
Adv. Appl. Prob. 52, 213–236 (2020)
doi:10.1017/apr.2019.57

© Applied Probability Trust 2020

GUMBEL AND FRÉCHET CONVERGENCE
OF THE MAXIMA OF INDEPENDENT
RANDOM WALKS

THOMAS MIKOSCH,∗AND

JORGE YSLAS,∗ ∗∗ University of Copenhagen

Abstract

We consider point process convergence for sequences of independent and identically
distributed random walks. The objective is to derive asymptotic theory for the largest
extremes of these random walks. We show convergence of the maximum random walk to
the Gumbel or the Fréchet distributions. The proofs depend heavily on precise large devi-
ation results for sums of independent random variables with a finite moment generating
function or with a subexponential distribution.
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1. Introduction

Let (Xi) be an independent and identically distributed (i.i.d.) sequence of random variables
with generic element X, distribution F, and right tail F = 1 − F. Define the corresponding
partial sum process

S0 = 0, Sn = X1 + · · · + Xn, n ≥ 1.

Consider i.i.d. copies (Sni)i=1,2,... of Sn. We also introduce an integer sequence (pn) such that
p = pn → ∞ as n → ∞. We are interested in the limiting behavior of the k largest values
among (Sni)i=1,...,p, in particular in the possible limit laws of the maximum maxi=1,...,p Sni.
More generally, writing εx for the Dirac measure at x, we are interested in the limiting behavior
of the point processes

Np =
p∑

i=1

εc−1
n (Sni−dn)

d→ N, n → ∞, (1.1)

for suitable constants cn > 0 and dn ∈R toward a Poisson random measure N with Radon mean
measure μ (we write PRM(μ)).

Our main motivation for this work comes from random matrix theory, in particular when
dealing with sample covariance matrices. Their entries are dependent random walks. However,
in various situations the theory can be modified in such a way that it suffices to study
independent random walks. We refer to Section 4.6 for a discussion.

Relation (1.1) is equivalent to the following limit relations for the tails:

pn P(c−1
n (Sn − dn) ∈ (a, b]) →μ(a, b],
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for any a< b provided that μ(a, b]<∞; see Resnick [29, Theorem 5.3]. These conditions
involve precise large deviation probabilities for the random walk (Sn); in Section 3 we provide
some results which are relevant in this context.

We distinguish between two types of precise large deviation results:

• normal approximation,

• subexponential approximation.

The normal approximation can be understood as an extension of the central limit theorem for
(Sn/

√
n) toward increasing intervals. This approximation causes the maxima of (Sni/

√
n) to

behave like the maxima of an i.i.d. normal sequence, that is, these maxima converge in dis-
tribution to the Gumbel distribution. This is in contrast to the subexponential approximation,
which requires that F is a so-called subexponential distribution; see Section 2.1. In particular,
F is heavy-tailed in the sense that the moment generating function does not exist. This fact
implies that P(Sn > xn) ∼ n F(xn) for sufficiently fast increasing sequences xn → ∞. Hence
n F(xn) dominates P(Sn > xn) at sufficiently high levels xn and, as in limit theory for the max-
ima of an i.i.d. sequence, F determines the type of the limit distribution of the maxima of
(Sni) as well as the normalizing and centering constants. In this case we also assume that F
belongs to the maximum domain of attraction (MDA) of the Gumbel or Fréchet distributions,
and we borrow the known normalizing and centering constants from these MDAs. Thus, in
the case of the MDA of the Gumbel distribution, the maxima of (Sni) may converge to the
Gumbel distribution due to two distinct mechanisms: the normal approximation at medium-
high thresholds or the subexponential approximation at high-level thresholds. In the case of the
MDA of the Fréchet distribution, two distinct approximations are possible: Gumbel approxima-
tion at medium-high thresholds and Fréchet approximation at high-level thresholds provided
the distribution has finite second moment. If this condition is not satisfied, only the Fréchet
approximation is possible.

The paper is organized as follows. In Section 2 we introduce the necessary notions for this
paper: subexponential and regularly varying distributions (Section 2.1), maximum domain of
attraction and relevant distributions in it (Section 2.2), point process convergence of triangular
arrays toward Poisson random measures (Section 2.3), and precise large deviations (Section
2.4). Due to the importance of the latter topic we devote Section 3 to it and collect some of the
known precise large deviation results in the case when the moment generating function is finite
in some neighborhood of the origin and for subexponential distributions. The main results of
this paper are formulated in Section 4. Based on the large deviation results of Section 3, we
give sufficient conditions for the point process convergence relation (1.1) to hold and we clarify
which rates of growth are possible for pn → ∞. In particular, we consider the case when pn in
(1.1) is replaced by kn = [n/rn] for some integer sequence rn → ∞ and n is replaced by rn. This
means that we are interested in (1.1) when Sni = Srni − Srn(i−1), i = 1, . . . , kn, are i.i.d. block
sums. We also discuss extensions of these results to stationary regularly varying sequences
(Section 4.3.3) and i.i.d. multivariate regularly varying sequences (Section 4.3.4).

2. Preliminaries I

2.1. Subexponential and regularly varying distributions

We are interested in the class S of subexponential distributions F, that is, it is a distribution
supported on [0,∞) such that, for any n ≥ 2,

P(Sn > x) ∼ n F(x), x → ∞.
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For an encyclopedic treatment of subexponential distributions, see Foss, Korshunov, and
Zachary [10]. In insurance mathematics, S is considered a natural class of heavy-tailed dis-
tributions. In particular, F does not have a finite moment generating function; see Embrechts,
Klüppelberg, and Mikosch [8, Lemma 1.3.5].

The regularly varying distributions are another class of heavy-tailed distributions supported
on R. We say that X and its distribution F are regularly varying with index α > 0 if there are a
slowly varying function L and constants p± such that p+ + p− = 1 and

F(−x) ∼ p− x−α L(x) and F(x) ∼ p+ x−α L(x), x → ∞. (2.1)

A non-negative regularly varying X is subexponential (see [8, Corollary 1.3.2]).

2.2. Maximum domains of attraction

We call a non-degenerate distribution H an extreme value distribution if there exist con-
stants cn > 0 and dn ∈R, n ≥ 1, such that the maxima Mn = max (X1, . . . , Xn) satisfy the limit
relation

c−1
n (Mn − dn)

d→ Y ∼ H, n → ∞. (2.2)

In the context of this paper we deal with two standard extreme value distributions: the Fréchet
distribution �α(x) = exp(−x−α), x> 0, and the Gumbel distribution �(x) = exp(− exp(−x)),
x ∈R. As a matter of fact, the third type of extreme value distribution – the Weibull distribution
– cannot appear since (2.2) is only possible for X with finite right endpoint but a random walk
is not bounded from above by a constant. We say that the distribution F of X is in the maximum
domain of attraction of the extreme value distribution H (F ∈ MDA(H)).

Example 2.1. A distribution F ∈ MDA(�α) for some α > 0 if and only if

F(x) = L(x)

xα
, x> 0

(see [8, Section 3.3.1]). Then

c−1
n Mn

d→ Y ∼�α, n → ∞,

where (cn) can be chosen such that n P(X > cn) → 1.

Example 2.2. A distribution F with infinite right endpoint obeys F ∈ MDA(�) if and only if
there exists a positive function a(x) with derivative a′(x) → 0 as x → ∞ such that

lim
u→∞

F(u + a(u) x)

F(u)
= e−x, x ∈R

(see [8, Section 3.3.3]). Then

c−1
n (Mn − dn)

d→ Y ∼�, n → ∞,

where (dn) can be chosen such that n P(X > dn) → 1 and cn = a(dn).
The standard normal distribution � ∈ MDA(�) and satisfies

c−1
n (Mn − dn)

d→ Y ∼�, n → ∞, (2.3)

where cn = 1/dn and

dn = √
2 log n − log log n + log 4π

2(2 log n)1/2
. (2.4)
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Since dn ∼ √
2 log n, we can replace cn in (2.3) by 1/

√
2 log n, while dn cannot be replaced by√

2 log n.
The standard lognormal distribution (i.e. X = exp(Y) for a standard normal random

variable Y) is also in MDA(�). In particular, one can choose

cn = dn/
√

2 log n and dn = exp

(√
2 log n − log log n + log 4π

2(2 log n)1/2

)
(2.5)

(see [8, page 156]).
The standard Weibull distribution has tail F(x) = exp(−x−τ ), x> 0, τ > 0. We consider

a distribution F on (0,∞) with a Weibull-type tail F(x) ∼ c xβ exp(−λxτ ) for constants
c, β, λ, τ > 0. Then F ∈ MDA(�) and one can choose

cn = (λτ )−1s1/τ−1
n and dn = s1/τ

n + 1

τ
s1/τ−1

n

(
β

λτ
log sn + log c

λ

)
, (2.6)

where sn = λ−1 log n (see [8, page 155]).

2.3. Point process convergence of independent triangular arrays

For further use we will need the following point process limit result (Resnick [29, Theorem
5.3]).

Proposition 2.1. Let (Xni)n=1,2,...;i=1,2,... be a triangular array of row-wise i.i.d. random ele-
ments on some state space E ⊂R

d equipped with the Borel σ -field E . Let μ be a Radon
measure on E . Then

Ñp =
p∑

i=1

εXni

d→ N, n → ∞,

holds for some PRM(μ) N if and only if

p P(Xn1 ∈ ·) v→ μ(·), n → ∞,

where
v→ denotes vague convergence on E.

2.4. Large deviations

Our main goal is to prove the point process convergence (1.1) for i.i.d. sequences (Sni) of
partial sum processes (R- or Rd-valued), properly normalized and centered. It follows from
Proposition 2.1 that this means proving relations of the type

p P(c−1
n (Sn − dn) ∈ (a, b]) →μ(a, b] or p P(c−1

n (Sn − dn)> a) →μ(a,∞),

provided μ(a, b] +μ(a,∞)<∞. Since p = pn → ∞, this means that P(c−1
n (Sn − dn)> a) →

0 as n → ∞. We will refer to these vanishing probabilities as large deviation probabilities. In
Section 3 we consider some of the well-known precise large deviation results in heavy- and
light-tailed situations.

3. Preliminaries II: precise large deviations

In this section we collect some precise large deviation results in the light- and heavy-tailed
cases.
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3.1. Large deviations with normal approximation

We assume E[X] = 0, var(X) = 1 and write � for the standard normal distribution. We start
with a classical result when X has finite exponential moments.

Theorem 3.1. (Petrov’s theorem [26], Theorem 1, Chapter VIII.) Assume that the moment
generating function E[exp(h X)] is finite in some neighborhood of the origin. Then the
following tail bound holds for 0 ≤ x = o(

√
n):

P(Sn/
√

n> x)

�(x)
= exp

(
x3

√
n
λ

(
x√
n

))[
1 + O

(
x + 1√

n

)]
, n → ∞.

where λ(t) = ∑∞
k=0 aktk is the Cramér series whose coefficients ak depend on the cumulants of

X, and λ(t) converges for sufficiently small values |t|.

Under the conditions of Theorem 3.1, uniformly for x = o(n1/6),

P(Sn/
√

n> x)

�(x)
→ 1, n → ∞. (3.1)

Theorem 7 in Chapter VIII of Petrov [26] considers the situation of Theorem 3.1 under the
additional assumption that the cumulants of order k = 3, . . . , r + 2 of X vanish for some posi-
tive integer r. Then the coefficients a0, . . . , ar−1 in the series λ(t) vanish, and it is not difficult
to see that (3.1) holds uniformly for 0 ≤ x = o(n(r+1)/(2(r+3))).

In Section VIII.3 of [26] we also find necessary and sufficient conditions for (3.1) to
hold in certain intervals. The following result was proved by S. V. Nagaev [21] for x ∈
(0,

√
(s/2 − 1) log n) and improved by Michel [18] for x ∈ (0,

√
(s − 2) log n). The statement

of the proposition is sharp under the given moment condition; see Theorem 3.2 below.

Proposition 3.1. Assume that E[|X|s]<∞ for some s> 2. Then (3.1) holds uniformly for 0 ≤
x ≤ √

(s − 2) log n.

3.2. Large deviations with normal/subexponential approximations

Cline and Hsing [4] (in an unpublished article) discovered that the subexponential class S
of distributions exhibits a completely different kind of large deviation behavior.

Proposition 3.2. (Cline and Hsing [4].) We consider a distribution F on (0,∞) with infinite
right endpoint. Then the following statements hold.

(1) F ∈ S if and only if

lim
x→∞

F(x + y)

F(x)
= 1, for any real y, (3.2)

and there exists a sequence γn → ∞ such that

lim
n→∞ sup

x>γn

P(Sn > x)

n F(x)
≤ 1.

(2) If F ∈ S , then there exists a sequence γn → ∞ such that

lim
n→∞ sup

x>γn

∣∣∣∣P(Sn > x)

n F(x)
− 1

∣∣∣∣ = 0. (3.3)
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Remark 3.1. If F satisfies (3.2) we say that F is long-tailed; we write F ∈L. It is well known
that F ∈ S implies F ∈L; see Embrechts et al. [8, Lemma 1.3.5, page 41]. The converse is not
true.

Proposition 3.2 shows that the subexponential class is the one for which heavy-tailed
large deviations are reasonable to study. Given that we know that F is long-tailed, F is
subexponential if and only if a uniform large deviation relation of the type (3.3) holds.

Subexponential and normal approximations to large deviation probabilities have been stud-
ied in detail in various papers. Among them, large deviations for i.i.d. regularly varying random
variables are perhaps studied best. S. V. Nagaev [25] formulated a seminal result about the large
deviations of a random walk (Sn) in the case of regularly varying X with finite variance. He
dedicated this theorem to his brother A. V. Nagaev, who had started this line of research in the
1960s; see for example [22] and [23].

Theorem 3.2. (Nagaev’s theorem [22, 25].) Consider an i.i.d. sequence (Xi) of random vari-
ables with E[X] = 0, var(X) = 1 and E[|X|2+δ]<∞ for some δ > 0. Assume that F(x) =
x−α L(x), x> 0, for some α > 2 and a slowly varying function L. Then, for x ≥ √

n as n → ∞,

P(Sn > x) =�(x/
√

n) (1 + o(1)) + n F(x) (1 + o(1)).

In particular, if X satisfies (2.1) with constants p±, then for any positive constant c1 <α− 2,

sup
1<x/

√
n<

√
c1 log n

∣∣∣∣P(± Sn > x)

�(x/
√

n)
− 1

∣∣∣∣ → 0, n → ∞, (3.4)

and for any constant c2 >α− 2,

sup
x/

√
n>

√
c2 log n

∣∣∣∣P(± Sn > x)

n P(|X|> x)
− p±

∣∣∣∣ → 0, n → ∞.

Remark 3.2. If X is regularly varying with index α, E[|X|s] is finite (infinite) for s<α (s>α).
Therefore the normal approximation (3.4) is in agreement with Proposition 3.1.

In the infinite variance regularly varying case this result is complemented by an analogous
statement. It can be found in Cline and Hsing [4] and Denisov, Dieker, and Shneer [6].

Theorem 3.3. Consider an i.i.d. sequence (Xi) of regularly varying random variables with
index α ∈ (0, 2] satisfying (2.1). Assume E[X] = 0 if this expectation is finite. Choose (an) such
that

n P(|X|> an) + n

a2
n
E[X2 1(|X| ≤ an)] = 1, n = 1, 2, . . . ,

and (γn) such that γn/an → ∞ as n → ∞. For α = 2, also assume for sufficiently small δ > 0,

lim
n→∞ sup

x>γn

n

x2

E[X2 1(|X| ≤ x)]

[n P(|X|> x)]δ
= 0.

Choose (dn) such that

dn =
{

0 α ∈ (0, 1) ∪ (1, 2],

n E[X 1(|X| ≤ an)] α = 1.
(3.5)
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Then the following large deviation result holds:

sup
x>γn

∣∣∣∣P(± (Sn − dn)> x)

n P(|X|> x)
− p±

∣∣∣∣ → 0, n → ∞.

Remark 3.3. The normalization (an) is chosen such that a−1
n (Sn − dn)

d→ Yα for an α-stable

random variable Yα , α ∈ (0, 2]. Therefore γ−1
n (Sn − dn)

P→ 0. In the case α < 2, in view of
Karamata’s theorem (see Bingham, Goldie, and Teugels [3]), it is possible to choose (an)
according as n P(|X|> an) → 1. The case α = 2 is delicate: in this case var(X) can be finite
or infinite. In the former case (an) is proportional to

√
n, and in the latter case (an/

√
n) is a

slowly varying sequence; see Feller [9] or Ibragimov and Linnik [15, Section II.6].

Normal and subexponential approximations to large deviation probabilities also exist for
subexponential distributions that have all moments finite. Early on, this was observed by
A. V. Nagaev [22, 23, 24]. Rozovskii [31] did not use the name of subexponential distribution,
but the conditions on the tails of the distributions he introduced are ‘close’ to subexponen-
tiality; he also allowed for distributions F supported on the whole real line. In particular,
A. V. Nagaev and Rozovskii discovered that, in general, the x-regions where the normal and
subexponential approximations hold are separated from each other. To make this precise, we
call two sequences (ξn) and (ψn) separating sequences for the normal and subexponential
approximations to large deviation probabilities if, for an i.i.d. sequence (Xi) with variance 1,

sup
x<ξn

∣∣∣∣P(Sn −E[Sn]> x)

�(x/
√

n)
− 1

∣∣∣∣ → 0,

sup
x>ψn

∣∣∣∣P(Sn −E[Sn]> x)

n P(X > x)
− 1

∣∣∣∣ → 0, n → ∞.

A. V. Nagaev and Rozovskii gave conditions under which (ψn) and (ξn) cannot have the
same asymptotic order; that is, we necessarily have ψn/ξn → ∞. In particular, in the x-region
(ξn, ψn) neither the normal nor the subexponential approximation holds; Rozovskii [31] also
provided large deviation approximations for P(Sn > x) for these regions involving �(x/

√
n)

and a truncated Cramér series. Explicit expressions for (ψn) and (ξn) are in general hard to get.
We focus on two classes of subexponential distributions where the separating sequences are
known.

• Lognormal-type tails. We write F ∈ LN(γ ): for some constants β, ξ ∈R, γ > 1 and
λ, c> 0,

F(x) ∼ c xβ (log x)ξ exp(−λ (log x)γ ), x → ∞.

In the notation LN(γ ) we suppress the dependence on β, ξ, λ, c.

• Weibull-type tails. We write F ∈ WE(τ ): for some β ∈R, τ ∈ (0, 1), λ, c> 0,

F(x) ∼ c xβ exp(−λ xτ ), x → ∞.

In the notation WE(τ ) we suppress the dependence on β, λ, c.

The name ‘Weibull-type tail’ is motivated by the fact that the Weibull distribution F with
shape parameter τ ∈ (0, 1) belongs to WE(τ ). Indeed, in this case F(x) = exp(−λxτ ), x> 0,
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TABLE 1: Separating sequences (ξn) and (ψn) for the normal and subexponential approximations of
P(Sn −E[Sn]> x). We also assume var(X) = 1. Here (hn), (̃hn) are any sequences converging to infinity.
For completeness, we also include the regularly varying class RV(α). The table is taken from Mikosch
and Nagaev [19].

F ∈ ξn ψn

RV(α), α > 2 ((α− 2)n log n)1/2 ((α− 2)n log n)1/2

LN(γ ), 1< γ < 2 (n (log n)γ )1/2 (n (log n)γ )1/2

LN(γ ), γ ≥ 2 (n (log n)γ )1/2/̃hn n1/2(log n)γ−1 hn

WE(τ ), 0< τ ≤ 0.5 n1/(2−τ )/̃hn n1/(2−2τ ) hn

WE(τ ), 0.5< τ < 1 n2/3/̃hn n1/(2−2τ ) hn

for positive parameters λ. Similarly, the lognormal distribution F belongs to LN(2). This is
easily seen by an application of Mill’s ratio: for a standard normal random variable Y ,

F(x) = P(Y > log x) ∼ exp(−(log x)2/2)√
2π log x

, x → ∞.

These classes of distributions have rather distinct tail behavior. It follows from the theory
in Embrechts et al. [8, Sections 1.3 and 1.4] that membership of F in RV(α), LN(γ ) or WE(τ )
implies F ∈ S . The case WE(τ ), 0< τ < 1, was already considered by A. V. Nagaev [23, 24].

For the heaviest tails when F ∈ LN(γ ), 1< γ < 2, we can still choose ξn =ψn. This means
that one threshold sequence separates the normal and subexponential approximations to the
right tail P(Sn −E[Sn]> x). Rozovskii [31] discovered that the classes LN(γ ), γ ≥ 2, and
LN(γ ), 1< γ < 2 have rather distinct large deviation properties. In the case γ ≥ 2 we can-
not choose (ξn) and (ψn) the same. The class LN(γ ) with 1< γ < 2 satisfies the conditions of
Theorem 3b in Rozovskii [31], which implies that

P(Sn −E[Sn]> x) = [
�(x/

√
n)1(x< γn) + nF(x)1(x> γn)

]
(1 + o(1))

uniformly for x, where γn = (λ2−γ+1)1/2n1/2(log n)γ /2. For γ = 2 the conditions of Theorem
3a in [31] are satisfied: with g(x) = λ(log x)2 − (β + 2) log x − ξ log ( log x) − log c and as
n → ∞,

P(Sn −E[Sn]> x) = [
�(x/

√
n) 1(x< γn) + nF(x)e(n(g′(x))2)/21(x> γn)

]
(1 + o(1)).

Direct calculation shows that P(Sn −E[Sn]> γn) ∼ exp(λ) n F(γn) while, uniformly for x>
γnhn, hn → ∞, we have P(Sn −E[Sn]> x) ∼ nF(x).

It is interesting to observe that all but one class of subexponential distributions considered
in Table 1 have the property that c n ∈ (ψn,∞) for any c> 0. The exception is WE(τ ) for
τ ∈ (0.5, 1). This fact turns the investigation of the tail probabilities P(Sn −E[Sn]> c n) into
a complicated technical problem. The exponential (WE(1)) and superexponential (WE(τ )),
τ > 1, classes do not contain subexponential distributions. The corresponding partial sums
exhibit the light-tailed large deviation behavior of Petrov’s Theorem 3.1. As a historical
remark, Linnik [17] and S. V. Nagaev [21] determined lower separating sequences (ξn) for the
normal approximation to the tails P(Sn −E[Sn]> x) under the assumption that F is dominated
by the tail of a regular subexponential distribution from the table.

Denisov et al. [6] and Cline and Hsing [4] considered a unified approach to subexponential
large deviation approximations for general subexponential and related distributions. In particu-
lar, they identified separating sequences (ψn) for the subexponential approximation of the tails
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P(Sn −E[Sn]> x) for general subexponential distributions. Denisov et al. [6] also considered
local versions, i.e. approximations to the tails P(Sn ∈ [x, x + T]) for T > 0 as x → ∞.

4. Main results

4.1. Gumbel convergence via normal approximations to large deviation probabilities
for small x.

We assume that E[X] = 0 and var(X) = 1 and the large deviation approximation to the
standard normal distribution � holds: for some γn → ∞,

sup
0≤x<γn

∣∣∣∣P(Sn/
√

n> x)

�(x)
− 1

∣∣∣∣ → 0, n → ∞. (4.1)

We recall that � ∈ MDA(�) and (2.3) holds. An analogous relation holds for the maxima
of i.i.d. random walks Sn1/

√
n, . . . , Snp/

√
n, as follows from the next result.

Theorem 4.1. Assume that (4.1) is satisfied for some γn → ∞. Then

p P

(
Sn√

n
> dp + x/dp

)
→ e−x, n → ∞, x ∈R, (4.2)

holds for any integer sequence pn → ∞ such that pn < exp(γ 2
n /2) and (dp) is defined in (2.4).

Moreover, for the considered (pn), (4.2) is equivalent to either of the following limit relations.

(1) For �i = E1 + · · · + Ei and an i.i.d. standard exponential sequence (Ei), the following
point process convergence holds on the state space R:

Np =
p∑

i=1

εdp (Sni/
√

n−dp)
d→ N =

∞∑
i=1

ε− log �i , (4.3)

where N is PRM(− log�) on R.

(2) Gumbel convergence of the maximum random walk:

dp max
i=1,...,p

(Sni/
√

n − dp)
d→ Y ∼�, n → ∞.

Proof. In view of Proposition 2.1, it suffices for Np
d→ N to show that

p P

(
dp

(
Sn√

n
− dp

)
> x

)
= p P

(
Sn√

n
> dp + x/dp

)
∼ p�(dp + x/dp) → e−x, x ∈R.

But this follows from (4.1) and the definition of (dp) if we assume that dp + x/dp < γn, i.e.
pn < exp(γ 2

n /2) such that pn → ∞.

If Np
d→ N, a continuous mapping argument implies that

P(Np(x,∞) = 0) = P

(
max

i=1,...,p
dp(Sni/

√
n − dp) ≤ x

)
→ P(N(x,∞) = 0)

=�(x), x ∈R, n → ∞.
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On the other hand, for x ∈R as n → ∞,

P

(
max

i=1,...,p
dp(Sni/

√
n − dp) ≤ x

)
=

(
1 − p P(dp(Sn1/

√
n − dp)> x)

p

)p

→ exp(−e−x),

if and only if (4.2) holds. �

Remark 4.1. If we replace the quantities (Sni/
√

n)i=1,...,p in (4.3) with i.i.d. standard nor-
mal random variables, then this limit relation remains valid. This means that, under (4.1),
for example under the assumption of a finite moment generating function in some neighbor-
hood of the origin (see Section 3), the central limit theorem makes the tails of (Sni/

√
n)i=1,...,p

almost indistinguishable from those of the standard normal distribution. This is in stark con-
trast to subexponential distributions, where the characteristics of F(x) show up in the tail
P(Sni/

√
n> x) for large values of x.

4.1.1. The extreme values of i.i.d. random walks. Write

Sn,(p) ≤ · · · ≤ Sn,(1)

for the ordered values of Sn1, . . . , Snp The following result is immediate from Theorem 4.1.

Corollary 4.1. Assume that the conditions of Theorem 4.1 hold. Then

√
2 log p

(
Sn,(1)√

n
− dp, . . . ,

Sn,(k)√
n

− dp

)
d→ (− log �1, . . . ,− log �k), n → ∞. (4.4)

Moreover, if there is γn → ∞ such that

sup
0≤x<γn

|P( ± Sn/
√

n> x)/�(x) − 1| → 0 as n → ∞,

then we have

P

(
max

i=1,...,p
dp(Sni/

√
n − dp) ≤ x, min

i=1,...,p
dp(Sni/

√
n + dp) ≤ y

)
→�(x)(1 −�(−y)), x, y ∈R, n → ∞. (4.5)

Proof. We observe that dp/
√

2 log p → 1. Then (4.3) and the continuous mapping theorem
imply that (4.4) holds for any fixed k ≥ 1.

We observe that

P

(
max

i=1,...,p
dp(Sni/

√
n − dp) ≤ x, min

i=1,...,p
dp(Sni/

√
n + dp) ≤ y

)
= P

(
max

i=1,...,p
dp(Sni/

√
n − dp) ≤ x

)
− P

(
max

i=1,...,p
dp(Sni/

√
n − dp) ≤ x, min

i=1,...,p
dp(Sni/

√
n + dp)> y

)
= P1(x, y) − P2(x, y).
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TABLE 2: Upper bounds for p.

Example 4.1 Petrov case exp(o(n1/3))
Example 4.2 E[|X|s]<∞, s> 2 n(s−2)/2

Example 4.3 RV(α), α > 2, c<α − 2 nc/2

Example 4.4 LN(γ ), γ > 1 exp(o((log n)γ ))
Example 4.5 WE(τ ), τ ≤ 0.5 exp(o(nτ/(2−τ )))
Example 4.5 WE(τ ), τ ∈ (0.5, 1) exp(o(n1/3))

Of course, P1(x, y) →�(x). On the other hand,

P2(x, y) = P

( p⋂
i=1

{Sni/
√

n ≤ dp + x/dp, Sni/
√

n>−dp + y/dp}
)

= (P(− dp + y/dp < Sn1/
√

n ≤ dp + x/dp))p

= exp(p log (1 − P(Sn1/
√

n> dp + x/dp) − P(Sn1/
√

n ≤ −dp + y/dp)))

→ exp(−(e−x + ey))

=�(x)�(−y).

The last step follows from a Taylor expansion of the logarithm and Theorem 4.1. This proves
(4.5). �
4.1.2. Examples. In this section we verify the assumptions of Theorem 4.1 for various classes
of distributions F. We always assume E[X] = 0 and var(X) = 1.

Example 4.1. Assume the existence of the moment generating function of X in some neigh-
borhood of the origin. Petrov’s Theorem 3.1 ensures (4.3) for p ≤ exp(o(n1/3)).

Example 4.2. Assume E[|X|s]<∞ for some s> 2. Proposition 3.1 ensures that (4.3) for p ≤
n(s−2)/2.

Example 4.3. Assume that X is regularly varying with index α > 2. Then we can apply
Nagaev’s Theorem 3.2 with γn = √

c log n for any c<α − 2 and (4.3) holds for p ≤ nc/2.
This is in agreement with Example 4.2.

Example 4.4. Assume that X has a distribution in LN(γ ) for some γ > 1. From Table 1, γn =
o((log n)γ /2, and (4.3) holds for p ≤ exp(o((log n)γ )).

Example 4.5. Assume that F ∈ WE(τ ), 0< τ < 1. Table 1 yields γn = o(nτ/(2(2−τ ))) for τ ≤
0.5, hence p ≤ exp(o(nτ/(2−τ ))), and for τ ∈ (0.5, 1), γn = o(n1/6) and p ≤ exp(o(n1/3)).

We summarize these examples in Table 2.

4.1.3. The extremes of the blocks of a random walk. We consider a random walk Sn with i.i.d.
step sizes Xi with E[X] = 0 and var(X) = 1, and with distribution F, and any integer sequence
rn → ∞ such that kn = [n/rn] → ∞ as n → ∞. Set Sni = Srni − Srn(i−1), i.e. this is the sum of
the ith block Xrn(i−1)+1, . . . , Xrni. Then we are in the setting of Theorem 4.1 if we replace pn
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TABLE 3: Lower bounds on the block size rn.

Example 4.1 Petrov case rn/(log n)3 → ∞
Example 4.3 RV(α), α > 2 rn > n2/(α−ε) any ε ∈ (0, α − 2)
Example 4.2 E[|X|s]<∞, s> 2 rn > n2/s

Example 4.4 LN(γ ), γ > 1 rn/ exp((2 log n)1/γ ) → ∞
Example 4.5 WE(τ ), τ ≤ 0.5 rn/(log n)(2−τ )/τ → ∞
Example 4.5 WE(τ ), τ ∈ (0.5, 1) rn/(log n)3 → ∞

by kn and n by rn. We are interested in the following result for the point process of the block
sums of Sn with length rn (see (4.3)):

Nkn =
kn∑

i=1

εdkn ((Srni−Srn(i−1))/
√

rn−dkn )
d→ N =

∞∑
i=1

ε− log �i . (4.6)

This means we are looking for (rn) such that n/rn < exp(γ 2
rn
/2). This amounts to the conditions

on (rn) shown in Table 3.

This table shows convincingly that, the heavier the tails, the larger we have to choose the
block length rn. Otherwise, the normal approximation does not function sufficiently well simul-
taneously for the block sums Srni − Srn(i−1), i = 1, . . . , kn. In particular, in the regularly varying
case we always need that rn grows polynomially.

Notice that we have from (4.6) in particular

dkn√
rn

max
i=1,...,kn

(Srni − Srn(i−1) − √
rn dkn )

d→ − log �1 ∼�, n → ∞.

The normalization dkn/
√

rn is asymptotic to
√

(2 log kn)/rn.

4.2. Gumbel convergence via the subexponential approximation to large deviation prob-
abilities for very large x

In this section we will exploit the subexponential approximation to large deviation
probabilities for subexponential distributions F, that is,

sup
x>γn

∣∣∣∣P(Sn −E[Sn]> x)

n P(X > x)
− 1

∣∣∣∣ → 0, (4.7)

and we will also assume that F ∈ MDA(�); see Example 2.2 for the corresponding MDA
conditions and the definition of the centering constants (dn) and the normalizing constants
(cn). Then, in particular, X has all moments finite. In this case, the Gumbel approximation of
the point process of the (Sni) is also possible.

Theorem 4.2. Assume that F ∈ MDA(�) ∩ S , the subexponential approximation (4.7) holds,
and for sufficiently large n and an integer sequence pn → ∞,

dnp + x cnp > γn, for any x< 0, (4.8)
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where (dnp) and (cnp) are the subsequences of (dn) and (cn), respectively, evaluated at np. Then
we have

p P(Sn −E[Sn]> dnp + x cnp) → e−x, x ∈R, n → ∞. (4.9)

Moreover, (4.9) is equivalent to either of the following limit relations.

(1) Point process convergence to a Poisson process on the state space R:

Np =
p∑

i=1

εc−1
np (Sni−E[Sn]−dnp)

d→ N, n → ∞, (4.10)

where N ∼ PRM(− log�); see Theorem 4.1.

(2) Gumbel convergence of the maximum random walk:

max
i=1,...,p

c−1
np ((Sni −E[Sn]) − dnp)

d→ Y ∼�, n → ∞. (4.11)

Proof. If dnp + x cnp > γn for every x< 0, then it holds for x ∈R. Therefore (4.7) applies.
Since F ∈ MDA(�) ∩ S and by definition of (cn) and (dn), we have

p P(Sn −E[Sn]> dnp + x cnp) ∼ p n P(X > dnp + x cnp) → e−x, x ∈R, n → ∞,

proving (4.9). Proposition 2.1 yields the equivalence of (4.10) and (4.9). The equivalence of
(4.10) and (4.11) follows from a standard argument. �
Remark 4.2. Since a(x) defined in Example 2.2 has density a′(x) → 0 as x → ∞, we have
a(x)/x → 0. On the other hand, cn = a(dn) and dn → ∞ since F ∈ S . Therefore, for any x> 0,

dnp + x cnp = dnp

(
1 + x

a(dnp)

dnp

)
∼ dnp.

Hence (4.8) holds if dnp ≥ (1 + δ)γn for any small δ > 0 and large n.

4.2.1. The extreme values of i.i.d. random walks. Relation (4.10) and a continuous mapping
argument imply the following analog of Corollary 4.1. We use the same notation as in Section
4.1.1. One can follow the lines of the proof of Corollary 4.1.

Corollary 4.2. Assume the conditions of Theorem 4.2. Then the following relation holds for
k ≥ 1:

c−1
np (Sn,(1) −E[Sn] − dnp, . . . , Sn,(k) −E[Sn] − dnp)

d→ (− log �1, . . . ,− log �k)

as n → ∞.

4.2.2. Examples. Theorem 4.2 applies to F ∈ LN(γ ), γ > 1, and F ∈ WE(τ ), 0< τ < 1; see
the discussion in Section 3.2. However, the calculation of the constants (cn) and (dn) is rather
complicated for these classes of subexponential distributions. For illustration of the theory we
restrict ourselves to two parametric classes of distributions where these constants are known.

Example 4.6. We assume that X has a standard lognormal distribution. From (2.5), Table 1, and
Remark 4.2 we conclude that we need to verify the condition exp (

√
2 log (np)) ≥ hn

√
n log n
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for a sequence (hn) increasing to infinity arbitrarily slowly. Calculation shows that it suffices
to choose pn → ∞ such that p> exp ((log n)2).

Example 4.7. We assume that X has a Weibull distribution with tail F(x) = exp(−xτ ) for some
τ ∈ (0, 1). From (2.6) we conclude that dnp ∼ (log np)1/τ . In view of Remark 4.2 and Table 1
it suffices to verify that (log np)1/τ ≥ hn n1/(2−2τ ) for a sequence hn → ∞ arbitrarily slowly. It
holds if p> n−1 exp ((hnn1/(2−2τ ))τ ).

4.2.3. The extremes of the blocks of a random walk. We appeal to the notation in Section 4.1.3.
We are in the setting of Theorem 4.2 if we replace pn with kn and n with rn. We are interested
in the following result for the point process of the block sums of Sn with length rn (see (4.10)):

Nkn =
kn∑

i=1

εc−1
n (Srni−Srn(i−1)−E[Srn ]−dn)

d→ N =
∞∑

i=1

ε− log �i .

We need to verify condition (4.8) which turns into dn + cn x> γrn . In view of Remark 4.2 it
suffices to prove that dn > hnγrn for a sequence hn → ∞ arbitrarily slowly; see Table 1 for
some γn-values.

We start with a standard lognormal distribution; see (2.5) for the corresponding (cn) and
(dn). In particular, we need to verify

dn = exp

(√
2 log n − log log n + log 4π

2(2 log n)1/2

)
≥ hn

√
rn log rn.

A sufficient condition is exp(2
√

2 log n)> h̃nrn for a sequence h̃n → ∞ arbitrarily slowly. We
observe that the left-hand expression is a slowly varying function.

Next we consider a standard Weibull distribution for τ ∈ (0, 1). The constants (cn) and (dn)
are given in (2.6). In particular, we need to verify

dn ∼ ( log n)1/τ > hnr1/(2−2τ )
n .

This holds if (log n)2(1−τ )/τh−2(1−τ )
n > rn. Again, this is a strong restriction on the growth of

(rn) and is in contrast to the regularly varying case where polynomial growth of (rn) is possible;
see Section 4.3.2.

4.3. Fréchet convergence via the subexponential approximations to large deviation
probabilities for large x

In this section we assume that X is regularly varying with index α > 0 in the sense of (2.1).
Throughout we choose a normalizing sequence (an) such that n P(|X|> an) → 1 as n → ∞.
The following result is an analog of Theorems 4.1 and 4.2.

Theorem 4.3. Assume that X is regularly varying with index α > 0 and E[X] = 0 if the
expectation is finite. Choose a sequence (dn) such that

dn =
{

0 α ∈ (0, 1) ∪ (1,∞),

n E[X 1(|X| ≤ an)] α = 1.

We assume that pn → ∞ is an integer sequence which satisfies the additional conditions⎧⎪⎨⎪⎩
anp ≥ √

(α− 2 + δ)n log n for some small δ > 0 if α > 2,

limn→∞ supx>anp
pδ

n

x2
E[X2 1(|X| ≤ x)] = 0 for some small δ > 0 if α = 2.

(4.12)
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Then we obtain the limit relation

p P(± a−1
np (Sn − dn)> x) → p±x−α, x> 0, n → ∞. (4.13)

Moreover, (4.13) is equivalent to

Np =
p∑

i=1

εa−1
np (Sni−dn)

d→ N =
∞∑

i=1

ε
qi �

−1/α
i

, (4.14)

where (�i) is defined in Theorem 4.1 and (qi) is an i.i.d. sequence of Bernoulli variables with
distribution P(qi = ±1) = p± independent of (�i).

Proof. We start by verifying (4.13). Assume α < 2. Then, for any sequence pn → ∞,
anp/an → ∞. Therefore Theorem 3.3 and the definition of (anp) yield

p P(± a−1
np (Sn − dn)> x) ∼ p n P(± X > anp x) ∼ p±x−α, n → ∞.

If α > 2, the same result holds in view of Theorem 3.2 since we assume condition (4.12). If
α = 2, we can again apply Theorem 3.3 with γn = anp and use (4.12).

We notice that the limit point process N is PRM(μα) with intensity

μα(dx) = |x|−α−1(p+1(x> 0) + p−1(x< 0)) dx. (4.15)

An appeal to Proposition 2.1 shows that (4.13) and (4.14) are equivalent. �
Remark 4.3. Assume α > 2. Since anp = (np)1/α�(np) for a slowly varying function � and

�(x) ≥ x−γ /α for any small γ > 0 and sufficiently large x, (4.12) holds if p ≥ n(α/2)−1+γ ′
for

any choice of γ ′ > 0. Assume α = 2 and var(X)<∞. Then anp ∼ c
√

np and (4.12) is satisfied
for any sequence pn → ∞ and δ < 1. If var(X) = ∞, then anp = (np)1/2�(np) for a slowly vary-
ing function � and E[X2(|X| ≤ x)] is an increasing slowly varying function. Using Karamata
bounds for slowly varying functions, we conclude that (4.12) holds if p/nγ → ∞ for any small
γ > 0.

4.3.1. The extreme values of i.i.d. random walks. For simplicity, we assume dn = 0. Let N+
p be

the restriction of Np to the state space (0,∞), and S+
n,(1) the maximum of (Sn1)+, . . . , (Snp)+.

We also write ξ = min{i ≥ 1: qi = 1} and assume that ξ is independent of (�i). Then (4.14)
and the continuous mapping theorem imply that

P(N+
p (x,∞) = 0) = P(a−1

np S+
n,(1) ≤ x)

d→ P(�−1/α
ξ ≤ x) =�

p+
α (x). (4.16)

Moreover, we have joint convergence of minima and maxima.

Corollary 4.3. Assume the conditions of Theorem 4.3 and dn = 0. Then

lim
n→∞ P

(
0< a−1

np max
i=1,...,p

Sni ≤ x,−y< a−1
np min

i=1,...,p
Sni

)
=�

p+
α (x)�p−

α (y), x, y> 0.
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Proof. We have

P

(
a−1

np max
i=1,...,p

Sni ≤ x,−y< a−1
np min

i=1,...,p
Sni

)
= P(Np((x,∞) ∪ (−∞,−y]) = 0)

→ P(N((x,∞) ∪ (−∞,−y]) = 0)

= exp (−(p+x−α + p−y−α))

=�
p+
α (x)�p−

α (y), n → ∞. �

4.3.2. The extremes of the blocks of a random walk. We appeal to the notation of Section 4.1.3
and apply Theorem 4.3 in the case when n is replaced by some integer-sequence rn → ∞ such
that kn = [n/rn] → ∞ and pn is replaced by kn. We also assume for simplicity that dn = 0.
Observing that anp turns into arnkn ∼ an, (4.14) turns into

Nkn =
kn∑

i=1

εa−1
n (Srn i−Srn(i−1))

d→ N =
∞∑

i=1

ε
qi �

−1/α
i

, n → ∞.

For simplicity, we assume α �= 2. If α < 2, no further restrictions on (rn) are required. If
α > 2, we have the additional growth condition an >

√
(α− 2 + δ)rn log rn for sufficiently

large n. Since an = n1/α�(n) for some slowly varying function �, this amounts to showing
that n2/α�2(n)/(α − 2 + δ)> rn log rn. Since any slowly varying function satisfies �(n) ≥ n−ε
for any ε > 0 and n ≥ n0(ε), we get the following sufficient condition on the growth of (rn):
for any sufficiently small ε > 0, n2/α−ε > rn. This condition ensures that (rn) is significantly
smaller than n, and the larger α the more stringent this condition becomes.

An appeal to (4.16) yields in particular

P

(
a−1

n max
i=1,...,kn

(Srn i − Srn (i−1))+ ≤ x
)

d→ P(�−1/α
ξ ≤ x) =�

p+
α (x),

P

(
a−1

n max
i=1,...,kn

|Srn i − Srn (i−1)| ≤ x
)

d→ P(�−1/α
1 ≤ x) =�α(x), n → ∞.

4.3.3. Extension to a stationary regularly varying sequence. In view of classical theory (e.g.

Feller [9]), X is regularly varying with index α ∈ (0, 2) if and only if a−1
n (Sn − dn)

d→ ξα for an
α-stable random variable ξα where one can choose (an) such that n P(|X|> an) → 1 and (dn)
as in (3.5). For the sake of argument we also assume dn = 0; this is a restriction only in the
case α = 1.

If (rn) is any integer sequence such that rn → ∞ and kn = [n/rn] → 0, then

a−1
n Sn = a−1

n

kn∑
i=1

(Srn i − Srn (i−1)) + oP(1)
d→ ξα . (4.17)

Moreover, since an/arn → ∞, Theorem 3.3 yields

P(± a−1
n Srn > x)

rn P(|X|> an)
∼ P(± X > x an)

P(|X|> an)
→ p± x−α, x> 0. (4.18)

Classical limit theory for triangular arrays of the row-wise i.i.d. random variables (Srni −
Srn (i−1))i=1,...,kn (e.g. Petrov [26, Theorem 8, Chapter IV]) yields that (4.17) holds if and only if

kn P(a−1
n Srn ∈ ·) v→ μα(·), (4.19)
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lim
δ↓0

lim sup
n→∞

knvar(a−1
n Srn 1(|Srn | ≤ δan)) = 0, (4.20)

where μα is defined in (4.15). We notice that (4.19) is equivalent to (4.18).
An alternative way of proving limit theory for the sum process (Sn) with an α-stable limit

ξα would be to assume the relations (4.19) and (4.20). This would be rather indirect and com-
plicated in the case of i.i.d. (Xi). However, this approach has some merits in the case when
(Xi) is a strictly stationary sequence with a regularly varying dependence structure, that is,
its finite-dimensional distributions satisfy a multivariate regular variation condition (see Davis
and Hsing [5] or Basrak and Segers [1]), and we have a weak dependence assumption of the
type

E[exp (a−1
n itSn)] − (E[exp (a−1

n itSrn )])kn → 0, t ∈R, n → ∞. (4.21)

Then a−1
n Sn

d→ ξα if and only if a−1
n

∑kn
i=1 Sni

d→ ξα , where (Sni)i=1,...,kn is an i.i.d. sequence
with the same distribution as Srn . Condition (4.21) is satisfied under mild conditions on (Xi),
in particular under standard mixing conditions such as α-mixing. Thus we have to prove con-
ditions (4.19) and (4.20). In the dependent case the limit measure μα has to be modified. The
following analog of (4.18) holds: there exists a positive number θX such that

P(± a−1
n Srn > x)

rn P(|X|> an)
∼ θX

P(± X > x an)

P(|X|> an)
→ θX p± x−α, x> 0.

The quantity θX has an explicit structure in terms of the so-called tail chain of the regularly
varying sequence (Xi). It can be interpreted as a cluster index in the context of the partial
sum operation acting on (Xi). For details we refer to Mikosch and Wintenberger [20] and the
references therein.

4.3.4. Extension to the multivariate regularly varying case. Consider a sequence (Xi) of i.i.d.
R

d-valued random vectors with generic element X, and define

S0 = 0, Sn = X1 + · · · + Xn, n ≥ 1.

We say that X is regularly varying with index α > 0 and a Radon measure μ on R
d
0 =R

d\{0},
and we write X ∈ RV(α, μ) if the following vague convergence relation is satisfied on R

d
0:

P(x−1X ∈ ·)
P(|X|> x)

v→ μ(·), x → ∞, (4.22)

and μ has the homogeneity property μ(t ·) = t−αμ(·), t> 0. We will also use the sequen-
tial version of regular variation: for a sequence (an) such that nP(|X|> an) → 1, (4.22) is
equivalent to

n P(a−1
n X ∈ ·) v→ μ(·), n → ∞.

For more reading on multivariate regular variation, we refer to Resnick [28, 29].
Hult, Lindskog, Mikosch, and Samorodnitsky [14] extended Nagaev’s Theorem 3.2 to the

multivariate case.

Theorem 4.4. (A multivariate Nagaev-type large deviation result.) Consider an i.i.d. R
d-

valued sequence (Xi) with generic element X. Assume the following conditions.

(1) X ∈ RV(α, μ).
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(2) The sequence of positive numbers (xn) satisfies

x−1
n Sn

P→ 0 as n → ∞, (4.23)

and, in addition,⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2

n

nE[|X|21(|X| ≤ xn)] log xn
→ ∞ α = 2 and E[|X|2] = ∞,

x2
n

n log n
→ ∞ α > 2 or [α= 2 and E[|X|2]<∞].

(4.24)

Then
P(x−1

n Sn ∈ ·)
nP(|X|> xn)

v→ μ(·), n → ∞.

Remark 4.4. Condition (4.23) requires that n E[X]/anp → 0 for α > 1. It is always satisfied
if E[X] = 0. Now assume that the latter condition is satisfied if the expectation of X is finite.
If α ∈ (0, 2), we can choose any (pn) such that pn → ∞. If α ≥ 2 and (np)1/α/n0.5+γ /α → ∞,
equivalently, p/nα/2−1+γ → ∞ holds for any small γ > 0, then (4.24) is satisfied.

The following result extends Theorem 4.3 to the multivariate case.

Theorem 4.5. Assume that X satisfies the conditions of Theorem 4.4. Consider an integer
sequence p = pn → ∞ and, in addition for α ≥ 2, that xn = anp satisfies (4.24). Then the
following limit relation holds:

Np =
p∑

i=1

εa−1
np Sni

d→ N,

where (Sni) are i.i.d. copies of Sn and N is PRM(μ) on R
d
0.

Proof. In view of Proposition 2.1 it suffices to show that

p P(a−1
np Sn ∈ ·) v→ μ(·).

Assume α < 2. Then, for any sequence pn → ∞, anp/an → ∞. Therefore Theorem 4.4 and the
definition of (anp) imply that, for any μ-continuity set A ⊂R

d
0,

p P(a−1
np Sn ∈ A) ∼ p n P(|X|> anp)μ(A) →μ(A), n → ∞.

If α ≥ 2, the same result holds by virtue of Theorem 4.4 and the additional condition (4.24). �
Example 4.8. Write

Sni = (S(1)
ni , . . . , S(d)

ni )�,

Mn =
(

max
i=1,...,p

S(1)
ni , . . . , max

i=1,...,p
S(d)

ni

)� = (M(1)
n , . . . ,M(d)

n )�.

For vectors x, y ∈R
d with non-negative components, we write x ≤ y for the componentwise

ordering, [0, x] = {y : 0 ≤ y ≤ x} and [0, x]c =R
d+\[0, x]. We have by Theorem 4.5,

P(0 ≤ a−1
np Mn ≤ x) = P(Np([0, x]c) = 0)

→ P(N([0, x]c) = 0)
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= exp (−μ([0, x]c))

=: H(x), n → ∞,

for the continuity points of the function − log H(x) =μ([0, x]c). If μ(Rd+\{0}) is not zero, H
defines a distribution on R

d+ with the property − log H(tx) = t−α(− log H(x)), t> 0. The non-
degenerate components of H are in the type of the Fréchet distribution; H is referred to as a
multivariate Fréchet distribution with exponent measure μ.

4.3.5. An extension to i.i.d. random sums. In this section we consider an alternative random
sum process:

S(t) =
ν(t)∑
i=1

Xi, t ≥ 0,

where (ν(t))t≥0 is a process of integer-valued non-negative random variables independent of
the i.i.d. sequence (Xi) with generic element X and finite expectation. Throughout we assume
that λ(t) =E[ν(t)], t ≥ 0, is finite but limt→∞ λ(t) = ∞. We also define

m(t) =E[S(t)] =E[X] λ(t).

In addition, we assume some technical conditions on the process ν.

N1 ν(t)/λ(t)
P→ 1, t → ∞.

N2 There exist ε, δ > 0 such that

lim
t→∞

∑
k>(1+δ)λ(t)

P(ν(t)> k) (1 + ε)k = 0.

These conditions are satisfied for a wide variety of processes ν, including the homogeneous
Poisson process on (0,∞). Klüppelberg and Mikosch [16] proved the following large deviation
result for the random sums S(t) (allowing for the more general condition of extended regular
variation).

Theorem 4.6. Assume that ν satisfies N1 and N2 and is independent of the i.i.d. non-negative
sequence (Xi) which is regularly varying with index α > 1. Then, for any γ > 0,

sup
x≥γ λ(t)

∣∣∣∣P(S(t) − m(t)> x)

λ(t)P(X > x)
− 1

∣∣∣∣, t → ∞.

The same method of proof as in the previous sections in combination with the large deviation
result of Theorem 4.6 yields the following statement. As usual, we assume that (a(t)) is a
function such that t P(X > a(t)) → 1 as t → ∞.

Corollary 4.4. Assume the condition of Theorem 4.6. Let (p(t)) be an integer-valued function
such that that p(t) → ∞ as t → ∞ and a growth condition is satisfied for every fixed γ > 0
and sufficiently large t ≥ t0:

a(λ(t)p(t)) ≥ γ λ(t). (4.25)

Then the following limit relation holds for i.i.d. copies Si of the random sum process S:

Np(t) =
p(t)∑
i=1

ε(Si(t)−m(t))/(a(λ(t)p(t)))
d→ N =

∞∑
i=1

ε
�

−1/α
i

, t → ∞,
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where (�i) is defined in Theorem 4.1.

Proof. In view of Proposition 2.1 the result is proved if we can show that as t → ∞,

p(t) P((a(λ(t)p(t)))−1(S(t) − m(t))> x) ∼ λ(t) p(t) P(X > a(λ(t)p(t)) x) → x−α,
p(t) P((a(λ(t)p(t)))−1(S(t) − m(t))<−x) → 0, x> 0.

But this follows by an application of Theorem 4.6 in combination with (4.25) and the regular
variation of X. �
Remark 4.5. Since a(λ(t)p(t)) = (λ(t)p(t))1/α�(λ(t)p(t)) for a slowly varying function � and

�(x) ≥ x−ε/α for any small ε > 0 and sufficiently large x, (4.25) holds if p(t) ≥ (λ(t))α−1+ε′ for
any choice of ε′ > 0.

4.4. An extension: the index of the point process is random

Let (Pn)n≥0 be a sequence of positive integer-valued random variables. We assume that
there exists a sequence of positive numbers (pn) such that pn → ∞ and

Pn

pn

P→ 1, n → ∞. (4.26)

This condition is satisfied for wide classes of integer-valued sequences (Pn), including the
renewal counting processes and (inhomogeneous) Poisson processes when calculated at the
positive integers. In particular, for renewal processes pn ∼ c n provided the inter-arrival times
have finite expectation.

We have the following analog of Proposition 2.1.

Proposition 4.1. Let (Xni)n=1,2,...;i=1,2,... be a triangular array of i.i.d. random variables
assuming values in some state space E ⊂R

d equipped with the Borel σ -field E . Let μ be a
Radon measure on E . If the relation

pn P(Xn1 ∈ ·) v→ μ(·), n → ∞, (4.27)

holds on E, then

Ñp =
Pn∑
i=1

εXni

d→ N, n → ∞,

where N is PRM(μ) on E.

Proof. We prove the result by showing convergence of the Laplace functionals. The
arguments of a Laplace functional are elements of

C+
K (E) = {g : E →R+ : g continuous with compact support}.

For f ∈ C+
K we have by independence of the (Xni),

E

[
exp

(
−

∫
E

f dÑp

)]
=E

[
exp

(
−

Pn∑
j=1

f (Xnj)

)]
=E[(E[ exp(−f (Xn1)])Pn].

In view of (4.26) there is a real sequence εn ↓ 0 such that

lim
n→∞ P(|Pn/pn − 1|> εn) = P(Ac

n) = 0. (4.28)
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Then

E[(E[ exp(−f (Xn1)])Pn]

=E[(E[ exp(−f (Xn1)])Pn(1(Ac
n) + 1(An))]

= I1 + I2.

By (4.28) we have I1 ≤ P(Ac
n) → 0 as n → ∞, while

E[(E[ exp(−f (Xn1)])(1+εn)pn 1(An)] ≤ I2 ≤E[(E[ exp(−f (Xn1)])(1−εn)pn 1(An)]. (4.29)

In view of Proposition 2.1 and (4.27)

(E[ exp(−f (Xn1)])(1±εn)pn →E

(
exp

(
−

∫
E

(1 − e−f (x))μ(dx)

)
.

The right-hand side is the Laplace functional of a PRM(μ). Now an application of dominated
convergence to I2 in (4.29) yields the desired convergence result. �

An immediate consequence of this result is that all point process convergences in Section 4
remain valid if the point processes Np are replaced by their corresponding analogs Ñp with a
random index sequence (Pn) independent of (Sni) and satisfying (4.26). Moreover, the growth
rates for pn → ∞ remain the same.

4.5. Extension to the tail empirical process

We assume that (Sni) are i.i.d. copies of a real-valued random walk (Sn). Instead of the point
processes considered in the previous sections, one can also study the tail empirical process

Np = 1

k

p∑
i=1

εc−1
[p/k](Sni/

√
n−d[p/k])

,

where k = kn → ∞, p = pn → ∞ and pn/kn → ∞, and (cn) and (dn) are suitable normalizing
and centering constants. To illustrate the theory we consider two examples.

Example 4.9. Assume the conditions and notation of Theorem 4.1. In this case, choose cn =
1/dn. Then

E[Np(x,∞)] = p

k
P(Sn/

√
n> d[p/k] + x/d[p/k]) → e−x,

var(Np(x,∞)) ≤ p

k2
P(Sn/

√
n> d[p/k] + x/d[p/k]) → 0, x ∈R, n → ∞,

provided p/k< exp(γ 2
n /2). It is not difficult to see that

Np
P→ − log�.

Similarly, assume the conditions and the notation of Theorem 4.3 and consider

Np = 1

k

p∑
i=1

εa−1
[np/k](Sni−dn).
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Then, for x> 0 as n → ∞,

E[Np(x,∞)] = p

k
P(a−1

[np/k](Sn − dn)> x) ∼ np

k
P(X > a[np/k] x) → p+ x−α =μα(x,∞),

var(Np(x,∞)) → 0,

E[Np(−∞,−x]] = p

k
P(a−1

[np/k](Sn − dn) ≤ −x) → p− x−α =μα(−∞,−x],

var(Np(−∞,−x]) → 0,

provided the modified sequence pn/kn → ∞ satisfies the conditions imposed on (pn) in
Theorem 4.3. We notice that the values of μα on (−∞,−x] and (x,∞) determine a Radon

measure on R\{0}. From these relations we conclude that Np
P→ μα . Then, following the lines

of Resnick and Stărică [30, Proposition 2.3], one can for example prove consistency of the Hill
estimator based on the sample (Sni)i=1,...,p. Assuming for simplicity dn = 0, p+ > 0, we write
Sn,(1) ≥ · · · ≥ Sn,(k) for the k largest values. Then

1

k

k∑
i=1

log
Sn,(i)

Sn,(k)

P→ 1

α
.

4.6. Some related results

The largest values of sequences of i.i.d. normalized and centered partial sum processes play
a role in the context of random matrix theory, which is also the main motivation for the present
work. Consider a double array (Xit) of i.i.d. regularly varying random variables with index
α ∈ (0, 4) (see (2.1)) and generic element X, and also assume that E[X] = 0 if this expectation
is finite. Consider the data matrix

X := Xn = (Xit)i=1,...,p;t=1,...,n

and the corresponding sample covariance matrix XX� = (Sij). Heiny and Mikosch [12] proved
that

a−2
np ‖XX� − diag (XX�)‖2

P→ 0, n → ∞,

where ‖A‖2 denotes the spectral norm of a p × p symmetric matrix A, diag (A) consists of the
diagonal of A, (ak) is any sequence satisfying k P(|X|> ak) → 1 as k → ∞, and pn = nβ�(n) for
some β ∈ (0, 1] and a slowly varying function �. Write λ(1)(A) ≥ · · · ≥ λ(p)(A) for the ordered
eigenvalues of A. According to Weyl’s inequality (see Bhatia [2]), the eigenvalues of XX�
satisfy the relation

a−2
np sup

i=1,...,p
|λ(i)(XX�) − λ(i)(diag (XX�))| ≤ a−2

np ‖XX� − diag (XX�)‖2
P→ 0. (4.30)

But of course, λ(i)(diag (XX�)) are the ordered values of the i.i.d. partial sums Sii = ∑n
t=1 X2

it,
i = 1, . . . , p. In view of (4.30) the asymptotic theory for the largest eigenvalues of the nor-
malized sample covariance matrix a−2

np XX� (which also needs centering for α ∈ (2, 4)) are

determined through the Fréchet convergence of the processes with points (a−2
np Sii)i=1,...,p.

Moreover, (4.30) implies the Fréchet convergence of the point processes of the normalized
and centered eigenvalues of the sample covariance matrix.
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The large deviation approach also works for proving limit theory for the point process of
the off-diagonal elements of XX� provided X has sufficiently high moments. Heiny, Mikosch,
and Yslas [13] prove Gumbel convergence for the point process of the off-diagonal elements
(Sij)1≤i<j≤p. The situation is more complicated because the points Sij are typically depen-
dent. Multivariate extensions of the normal large deviation approximation 0.5p2

P(dp2/2(S12 −
dp2/2)> x) → exp(−x) show that the point process of the standardized (Sij) has the same limit
Poisson process as if the Sij were independent. Moreover, Heiny et al. [13] show that the point
process of the diagonal elements (Sii) (under suitable conditions on the rate of pn → ∞ and
under E[|X|s]<∞ for s> 4) converges to PRM(− log�). This result indicates that the off-
diagonal and diagonal entries of XX� exhibit very similar extremal behavior. This is in stark
contrast to the aforementioned results in [12], where the diagonal entries have Fréchet extremal
behavior.

Related results can also be found in Gantert and Höfelsauer [11], who consider real-valued
branching random walks and prove a large deviation principle for the position of the rightmost
particle; see [11, Theorem 3.2]. The position of the rightmost particle is the maximum of a
collection of a random number of dependent random walks. In this context, the authors also
prove a related large deviation result under the assumption that the random walks considered
are i.i.d. They show that the maximum of these i.i.d. random walks stochastically dominates
the maximum of the branching random walks; see [11, Theorem 3.1 and Lemma 5.2]. An early
comparison between maxima of branching and i.i.d. random walks was provided by Durrett [7].

Acknowledgements

Thomas Mikosch’s research is partly support by an Alexander von Humboldt Research
Award. He takes pleasure in thanking the Faculty of Mathematics of Ruhruniversität Bochum
for hosting him in the period December 2018–May 2019. The research of both authors is
supported by DFF grant 9040-00086B. We would like to thank the reviewers of our paper for
careful reading and constructive criticism.

References

[1] BASRAK, B. AND SEGERS, J. (2009). Regularly varying multivariate time series. Stoch. Process. Appl. 119,
1055–1080.

[2] BHATIA, R. (1997). Matrix Analysis (Graduate Texts Math. 169). Springer, New York.
[3] BINGHAM, N. H., GOLDIE, C. M. AND TEUGELS, J. L. (1987). Regular Variation. Cambridge University

Press, Cambridge.
[4] CLINE, D. B. H. AND HSING, T. (1998). Large deviation probabilities for sums of random variables with

heavy or subexponential tails. Technical report, Texas A&M University. Available at https://www.stat.tamu.
edu/~dcline/Papers/large5.pdf.

[5] DAVIS, R. A. AND HSING, T. (1995). Point process and partial sum convergence for weakly dependent random
variables with infinite variance. Ann. Prob. 23, 879–917.

[6] DENISOV, D., DIEKER, A. B. AND SHNEER, V. (2008). Large deviations for random walks under subexpo-
nentiality: the big-jump domain. Ann. Prob. 36, 1946–1991.

[7] DURRETT, R. (1979). Maxima of branching random walks vs. independent random walks. Stoch. Process.
Appl. 9, 117–135

[8] EMBRECHTS, P., KLÜPPELBERG, C. AND MIKOSCH, T. (1997). Modelling Extremal Events for Insurance
and Finance. Springer, Berlin.

[9] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New
York.

[10] FOSS, S., KORSHUNOV, D. AND ZACHARY, S. (2013). An Introduction to Heavy-Tailed and Subexponential
Distributions, 2nd edn. Springer, New York.

[11] GANTERT, N. AND HÖFELSAUER, T. (2019). Large deviations for the maximum of a branching random walk.
Electron. J. Prob. 23, 1–12.

https://doi.org/10.1017/apr.2019.57 Published online by Cambridge University Press

https://www.stat.tamu.edu/~dcline/Papers/large5.pdf
https://www.stat.tamu.edu/~dcline/Papers/large5.pdf
https://doi.org/10.1017/apr.2019.57


236 T. MIKOSCH and J. YSLAS

[12] HEINY, J. AND MIKOSCH, T. (2017). Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices
with general growth rates: the iid case. Stoch. Process. Appl. 127, 2179–2242.

[13] HEINY, J., MIKOSCH, T. AND YSLAS, J. (2019). Gumbel convergence of the maximum entry in a sample
covariance matrix. Technical report.

[14] HULT, H., LINDSKOG, F., MIKOSCH, T. AND SAMORODNITSKY G. (2005). Functional large deviations for
multivariate regularly varying random walks. Ann. Appl. Prob. 15, 2651–2680.

[15] IBRAGIMOV, I. A. AND LINNIK, Y. V. (1971). Independent and Stationary Sequences of Random Variables.
Wolters-Noordhoff, Groningen.

[16] KLÜPPELBERG, C. AND MIKOSCH, T. (1997). Large deviation of heavy-tailed random sums with applications
in insurance and finance. J. Appl. Prob. 34, 293–308.

[17] LINNIK, Y. V. (1961). Limit theorems allowing large deviations for sums of independent variables I, II. Theory
Prob. Appl. 6, 145–161, 377–391.

[18] MICHEL, R. (1974). Results on probabilities of moderate deviations. Ann. Prob. 2, 349–353.
[19] MIKOSCH, T. AND NAGAEV, A. V. (1998). Large deviations of heavy-tailed sums with applications in

insurance. Extremes 1, 81–110.
[20] MIKOSCH, T. AND WINTENBERGER, O. (2016). A large deviations approach to limit theory for heavy-tailed

time series. Prob. Theory Relat. Fields 166 233–269.
[21] NAGAEV, S. V. (1965). Limit theorems on large deviations. Theory Prob. Appl. 10 231–254.
[22] NAGAEV, A. V. (1969). Limit theorems for large deviations where Cramér’s conditions are violated (in

Russian). Izv. Akad. Nauk UzSSR Ser. Fiz.–Mat. Nauk 6, 17–22.
[23] NAGAEV, A. V. (1969). Integral limit theorems for large deviations when Cramér’s condition is not fulfilled I,

II. Theory Prob. Appl. 14, 51–64, 193–208.
[24] NAGAEV, A. V. (1977). A property of sums of independent random variables. Theory Prob. Appl. 22, 335–346.
[25] NAGAEV, S. V. (1979). Large deviations of sums of independent random variables. Ann. Prob. 7, 745–789.
[26] PETROV, V. V. (1972). Sums of Independent Random Variables (in Russian). Nauka, Moscow.
[27] PETROV, V. V. (1995). Limit Theorems of Probability Theory. Oxford University Press, Oxford.
[28] RESNICK, S. I. (1987). Extreme Values, Regular Variation, and Point Processes, 2008 reprint. Springer, New

York.
[29] RESNICK, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York.
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