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Abstract
This paper proposes a discrete-time risk model that has a certain type of correlation between premiums
and claim amounts. It is motivated by the well-known bonus-malus system (also known as the no claims
discount) in the car insurance industry. Such a system penalises policyholders at fault in accidents by
surcharges, and rewards claim-free years by discounts. For simplicity, only up to three levels of premium
are considered in this paper and recursive formulae are derived to calculate the ultimate ruin prob-
abilities. Explicit expressions of ruin probabilities are obtained in a simplified case. The impact of the
proposed correlation between premiums and claims on ruin probabilities is examined through numerical
examples. In the end, the joint probability of ruin and deficit at ruin is also considered.
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1. Introduction

The no claims discount (NCD) (or bonus-malus system) is a well-established system in general insurance
industry worldwide, in particular for car insurances. For instance, in Australia, car insurance policy-
holders have the chance to renew their policies by paying discounted premiums if they made no claim at
fault in previous policy year. In other words, safe drivers are awarded by paying less premiums and
“bad” drivers are penalised by paying more. In practice, the rules are fairly complicated and vary
among insurers, but in general this arrangement encourages drivers to drive more safely and also leads
to a reduction of the number of small claims. The bonus-malus has been studied extensively by many
researchers in the past (see Dufresne, 1988; Tremblay, 1992; Lemaire & Zi, 1994; Lemaire, 1995;
Frangos & Vrontos, 2001; Li et al., 2015; Denuit et al., 2007 and the references therein).
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Motivated by the type of correlation between premiums and claims embedded in the NCD system,
we consider a portfolio of insurance policies of which premiums are dependent on the claim history.
Dufresne (1988) considered the stationary distributions of a bonus-malus system and showed that it can
be computed recursively. It is further shown that there is an intrinsic relationship between such a
stationary distribution and the probability of ruin in the risk theoretical model. Moreover, continuous-
time risk models with varying premiums, experience-based premiums or credibility updated premiums,
have been studied in recent literature (see Afonso et al., 2010; Li et al., 2015 and references therein).

Before we introduce our risk model, we shall make some important assumptions about the
mechanism of the NCD system for the given insurance portfolio. In general, the NCD system works
for individual policies, and each policyholder is assessed based on his/her own claim history.
Although a risk model built on this ground can be studied using simulations, on the portfolio level
the number of possible annual premium income levels would be far too many to consider by other
means. Therefore, we adopt a commonly used approach in practice that is to set several bands that
represent the key scenarios of total annual claims of the portfolio. Each band covers a range of
possible total annual claims and a level of premium discount is assigned to it. The total premiums
that is receivable next year can then be determined given the previous year’s total claims band.
Furthermore, for each band, we shall only adopt its best estimate of total claim amount rather than
retaining the “band” purely for the sake of tractability of the risk model built upon this basis.

Let ℕ+ = {1, 2,…}. Denote Un the amount of surplus of the insurer at time n, n∈ℕ, which has the form

Un ¼ u +
Xn
i¼1

Ci�
Xn
i¼1

Xi (1)

where u∈ℕ is a constant initial surplus and {Xi}i∈ℕ+ form an independent and identically distributed
random variable sequence with Xi denoting the total claim amount in period i∈ℕ+. Under the above
assumptions, in the present paper we shall assume that Xi only takes values 0,M orN,M<N∈ℕ+ with
probabilities q = 1−p1−p2, p1 and p2 (0<p1, p2<1), respectively. Here N represents the high claims
band and M represents the low-to-medium claims band. And Ci is the amount of premiums the insurer
receives at the beginning of period i satisfying the following conditions, for n∈ℕ+:

PrðCn +1 ¼ θK1 jXn ¼ 0Þ ¼ 1

PrðCn +1 ¼ ΘK1 jXn ¼ MÞ ¼ 1

PrðCn +1 ¼ K1 jXn ¼ NÞ ¼ 1

where θ<Θ are constants in (0, 1] with 1− θ and 1−Θ representing the percentages of premium
discount and K1 is a positive integer denoting the full premium level. Thus, θK1 and ΘK1 are just the
discounted premium levels. For the proposed portfolio of insurance policies, these conditions imply that
if in period n there were claim amounts totalling either 0 or M, then the insurance company would
charge lower premiums to its policyholders in next time period. Otherwise, the policyholders need to
pay full premiums at renewal. As mentioned before, this is just a simplified version and more realistic
model setting could be considered in the future.

For a new insurance portfolio, it makes sense to charge full premiums for the first time period, i.e.
C1 = K1, so we define

T ¼ min n 2 ℕ+ : u +K1 +
Xn
i¼2

Ci�
Xn
i¼1

Xi < 0

( )
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to be the time of ruin with
P1

i¼2 ¼ 0 and ψ uð Þ ¼ PrðT <1Þ is the ultimate ruin probability for the
discrete-time surplus process defined in (1). A trivial observation about the ruin probability is that
ψ uð Þ ¼ 1, for any u<0. For computational purposes we shall further assume that ΘK1 = K2 and
θK1 = κ2, where K2 and κ2 are also positive integers. A positive safety loading condition for the model is

κ2 + p1ðK2�κ2�MÞ + p2ðK1�κ2�NÞ> 0

which is obtained by the given assumptions for premiums.

The rest of this paper is organised as follows: section 2 considers the above defined ultimate ruin
probability ψðuÞ and derives a recursion approach for computation purposes. Section 3 works on a
simplified case where explicit results of ψðuÞ can be obtained. Discussions and numerical examples
are provided in this section regarding the impact of the proposed correlation between premiums and
claims on the ruin probabilities. In section 4, the deficit at ruin, denoted by UTj j, is considered and
the techniques used are similar to previous sections. Some concluding remarks are given in the end in
respect of the results obtained in this paper.

2. Some General Results

2.1. Recursive formulae for ψðuÞ
In this section, we shall derive recursive formulae for the ruin probability ψðuÞ of the risk model (1). First,
we need to introduce some supplementary ruin probabilities that are slightly modified versions of ψðuÞ.
From the above section we know that ψðuÞ is the probability of ruin when full premiums are receivable
at the beginning. If the first period’s total premium is at a discounted level, then the resulted probability
of ruin will be higher. As there are two levels of discounts assumed so far, we denote the probability of
ruin with initial premiums κ2 and K2 by ψ1ðuÞ and ψ2ðuÞ, respectively. Clearly, ψðuÞ≤ψ2ðuÞ≤ψ1ðuÞ.

Considering all possible experience of model (1) in the first time period, we obtain the following
recursion:

ψðuÞ ¼ qψ1 u +K1ð Þ + p1ψ2ðu +K1�MÞ + p2ψðu +K1�NÞ (2)

The right-hand side of (2) covers all three cases of claim occurrence in period 1. It is worth men-
tioning that if there is no claim in the first time period, then U1 = u +K1 and C2 = κ2. If we deduct an
amount of K1 − κ2 from U1 and combine it with C2 then it is equivalent to the surplus process being
renewed at time 1 with initial surplus u + κ2 and full premiums K1. Therefore

ψ1 u +K1ð Þ ¼ ψ u + κ2ð Þ
Similarly, one can see that

ψ1 u +K1ð Þ ¼ ψ2 u +K1 + κ2�K2ð Þ (3)

ψ2 u +K1ð Þ ¼ ψ u +K2ð Þ (4)

Making use of the relationship (3) and examining the detailed ranges of u, we obtain the following
result:

ψðuÞ ¼

qψ2ðu +K1 + κ2�K2Þ + p1 + p2; 0≤ u<M�K1

qψ2ðu +K1 + κ2�K2Þ + p1ψ2ðu +K1�MÞ + p2; M≤ u +K1 <N

qψ2ðu +K1 + κ2�K2Þ + p1ψ2ðu +K1�MÞ u≥N�K1

+ p2ψðu +K1�NÞ;

8>>>>><
>>>>>:

(5)
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We can see from (5) that to determine ψðuÞ we need to know how to calculate ψ2ðuÞ first. Following
similar steps as above, we can get

ψ2ðuÞ ¼qψ1ðu +K2Þ + p1ψ2ðu +K2�MÞ + p2ψðu +K2�NÞ

¼

qψ2ðu + κ2Þ + p1 + p2; 0≤u<M�K2

qψ2ðu + κ2Þ + p1ψ2ðu +K2�MÞ + p2; M≤u +K2 <N

qψ2ðu + κ2Þ + p1ψ2ðu +K2�MÞ u≥N�K2

+ p2ψðu +K2�NÞ;

8>>>>>><
>>>>>>:

ð6Þ

From the relationship (4) discussed previously, which implies that ψ uð Þ ¼ ψ2ðu +K1�K2Þ; u≥0, one
can see that the last case in (6) can be rewritten as

ψ2ðuÞ ¼ qψ2ðu + κ2Þ + p1ψ2ðu +K2�MÞ
+ p2ψ2ðu +K1�NÞ; u≥N�K2

Substituting it into (6) gives the following recursive formula in respect of ψ2ðuÞ

ψ2ðuÞ ¼

1
q ψ2ðu�κ2Þ�p1�p2½ �; κ2 ≤ u<M + κ2�K2

1
q ψ2ðu�κ2Þ�p1ψ2ðu +K2�κ2�MÞ�p2½ �; M≤ u�κ2 +K2 <N

1
q ½ψ2ðu�κ2Þ�p1ψ2ðu +K2�κ2�MÞ

�p2ψ2ðu +K1�κ2�NÞ�;
u≥N�K2 + κ2

8>>>>>><
>>>>>>:

(7)

where ψ2 ið Þ; i ¼ 0; 1; ¼ ; κ2�1 are initial values that need to be determined later on. Note that
having calculated ψ2ðuÞ we have also known the value of ψðuÞ by employing the relationship
(4) again.

2.2. Initial values

In this subsection, we shall determine the unknown initial values ψ2 ið Þ; i ¼ 0; 1; ¼ ; κ2�1, that
were left over from the previous section. Wagner (2001) considered a two-state Markov risk model
where the state of a homogeneous Markov chain at any given time determines the corresponding
claim amount. The method proposed in Wagner (2001) to determine the initial values of ruin
probabilities is of much use here.

Owing to the number of initial values and the complexity embedded in the general setup ofN,M, K1,
K2 and κ2, we ought to introduce some restrictions before we go on:

∙ N −K1 and M−K2 are both multiples of κ2, i.e. N−K1 = J1κ2 and M −K2 = J2κ2, where J1,
i = 1, 2, are positive integers.

∙ K1 −K2< κ2, as we normally expect the sum of the two discounted premium levels being
higher than the full premium. Otherwise, either κ2 is very small or both K2 and κ2 are less than
half of K1, none of which is reasonable in practice as the highest discount level in real
world is generally around or moderately >50%. Let I = K1 −K2 and as a result we have
N −K2 = J1κ2 + I.
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Then we have the following result.

Theorem 1 The initial values for the recursive formula (7) are

ψ2ðiÞ ¼
p1J2 +p2ðJ1 +1Þ

1�p1
; i ¼ 0; 1; ¼ ; I�1

p1J2 + p2J1
q ; i ¼ I; I + 1; ¼ ; κ2�1

8<
: (8)

Proof. Let p = p1 + p2. For nκ2>N −K2 + κ2 and i = 0, 1,… , I− 1, we have

ψ2ðnκ2 + iÞ�ψ2ðiÞ ¼
Xn
j¼1

ψ2ðjκ2 + iÞ�ψ2ððj�1Þκ2 + iÞ½ �

¼
XJ2
j¼1

pψ2ðjκ2 + iÞ�p½ � +
XJ1 +1

j¼J2 + 1

pψ2ðjκ2 + iÞ�p1ψ2ððj�J2�1Þκ2 + iÞ�p2½ �

+
Xn

j¼J1 +2

pψ2ðjκ2 + iÞ�p1ψ2ððj�J2�1Þκ2 + iÞ�p2ψ2ððj�J1�1Þκ2 + iÞ½ �

¼ p
Xn
j¼1

ψ2ðjκ2 + iÞ� p1
Xn

j¼J2 +1

ψ2ððj�J2�1Þκ2 + iÞ

�p2
Xn

j¼J1 + 2

ψ2ððj�J1�1Þκ2 + iÞ � pJ2�p2ðJ1�J2 + 1Þ

¼ p
Xn
j¼1

ψ2ðjκ2 + iÞ�p1
Xn�J2�1

j¼0

ψ2ðjκ2 + iÞ�p2
Xn�J1�1

j¼1

ψ2ðjκ2 + iÞ�p1J2�p2ðJ1 + 1Þ

¼ p1
Xn

j¼n�J2

ψ2ðjκ2 + iÞ�p1ψ2ðiÞ + p2
Xn

j¼n�J1

ψ2ðjκ2 + iÞ�p1J2�p2ðJ1 + 1Þ

When u→∞, ψ2ðuÞ tends to 0, thus letting n→∞, the above equation converges to

�ψ2ðiÞ ¼ �p1ψ2ðiÞ�p1J2�p2ðJ1 + 1Þ
which gives

ψ2ðiÞ ¼
p1J2 + p2ðJ1 + 1Þ

1�p1
; i ¼ 0; 1; ¼ ; I�1

It is less than 1 according to the safety loading condition given before.

Similarly, for nκ2>N −K2 + κ2 and i = I, I+ 1,… , κ2 −1, we have

ψ2ðnκ2 + iÞ�ψ2ðiÞ ¼
Xn
j¼1

ψ2ðjκ2 + iÞ�ψ2ððj�1Þκ2 + iÞ½ �

¼
XJ2
j¼1

pψ2ðjκ2 + iÞ�p½ � +
XJ1

j¼J2 + 1

pψ2ðjκ2 + iÞ�p1ψ2ððj�J2�1Þκ2 + iÞ�p2½ �

+
Xn

j¼J1 +1

pψ2ðjκ2 + iÞ�p1ψ2ððj�J2�1Þκ2 + iÞ�p2ψ2ððj�J1�1Þκ2 + iÞ½ �
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¼ p
Xn
j¼1

ψ2ðjκ2 + iÞ�p1
Xn

j¼J2 + 1

ψ2ððj�J2�1Þκ2 + iÞ�p2
Xn

j¼J1 +1

ψ2ððj�J1�1Þκ2 + iÞ�pJ2�p2ðJ1�J2Þ

¼ p
Xn
j¼1

ψ2ðjκ2 + iÞ�p1
Xn�J2�1

j¼0

ψ2ðjκ2 + iÞ�p2
Xn�J1�1

j¼0

ψ2ðjκ2 + iÞ�p1J2�p2J1

¼ p1
Xn

j¼n�J2

ψ2ðjκ2 + iÞ + p2
Xn

j¼n�J1

ψ2ðjκ2 + iÞ�pψ2ðiÞ�p1J2�p2J1

Letting n→∞, the above equation converges to

�ψ2ðiÞ ¼ �pψ2ðiÞ�p1J2�p2J1
which gives

ψ2ðiÞ ¼
p1J2 + p2J1

q
; i ¼ I; I + 1; ¼ ; κ2�1

This completes the proof. □

2.3. A numerical example

In this subsection a simple numerical example is given to illustrate the above method of calculating
ruin probabilities recursively.

Example 1. In this example, we consider a very simple insurance portfolio with uniform distributed
aggregate claims in each year. We assume that the probability of zero claim in a year is q = 0.6, and
conditional on positive claims, the annual aggregate claims follows a U(0, 1,000) distribution. We
propose two claim bands, (0, 600] and (600, 1,000]. On the basis of this portfolio, we construct the
following NCD system:

N ¼ 800; K1 ¼ 320; p2 ¼ 0:16

M ¼ K2 ¼ 300; p1 ¼ 0:24

κ2 ¼ 160; q ¼ 0:6

The selection of above parameters has taken into account the restrictions introduced before
in respect of M, N, K1, K2 and κ2, which is mainly for the purpose of illustration. In real world, the
determination of such parameters will be a far more complex practice than this example.

Using the recursive formula (7), together with the initial value results given in Theorem 1, we
calculate the values of ruin probability ψ2ðuÞ for selected u values. Accordingly, values of ψðuÞ are
determined based on the relationship (4) between these two types of ruin probabilities. These results
are summarised in Table 1.

Remarks.

2.1. Table 1 confirms that ψðuÞ is actually a shifted version of ψ2ðuÞ by K1 −K2, i.e. ψðuÞ ¼
ψ2 ðu + 20Þ in this example.

2.2. Each pair of adjacent u values in the table gives us an interval within which ψ2 remains
constant. For example, ψ2ðuÞ ¼ ψ2ð0Þ for 0≤u<20, ψ2ðuÞ ¼ ψ2ð20Þ for 20≤ u< 180 and so
on. Except the first one, all of the other intervals have the same length, i.e. κ2 = 160.

2.3. The initial values of ψ2ðuÞ are ψ2ðuÞ ¼ 0:84211 for u = 0,… , 19 and ψ2ðuÞ ¼ 0:8 for
u = 20,… , 159.
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2.4. To be able to determine the initial values, ψ2ðuÞ, u = 0, 1,… , κ2 − 1, some restrictions were
introduced at the beginning of previous subsection, i.e. N −K1 and M −K2 are both multiples of
κ2. In addition, we assumed that both θK1 and ΘK1 are positive integers in section 1. These
assumptions have put restrictions on the values of M, N, K1, K2 and κ2. When the given
problem does not satisfy these assumptions, e.g. the discounted premiums are not integers, we
need to work out some satisfactory values forN, K1 and K2 to get a close enough fit to the given
real problem and then to convert the obtained probabilities to the original ruin problem. More
detailed discussions will be given later on in a simplified case.

3. A Simplified Case

In this section, we shall consider an insurance portfolio with a simplified NCD system, i.e. with only two
levels of premiums instead of three. This case is built simply by allowing p1 = 0 and κ2 = K2 in the
model studied in previous sections. As a result, the aggregate claims amount is either 0 orN in each time
period, which is less meaningful in real practice. However, by doing this, the original set of parameters
reduces to a smaller set containing N, K1, K2, q and p (instead of p2), which enables us to derive some
explicit results and to study the impact of discount in premiums on ruin probabilities more easily.

3.1. Main results

First, we obtain the following recursion of ruin probability ψðuÞ.

Theorem 2 The ultimate ruin probability, ψðuÞ, u≥K2, of risk model (1) satisfies the following
recursive formula:

ψðuÞ ¼
1� 1

qju 1�ψðiuÞ½ �; K2 ≤ u<N +K2�K1

1
q ψðu�K2Þ�pψðu +K1�K2�NÞ½ �; u≥N +K2�K1

8<
: (9)

where integers iu and ju are the remainder and quotient from dividing u by K2, i.e. u = iu+ juK2,
0≤ iu≤K2 − 1, ju≥ 1, with initial values ψ iuð Þ; iu ¼ 0; 1; ¼ ; K2�1, yet to determine.

Table 1. Some values of ψ2ðuÞ and ψðuÞ of Example 1.

ψ2ðuÞ ψ2ðuÞ

u = 0 0.84211 u = 2,100 0.20051 ψ(2,080)
20 0.80000 ψ(0) 2,260 0.17969 ψ(2,240)
180 0.74667 ψ(160) 2,420 0.16104 ψ(2,400)
340 0.67911 ψ(320) 2,580 0.14433 ψ(2,560)
500 0.59354 ψ(480) 2,740 0.12935 ψ(2,720)
660 0.53848 ψ(640) 2,900 0.11592 ψ(2,880)
820 0.48297 ψ(800) 3,060 0.10389 ψ(3,040)
980 0.43067 ψ(960) 3,220 0.09311 ψ(3,200)
1,140 0.38723 ψ(1,120) 3,380 0.08345 ψ(3,360)
1,300 0.34690 ψ(1,280) 3,540 0.07479 ψ(3,520)
1,460 0.31061 ψ(1,440) 3,700 0.06703 ψ(3,680)
1,620 0.27860 ψ(1,600) 3,860 0.06007 ψ(3,840)
1,780 0.24963 ψ(1,760) 4,020 0.05384 ψ(4,000)
1,940 0.22369 ψ(1,920) 4,180 0.04825 ψ(4,160)
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Proof. Considering all possible experience of model (1) in the first time period, we obtain the
following recursion:

ψðuÞ ¼ qψ u +K2ð Þ + pψðu +K1�NÞ (10)

which is a reduced version of result (2). One obvious difference here is that no supplementary
probabilities of ruin are needed any more if we examine the no claim case in the same way as in section 2.

Next, we shall examine two ranges of u. For 0≤u<N −K1, equation (10) becomes

ψðuÞ�qψ u +K2ð Þ ¼ p (11)

And for u≥N−K1, we have

ψðuÞ�qψ u +K2ð Þ ¼ pψðu +K1�NÞ (12)

Combining (11) and (12) gives a recursive formula for ψðuÞ

ψðuÞ ¼
1
q ψðu�K2Þ�p½ �; K2 ≤ u<N +K2�K1

1
q ψðu�K2Þ�pψðu +K1�K2�NÞ½ �; u≥N +K2�K1

8<
:

with initial values ψðuÞ, u = 0, 1,… , K2 − 1. Based on the first part of formula (9) one can obtain, for
K2≤ u≤K2 +N−K1 −1

ψðuÞ ¼ ψðiuÞ + qju�1
qju

¼ 1� 1
qju

1�ψðiuÞ½ � (13)

This completes the proof. □

Having obtained the recursive formula for ψðuÞ in Theorem 2, next we need to determine the initial
values ψðiuÞ, iu = 0, 1,… , K2−1. The derivations again follow Wagner (2001). Similar restrictions on
the parameters exist, i.e.N−K1 = J1K2, where J1 is a positive integer. Then we have the following result.

Theorem 3 The initial values for the recursive formula (9) are

ψðiuÞ ¼ pJ1
1�p

; iu ¼ 0; 1; ¼ ; K2�1 (14)

Proof. For nK2>K2 +N−K1, we have

ψðnK2Þ�ψð0Þ ¼
Xn
j¼1

ψðjK2Þ�ψððj�1ÞK2Þ½ �

¼
XJ1
j¼1

½pψðjK2Þ�p� +
Xn

j¼J1 + 1

½pψðjK2Þ�pψððj�1ÞK2 +K1�NÞ�

¼ p
Xn
j¼1

ψðjK2Þ�p
Xn�J1�1

j¼0

ψðjK2Þ�pJ1

¼ p
Xn

j¼n�J1

ψðjK2Þ�pψð0Þ�pJ1

When u→∞, ψðuÞ tends to 0, thus letting n→∞, the above equation converges to

�ψð0Þ ¼ �pψð0Þ�pJ1
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which gives ψð0Þ ¼ pJ1
1�p. It is less than 1 according to the safety loading condition.

Similarly, for iu = 1, 2,… , K2 − 1, J1K2 + iu≤K2 +N−K1− 1 also holds. Therefore

ψðnK2 + iuÞ�ψðiuÞ ¼
Xn
j¼1

ψðjK2 + iuÞ�ψððj�1ÞK2 + iuÞ½ �

¼
XJ1
j¼1

pψðjK2 + iuÞ�p½ � +
Xn

j¼J1 + 1

pψðjK2 + iuÞ�pψððj�1ÞK2 + iu +K1�NÞ½ �

¼ p
Xn

j¼n�J1

ψðjK2 + iuÞ�pψðiuÞ�pJ1

Letting n→∞ in the above equation and solving for ψðiuÞ gives
ψðiuÞ ¼ pJ1

1�p

which is equal to ψð0Þ. This completes the proof. □

Remark.Note that result (14) cannot be obtained directly by simply letting p1 = 0 in result (8), as the
ruin probabilities involved are different. However, one can verify that (14) is a special case of
(8) making use of the relationship between ψ and ψ2 discussed previously.

Under the assumptions of Theorems 2 and 3, it is of great interest to also obtain an explicit
expression of ψðuÞ.

Theorem 4 The ruin probability ψðuÞ; u≥K2 of risk model (1) satisfies the following
expression:

ψðuÞ ¼ 1� q�pJ1
qju +1

1 +
Xβ
n¼1

ð�pqJ1Þn
Xju�nJ1�n +1

k¼1

anðkÞ
" #

(15)

where β is the quotient from dividing ju by J1 + 1 and anðkÞ¼̂
Pk

j¼1 an�1ðjÞ, k = 1,… , ju − nJ1 − n+ 1
with a1(i) = 1, i = 1,… , ju − J1.

Proof. To prove this result we divide the possible u values into the following ranges in terms of
β values and consider them one by one.

β ¼ 0 : 1≤ ju<J1 + 1 ) K2 ≤u<K2 +N�K1

β ¼ 1 : J1 + 1≤ ju<2ðJ1 + 1Þ ) K2 +N�K1 ≤u<2ðK2 +N�K1Þ

..

.

β ¼ m : mðJ1 + 1Þ≤ ju<ðm + 1ÞðJ1 + 1Þ
) mðK2 +N�K1Þ≤ u<ðm + 1ÞðK2 +N�K1Þ

..

.
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First, for the convenience of derivation, we define a function ξiu; ju that equates ψðuÞ. Then
under the assumption of Theorem 3, the result in Theorem 2 can be rewritten as

ξiu; ju ¼
1� 1

qju 1�ψðiuÞ½ �; 1≤ ju<J1 + 1

1
q ξiu; ju�1� p

q ξiu; ju�1�J1 ; ju ≥ J1 + 1

8<
:

By Theorem 3, the first half of the right-hand side in the above formula shows that result (15)
holds for β = 0.

When β = 1, i.e. J1 + 1≤ ju< 2(J1 + 1), we have

ξiu ; ju ¼
1
q
ξiu; ju�1�

p
q
ξiu; ju�1�J1

¼ 1
q
ξiu; ju�1�

p
q

1� 1
qju�1�J1

1�ψðiuÞð Þ
� �

Let ϕðuÞ ¼ 1�ψðuÞ, we go on with the above derivation and obtain

ξiu; ju ¼
1
q
ξiu ; ju�1�

p
q
+

p
qju�J1

ϕðiuÞ

¼ 1
q

1
q
ξiu ; ju�2�

p
q
+

p
qju�1�J1

ϕðiuÞ
� �

� p
q
+

p
qju�J1

ϕðiuÞ

¼ 1
q2

ξiu ; ju�2�
p
q
+

p
q2

� �
+

2p
qju�J1

ϕðiuÞ

..

.

¼ 1
qju�J1

ξiu; J1�
Xju�J1

k¼1

p
qk

+
ðju�J1Þp
qju�J1

ϕðiuÞ

¼ 1
qju�J1

1� 1
qJ1

ϕðiuÞ
� �

+
ðju�J1Þp
qju�J1

ϕðiuÞ + 1� 1
qju�J1

¼1�ϕðiuÞ
qju

1�ðju�J1ÞpqJ1
� �

which coincide with (15) given β = 1. Now we assume that (15) holds for β = m, i.e. for
m(J1 + 1)≤ ju< (m+ 1)(J1 + 1)

ξiu ; ju ¼ 1� q�pJ1
qju + 1

1 +
Xm
n¼1

ð�pqJ1Þn
Xju�nJ1�n +1

k¼1

anðkÞ
" #

On a discrete-time risk model

331

https://doi.org/10.1017/S1748499515000032 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499515000032


By induction, to complete our proof we only need to show that (15) also holds for β = m+1. Let
α = ju − β(J1 + 1). As

ξiu; ju ¼
1
q
ξiu; ju�1�

p
q
ξiu; ju�1�J1

¼ 1
q
ξiu; ju�1�

p
q

1� q�pJ1
qju�J1

1 +
Xm
n¼1

�
�pqJ1

	n Xju�ðn+ 1ÞJ1�n

k¼1

anðkÞ
" #( )

¼ 1
q

1
q
ξiu ; ju�2�

p
q

1� q�pJ1
qju�1�J1

1 +
Xm
n¼1

�
�pqJ1

	n Xju�1�ðn+1ÞJ1�n

k¼1

anðkÞ
 !" #( )

� p
q

1� q�pJ1
qju�J1

1 +
Xm
n¼1

�
�pqJ1

	n Xju�ðn+ 1ÞJ1�n

k¼1

anðkÞ
" #( )

¼ 1
q2

ξiu; ju�2 +
pðq�pJ1Þ
qju +1�J1

1 +
Xm
n¼1

�
�pqJ1

	n Xju�1�ðn+ 1ÞJ1�n

k¼1

anðkÞ
" #

+
pðq�pJ1Þ
qju + 1�J1

1 +
Xm
n¼1

ð�pqJ1Þn
Xju�ðn +1ÞJ1�n

k¼1

anðkÞ
" #

� p
q
+

p
q2

� �

..

.

¼ 1
qα +1

ξiu;mðJ1 + 1Þ + J1 +
ðα + 1Þpðq�pJ1Þ

qju + 1�J1
+
pðq�pJ1Þ
qju +1�J1

Xm
n¼1

�
�pqJ1

	n

´
Xju�ðn+ 1ÞJ1�n

k¼1

anðkÞ +
Xju�1�ðn +1ÞJ1�n

k¼1

anðkÞ + � � � +
Xju�α�ðn+ 1ÞJ1�n

k¼1

anðkÞ
" #

� p
q
+

p
q2

+ � � � + p
qα + 1

� �

¼ 1
qα +1

1� q�pJ1
qðm +1ÞðJ1 + 1Þ 1 +

Xm
n¼1

�
�pqJ1

	n Xðm + 1ÞðJ1 +1Þ�nJ1�n

k¼1

anðkÞ
" #( )

+
ðα + 1Þpðq�pJ1Þ

qju +1�J1
+ 1� 1

qα +1
� q�pJ1

qju + 1
Xm +1

n¼2

�
�pqJ1

	n

´
Xju�nJ1�n+ 1

k¼1

an�1ðkÞ +
Xju�1�nJ1�n +1

k¼1

an�1ðkÞ + � � � +
Xju�α�nJ1�n+ 1

k¼1

an�1ðkÞ
" #

¼1� q�pJ1
qju +1

(
1 +

Xm
n¼1

ð�pqJ1Þn
Xðm +1ÞðJ1 +1Þ�nJ1�n

k¼1

anðkÞ�ðα + 1ÞpqJ1
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+
Xm +1

n¼2

�
�pqJ1

	n
anðju�nJ1�n + 1Þ + anðju�1�nJ1�n + 1Þ + � � � + anððm + 1ÞðJ1 + 1Þ�nJ1�n + 1Þ½ �




¼1� q�pJ1
qju +1

1 +
Xm + 1

n¼1

�
�pqJ1

	n Xðm +1ÞðJ1 + 1Þ�nJ1�n

k¼1

anðkÞ +
Xm + 1

n¼1

�
�pqJ1

	n Xju�nJ1�n +1

k¼ðm +1ÞðJ1 + 1Þ�nJ1�n +1

anðkÞ
2
4

3
5

¼1� q�pJ1
qju +1

1 +
Xβ
n¼1

�
�pqJ1

	n Xju�nJ1�n+ 1

k¼1

anðkÞ
" #

we know (15) holds for β = m+ 1. This completes the proof. □

Remark. Comparing Theorems 3 and 4 one can see that the initial values (14) also satisfy (15) with
ju = 0.

3.2. Some discussions

Having obtained the complete explicit expression of ψðuÞ, u≥ 0, one can calculate the ruin prob-
abilities for given u values as long as N, K1 and K2 are known. Before we present more numerical
examples, we would like to make several remarks regarding the ruin probability calculation under
our simplified NCD model.

Remarks.

3.1 We would like to continue our discussion in Remark 2.4 regarding the restrictions on
parameters proposed in this paper. In the context of the simplified model, the assumptions are
as follows: N −K1 being a multiple of K2 and θK1 = K2 being a positive integer. As mentioned
in Remark 2.4, when the given problem does not satisfy these assumptions, we need to search
for a set of values for N, K1 and K2 to get a close enough fit to the given real problem and then
to convert the obtained probabilities to the ruin probability under consideration. As normally
N is much larger than K1 and K2, we do have a certain level of freedom to choose appropriate
N, K1 and K2 values. Without loss of generality, we would require the greatest common factor
(GCF) of the chosen N, K1 and K2 to be 1. Two simple examples of how to choose appropriate
N, K1 and K2 values are:

(a) Given that the maximum total claim size in a year is 100, the full annual premium is 1 and
we are considering a 10% discount (θ = 0.9), then we let N = 1,000, K1 = 10 and K2 = 9
and the assumptions are satisfied. Denote ξðuÞ the ruin probability with initial surplus u
that is calculated based on these parameters. The original ruin probability can be obtained
as ψðuÞ ¼ ξð10uÞ.

(b) For a 15% (θ = 0.85) discount, there are two options. The first one is N = 2,009, K1 = 20
and K2 = 17, and the claim size is 100.45 times the full premium level, where
ψ1ðuÞ ¼ ξ1ð20uÞ. The second one is N = 1,992, K1 = 20 and K2 = 17, and the claim
size is 99.6 times the full premium level, where ψ2ðuÞ ¼ ξ2ð20uÞ. Both cases are not exactly
the same as the given situation, but very close to it. One might choose either option, or
simply use ðψ2ðuÞ; ψ1ðuÞÞ as an interval covering the true ψðuÞ values.

3.2 For some special discount levels, i.e. θ ¼ 1; 1
2 ;

1
3 ;

1
4 ; ¼ , the search for N, K1 and K2 values

is trivial and will always lead to K2 = 1. For instance, when N = 1,000, θ ¼ 1
2, K1 = 10,

we can get K2 = 5 and N −K1 = 198×K2. A risk model proposed above with this set of
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parameters will have the same ruin probabilities (with initial surpluses under proper scaling) as
a model with N = 200, K1 = 2 and K2 = 1. From the calculation point of view, these special
discount levels can simplify all the previous results significantly. However, from the practical
point of view, they mainly cover some very high levels of discount, i.e. 50%, 66.7%, 75% and
so on. In real life, general insurers may be happy to offer policyholders discounts on premiums
up to 50% under certain terms and conditions (Lemaire & Zi (1994) showed that there are
many bonus-malus systems in European countries offering a 50% discount), but discounts
over 50% are not often seen. Therefore, we are not going to put much attention on these cases
in the sequel.

3.3 If the original problem proposes N, K1 and K2 values satisfying the two mentioned
assumptions, but their GCF> 1, then we should proceed with smaller ones such that their
GCF = 1. Then a conversion is needed to generate the original ruin probabilities.

3.4 We know for discrete risk models with non-integer irregular premiums/surpluses, how to build
a usable recursive framework for calculation purposes is still an open problem. The above
method does not solve the general problem, but hopefully it could give readers a hint when
searching for a better solution. As one can see from Theorem 4, the ruin probability ψðuÞ is
independent of iu, which means, for our risk model (1), if we use K2 as a monetary unit, then
the non-integer part out of the initial surplus u will not have any impact on the corresponding
ultimate ruin probability. Of course, this argument is based on the assumptions we made so far
and it is not a general result.

3.3. More numerical examples

In the following, we shall examine the impact of the premium discounts on the ultimate ruin
probability ψðuÞ through two numerical examples. We will illustrate how much the ruin probability
will change with different level of discount on premiums under the assumptions of our model.

Example 2. In this example, we consider the following five cases:

(1) N = 4,000, K1 = 40, K2 = 33, p = 0.0008;

(2) N = 2,009, K1 = 20, K2 = 20, K2 = 17, p = 0.008;

(3) N = 1,000, K1 = 10, K2 = 9, p = 0.008;

(4) N = 1,996, K1 = 20, K2 = 19, p = 0.008;

(5) N = 100, K1 = 1, K2 = 1, p = 0.008.

These cases share the same claim/premium ratio, i.e. N=K1, i.e. 100, where cases (2) and (4) are
approximately equal to 100. The probabilities of having positive claims are also equal. Some quantities
of interest regarding these five cases are summarised in Table 2. Note that case (5) is a simplified
situation that leads to an ordinary compound binomial risk model with no premium discount.

An obvious difference among these cases is about the safety loadings that are given in the column
entitled E½Cn�

E½X1� �1. Clearly, the safety loading increases from case (1) to (5) significantly.

Before we go on to discuss the ruin probabilities, we need to clarify an important issue: the monetary
scales (assumed to be measured by the full premium levels). To be able to compare the corresponding
ruin probabilities among the cases on a fair basis, sets of equivalent initial surpluses should be used
that are proportional to the corresponding full premium levels. For example, if we consider u = 1 for
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case 5, then we should consider u = 40 for case 1, u = 20 for cases 2 and 4 and u = 10 for case 3.
Having this issue clarified, Table 3 provides ruin probability ψðuÞ for selected u values in each case
given above, where the superscript (i) corresponds to case (i).

One can see from Tables 2 and 3 that

∙ under the given conditions, the corresponding ultimate ruin probabilities ψðuÞ for the five cases are
very different;

∙ case (5) has the lowest ruin probabilities and the lowest (0) discount, and case (1) has the highest
ruin probabilities and the highest discount level as well;

Table 2. Some characteristics of Example 2.

Case N/K1 θ E[X1] E[Cn]
E½Cn �
E½X1 � �1 J1

(1) 100.00 0.825 32.000 33.056 3.30% 120
(2) 100.45 0.850 16.072 17.024 5.93% 117
(3) 100.00 0.900 8.000 9.008 12.60% 110
(4) 99.80 0.950 15.968 19.008 19.04% 104
(5) 100.00 1.000 0.800 1.000 25.00% 99

Table 3. Some values of ψðuÞ of Example 2.

u ψ (1)(40u) ψ (2)(20u) ψ (3)(10u) ψ (4)(20u) ψ (5)(u)

0 0.9677 0.9435 0.8871 0.8387 0.7984
10 0.9645 0.9383 0.8767 0.8252 0.7815
20 0.9609 0.9321 0.8653 0.8091 0.7633
30 0.9569 0.9252 0.8528 0.7931 0.7435
40 0.9526 0.9177 0.8392 0.7740 0.7220
50 0.9478 0.9101 0.8244 0.7551 0.6987
60 0.9425 0.9009 0.8082 0.7325 0.6735
70 0.9367 0.8909 0.7904 0.7101 0.6462
80 0.9303 0.8799 0.7711 0.6833 0.6167
90 0.9226 0.8688 0.7479 0.6568 0.5846
100 0.9150 0.8548 0.7255 0.6264 0.5515
150 0.8876 0.8099 0.6510 0.5355 0.4513
200 0.8586 0.7640 0.5771 0.4492 0.3616
250 0.8313 0.7215 0.5140 0.3795 0.2913
300 0.8044 0.6811 0.4565 0.3193 0.2344
350 0.7784 0.6430 0.4063 0.2695 0.1885
400 0.7536 0.6070 0.3608 0.2267 0.1517
450 0.7293 0.5731 0.3211 0.1914 0.1221
500 0.7060 0.5410 0.2852 0.1610 0.0982
600 0.6611 0.4822 0.2255 0.1144 0.0636
700 0.6194 0.4293 0.1782 0.0812 0.0412
800 0.5802 0.3826 0.1409 0.0577 0.0266
900 0.5436 0.3410 0.1114 0.0410 0.0172
1,000 0.5093 0.3039 0.0879 0.0291 0.0112
2,000 0.2648 0.0959 0.0084 0.0010 0.0001
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∙ the above point is consistent with the order of safety loadings of the five cases;

∙ as u increases, the differences between the ruin probabilities of the five cases increase quickly to
much higher than the differences between the discount levels.

Example 3. In this example, we reconsider the five cases given in Example 2 with changed prob-
abilities for claims. One more case is added for the purpose of better comparisons. The parameters
are given below:

(1) N = 4,000, K1 = 40, K2 = 33, p = 0.00751;

(2) N = 2,000, K1 = 20, K2 = 17, p = 0.00770;

(3) N = 1,000, K1 = 10, K2 = 9, p = 0.00819;

(4) N = 1,996, K1 = 20, K2 = 19, p = 0.00866;

(5) N = 100, K1 = 1, K2 = 1, p = 0.00909;

(6) N = 200, K1 = 2, K2 = 1, p = 0.00457.

In the first five cases, the full premiums and discount levels remain the same but claim size dis-
tributions vary across the five cases such that their safety loadings stay at the same level (10%). Case
(6) has a much higher discount level with the same safety loading as other cases. Table 4 summarises
some quantities of interest regarding these six cases.

Similar to Table 3, Table 5 summarises ψðuÞ values of the above six cases for selected u values.
Comparing Tables 3 and 5, one can see that the patterns shown in each table are totally different. In
Table 5, the ruin probabilities of cases (1) − (5) stay very close to each other for the given u values.
Moreover, there is no fixed order among them either. Case (6) also shows similar ruin probability
values that are consistently lower than other five cases on a marginal scale. It implies that under the
assumptions given in Example 3, in particular the equal safety loading condition, ruin probabilities
do not follow the same quantitative order as the premium discount levels. In addition, the full
premium in the first time period, which is not included in the safety loading calculation, seems having
played a key role in reducing the ruin probabilities for case (6).

4. The Deficit at Ruin

In this section, we shall study the deficit at ruin in our given risk model (1) under the simplified NCD
system considered in section 3, mainly for simplicity reasons. Similar consideration could be taken in
a more general situation, i.e. with more levels of premium discount, but with more tedious deriva-
tions involved. Note that Wagner (2002) also considered this probability for the Markov risk model
defined in Wagner (2001).

If ruin occurs, then jUTj = y denotes the deficit at ruin satisfying 0< y≤N −K2. We define

φðu; yÞ ¼
PrðT<1; jUT j ¼ y jUð0Þ ¼ uÞ; u≥0

δ�u;y; u<0

(

which describes the probability that ruin occurs and the deficit at ruin equals y, where δ− u, y is an
indicator function of {−u = y}. Obviously, δ−u, y = δu, −y. Further, φðu; yÞ=ψðuÞ gives the distribution
of the deficit at ruin, given that ruin has occurred.
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Under the same assumptions with respect to N, K1 and K2, i.e. the GCF of N, K1 and K2 is 1 and
N−K1 = J1K2, we know that the potential deficit can only take values y = 1, 2,… , N−K2. Clearly,
for u≥ 0

ψðuÞ ¼
XN�K2

y¼1

φðu; yÞ

Given y>0, considering the first time period we obtain the following recursion of φ(u, y):

φðu; yÞ ¼ qφðu +K2; yÞ + pφðu +K1�N; yÞ (16)

Table 4. Some characteristics of Example 3.

Case θ E[X1] E[Cn]
E½Cn �
E½X1 � �1 J1

(1) 0.825 30.048 33.053 10% 120
(2) 0.850 15.476 17.023 10% 117
(3) 0.900 8.189 9.008 10% 110
(4) 0.950 17.281 19.009 10% 104
(5) 1.000 0.909 1.000 10% 99
(6) 0.500 0.913 1.005 10% 198

Table 5. Some values of ψðuÞ of Example 3.

u ψ (1)(40u) ψ (2)(20u) ψ (3)(10u) ψ (4)(20u) ψ (5)(u) ψ (6)(u)

0 0.90826 0.90826 0.90826 0.90826 0.90826 0.90823
10 0.89957 0.90012 0.89957 0.89992 0.89948 0.89944
20 0.89006 0.89040 0.89006 0.88988 0.88987 0.88980
30 0.87965 0.87975 0.87966 0.87987 0.87934 0.87924
40 0.86825 0.86805 0.86826 0.86781 0.86780 0.86766
50 0.85577 0.85634 0.85579 0.85580 0.85516 0.85498
60 0.84211 0.84237 0.84214 0.84133 0.84131 0.84108
70 0.82716 0.82704 0.82720 0.82692 0.82614 0.82584
80 0.81079 0.81022 0.81084 0.80954 0.80951 0.80915
90 0.79130 0.79337 0.79122 0.79224 0.79130 0.79086
100 0.77223 0.77328 0.77221 0.77219 0.77218 0.77166
150 0.70742 0.70801 0.70743 0.70744 0.70677 0.70596
200 0.64203 0.64304 0.64200 0.64197 0.64195 0.64091
250 0.58381 0.58521 0.58473 0.58367 0.58418 0.58294
300 0.53142 0.53313 0.53139 0.53136 0.53135 0.52997
350 0.48298 0.48492 0.48374 0.48287 0.48329 0.48180
400 0.43967 0.44110 0.43965 0.43883 0.43961 0.43804
450 0.39961 0.40121 0.39955 0.39951 0.39986 0.39824
500 0.36320 0.36495 0.36374 0.36306 0.36371 0.36206
600 0.30050 0.30243 0.30094 0.30038 0.30091 0.29926
700 0.24862 0.25022 0.24899 0.24852 0.24896 0.24735
800 0.20570 0.20702 0.20600 0.20524 0.20598 0.20445
900 0.17019 0.17156 0.17015 0.16981 0.17042 0.16899
1,000 0.14058 0.14194 0.14077 0.14049 0.14100 0.13968
2,000 0.02106 0.02147 0.02112 0.02100 0.02119 0.02079
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After assessing certain ranges of u values, we have

φðu; yÞ ¼
1
qφðu�K2; yÞ� p

q δu�K2 +K1�N;�y; K2 ≤u<K2 +N�K1

1
qφðu�K2; yÞ� p

qφðu�K2 +K1�N; yÞ; u≥K2 +N�K1

8<
: (17)

where δx, y = 1 if x = y and is 0 otherwise. The above recursive formula can be used to calculate
φ(u, y) if the initial values φ(0, y),… , φ(K2 − 1, y) are known for any given y. Next, we shall employ
the same method as the one used in section 3 to determine the initial values with the same
assumptions regarding N, K1 and K2.

Suppose that nK2>K2 +N−K1, then we have

φðnK2; yÞ�φð0; yÞ ¼
Xn
j¼1

φðjK2; yÞ�φððj�1ÞK2; yÞ½ �

¼ p
XJ1
j¼1

φðjK2; yÞ�δy ; ðJ1�j +1Þ +K2

h i
+ p

Xn
j¼J1 + 1

φðjK2; yÞ�φððj�1�J1ÞK2; yÞ½ �

¼ p
Xn
j¼1

φðjK2; yÞ�p
Xn�J1�1

j¼0

φðjK2; yÞ�p
XJ1
j¼1

δy; ðJ1�jÞK2 +K2

¼ p
Xn

j¼n�J1

φðjK2; yÞ�pφð0; yÞ�p
XJ1
j¼1

δy; ðJ1�jÞK2 +K2

When u→∞, φ(u, y) tends to 0, thus letting n→∞, the above equation becomes

φð0; yÞ ¼ pφð0; yÞ + p
XJ1
j¼1

δy; ðJ1�j +1ÞK2

Denote iy and jy the remainder and quotient from y divided by K2. One can see that

XJ1
j¼1

δy; ðJ1�j +1ÞK2
¼

1 if iy ¼ 0; 1≤ jy ≤ J1

0 otherwise

(

Moreover, if K1< 2K2, i.e. θ>0.5, then N −K2 = N −K1 +K1 −K2 = J1K2 +K1 −K2, which
leads to jy≤ J1; however, if θ≤ 0.5, then jy≤ J1 is not always satisfied. Therefore, we have the
following result

φð0; yÞ ¼
p

1�p if iy ¼ 0; 1≤ jy ≤ J1

0 otherwise

(
(18)
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Similarly, for i = 1, 2,… , K2 −1

φðnK2 + i; yÞ�φði; yÞ ¼
Xn
j¼1

φðjK2 + i; yÞ�φððj�1ÞK2 + i; yÞ½ �

¼ p
XJ1
j¼1

φðjK2 + i; yÞ�δy; ðJ1�jÞK2 +K2�i
� �

+ p
Xn

j¼J1 +1

φðjK2 + i; yÞ�φððj�1�J1ÞK2 + i; yÞ½ �

¼ p
Xn
j¼1

φðjK2 + i; yÞ�p
Xn�J1�1

j¼0

φðjK2 + i; yÞ�p
XJ1
j¼1

δy; ðJ1�jÞK2 +K2�i

¼ p
Xn

j¼n�J1

φðjK2 + i; yÞ�pφði; yÞ�p
XJ1
j¼1

δy; ðJ1�jÞK2 +K2�i

When u→∞, φ(u, y) tends to 0, thus letting n→∞, the above equation becomes

φði; yÞ ¼ pφði; yÞ + p
XJ1
j¼1

δy; ðJ1�jÞK2 +K2�i

Similarly, after considering all possible iy and jy values, we obtain, for i = 1, 2,… , K2 −1

φði; yÞ ¼
p

1�p if iy ¼ K2�i; 0≤ jy ≤ J1�1

0 otherwise

(
(19)

In the following, we shall derive explicit expressions of φ(u, y) using previous results (17)–(19). Let
γiu ; ju; y¼̂φðu; yÞ. The first case we consider is iu = iy = 0. For 1≤ ju< J1 + 1, we have

γ0; ju ; y ¼
1
q
γ0; ju�1; y�

p
q
δðJ1�ju +1ÞK2; y

¼ 1
q

1
q
γ0; ju�2; y�

p
q
δðJ1�ju +2ÞK2; y

� �
� p
q
δðJ1�ju + 1ÞK2 ; y

..

.

¼ 1
qju

γ0;0; y�
Xju
k¼1

p
qk

δðJ1�ju +kÞK2 ; y

¼

p
qju + 1 1≤ jy ≤ J1�ju

p
qju + 1 1�pqJ1 + 1�jy

� �
J1�ju + 1≤ jy ≤ J1

0 otherwise

8>>>><
>>>>:

ð20Þ
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For J1 + 1≤ ju<2(J1 + 1) and 1≤ jy≤ J1 − ju, we have

γ0; ju; y ¼
1
q
γ0; ju�1; y�

p
q
γ0; ju�1�J1 ; y

¼ 1
q
γ0; ju�1; y�

p2

qju�J1 + 1

¼ 1
q2

γ0; ju�2; y�
2p2

qju�J1 +1

..

.

¼ 1
qju�J1

γ0; J1 ; y�
ðju�J1Þp2
qju�J1 +1

¼ p
qju + 1

�ðju�J1Þp2
qju�J1 + 1

¼ p
qju + 1

1�ðju�J1ÞpqJ1
� � ð21Þ

From (20) we can see that for J1 + 1≤ ju<2(J1 + 1) and J1 − ju +1≤ jy≤ J1

γ0; ju ; y ¼
p

qju + 1
1�pqJ1 +1�jy
� �

1�ðju�J1ÞpqJ1
� �

(22)

Put (21) and (22) together we have

γ0; ju ; y ¼

p
qju + 1 1�ðju�J1ÞpqJ1

� �
1≤ jy ≤ J1�ju

p
qju + 1 1�pqJ1 +1�jy

� �
1�ðju�J1ÞpqJ1
� �

J1�ju + 1≤ jy ≤ J1

0 otherwise

8>><
>>: (23)

Similar to Theorem 4, by induction, from (17), (20) and (23) one can prove that, for iu = iy = 0,
ju≥1

φðu; yÞ ¼

p
qju + 1 1 +

Pβ
n¼1

ð�pqJ1 Þn Pju�nJ1�n +1

k¼1
anðkÞ

" #
1≤ jy ≤ J1�ju

pð1�pqJ1 + 1�jy Þ
qju + 1 1 +

Pβ
n¼1

ð�pqJ1Þn Pju�nJ1�n +1

k¼1
anðkÞ

" #
J1�ju + 1≤ jy ≤ J1

0 otherwise

8>>>>>>>><
>>>>>>>>:

(24)

where β and an(k) have been defined in Theorem 4.

The second case we shall consider is 1≤ iu≤K2 −1. In this case for φ(u, y) to be non-zero, we need
iy = K2 − iu. In the same manner as above, one can derive the following result of φ(u, y) and the
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details of derivation will be omitted here: for ju≥1

φðu; yÞ ¼

p
qju + 1 1 +

Pβ
n¼1

�pqJ1
� �n Pju�nJ1�n+ 1

k¼1
anðkÞ

" #
0≤ jy ≤ J1�ju�1

p 1�pqJ1�jyð Þ
qju + 1 1 +

Pβ
n¼1

�pqJ1
� �n Pju�nJ1�n+ 1

k¼1
anðkÞ

" #
J1�ju ≤ jy ≤ J1�1

0 otherwise

8>>>>>>>><
>>>>>>>>:

(25)

Thus, (18), (19), (24) and (25) form a complete set of explicit expressions of φ(u, y) for u≥ 0 and
1≤ y≤N −K2.

5. Conclusions

This paper considered a discrete-time risk model with claim correlated premiums. At first, an NCD
premium system with three levels of premium was considered, the full premium and discounted ones.
Premiums in next time period depend on claim amounts in the previous period, the higher the claims
the higher the premiums. Under this structure, a recursion approach was developed to calculating the
ultimate ruin probabilities by introducing certain conditions on model parameters. A numerical
example is given to illustrate the easiness of applying the recursive approach.

Thereafter, a simplified NCD system with only two levels of premium was examined in greater detail.
Explicit results of the ruin probability were derived under similar parameter assumptions. Some
discussions regarding a number of practical issues were made afterward with more numerical
examples provided. These example have shown that:

∙ Given the claim distribution and full premium level, the higher the discount offered on premiums
under the NCD mechanism, the higher the probability of ruin the insurer needs to face, because of
the reduced safety loading level.

∙ When safety loadings are at the same level, the impact of premium discounts on ruin probabilities
is marginal. The difference between the ruin probabilities with two significantly different premium
discount levels could be largely devoted to the difference between initial premium amounts, which
are excluded from the safety loading calculations. That is to say, the higher the initial premium
compares with its discounted level, the more buffer the insurer gets from this initial premium for
its own protection.

To end this paper, the joint probability of ruin and the deficit at ruin was also studied in the
simplified NCD case. Recursive formulae for the joint probabilities were derived and explicit results
were obtained as well.
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