for two events, that

P(Xn0 = Xn0+1 = · · · = k) = P(Xn0−1 �= k, Xn0 = Xn0+1 = · · · = k)

+ P(Xn0−1 = Xn0 = · · · = k).

Then (3.2) follows, since by stationarity of {Xn}n≥1 we have P(Xn0 = Xn0+1 = · · · = k) =
P(Xn0−1 = Xn0 = . . .= k). Thereby, (3.1) is verified. �

Lemma 3.2. If F̃ is the CDF for a probability distribution on [0, 1] which obeys (2.1), then F̃
is continuous at every x ∈Qq.

Proof. Clearly, (2.1) is also true for F̃(x) if x = 1, so using (2.1) we have, for any δ ∈Qq and
for any base-q fraction x ∈ (δ, 1) or for x = 1, that

F̃(x) − F̃(x − δ) =
q−1∑
j=0

[F̃((j + x)/q) − F̃((j + x)/q − δ/q)]. (3.3)

Now, we prove the lemma by induction, considering first base-q fractions of order
one. Letting x = 1 gives F̃(1) − F̃(1 − δ) = F̃(1) − F̃(1 − δ/q) +∑q−2

j=0 [F̃((j + 1)/q) − F̃((j +
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1)/q − δ/q)], and letting δ ↓ 0 we see that all the jumps of F̃ at 1/q, . . . , (q − 1)/q must be
zero, so F̃ is continuous at these points, which are first-order base-q fractions. Next, let us
assume that, for a given order n ≥ 1, F̃ is continuous at all base-q fractions of order n. Let
x = (0.k1k2 . . . kn)q with kn �= 0. By using (3.3) and taking δ ↓ 0, we obtain that F̃ is continu-
ous at all numbers of the form (x + j)/q = (0.jk1, . . . kn)q for all j ∈ {0, . . . , q − 1}. This shows
that F̃ is continuous at all base-q fractions of order n + 1, which completes the proof. �

Now, to prove Theorem 2.1 we need the following notation and observations.
Let (x1, . . . , xn), (t1, . . . , tn) ∈ {0, . . . , q − 1}n. We write (x1, . . . , xn) ≤ (t1, . . . , tn) if∑n

k=1 xkq−k ≤∑n
k=1 tkq−k. Define t := ∑n

j=1 tjq−j. Note that x =∑∞
i=1 xiq−i ∈ [0, 1] satisfies

x ≤ t + q−n if and only if one of the following two statements holds true:

• The first n digits of x obey (x1, . . . , xn) ≤ (t1, . . . , tn) (regardless of the values of the
next digits xn+1, xn+2, . . .).

• We have x1 = t1, . . . , xn−1 = tn−1, xn = tn + 1, xn+1 = xn+2 = · · · = 0.

Define

F1(t1, . . . , tn) := P((X1, . . . , Xn) ≤ (t1, . . . , tn))

=
∑

(x1,...,xn)≤(t1,...,tn)

P(X1 = x1, . . . , Xn = xn).

Stationarity of {Xn}n≥1 is equivalent to that for every (t1, . . . , tn) ∈ {0, . . . , q − 1}n, so
F1(t1, . . . , tn) equals

F2(t1, . . . , tn) :=
∑

(x2,...,xn+1)≤(t1,...,tn)

P(X2 = x2, . . . , Xn+1 = xn+1),

cf. Kolmogorov’s extension theorem. Furthermore, by (1.1) and (1.2) we have

F(t + q−n) =F1(t1, . . . , tn)

+ P(X1 = t1, . . . , Xn−1 = tn−1, Xn = tn + 1, Xn+1 = Xn+2 = · · · = 0). (3.4)

Proof of Theorem 2.1(I). Assume that {Xn}n≥1 is stationary. Using (3.4) together with
Lemma 3.1 we obtain

F(t + q−n) =F1(t1, . . . , tn). (3.5)

Furthermore, stationarity of {Xn}n≥1 implies that X and the ‘left-shifted’ stochastic vari-
able

∑∞
n=1 Xn+1q−n = qX − X1 are identically distributed. Thus, F(x) = P(qX − X1 ≤ x) =∑q−1

j=0 P(X1 = j, X ≤ (x + j)/q). We see that P(X1 = 0, X ≤ x/q) = P(X = 0) + P(0< X ≤
x/q) = F(0) + (F(x/q) − F(0)). Further, for j ∈ {1, . . . , q − 1},

P(X1 = j, X ≤ (x + j)/q) = P(X1 = j, X2 = X3 = · · · = 0) + P(j/q< X ≤ (x + j)/q)

= F((x + j)/q) − F(j/q),

where we used (3.1) in order to get the second identity. This leads to (2.1).
Conversely, assume that F satisfies (2.1). Then, since F is right continuous and Qq consti-

tutes a dense subset of [0, 1], (2.1) holds for all x ∈ [0, 1]. Further, by Kolmogorov’s extension
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theorem we can define the distribution of {Xn}n≥1 on {0, . . . , q − 1} by specifying the finite-
dimensional distribution F1 o f (X1, . . . , Xn) for every integer n ≥ 1 in a consistent way,
setting

F1(t1, . . . , tn) = P((X1, . . . , Xn) ≤ (t1, . . . , tn)) := F(t + q−n). (3.6)

Furthermore, for any ε > 0 and x1, . . . , xn ∈ {0, . . . , q − 1}, the inequality P(X1 = x1, . . . ,

Xn = xn, Xn+1 = · · · = 0) + P(X1 = x1, . . . , Xn−1 = xn−1, Xn = xn − 1, Xn+1 = · · · = q − 1) ≤
P(x − ε < X ≤ x) = F(x) − F(x − ε) holds, and hence by Lemma 3.2 the probability of
realizing a base-q fraction is 0. Hence, the second term on the right-hand side of (3.4) is 0, and
so (3.5) again holds true. Consequently, for any n ∈N and (t1, . . . , tn) ∈ {0, . . . , q − 1}n,

F2(t1, . . . , tn) =
q−1∑
j=0

∑
(x2,...,xn+1)≤(t1,...,tn)

P(X1 = j, X2 = x2, . . . , Xn+1 = xn+1)

= P(X = 0) +
q−1∑
j=0

P(j/q< X ≤ j/q + t/q + q−n−1)

= F(0) +
q−1∑
j=0

(F((t + q−n + j)/q) − F(j/q))

= F(t + q−n),

using in the first identity the law of total probability, in the second that the probability of
realizing a base-q point is zero, in the third (1.2), and in the last (2.1). Thereby, (3.6) gives
that F1(t1, . . . , tn) =F2(t1, . . . , tn) for every n ∈N and every (t1, . . . , tn) ∈ {0, . . . , q − 1}n,
so {Xn}n≥1 is stationary. �

Proof of Theorem 2.1(II). Let φ(x) = {xn}n≥1 be the one-to-one mapping on [0, 1] \Qq

corresponding to mapping x into its base-q digits x1, x2, . . ., i.e. x =∑∞
n=1 xnq−n. Further,

let F̃ be a CDF for a random variable X̃ on [0, 1] such that F̃ satisfies (2.1) for all
x ∈Qq. By Lemma 3.2, and since Qq is countable, we can assume that X̃ �∈Qq. Then X̃
is in a one-to-one correspondence with {X̃n}n≥1 := φ(X̃), and X̃ =∑∞

n=1 X̃nq−n follows F̃.
We conclude from Theorem 2.1(I) that the stochastic process {X̃n}n≥1 is stationary. Since
the distribution of {X̃n}n≥1 is induced by that of X̃ and the one-to-one mapping φ, let us
show that {X̃n}n≥1 is the unique (up to its distribution) stationary stochastic process on
{0, . . . , q − 1} so that

∑∞
n=1 X̃nq−n follows F̃: if {X̄n}n≥1 is another stationary stochastic pro-

cess on {0, . . . , q − 1} so that
∑∞

n=1 X̄nq−n follows F̃, then, for any event G of sequences
{xn}n≥1 such that each xn ∈ {0, . . . , q − 1} and

∑∞
n=1 xnq−n �∈Qq, we have P({X̄n}n≥1 ∈ G) =

P(X̃ ∈ φ−1(G)) = P({X̃n}n≥1 ∈ G). Furthermore, by right continuity of F̃ and since Qq is dense
on (0, 1), F̃ satisfies (2.1) for all x ∈ (0, 1). Finally, F̃ obviously satisfies (2.1) for x = 0 and
x = 1. �

3.2. Proof of Proposition 2.1

Suppose that the Xn are i.i.d. Since (2.2) holds for x = 1, F is right continuous, and Qq is
dense on (0, 1), it suffices to show that (2.2) holds for all x ∈Qq. Let x = (0.x1 . . . xn)q with
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x1, . . . , xn ∈ {0, . . . , q − 1} where xn �= 0. By Lemma 3.1, P(X1 = x1, . . . , Xn = xn, Xn+1 =
Xn+2 = · · · = 0) = 0. Hence, setting

∑−1
j=0 · · · = 0,

F(x) =
x1−1∑
j=0

P(X1 = j) + P(X1 = x1)
x2−1∑
j=0

P(X2 = j)

+ · · · + P(X1 = x1)
xn−1∑
j=0

P(X2 = x2, . . . , Xn−1 = xn−1, Xn = j)

=
x1−1∑
j=0

P(X1 = j) + P(X1 = x1)F(qx − x1),

using that the Xn are independent in the first identity and identically distributed in the second.
Furthermore, for j ∈ {0, . . . , q − 1},

F(qx − j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x1 < j,

1 if x1 > j,

F((0.x2 . . . , xn)q) if x1 = j,

(3.7)

and so we conclude that (2.2) holds at x.
Conversely, suppose that (2.2) holds. Then F(0) = P(X1 = 0)F(0), so either P(X1 =

0) = 1 or F(0) = 0. In the first case, since by stationarity the Xn are identically dis-
tributed, we obtain immediately that the Xn are i.i.d. So, assume that F(0) = 0 and let x =
(0.x1 . . . xn)q with x1, . . . , xn ∈ {0, . . . , q − 1}. Then P(X1 = x1, . . . , Xn = xn) = P(x ≤ X ≤
x + q−n) = F(x + q−n) − F(x), using in the last identity that P(X = x) = 0, cf. Lemma 3.1.
Thus,

P(X1 = x1, . . . , Xn = xn) = F(x + q−n) − F(x)

=
q−1∑
j=0

P(X1 = j)
(
F(q(x + q−n) − j) − F(qx − j)

)
= P(X1 = x1)

(
F((0.x2 . . . xn)q + q−n+1) − F((0.x2 . . . xn)q)

)
,

where in the second equality we use (2.2) and in the third we use (3.7). The dependence on
x1 has now been isolated in the factor P(X1 = x1), and using the same method for the other
variables x2, . . . , xn we obtain

P(X1 = x1, . . . , Xn = xn)

= P(X1 = x1)
q−1∑
j=0

P(X1 = j)
(
F(x2 − j + (0.x3 . . . xn)q + q−n+2)

− F(x2 − j + (0.x3 . . . xn)q)
)
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= P(X1 = x1)P(X1 = x2)
(
F((0.x3 . . . xn)q + q−n+2) − F((0.x3 . . . xn)q)

)
...

= P(X1 = x1) · · · P(X1 = xn−1)
q−1∑
j=0

P(X1 = j)
(
F(xn − j + 1) − F(xn − j)

)
= P(X1 = x1) · · · P(X1 = xn−1)

(
P(X1 = xn)(1 − F(0)) + P(X1 = xn + 1)F(0)

)
.

Consequently, since F(0) = 0 and by stationarity the Xn are identically distributed, P(X1 =
x1, . . . , Xn = xn) = P(X1 = x1) · · · P(X1 = xn) = P(Xn = x1) · · · P(Xn = xn). Therefore, the Xn

are i.i.d.

3.3. Proof of Proposition 2.2 and related examples

Proof of Proposition 2.2. We first claim that for every n ∈N, there exists a Borel set An ⊆
[0, 1] of Lebesgue measure 1 such that, for all x ∈ An,

f (x) = q−n
qn−1∑
j=0

f ((x + j)/qn). (3.8)

The case n = 1 follows by the assumption in Proposition 2.2. Define

Ã2 :=
q−1⋃
j=0

A1 + j

q
, A2 := A1 ∩ Ã2.

Since the Lebesgue measure of (A1 + j)/q ∩ (A1 + k)/q is 0 for j �= k, Ã2 and hence A2 have
Lebesgue measure 1. For every x ∈ A2 we have (x + j)/q ∈ A1 and hence, using (2.3) for f ((x +
j)/q), we obtain

f (x) = q−2
q−1∑
j=0

q−1∑
k=0

f

(
x + j

q2
+ k

q

)
= q−2

q2−1∑
j=0

f

(
x + j

q2

)
.

Continuing in this way the claim is verified. Define I := ∫ 1
0 f (t) dt ∈C and Ij,n :=

(jq−n, jq−n + q−n). Then (3.8) gives, for all x ∈ An, f (x) − I =∑qn−1
j=0

∫
Ij,n

{f ((x + j)/qn) −
f (y)} dy, so |f (x) − I| ≤∑qn−1

j=0

∫
Ij,n

|f ((x + j)/qn) − f (y)| dy. Integrating with respect to x ∈
[0, 1] and making the change of variable t = (x + j)/qn ∈ Ij,n, we obtain

∫ 1

0
|f (x) − I| dx ≤ qn

qn−1∑
j=0

∫
Ij,n

∫
Ij,n

|f (t) − f (y)| dy dt. (3.9)

Now, for any ε > 0, there exists a uniformly continuous function gε : [0, 1] →R such
that ‖f − gε‖L1 ≤ ε/3, where we consider the usual L1-norm. Writing |f (t) − f (y)| ≤
|f (t) − gε(t)| + |f (y) − gε(y)| + |gε(t) − gε(y)|, we obtain from (3.9) that

∫ 1
0 |f (x) − I| dx ≤

2ε/3 + sup|t−y|≤q−n |gε(t) − gε(y)|. Since gε is uniformly continuous, for any sufficiently
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FIGURE 1. The function f (x) = g(x) + 1/(1 − x) for x ∈ [0, 1 − 2−4], where g is given in Example 3.1.

large n = n(ε) ∈N we have sup|t−y|≤q−n(ε) |gε(t) − gε(y)| ≤ ε/3. Thus,
∫ 1

0 |f (x) − I| dx ≤ ε.
Consequently, f = I almost everywhere on [0, 1]. �

We end this section by presenting two examples of functions f �∈ L1([0, 1]) where (2.3) is
satisfied but in one case f is not absolutely integrable and in the other case f is not measurable.

Example 3.1. (A solution to (2.3) which is not in L1([0, 1]).) Let q = 2. Below we construct a
solution to (2.3) which is piecewise smooth on [0, 1], has finite jumps at all dyadic fractions
1 − 2−n with n ∈N, but whose integral diverges.

For this, we notice the following. For any function f : [0, 1] →R, define g(x) := f (x) −
1/(1 − x) for x ∈ [0, 1), and let g(1) be any number. Then f satisfies (2.3) if and only if g
satisfies the equation

g(x) = g(x/2)/2 + g((x + 1)/2)/2 + 1/(2 − x) for almost all x ∈ [0, 1]. (3.10)

To construct a particular solution g to (3.10), we start by setting g(x) := 0 for all x ∈ [0, 1
2

)
.

Then g(x/2) = 0 for all x ∈ [0, 1), and in accordance with (3.10) we should have

g((x + 1)/2) = 2g(x) − 2/(2 − x) for all x ∈ [0, 1), (3.11)

which is possible because of the following observations. For each n ∈N∪ {0}, the map
[1 − 2−n, 1 − 2−n−1) � x �→ (x + 1)/2 ∈ [1 − 2−n−1, 1 − 2−n−2) is a bijection. Thus, for n =
1, 2, . . ., we can inductively use (3.11) to compute g(x) for all x ∈ [1 − 2−n, 1 − 2−n−1). We
see that g becomes more and more negative near 1. Now, the function f (x) = g(x) + 1/(1 − x)
is not constant on [0, 1), since f (x) = 1/(1 − x) on [0, 1

2 ). Although f satisfies (2.3) and is
smooth on each interval [1 − 2−n, 1 − 2−n−1) with n ∈N, f cannot have a finite integral due to
Proposition 2.2. Figure 1 shows a plot of f .
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Example 3.2. (A non-measurable solution to (2.3).) Let q = 2. Below we construct a solution
to (2.3) which is bounded but cannot be measurable.

Define G := {(2n, r) | n ∈Z, r ∈D}, where D := {m2−n | m ∈Z, n ∈N}. Then G is a
group with product (2m, p)(2n, r) = (2m+n, p + 2mr) for (2m, p), (2n, r) ∈ G, and G acts on R

by (2n, r)x := 2nx + r for (2n, r) ∈ G, x ∈R. For any x ∈ [0, 1], let Mx be the restriction of
the orbit {2nx + r | n ∈Z, r ∈D} to [0, 1] (this is a countable dense set in [0, 1]). Given any
x ∈ [0, 1], then both x/2 and (x + 1)/2 belong to Mx.

By the axiom of choice, given any orbit restriction M ∩ [0, 1], we can pick a representa-
tive C(M) ∈ [0, 1] and thus construct a function f (x) := C(Mx) ∈ [0, 1], x ∈ [0, 1]. Then f is
constant on each orbit, though with different constants on different orbits. Since x, x/2, and
(x + 1)/2 always belong to the same orbit, (2.3) is satisfied everywhere. We now show that this
(bounded) function cannot be measurable due to Proposition 2.2. Indeed, if f was measurable,
it would be integrable and equal to a constant on [0, 1] outside some set A of zero Lebesgue
measure. Since f has different (constant) values on different orbits and because f is constant
on [0, 1] \ A, it implies that [0, 1] \ A is a subset of exactly one orbit. As the orbit is countable
and has Lebesgue measure zero, it follows that the Lebesgue measure of [0, 1] is zero. Hence
we have a contradiction.

3.4. Proof of Theorem 2.2

First, we prove Theorem 2.2(I) with X̃, F̃, and f̃ as in the theorem and Sj(x) = (x + j)/q as
in Section 2.3. Note that, for any k ∈Z,

f̃ (2πkq) =
∫ 1

0
exp(2π ixkq) dF̃(x) =

q−1∑
j=0

∫ (j+1)/q

j/q
exp(2π ixkq) dF̃(x)

=
q−1∑
j=0

∫ 1

0
exp(2π i(x + j)k) d(F̃ ◦ Sj)(x)

=
∫ 1

0
exp(2π ixk) d

( q−1∑
j=0

F̃ ◦ Sj

)
(x). (3.12)

If F̃ satisfies (2.1) then dF̃ =∑q−1
j=0 d(F̃ ◦ Sj), which, combined with (3.12), shows that

f̃ (2πkq) = f̃ (2πk) (3.13)

for all k ∈Z.
Now, suppose that (3.13) holds for all k ∈Z. Define dG̃ := d

(∑q−1
j=0 F̃ ◦ Sj

)
and g̃(t) :=∫

eixt dG̃(x). From (3.12) we have that f̃ (2πkq) = g̃(2πk) which, together with (3.13), implies
f̃ (2πk) = g̃(2πk) for all k ∈Z. Recall that any continuous Z-periodic function ϕ : R→C is a
uniform limit of trigonometric polynomials

∑N
k=−N cN

k e2π ikx, where each cN
k ∈C and N ∈N

[21]. Taking the limit N → ∞ and using Lebesgue’s dominated convergence theorem, we get∫
[0,1]

ϕ(x) dF̃(x) =
∫

[0,1]
ϕ(x) dG̃(x). (3.14)

The remaining part of this proof consists of verifying (3.14) when ϕ is merely continuous
and then applying the Riesz–Markov theorem, which implies that a positive linear functional

https://doi.org/10.1017/jpr.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.6


944 H. D. CORNEAN ET AL.

on C0([0, 1]) can be represented by a unique measure (see [19]). First, we establish equality
of dF̃ and dG̃ at the endpoints of the interval [0, 1]. Since the indicator function of Z can
be pointwise approximated by uniformly bounded continuous Z-periodic functions, another
application of Lebesgue’s dominated convergence theorem in (3.14) gives dF̃({0}) + dF̃({1}) =
dG̃({0}) + dG̃({1}), where, by the definition of dG̃, dG̃({0}) = dF̃({0} + dF̃({1/q}) + · · · +
dF̃({(q − 1)/q}) and dG̃({1}) = dF̃({1/q}) + · · · + dF̃({(q − 1)/q}) + dF̃({1}). From this, it
immediately follows that dF̃({j/q}) = 0 for j = 1, . . . , q − 1, which leads to dF̃({0}) = dG̃({0})
and dF̃({1}) = dG̃({1}). Second, we extend (3.14) to all continuous functions on [0, 1] in the
following way. If ψ : [0, 1] →C is continuous, define, for n = 1, 2, . . . ,

ϕn(x) :=
⎧⎨
⎩
ψ(x) for x ∈ [0, 1 − 1

n

]
,

n
[
ψ(0) −ψ

(
1 − 1

n

)](
x − (

1 − 1
n

))+ψ
(
1 − 1

n

)
for x ∈ (1 − 1

n , 1
]
.

This is a uniformly bounded sequence of continuous and Z-periodic functions converging
pointwise to ψ on [0, 1). Since dF̃({1}) = dG̃({1}), it follows from Lebesgue’s dominated
convergence theorem that∫

[0,1]
ψ(x) dF̃(x) = dF̃({1})ψ(1) + lim

n→∞

∫
[0,1)

ϕn(x) dF̃(x)

= dG̃({1})ψ(1) + lim
n→∞

∫
[0,1)

ϕn(x) dG̃(x)

=
∫

[0,1]
ψ(x) dG̃(x).

The maps C0([0, 1]) �ψ �→ ∫
[0,1] ψ(x) dF̃(x) ∈C C0([0, 1]) �ψ �→ ∫

[0,1] ψ(x) dG̃(x) ∈C are
positive linear functionals and can be represented by a unique measure according to the Riesz–
Markov theorem (see [19]), thus dF̃ = dG̃ on [0, 1]. Equivalently, F̃ satisfies (2.1) and the proof
of Theorem 2.2(I) is complete.

Next, we prove Theorem 2.2(II). As the ‘if’ part of the proof follows from a direct calcula-
tion, we only prove that if c := limt→∞ f (t) ∈C exists, then 0 ≤ c ≤ 1 and, for every x ∈ [0, 1],

F(x) = (1 − c)x + cH(x), (3.15)

where H is the Heaviside function. Since limt→∞ f (t) = c, for any a ∈R a straightforward
calculation gives

lim
T→∞ T−1

∫ T

0
f (t)e−ita dt =

{
c if a = 0,

0 if a �= 0.

Define

fT (x) := 1

T

∫ T

0
eit(x−a) dt =

{
1 if x = a,

(i(x − a)T)−1(eiT(x−a) − 1) if x �= a.

Using Fubini’s theorem we obtain 1
T

∫ T
0 f (t)e−ita dt = ∫

[0,1] fT (x) dF(x). Since |fT (x)| ≤ 1 and
fT (x) converges pointwise to the indicator function of the set {a}, an application of Lebesgue’s
dominated convergence theorem shows that the above limit equals dF({a}). Consequently, c =
F(0) ∈ [0, 1] and F is continuous on (0, 1).
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It remains to verify (3.15). If c = 1, then F = H and (3.15) follows. Assume c< 1. Then
G(x) := (F(x) − cH(x))/(1 − c) is a continuous CDF that also satisfies the stationarity condi-
tion (2.1). Thus, defining g(t) := ∫

eitx dG(x), we obtain the identity g(2πkq) = g(2πk) for all
k ∈Z. A repeated use of this identity gives, for any m ∈N and k ∈Z,

g(2πkqm) = g(2πk). (3.16)

From the definition of G it follows that limt→∞ g(t) = 0, and since c is real we also obtain
limt→−∞ g(t) = 0. Combining this with (3.16) where we take m to infinity, we conclude that
g(2πk) = 0 for all k ∈Z \ {0}. If h(t) := ∫ 1

0 eitx dx, then also h(2πk) = 0 for all k ∈Z \ {0}, and
since dG({1}) = 0 it follows from the same arguments as in the proof of Theorem 2.2(I) that
dG = dx on [0, 1]. Consequently, F(x) = (1 − c)x + cH(x) for all x ∈ [0, 1].

3.5. Proof of Theorem 2.3

The Lebesgue–Radon–Nikodym theorem [3, 7] leads to the decomposition F(x) =
θ1F1(x) + θ2F2(x) + θ3F3(x) for x ∈ [0, 1], where θ1, θ2, θ3 ≥ 0 and θ1 + θ2 + θ3 = 1, F1 is an
absolutely continuous CDF on [0, 1], F2 is a discrete CDF on [0, 1], and F3 is singular con-
tinuous CDF on [0, 1]. Proposition 2.2 implies that F′

1 = 1 almost everywhere on [0, 1], and
so since F1 is absolutely continuous, F1(x) = x for all x ∈ [0, 1]. Thus, F1 satisfies (2.1) and it
only remains to show that F2 is as claimed in Theorem 2.3(II) and satisfies (2.1).

3.5.1. Proof of Theorem 2.3(II)
Lemma 3.3. Suppose that F satisfies (2.1) and s ∈ [0, 1] is a discontinuity of F. Then there
exists n ∈N and a cycle (s1, . . . , sn) in the sense of (2.4) such that s = s1 and s1, . . . , sn are
discontinuities of F. Furthermore, the jumps of F at these n discontinuities are all equal.

Proof. We start by investigating what can happen at 0 and 1. Both 0 = (0.0)q and 1 =
(0.q − 1)q are purely repeating base-q numbers of order 1, and they can be discontinuity points
because both H(x) and H(x − 1) satisfy (2.1). Therefore, in the following we will only consider
possible discontinuities at x ∈ (0, 1). Our idea is then to show that each point of discontinuity
belongs to a ‘cycle’ of finitely many points which are all discontinuities and the jump at each
point is the same.

As in Section 2.3, define Sj(x) := (x + j)/q for x ∈ (0, 1) and j = 0, . . . , q − 1. Then, by
Theorem 2.1, it follows that, for any x ∈ (0, 1), there exists a sufficiently small δ0 > 0 such
that, for all δ ∈ (0, δ0),

F(x) − F(x − δ) =
q−1∑
j=0

[F(Sj(x)) − F(Sj(x − δ))]. (3.17)

For x ∈ (0, 1), define L0(x) := {x} and Ln(x) := ⋃q−1
j=0 Sj(Ln−1(x)), n = 1, 2, . . . Furthermore,

let Jx := limδ↓0 [F(x) − F(x − δ)] denote the jump of F at x ∈ (0, 1). Taking δ ↓ 0 in (3.17)
shows that

Jx =
∑

y∈L1(x)

Jy. (3.18)

Suppose s ∈ (0, 1) is a discontinuity of F with jump Js > 0, and let k> 1/Js be an integer.
First, we show that the sets L0(s), . . . , Lk(s) are not pairwise disjoint. For the purpose of a
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contradiction assume that L0(s), . . . , Lk(s) are pairwise disjoint. By assumption s �∈ L1(s), thus
replacing x = s in (3.18) shows that F has a total jump of at least 2Js: one Js from s, and the
other Js from the accumulated contribution of all the points of L1(s). Using (3.18) for x = Sj(s)
with j = 0, . . . , q − 1, we see that the possible jump at each Sj(s) equals the total accumulated
jump at the points of L1(Sj(s)). Hence, by assumption, the total jump of F at the points of L2(s)
is again Js. Continuing this way we obtain that

∑
x∈Lj(s) Jx = Js for j = 0, 1, . . . , k. By the

choice of k this contradicts F ≤ 1 and hence the sets L0(s), . . . , Lk(s) are not pairwise disjoint.
Next, let n denote the smallest integer (not necessarily larger than 1/Js) such that

L0(s), . . . , Ln(s) are not pairwise disjoint. We will show that s ∈ Ln(s). Suppose this is
not the case. Then by the choice of n there exist an integer m with 1 ≤ m< n and
j1, . . . , jm, j′1, . . . , j′n ∈ {0, . . . , q − 1} such that

Sj′1 ◦ · · · ◦ Sj′n (s) = Sj1 ◦ · · · ◦ Sjm (s). (3.19)

If s = (0.t1t2 . . . )q, then from (3.19) it follows that (0.j1 . . . jmt1t2 . . . )q = Sj1 ◦ · · · ◦ Sjm(s) =
Sj′1 ◦ · · · ◦ Sj′n (s) = (0.j′1 . . . j′nt1t2 . . . )q, and thus Sj′m+1

◦ · · · ◦ Sj′n (s) = s, contradicting the min-
imality of n. Hence, s ∈ Ln(s), which implies that there exist i1, . . . , in ∈ {0, . . . , q − 1} such
that Si1 ◦ · · · ◦ Sin (s) = s. Note that (0.i1 . . . in)q is also a fixed point of Si1 ◦ . . . Sin , but since
Si1 ◦ . . . Sin is a contraction on [0, 1] (with Lipschitz constant q−n) it has a unique fixed point
and we must have s = (0.i1 . . . in)q.

By definition Sin (s) ∈ L1(s), and from (3.18) we deduce that Js ≥ JSin (s). Letting x = Sin (s)
in the left-hand side of (3.18) we have that Js ≥ JSin (s) ≥ JSin−1◦Sin (s). Continuing in this way
we see that Js ≥ JSin (s) ≥ · · · ≥ JSi2◦···◦Sin (s) ≥ JSi1◦···◦Sin (s) = Js. This shows that the numbers
s, Sin (s), . . . , Si2 ◦ · · · ◦ Sin (s) are discontinuities of F with the same jump. By the minimality
of n these points are distinct and hence constitute a cycle. �

Now, Theorem 2.3(II) follows from Lemma 3.3 and the fact that F has countably many
points of discontinuity.

3.5.2. Proof that F2 satisfies (2.1) Because of Theorem 2.3(II), in order to show that F2 sat-
isfies (2.1), without loss of generality we may assume that F2(x) = 1

n

∑n
j=1 H(x − sj), where

(s1, . . . , sn) is a cycle. For each j ∈ {1, . . . , n}, let sj(1) denote the first digit in the base-q
expansion of sj and note that qsj = sj−1 + sj(1), where we define s0 := sn. Hence, for any k ∈Z,
the characteristic function f2 of F2 satisfies

f2(2πkq) = 1

n

n∑
j=1

e2π ikqsj = 1

n

n∑
j=1

e2π iksj−1 = f2(2πk).

Then, by Theorem 2.2(I) it follows that F2 satisfies (2.1).
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