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Abstract  Let F be an infinite field of positive characteristic p > 2 and let G be a group. In this paper, we
study the graded identities satisfied by an associative algebra equipped with an elementary G-grading.
Let E be the infinite-dimensional Grassmann algebra. For every a, b € N, we provide a basis for the
graded polynomial identities, up to graded monomial identities, for the verbally prime algebras M, ;(E),
as well as their tensor products, with their elementary gradings. Moreover, we give an alternative proof
of the fact that the tensor product M, ,(E) @ My s(E) and Mgy ips,as+br(F) are F-algebras which are
not PI equivalent. Actually, we prove that the Tz-ideal of the former algebra is contained in the T-ideal
of the latter. Furthermore, the inclusion is proper. Recall that it is well known that these algebras satisfy
the same multilinear identities and hence in characteristic 0 they are PI equivalent.
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1. Introduction

The term “verbally prime algebra” was introduced by A. Kemer [23] in his solution to the
Specht problem. These algebras play a crucial role in the theory developed by Kemer.
An algebra A is verbally prime if, whenever f(z1,...,2,) and g(z;41,...,2s) are two
polynomials in distinct variables and f - ¢ is an identity for A, then either f or g is an
identity for A, or both are. Roughly speaking, A is verbally prime if its T-ideal (the
ideal of all polynomial identities satisfied by A) is prime inside the class of all T-ideals.
Kemer proved that, in characteristic 0, every non-trivial verbally prime PI algebra is
PI equivalent to one of the algebras M, (F), M, (E) or certain subalgebras M, ;,(E) of
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M, +p(E). This latter algebra consists of all matrices of the form

A B
(@ b)
where A € Ma(E((])), D e Mb(E(O))7 B e Ma><b<E(1))a Ce bea(E(1)>. Here and in what
follows E stands for the Grassmann algebra of an infinite-dimensional vector space, E =
E0) ® E(1), where E(q) is the centre of F, and E(;) is the “anticommuting” part of E.
As a consequence of his structure theory, Kemer described the PI equivalences of the

tensor products of verbally prime algebras. This description is given below; it is known
as the Tensor Product Theorem.

Theorem 1.1 (Tensor Product Theorem). Let F' be a field of characteristic zero.
Then the class of verbally prime algebras is closed under tensor products. Moreover one
has the following PI equivalences (meaning the corresponding algebras satisfy the same
polynomial identities):

(1) Ma,b(E) QFE ~ Ma+b(E)a'
(2) Ma,b(E) & Mc,d(E) ~ Mac+bd,ad+bc(E);
(3) My1(E) ~E® E.

The remaining tensor products of verbally prime algebras can be deduced from the above
and easy isomorphisms.

Here and in what follows, all tensor products are supposed to be over F.

This theorem admits proofs that do not depend on the structure theory developed by
Kemer. The first such proof was given by Regev in [28]. Regev used implicitly adequate
gradings on the corresponding algebras. Later on, Di Vincenzo in [13] gave a proof of the
third statement by using gradings by the cyclic group of order 2. Di Vincenzo’s results
concerning the graded identities for M; 1 (E) and E ® E were extended in [26] where it was
proved that in positive characteristics the graded identities of these two algebras differ.
By using appropriate gradings and graded identities, the second statement of the previous
theorem was proved in [15, 16]. In [5, 6], the authors proved that Regev’s results hold
over an arbitrary infinite field of characteristic p # 2 but only at multilinear level, and
consequently, they showed that if p > 2 then the third statement of the Tensor Product
Theorem fails. Moreover, they showed that in positive characteristic, the algebras My (FE)
and M; 1(E) ® E are not PI equivalent. We refer the reader to the monograph [24] for
details about the important structure theory of PI algebras and Kemer’s contributions
to it.

Graded polynomial identities play an important role in the study of PI algebras. When
the grading group is Zs they were used in the theory developed by Kemer. This should
not be surprising as the Grassmann algebra F possesses a natural grading by this group,
and this grading is essential in obtaining the verbally prime algebras. Another motivation
that favours the graded identities and their usage is that they are easier to describe in
many important cases and are related to the ordinary ones. We recall as an example that
if two graded algebras share the same graded identities, then they share the same ordinary
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identities. Let us also recall that the polynomial identities of the n x n matrix algebra
M,,(F) are not known whenever n > 2. On the other hand, M, (F) admits a natural
Zy-grading by assuming the elementary matrix F;; of degree j —i (mod n). The graded
identities for this grading on M, (F) are well known, see [4, 31]. In [18], the authors
studied the graded identities of the algebras M, ,(E) @ M. q(E) and Mactbd,ad+be(E),
and they proved that Ta(Myctbd,ad+be(E)) € Ta(Map(E) @ M. 4(E)). As a consequence,
they obtained the inclusion for ordinary polynomial identities. On that occasion, the
authors considered G as the group Z,,, X Zs, a+b=m and ¢+ d =n. Here and in
what follows we denote by T(A) and by T (A) the ideal of the ordinary, respectively
G-graded identities for the algebra A.

However, over an infinite field of positive characteristic, very little is as yet known
about the concrete description of ordinary or graded identities apart from some particular
cases. It should be noted that the information on the verbally prime algebras in positive
characteristic is very far from complete. It is known that there exist other verbally prime
algebras but the complete classification seems to be out of reach at present. The interested
reader can consult the monograph [27, Section 33.2], and also [25] for more details.

Let F' be an infinite field of positive characteristic p > 2. The paper is organized as
follows. In § 2, we give the necessary background on associative algebras, elementary grad-
ings and graded identities. The usage of gradings on algebras possessing a multiplicative
basis is essential. The interested reader may consult [9] for more details about this topic.
Considering graded algebras with multiplicative basis, in § 3, we exhibit a set of genera-
tors of degrees 2 and 3, up to graded monomial identities, that form a basis for the set
of all graded identities for these algebras. As a consequence, we exhibit a basis for the
graded identities of the algebras M, ;(E) with respect to these elementary gradings, as
well as their tensor products, once again up to graded monomial identities. The problem
of describing these monomial identities is still open even in characteristic zero, and it is
still far from being understood, although it was done in several particular cases, see [20].

However, in § 4, we obtain an upper bound on the degrees of these monomial identities,
and moreover, we prove that all graded monomial identities of an algebra with elementary
G-grading, under a technical condition, follow from those of bounded degree.

Finally, in §5, an alternative proof that the inclusion T(Myctbdadtve(E)) C
T(My,(E)® M. 4(E)) holds, for the ordinary polynomial identities, is presented. To
this end, we make use of a generic construction similar to the one given in [18, Section 2.

2. Preliminaries

All algebras and vector spaces, as well as their tensor products, will be considered over a
fixed infinite field F of characteristic p # 2.

Let G be a group with identity element € and A an algebra. A grading by the group G on
A is a vector space decomposition A = @geq Ay such that AgAy C Agy, for every g, hin G.
The subspaces A, are called the homogeneous components of A. A non-zero element a € A
is homogeneous of degree g if a € A, and we denote it by |a|¢ = g or ag(a) = g (or simply
la| = g or a(a) = g when the group G is inferred from the context). If the grading group
is the direct product G x H of the groups G and H we denote the entries, in G and H, of
degree agx g (a) of the homogeneous element a, by ag(a) and ay(a), respectively. The
support of A in the G-grading is the set supp A = {g € G | A, # 0}. A vector subspace
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(subalgebra, ideal) B of A is said to be graded or homogeneous if B = @4cqAy N B. Let
A= ®yeqAy and B = @pep By be algebras graded by the groups G and H, respectively.
The tensor product A ® B has a canonical G x H-grading where (A ® B) 4.y = Ay ® By,
g€ G, he H If A, B are G-graded algebras, an algebra homomorphism ¢: A — B is a
homomorphism of graded algebras if p(A,) C By for all g € G. Such homomorphisms are
called G-graded ones.

An important example of a graded algebra is the Grassmann algebra. Kemer proved
that every associative PI algebra over a field of characteristic zero is PI equivalent to
the Grassmann envelope of a finite-dimensional associative superalgebra. (Here, we deal
with associative algebras, and in this setting, a superalgebra is the same as a Zs-graded
algebra.) Let L be a vector space with a basis B = {ej, ea, ...}. The infinite-dimensional
Grassmann (or exterior) algebra E of L has a basis Bg consisting of 1 and all monomials
€y €iy -+ - €y, Where i1 < g < ... < iy for every k > 1. The multiplication in F is induced
by e;e; = —eje; for all i and j. Hence E = E(g) ® E(1), where E(q) is the subspace spanned
by 1 and all monomials of even length while E(; is spanned by the monomials of odd
length. This decomposition gives the natural (or canonical) Zs-grading on E, denoted
by Feqn. Recall that the Grassmann algebra has other gradings by the group Zs. Here
we are not going to discuss these constructions (since we will not need them here) but
instead, we refer the reader to [14, 22].

Another example of graded algebras is the so-called -colour commutative algebras (or
simply colour commutative algebras). The case of S-colour Lie superalgebras was treated
extensively in the monograph [8]. Let H be an abelian group with the additive notation,
and let §: H x H — F* be a skew-symmetric bicharacter. This means [ is a function
in two arguments from H taking values in the multiplicative group F* of F' with the
properties

B(g + h. k) = B(g, k)B(h,
ﬂ(ga h + k) = ﬁ(g, h)ﬂ(gv
B(g:h) = B(h,g)~"

for all g, h, k € H. Define the f-commutator in R = ®4e g Ry by [a, blg = ab— B(g, h)ba
where a € Ry, b € Ry, and then extend it by linearity. We call R a H-graded colour
B-commutative algebra whenever [a, blg = 0 for every a, b € R. We draw the reader’s
attention that 0 can be omitted when it is inferred from the context. A particularly
interesting case of a colour commutative algebra is the Grassmann algebra. According
to [1, 29], an H-graded colour commutative algebra R is called regular if it satisfies the
following property: for every integer n > 0 and every n-tuple (hq, ..., h,) of elements of
H, there exist 71, ..., 7, with r; € Ry, such that v ---7, # 0.

Let {X,}4ec be a family of pairwise disjoint sets X, = {zf, 3, ...}. We denote by
F(X¢) the free G-graded algebra, freely generated by the set X¢ = Uge X 4. This algebra
has a natural grading by G assuming the elements of X, homogeneous of degree g.
Hence the homogeneous component (F(X¢)), is the subspace spanned by all monomials
xf! - x)™ such that g - - g, = g. The elements in F(X¢) are called graded polynomials
(or simply polynomials). Let f(z{*,...,2%") be a polynomial in F(X¢). The degree of
f in z¥", denoted by degmfi f, counts how many times the variable zY* appears in the
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monomial of largest degree in zf* with a non-zero coefficient in f, and it is defined in
the usual way. The definitions of multilinear and multihomogeneous polynomials are the
natural ones.

We will omit the upper indices of the free generators 2/ and we will write instead z; if
these are clear from the context.

Let A = @4eqA, be a G-graded algebra. An m-tuple (a1, ...,an) such that a; € A,
fori=1, ..., m,is called f-admissible substitution (or simply admissible substitution).
The polynomial f is called a graded polynomial identity for A if f(aq,...,a;) =0 for
every admissible substitution (aq,...,a,). We denote by Tg(A) C F(X¢) the set of all
graded identities for a given G-grading on A. If A and B are G-graded algebras we say
that A and B are PI equivalent as G-graded algebras if Ta(A) = Ta(B).

Let A be an algebra graded by the group G. It is clear that Tz (A) is an ideal of F(X¢),
moreover it is invariant under all G-graded endomorphisms of F'(X¢). Such ideals are
called Tg-ideals. The intersection of Tg-ideals of F(Xg) is also a Tg-ideal. A subset
P C F(X¢) is a basis for the Tg-ideal T (A) if Te(A) is the intersection of all Ti-ideals
in F(X¢g) which contain P; this Tg-ideal is denoted by (P)Te. If G = {e} we recover
the definition of ordinary polynomial identities; in this case, we use the notation F(X)
for the free-associative algebra and z; for the variables. It is well known that if A is a
G-graded algebra over a field of characteristic 0, the ideal T(A) is generated, as a Tg-
ideal, by its multilinear polynomials. Over an infinite field of positive characteristic, one
has to take into account the multihomogeneous polynomials instead of the multilinear
ones. Recall that if f is a multihomogeneous graded polynomial one can, by linearization
(or polarization), obtain a multilinear polynomial in (f)7¢. If the characteristic is 0 one
can recover [ by symmetrization (or restitution) but in positive characteristic, this may
be impossible.

The next definition will be very important in what follows. It can be found in [17], we
recall it here for the readers’ convenience.

Definition 2.1 ([17, Definition 1]). Let B be a basis for the vector space of an
algebra A. We say B is a multiplicative basis for A if it satisfies the following condition.
For every by, by € B such that b1by # 0 there exists a non-zero scalar A = A(by, b2) in F
such that A\b;by € B.

Let G be a group. Suppose that there is a multiplicative basis B for A, and there is a
map |- |: B — G satisfying

blbg 75 0 implies |)\(b1,bz)b1b2| = |b1||b2|, for all bhbg € B. (1)

Then we can endow A with a G-grading. More precisely, A, =sp{b € B ||b| = g} for
every g € G. Then B is a basis of homogeneous elements. We shall express this by calling
B a G-multiplicative basis for the G-graded algebra A.

Definition 2.2 (Bemm et al. [9]). A multiplicative basis B for an algebra A is called
an elementary basis if there exists a set of pairwise orthogonal idempotents I C B such
that for every u € B there exist idempotents a,, b, € I such that the equality u = a,ub,
holds. Moreover, we say that I is an elementary set of idempotents of B.
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The idempotents a,, and b, in the above definition are uniquely determined by the ele-
ment u. It is immediate that the canonical bases of the verbally prime algebras M, (F'),
M, (E) and M, ;(E) are elementary ones. Moreover, if B4, Bas are elementary bases for
the algebras A, A’, respectively, then Baga = {u®@u' |u € Ba, ' € Bas} is an elemen-
tary basis for A ® A’. Therefore, the canonical basis for the algebra M, ,(E) @ M, s(E)
is also an elementary one. Finally, if an algebra admits a multiplicative basis B we say
that a G-grading of A is a B-good grading if all elements of B are homogeneous.

Definition 2.3. Let A be an algebra with an elementary basis B and let I be the
corresponding elementary set of idempotents. Let G be a group. A G-grading of A is said
to be a B-elementary grading if it is a B-good grading such that there exists f: I — G
with the property |u| = [f(ay)] ™1 f(by), for all u € B.

Let B be an elementary basis of A and let I be its elementary set of idempo-
tents. For each f: I — G, there exists a B-elementary G-grading of A such that |u| =
[f(a.)]"tf(by), for all u € B. Moreover, according to [9, Remark 2.2], the set I is finite
and 1 =3 _;u.

Now let A, A’ be two algebras equipped with elementary gradings relative to the bases B
and B’, respectively. Furthermore, we suppose that the elements of supp A commute with
the elements of supp A’. Then the tensor product grading on A ® A’ is a B”-elementary
grading where B” = {b® V' | b € B, V/ € B'}. The canonical basis of F, and more generally
of E®™, is an elementary basis with a set of idempotents I consisting of the unit element,
hence the only elementary grading on such algebras is the trivial grading.

We draw the readers’ attention that for the algebras M,,(F'), M, (E), M, ,(E) equipped
with their canonical (multiplicative) bases, the corresponding set I is non-trivial, that is,
it contains at least two elements, as long as n > 1, or a + b > 1, respectively.

3. Graded identities for algebras with elementary gradings

Let A be an algebra with a B-elementary grading, here we describe a basis for the graded
identities of A provided it satisfies the following graded identities of degrees 2 and 3:

T1x9 — xowy, where ag(r1) = ag(z2) = ¢, (2)

T1T923 — A\gT37271, Where ag(r1) = ag(r2)” ! = ag(x3) =g, for every g € G.  (3)

Here ), is a non-zero scalar in F. Note that if the monomial z 2923 in (3.2) is not an
identity for A then A\, = £1.

Let Z be the Tg-ideal generated by the identities from (3.1) and (3.2). Variants of the
following lemma were proved in various situations, to the best of our knowledge, a similar
statement first appeared in [30, Lemma 6]. In our case, the proof of the lemma follows
word by word the one of [20, Lemma 6.4], and that is why we omit it here.

Lemma 3.1. Let A be an algebra with a B-elementary grading such that T C T (A).
Let m, n be multilinear monomials in the same set of variables and let S be an admissible

substitution in A by elements of B such that ng = cmg # 0 for some ¢ € F. Thenn = cm
(mod 7).
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The previous lemma justifies our interest in investigating more closely the result for any
admissible substitution. We introduce the following notation: Let m be a graded monomial
and S an admissible substitution in A. Consider B = {b; | i € A}, a G-multiplicative basis
of A. We denote

mls =Y _(mls)ibi,
icA
the element of A obtained from m by the admissible substitution S where (m|g); are
scalars in F' almost all equal to 0 (that is all but finitely many of these scalars are equal
to 0).

Definition 3.2. Let A be an algebra with an elementary basis B, and with the cor-
responding set of idempotents I C B. The (n + 1)-tuple (ag, a1, ..., a,) of elements in
I is called a good sequence if there exist uy, us, ..., u, in B such that a;_ju;a; = u;,
for each i =1, ..., n, and ujus - - - u, # 0.

We will assume, until the end of this paper that our G-graded algebras are finite
dimensional. In fact, M, (F) is finite dimensional while M, ;(E) and M, (E) are not. We
draw the readers’ attention to the fact that our arguments do apply to the latter two
algebras as well, see Remark 3.14. On the other hand, working with finite-dimensional
algebras simplifies the exposition. Let A be a G-graded algebra of dimension n with
G-multiplicative basis B. For each g € supp A, we consider {uf, ..., u%y} C B, a basis
for the vector space A,. Moreover, we define a countable set 79 = {tfyj 1< <
dimp Ay, j > 1} of commuting variables. Let T' = Ugequpp 477 and denote I' = F[T]]
the polynomial ring in the commuting variables T'.

Let A be an algebra with a B-elementary grading. The algebra A @ I' has an elementary
grading induced by the elements of set I, the elementary set of idempotents of B, which we
denote by I = {uy, ..., w;}. Given h € G, we are interested in determining the elements

uf] of B whose G-degree equals h. Here we consider, without loss of generality, that
ufj = uiufﬁjuj where u;, u; € I. Fixed 7, 1 <17 <[, there exists an element u?J if and

only if there exists u; € I such that uf'; = wul ju; and f(u;)h = f(u;). Here f stands
for the function given in Definition 2.3.

Put f(I) ={f(u) | we€ I}. For each h € G we denote by Lj the set of all indices k,
1 <k <[, such that f(ug)h € f(I), and by s, 1 < sk <1, an index satisfying f(uy)h =
f(usg). It is easy to see that (A®T), = 0 if and only if L, = 0, moreover if L;, # ) then
{up,ox | k € L} is the set of all elements in B of degree h. The algebra A®T" has a
grading induced by the one on A. We consider, in A ® I, the homogeneous elements

h h
Y= Z bi kU, sk - (4)
keLy

Clearly, the element Y is homogeneous of degree h. Denote by R the G-graded

K3

subalgebra of A ® I' generated by the generic elements Y}, for every h € G and i > 0.

Remark 3.3. The previous construction can be performed on a free colour com-
mutative algebra graded by an abelian group H. Consider the H-graded set Ty =
Ugesuppa(UnenT})) where TP = {tf,’jh |1<j<dimpA, i>1} for cach h € H and
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g € supp A C G. We construct the free H-colour commutative algebra on Ty determined
by a skew-symmetric bicharacter 3: H x H — F*. Here and in what follows we denote
this free algebra by T'? = FA[Ty]. The relations it satisfies are xy = B3(h1, ho)yz for all
T € T;fll and y € T;’fj. Note that if a1, ..., a, are homogeneous elements of I'? with non-
zero product ay ---a, # 0 and o € S, then there exists A € F* depending only on the
degrees of each a; and on the permutation ¢ such that

)\aa(l) e aa(n) =ap---0ap.

Such construction can be found in [11]. Although our results will hold for the types of
algebras as in [11], we will only study free colour commutative algebras as in the general
case the arguments and notation become quite clumsy. In the next subsection, we will
display the free Zs-colour Lie algebra for 5(0, 1) = 5(0, 0) =1 and §(1, 1) = —1.

Lemma 3.4. The relatively free G-graded algebra F(X)/T¢(A) is isomorphic to the
algebra R.

Proof. The proof is standard. The map ¢: F(Xg) — R defined by ¢(z;4) =Y/, is a
G-graded homomorphism. Clearly ¢ is onto. Moreover, a standard argument shows that
ker ¢ = T;(A) and the result follows, as required. O

Thus, we can work in the graded algebra R instead of the graded relatively free algebra
F(Xa)/Ta(A).

Definition 3.5. Let h = (hy, ..., hy) € G9, the set
In={k|1<k<l, flu)hshi € f(I), for every i, 1<i<q}

is the set associated with h. For each k € Ly, we define the (¢ -+ 1)-tuples sx =
(sh sk, ..., s’;), inductively by setting:

<i> 518 =k,

(ii) for 1 <i < q we choose the index s¥, 1 < s¥ < such that f(ug) = f(ugs )hi,

L i—1

(iii) (uge, wgr, .-, Us{;) is a good sequence in the sense of Definition 3.2.
Remark 3.6. Let (ai,, a;,, ai,, ..., a;,) be a good sequence of elements in I, as
in Definition 3.2. In this case, ig € Ln for h = (|u;,|, [ug,|, ..., |ui,_,|) where |u;| =

[f(ai,_)] Y f(as,), forevery [, 1 <1< q—1.

The following statements deal with an algebra A which is equipped with a B-elementary
grading such that 7 C T¢(A).

Lemma 3.7. If L is the set of indices associated with the q-tuple (hy, ..., hy) in G?
and s = (s, s, ..., s];) denotes the corresponding sequence determined by k € L then
h h
}/1-11 ce Y;qq E Z wkusg}sy
kel
_4hi 4k h
where wy, = till,s’fti;,sg . ~ti:,s,;.
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Proof. From Definition 3.5, we conclude that
ukl,s:i ukg,s;f;i o ukq,s:‘; #0

ki1

if and only if k; € L and for every i, 1 <i <gq, we have k; = s, '. From Eq. (3.3),
we have
h h h h
}/ill o )/iqq = Z(ti117k1 o tiqq,kq)ukl,szll o ukq,s:q ’
keL 4
and the result follows. O

The following consequence of the above lemma will be useful in the next section. We
recall that given a monomial m = x;, - - - x;, of length ¢, the sequence (hy, ..., hy), where
hyi is the G-degree of the variable a;, , is denoted by h(m).

Corollary 3.8. Let my, my be monomials such that h(my) = h(ms), thenmy € Tg(A)
if and only if my € Tg(A).

Proof. It follows directly from the above lemma, since m; € T (A) if and only if the
set associated with h(m;) is empty. O

The product Y;, Y;, ---Y;, is a linear combination of the elements u = a,ub,, € B. Here
Gy, by € I C B are the corresponding idempotents. Since the elements w are linearly
independent, the coefficients of the combination are determined uniquely. We shall refer
to these coefficients as the entries of the product.

Lemma 3.9. If m = x;, %, ---x;, and n = x;,x;, ---x;, are graded monomials such
that the elements Y; Y;, ---Y; and Y; Y, ---Y; have in the same position the same
non-zero entry, up to a scalar multiple, then r = s and there exists o € S, such that

="Moo = LigayLig) " Tigwy

Proof. Let us assume Y;, Y;, ---Y; and Y; Y, ---Y;, have the same non-zero entry in
the basis element u = a,ub, € B. Such entries are polynomials in I". By our hypothesis,
there exist monomials with variables in T', such that

til,alt’iz,az e tiryar
and
tjraitiasa * Lissal
are equal. Here the r-tuple (aq, ..., a,) and the s-tuple (af, ..., a’) denote the good

sequences associated with the monomials m and n, respectively, whose entry is equal and
non-zero. From the equality of the monomials in I', and by homogeneity, we conclude
that r = s and there exists o € S, such that j; = i,(, for every [, 1 <1 < r. Thus the
proof is complete. O

Lemma 3.10. Let m and n be two graded monomials in the same set of variables and
of the same multidegree in F(Xq). Suppose that there exist an admissible substitution
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S in R and a non-zero ¢ € F such that, for some r € I, (m|g), and ¢(n|s), are non-zero,
and they share, in the same position, at least one common monomial, in T'. Then m = cn
(mod 7).

Proof. If m and n are multilinear, then the result follows from Lemma 3.1. Therefore,
we can consider only the case when m (and consequently n) is not multilinear. Notice
that for every monomial

m=m(T1,...,T1) = T4, Ty - Ty,

in F(Xg) with | < ¢, which is not an identity for A, there exists a multilinear monomial
m' =y1y2--y, € F(Xa)

which is not an identity for A either, and such that h(m) = h(m/').

Now we consider the specialization ¢,,: F(y1, ..., Yq) — F(z1, ..., x;) given by
©m(yr) = x;,. It is clear that ¢,, is onto and a G-homomorphism of algebras. Let n
be a monomial in the same set of variables and of the same multidegree as m. In
this case, there exists a multilinear graded monomial n’ = 212 - - - 2z, € F(X¢) such that
©n(n’) = n. By hypothesis (m|g), = ¢(n|s), # 0. Then Lemma 3.9 implies that

" = Yo(1)Yo(2) " Yola)
for some o € S, and consequently ¢,,(n") = ¢, (n’) = n. On the other hand, Lemma 3.1
implies that
m' =en’  (mod I).
Hence,
m = pm(m’) = cpp(n') =cn  (mod 7).

This concludes the proof of the lemma. ([l

The next proposition is a variation of [17, Proposition 8]. It can be traced back to the
papers by Vasilovsky [31] and later on Azevedo [4].

Proposition 3.11. Let A be a G-graded algebra equipped with a B-elementary grad-
ing and let T be the Tg-ideal generated by the identities in (3.1) and (3.2) such that
T CTg(A). Let M denote the set of all monomials in F'(X¢). Assume that for every m,
m' € M\ T (A) there exists an admissible substitution S in R (as in Lemma 3.4) and a
non-zero scalar ¢ € F such that, for some r =1, ..., n, satisfying the property

(P) (m|s)r and ¢(m/|s), are non-zero and they share at least one monomial, in T,
if and only if m = em’ (mod 7).

Then T (A) is generated by the identities in (3.1) and (3.2) together with the graded
monomial identities from (M NTg(A)).

Proof. Let J be the Ti-ideal generated by (3.1) and (3.2) together with (9t N Tg(A)).
One has Z C J C Tg(A). Therefore, we have to prove that every multihomogeneous
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graded identity for A lies in J. We consider a multihomogeneous polynomial f =
flxy, ..., zpn) € Ta(A). We write,

f Zcimi (mod J)

i=1

for some monomials m; € M of the same multidegree, non-zero scalars ¢; € F, and a
positive integer t. Choose ¢ minimal with respect to this property. Clearly ¢ > 2, and
hence, for each i, we have m; ¢ To(A). Pay attention that if ¢ =2 then my —cmgo €T
thus f = (c1c — ca)mg € T C J. We obtain ¢i¢ — co = 0 and f € Z. This says we can in
fact suppose without loss of generality that ¢ > 2.

We have an admissible substitution S of elements in R such that my|g # 0. This implies

t

—crmals =Y cimils.
=2

By Lemma 3.7, there exists some h, 2 < h < t such that (m|s), and c¢(mp|s), are non-
zero and they have at least one monomial, in T, which are equal, for some ¢ € F' and
r=1,...,n. We can assume, without loss of generality, that h = 2. According to Property
(P), we have my = ¢mgo (mod Z). Therefore, f can be represented as

t

t
f= Zcimi = (cc1 4+ ca)ma + Zcimi (mod J).
i=1 i=3

Obviously, this contradicts the minimality of ¢, therefore f € J and we are done. O
As a consequence of Lemma 3.10 and Proposition 3.11, we obtain the following theorem.

Theorem 3.12. Let A be a G-graded algebra with a B-elementary grading relative
to the G-multiplicative finite basis B such that T C Tg(A). The Tg-ideal of the graded
identities of A is generated by (3.1) and (3.2), together with all monomials which are
graded identities of A.

We recall that the graded identities in (3.1) and (3.2) do not depend on the character-
istic of the base field. On the other hand, the monomial identities satisfied by A might
depend on the characteristic of F.

The problem of describing the monomial identities that appear in Theorem 3.12 is still
open even in characteristic zero. The nature of these monomial identities is still far from
being understood, although they were described in several particular cases. The next
result will give us a bound on the length of monomials which are needed in the basis in
the theorem above.

Lemma 3.13. If a monomial x;,x;, - - x;, in F(Xg) is a graded identity for A, then

it is a consequence of a monomial x; x;, -+ x;, in Tg(A). Here ag(x;.) € supp A, and
the degree | is bounded by a function of |supp A| = s.
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Proof. If s =1 then our grading is trivial, hence we suppose s > 1. By Corollary 3.8,
we can consider that the monomial x;, 2;, - - - x;,, in Tg(A), is multilinear. Assume also
that if @1 -z, ¢ Tg(A) then @y - xpzpsr - 2o & Ta(A) where ag(xpri) = ag(x;),
for every i =1, ..., k. In this case, the proof of [7, Proposition 4.2] yields that the set
MNTe(A) in Theorem 3.12 may be replaced by finitely many elements in 9t N7 (A)
whose degrees are bounded by a function of the number of elements in supp A. O

We point out that, in some cases, it is possible to find a better bound but the one we
find here is sufficient for the proof of the previous lemma, see the next section.

Remark 3.14. The conclusions of Lemmas 3.4, 3.9, 3.10, Proposition 3.11, and
Theorem 3.12 still hold if we change the polynomial ring I' by the ring I'? given in
Remark 3.3.

As a consequence, we obtain an alternative proof of the description of a basis for the
G-graded polynomial identities of the algebra of upper block-triangular matrices, denoted
by UT(dy, ..., d,), with an elementary grading induced by an n-tuple of elements of a
group G such that the neutral component corresponds to the diagonal of UT'(dy, ..., d,),
see for example [19, Theorem 3.7].

4. Monomial identities for algebras with elementary gradings

Here we use the notation adopted in the preceding section. We consider A as a finite-
dimensional algebra with B-elementary grading. We draw the readers’ attention that we
do not require the inclusion Z C Tz(A) (recall that 7 is the Tg-ideal generated by the
identities from (3.1) and (3.2). This means that our results from this section are in rather
general form.

We shall show that, under an additional restriction, all graded monomial identities in
T (A) of length larger than |I| = n are consequences of those of length at most n. Recall
that [ is the corresponding elementary set of idempotents of B.

We consider a basis element u = a,ub,, € B, where a,, b, € I C B are the corresponding
idempotents. We write

a= Z U

ueB

an element of A. We say that «, is the entry (ay, b,), if © = a,ub,. Moreover, a, will
denote the row of «, while b, the column of a,. Clearly, this terminology is influenced
by matrix algebras.

Given an entry (a,, by), there may be no element u in B such that u = a,ub,. For
example, if we consider the canonical basis of UT,,(F), then, for every i < j, there will be
no corresponding Ej;, since I = {E;; | i =1, ..., n}. This motivates our next definition.

Definition 4.1. Let A be an algebra with an elementary basis B and let I be the

corresponding elementary set of idempotents. We say that B is complete if every
sequence (u1, ..., uq) of elements of I is good in the sense of Definition 3.2.
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It is easy to see that the standard bases of the algebras M, (F), M, (E) and M, (E)
are complete. We shall use this fact in the next section in order to describe a basis of the
graded identities for the latter algebra.

The next result, concerning graded monomial identities, is a key step in the proof of
the main theorem of this section.

Lemma 4.2. Let A be a G-graded algebra with a B-elementary grading relative to
the G-multiplicative finite basis B. For h € supp A, let us denote

h h
Yt = Z b Uk, sk -
keLy
Let hq, ..., hi be elements of supp A. If hq - - - hy, = €, then the number of non-zero rows

. h hqg .
in My =YYV, and My = Y;'*---Y,'" is the same.
aq q

K2

Proof. By Lemma 3.7, we have

h h h h
Y-l"'Yq:Z(tl Lt )ukl,sg-“u P

i1 iq i1,k1 iq,kq kq’shz
kel
Let aq, ..., a, be the indices of the rows of M; which are non-zero. It is clear those rows
. h . . . .
are also non-zero ones in Y; . Define j; = s‘,ﬁ, ey Jr = 521. The claim follows once we
prove ji, ..., jr are exactly the non-zero rows of Ms.

Since Yl}f1 is homogeneous of degree h;, we have M, is homogeneous of degree hi L
If the j-th row of M is non-zero, then there exists ¢ such that u = ajua; has degree
hi'. Of course, there exists an element u; € B of le“ such that |uju| = e. In this case,
up = a;uia;j. Hence j = 521 where i is a non-zero row of My, since u; Ms # 0. Hence the
result follows. O

Lemma 4.3. Let m = x;,x;, - - - x;, be a graded monomial identity of homogeneous
degree € of A, where ag(x;,) € supp A. Then it is a consequence of the graded monomial
identity m' = w;, -+ - x4, .
Proof. The statement follows immediately from the previous lemma. O
Now we have all the ingredients for the proof of the main result of the section.

Theorem 4.4. Let A be a G-graded algebra with a B-elementary grading relative to
the G-multiplicative complete finite basis B. Let I be the corresponding elementary set
of idempotents of B with |I| =n. If m = x;, --- a;, is a graded monomial identity for A
and k > n then m is a consequence of a graded monomial identity of A of degree at most
n.

Proof. Suppose k > n. According to Corollary 3.8, there exists a multilinear monomial

m' =yiys---yr € F(Xq)

with h(m) = h(m’), and such that m € T (A) if and only if m’ € Tg(A). Hence it is
enough to prove the theorem for multilinear monomials. If z; - - - z,, is a graded monomial
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identity for A we are done. Assume that x; -- -z, is not a graded identity for A. In this

case, there are indices 41, ji, ..., in, Jn such that u, = a; ura;, € B with ag(u,) =
ag(xy) = hy,foreachr = 1,2, ..., n,and uyus - - - uy, # 0. Then j, = 4,41 for every r < n.
Defining j,, = ip41 since i, € {1, ..., n}, for every r, at least two among the indices i1, io,

.«vy iny1 are equal. Let i and 4,41 = j; be such indices. Then ag(zs - --x) = €. In other
words m has a submonomial m’ = xg - - - 2, of degree e.

Suppose first s = 1, that is m/ is at the beginning of the monomial m. Then Lemma 4.2
shows that m is a consequence of x5 ---xy, and the result follows by the induction
hypothesis.

Suppose now s > 1. If ml*t = z, ... 2, is a graded identity for A then the result follows
again by the induction hypothesis. Therefore, we assume m!*! is not a graded identity
for A. We claim the monomial

Ly Ts—2YTs+1 " Tk

is a graded monomial identity for A where a(y) = hs—1hs = gs. To this end, it is enough
to show that the non-zero rows of Yhs=1Y"hs ...y and Y9:Yhs+1 ... VP are the same.
In order to prove this claim, we notice that every non-zero row of the former product is
a non-zero rowof the latter.

Now, let i be a non-zero row of Y9 Yhs+1...Y" Ag before, there are elements
Uy = a3, uraj,, for r € {s+1, ..., t}, such that ag(u,) = h, and uugiq---uy # 0 where
ag(u) = he_1hs. Since hy -+ hy = €, we have hy = |f(a;,)| 7| f(ai,,,)| with f: I — G.

By comparing degrees, one gets @ € B with ag (@) = |f(a;)|*|f(a;,)|. Hence

UUUg41 - - U 7 0,

and this means 4 is a non-zero row of Y/s-1Yhsyhs+1 ...y The latter claim holds since
the basis is complete.

In order to finish the proof, we apply induction on k > n + 1. If k = n + 1, the discus-
sion above shows that m is a consequence of a graded monomial of degree n and we are
done. Suppose the result holds for &k — 1 > n + 1, we shall prove it for £ > n + 2. As above,
m is a consequence of a graded identity of degree less than k. Hence, by induction, it is
a consequence of a graded monomial of degree < n and now the proof is complete. O

The latter theorem generalizes [12, Theorem 3.5.]. In that paper, the authors proved
that all multilinear graded monomial identities of the full matrix algebra of order n follow
from those of degree n provided the grading is elementary. In the next section, we consider
elementary gradings on M, ,(E), as well as their tensor product.

5. Graded polynomial identities of M, ,(E) and M, ,(E) ® M, s(E)

In this section, we study concrete algebras that satisfy the graded identities (3.1) and
(3.2). We denote by E;; the elementary matrix having 1 at position (¢, j) and 0 elsewhere.

5.1. Graded identities for M, (E)

The main result in this subsection is the description of a basis for the graded polynomial
identities of M, ,(F) equipped with certain B-elementary grading.
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Definition 5.1. Let m, n, and a > b be positive integers such that a + b = mn. Let G
be a group and ¢: {1, ..., m} x {1, ..., n} — G an injective function. Given 1 < i < mn
there exists a unique pair (a;, b;) € {1, ..., m} x {1, ..., n} such that i = n(a; — 1) + b;.
For every aFE;; in the canonical basis of M, ,(E) we set

laEy;| = (¢(ai, b)pla;,b;) 7", |al2) € G* = G x Z,.

The map | - | satisfies Condition (2.1); therefore, it determines a G*-grading on M, ;(E).
This G*-grading is called the grading induced by ¢.

The grading introduced in the previous definition is a B-elementary grading relative
to the canonical basis B and the set of idempotents I = {E;; @ 1g |1 <i < a+b}. It is
induced by the function f: I — G* given by f(E;;) = (¢(ai, b;), 0) if i < a and f(E;) =
(p(as, b;), 1), otherwise. Here we observe that m can be equal to 1 and B is complete in
sense of Definition 4.1. The identities for M, ,(E) with the elementary Z,, X Zo-grading
induced by ¢(u, 1) = —u were described in [17], over a field of characteristic zero, and
in [18] when the ground field is infinite of characteristic different from 2. Here u stands
for u (mod a + b). Moreover, in [20], over a field of characteristic zero, it was provided a
basis of the graded identities for M, ;(E) when equipped with the grading given in the
above definition.

Lemma 5.2. Let G be an arbitrary group, let a, b be positive integers such that a +
b=mn,and p: {1,...,n} ={1, ..., n} x {1} — G be an injective function. Considering
M, (E) equipped with the elementary grading induced by ¢, the graded polynomials

X1X9 — Tawy, ag-(21) = ag(x2) = (,0); (5)
L1203 — T3Tax1, ag-(21) = ag(23) = ag-(22) "t = (g,0); (6)
12223 + x31221, g+ (T1) = ag-(23) = ag- (952)71 =(9,1); (7)

are graded identities of M, ,(E).
Proof. The proof of this lemma is well known, see for example [20, Theorem 4.6]. O

The next theorem then follows as a direct consequence of the previous lemma,
Remark 3.14 and Theorem 4.4.

Theorem 5.3. Let G be an arbitrary group, let a, b be positive integers such that
a+b=n, and ¢: {1, ..., n} — G be an injective function. Consider M, ;(E) with the
elementary grading induced by . Over an infinite field of characteristic different from
2, the Tg+-ideal T+ (M, ,(E)) is generated by the graded identities (5.1)—(5.3), together
with its graded monomial identities of degree at most n.

5.2. Graded identities for M, ,(E) ® M, ((E)

Here we consider the counterpart of the previous subsection for the graded identities
of the tensor product M, ,(E) @ M, s(E).
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Definition 5.4. Let G be a group and let ¢: {1, ..., a+b} x {1, ..., 7+ s} — G be
an injective function. For every (aFE;j, bE,,) € Bi X By = B we set

|aBi; ® bEuul = (¢(i,u) - 0(3,0) 7, lal2 + [bl2) € G = G x Zo.

The map | - | satisfies Condition (2.1). Therefore, it determines a G*-grading on M, ;,(E) ®
M, ¢(E). It is called the grading induced by .

We assume that the clements of supp M, ;(E) commute with the elements of
supp M, s(E). Then the comments stated after Definition 2.3 imply that the tensor
product grading on M, ,(E) ® M, ¢(E) given in the previous definition is an elementary
grading relative to the canonical basis and set of idempotents, on M, ,(E) ® M, s(E).
Moreover, this basis is complete.

The graded identities of M, ,(E) ® M, ((E) endowed with the elementary Z,,, X Zs-
grading, where m = a + b, n = r + s, induced by ¢(i, u) = —(ni + u), were studied in [17,
18]. Furthermore, over a field of characteristic zero, a description for the graded identities
discussed above was provided in [20].

Lemma 5.5. Let Z be the Tgyy,-ideal in F(Xaxz,) generated by the polynomials
(5.1)—(5.3). Let G be a group such that the elements of supp M, (E) commute with the
elements of supp M, s(E). Denote by A the algebra M, ,(E) @ M, s(E) equipped with
the elementary grading given in Definition 5.4. Then the T xz,-ideal T is contained in
Ta XZ(A)-

Proof. It is clear that the polynomial in (5.1) is a graded identity for M, ;(E) ®
M, (E). Let wy, = apEy, j, @ bpEy,v, € B, for h =1, 2, 3, and assume that agxz, (wi) =
aGxz,(W3) = agxz, (we) L. If wiwaws # 0 then [wiws| = (e, 0) and wiws # 0. We have
j1 =2, v1 = usg, and, since the function f is injective, jo = i1, vo = uy. Similarly jo =
i3, V2 = ug, and jg = iz, v3 = u2. Therefore, w1 = a1 F;; @ b1 By, wa = a2l @ by Eyy,
and w3 = azF; @ baEy, forsome 1 <14, j <a+band 1 <u, v <7+ s. Hence we obtain
W WaWs = a1a2a3Eij ® b1bobs Ey, and wawowy = a3a2a1Eij ® b3baby Eyyy . In this way, we
conclude the proof since the a; and b; are elements in the canonical basis of E. (I

The previous lemma, Theorem 3.12, Remark 3.14 and Theorem 4.4 imply the proof of
the next theorem.

Theorem 5.6. Assume the base field is infinite and of characteristic different from 2.
Let G be a group such that the elements of supp M, ,(E) commute with the elements of
supp M, s(E). The T z,-ideal of the graded identities of the algebra M, ,(E) ® M, s(E),
equipped with the grading given in Definition 5.4, is generated by (5.1)—(5.3), together
with its graded monomial identities of degree at most (a + b)(r + s).

5.3. Models for the relatively free graded algebras

Now we have all the ingredients in order to study the relationship between the graded
identities for the algebras My, 4ps as+or(E) and M, ,(E) ® M, ¢(E). In this section, our
main goal will be to deduce that the T-ideal of the former algebra is contained in the Tt;-
ideal of the latter. The intriguing fact that this inclusion, over an infinite field of positive
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characteristic p > 2, is proper, follows directly from the results obtained by Alves in
[2, Theorem 13].

The construction of appropriate generic models for the relatively free graded algebras
for My ,(E) @ M, (E) and Maryps,astbr(E) is essential. We relate these generic models
to the corresponding graded identities.

Let m, n, a > b, and r > s be positive integers such that a +b=m and r + s = n.
Let G be a group and let ¢: {1, ..., m} x {1, ..., n} — G be an injective function.
We consider a grading on the full matrix algebra M,,,(F) defined in the follow-
ing way: Given 1 < i < mn, there exists unique pair (a;, b;) € {1, ..., m} x {1, ..., n}
such that ¢ = n(a; — 1) + b;. For every E;;, in the canonical basis of M,,,(F), we set
ac(Eij) = ¢(a;, bi)p(aj, bj)~'. This function satisfies Condition (2.1), hence it deter-
mines an elementary G-grading on M, (F). Furthermore, if R is a Zg-graded algebra,
we consider the G X Zs-grading on M, (R) ~ M,,,(F) ® R defined over the tensor
product of graded algebras. Now we define the function ~45: {1, ..., m} — Zy by
Yab(i) =0 when 1 <14 <aq, and 7,(7) = 1 otherwise. We define similarly the function
Yrs: {1, ..., n} — Zo.

Consider the following sets of variables:

Y={y[1<ij<m}, Z={z5[1<i,j<n}, U={ujj|1<ij<mn},

where k =1, 2, ... Notice that F(Y U Z) is the free algebra and define a Zs-grading on
it by putting |y”|2 = Ya.b(2) + Ya,p(j) and |z |2 = Yr.s(4) + Vr.s(j). Let P; be the ideal in
F(Y U Z) determined by the relations:

k
[yhh ’ 2222J2]

it yi2 ] i Yae(in) + Yap(i1) =
[ 2821 A s (in) + (1) =
Uik oy, i Yan (i) + Yab (1) = Yab(iz) + as(i2) = 1,
20 22 1 s () + s (1) = Vr,s(i2)+%,s(j2)=1,

for every ki, ka, i1, 42, j1, jo. Here and in what follows [a, b] = ab — ba is the commutator
of aand b, and a o b = ab + ba ib the Jordan product of a and b. Deﬁne Ry =F(YUZ)/P.
We shall use the same letters ylj and z - for the images of ym and z - under the projection

F(YUZ)— R;. It follows from the above relations that Ry is a Zo-graded algebra.
Moreover, the set Y generates a free supercommutative algebra (see, for example, [10]
for a precise definition) as well as the set Z does, and the elements of ¥ commute with
those of Z.

Let (g, a) € G* = G X Zs and define the following matrices in M,,,,(R1):

(g,0) _ ko _k
Ak = Z 5a,'yyaiaj ij,b]’ En(ai—l)-i-bi,n(aj—l)—i-bja
w(aibi)e(a;,bj)~t=g

where v = Y4.4(a;) + Ya,p(@;) + Vrs(bi) + vrs(b;). Here § is the usual Kronecker symbol

and, as above, E, ,, stands for the corresponding elementary matrices. Clearly A, (9:9)
a homogeneous element in the G x Zs-graded algebra M,,,,(R1).
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Put G0 to be the set of all matrices A,(Cg’a), k>1,and G = u(g,a)eg*g(g’u). Finally
define the algebra Fj, ; , s as the one generated by the set G. Then the algebra F, ; , 5 is
a G*-graded subalgebra of M,,, (R;). Here we recall that Ry = F(Y U Z)/P;.

Now we will construct the algebra L, , ;. Considering Definition 5.1, for every w €
{1, ..., mn}, we write w =n(a; — 1) + by where a; € {1, ..., m} and b; € {1, ..., n}.
Thus, we denote {(w) = Ya.p(a1) + Vr,s(b1). Observe that &(w) is well defined since a1 and
by are determined uniquely by w. Set P, the ideal in the free associative algebra F(U)
determined by the relations

[U?fjl»“?;jz]a if £(i1) +&(i2) = 0,
ubt oukz | if (i) + €(j1) = €E(i2) + €(j2) = L.

Let Ry = F(U)/ Py, it is clear that Ry is a Zs-graded algebra which is free supercom-
mutative; its even variables are all ufj such that £(i) +&(j) = 0; the variables with
E(i) +&(j) =1 are odd. (As above, in order to keep the notation as simple as possible,
we use the same letters ui—“j for the generators of F(U) and for their images in Rs.)

Denoting p = ar + bs > q = as + br and fixing (g, ¢) € G*, we define H(99) as the set
of all matrices

B = > Oe.e(irre iy iy ®)
w(ai,bi)p(a;b;j)~t€G

in M,,,(R2). Hence we put H = U(g7c)€G*H(97‘). Let Loy, s be the algebra generated
by the set H. It is immediate that L, s is a G*-graded subalgebra of M,,,(R2) in a
natural way.

Remark 5.7. We have (g, a) € G*. Fix a, b, r, s. Then due to the gradings on Fj ., s

and Lg p » s the positions of the non-zero entries of the matrix B,(cg ) are the same as those

of A

Lemma 5.8. The algebra F, , , s is relatively free in the variety of G*-graded algebras
determined by M, ,(E) ® M, s(E) in Definition 5.4. The algebra L, s is relatively free
in the variety of G*-graded algebras determined by M, ,(E) in the Definition 5.1 where
p=ar+bs and ¢ = as + br.

Proof. One repeats verbatim the proofs from [18, Lemma 3 and Lemma 4]. O

Thus we generalize the models constructed in [18].

If M =M(xy, ..., zq) is a graded monomial, we define the density of M in L, s
as the number of non-zero entries of the matrix M(By, ..., By). Here B stands for the
matrix of the same size as B, as given in (5.4), and obtained from B by substituting all
non-zero entries of B by 1 € F, while preserving the zero entries.

Definition 5.9. The graded monomial M is said to be sparse in L, , s if its density
in Ly p s equals O.

The notion of sparse monomials in F, s is defined analogously. The next lemma
follows from Remark 5.7.
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Lemma 5.10. A monomial is sparse in Fy p, s if and only if it is sparse in Lg,p.r.s.

Over a field of characteristic zero, it was proved in [20, Theorem 6.11] that the sets
T+ (Martbs,as+or(E)) and Tg- (Mg (E) @ M, s(E)) coincide. Such a condition may fail
when the field is infinite of positive characteristic p. In [3], whenever p > 2, the authors
constructed an ordinary polynomial identity for M, ,(E) ® M, ¢(E) which is not one for
M tbs,as+br (E), in the case (r, s) = (1, 1). We also mention that a generalization of the
latter result was obtained in [2, Theorem 13].

Theorem 5.11. Let G be a group and consider the gradings by the group G* = G X Z4
given in Definitions 5.4 and 5.1 such that the elements of supp M, ,(E) commute with
the elements of supp M, ¢(E). Then Ta+(Martbs,as+or(E)) C Tar (Mo p(E) @ M, s(E)).
Furthermore, over an infinite field of characteristic p > 2, the latter inclusion is proper.

Proof. Denote A = Myytps as+or(E) and A" = M, ,(E) @ M, s(E). By Theorems 5.3
and 5.6, it is enough to prove that all graded monomial identities for A are graded
identities for A" as well. By [20, Theorem 6.11], we can consider monomials with at least
one variable which appears at least twice. Let m = m(x1, ..., 24) be such a monomial
identity for A. If m is sparse then the result follows from Lemma 5.10. Thus we can
consider that m is not sparse. In this case there exist matrices Bl, ey Bd in M, (Z,)
such that m(By, ..., Byg) # 0. Hence some variable ufj appears at least twice among
the non-zero entries of the element m(By, ..., By) in A. Suppose that all variables that
appear at least twice in m have even degrees. We make a substitution by elements of the
basis of E such that it respects the G*-grading given in Definition 5.4, and moreover, we
require that mf" ---mg* is non-zero. This implies that m is not an identity for T+ (A),
which is impossible. Therefore, we can suppose that there exists at least one odd variable
ufj, in m. Thus

Nt )1
m = mll';g )mgxl(cg )7’17,37

with ag+(mq) :aG*(mlx,(Cg’l)mg). But this implies ag*(x,(cg"l)mg) = (¢, 0), since if

agr (x,(cg’l)mg) = (€, 1) then, by induction hypothesis, m lies in T+ (M, (E) @ M, (E)).
Therefore, we obtain ag«(ms) = (g1, 1) and hence

(9,1)

1
mgac;cg )m3 = —myxy,

,1
m = ml.lfl(cg )

mgm,(cg’l)mg =-m (mod 7).
Thus 2m € Z C T+ (A’) and since charK # 2, we obtain that m € T« (4).
The latter claim of the theorem is in fact [2, Theorem 13]. O

Acknowledgements. The authors thank the Referee for her/his valuable comments
and suggestions helped us in making the exposition more attractive.
C. Fidelis was supported by FAPESP grant No. 2019/12498-0, D. Diniz was supported
by CNPq grants No. 301704/2019-8, P. Koshlukov was partially supported by FAPESP
grant No. 2018/23690-6 and by CNPq grant No. 302238/2019-0

References

1. E. ALJADEFF AND D. OFIR, On regular G-gradings, Trans. Amer. Math. Soc. 367(6)
(2015), 4207-4233.

https://doi.org/10.1017/50013091521000857 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091521000857

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Graded identities for algebras with elementary gradings 165

S. M. ALVES, PI (non) equivalence and Gelfand-Kirillov dimension in positive character-
istic, Rend. Clirc. Mat. Palermo (2) 58(1) (2009), 109-124.

S. M. ALves AND P. KOosHLUKOV, Polynomial identities of algebras in positive character-
istic, J. Algebra 305(2) (2006), 1149-1165.

S. S. AzeVEDO, Graded identities for the matrix algebra of order n over an infinite field,
Commun. Algebra 30(12) (2002), 5849-5860.

S. S. Azevepo, M. FIDELIS AND P. KOSHLUKOV, Tensor product theorems in positive
characteristic, J. Algebra 276(2) (2004), 836-845.

S. S. Azevepo, M. FipDELIS AND P. KosHLUKOV, Graded identities and PI equivalence
of algebras in positive characteristic, Commun. Algebra 33 (2005), 1011-1022.

Y. BAHTURIN AND V. DRENSKY, Graded polynomial identities of matrices, Linear Algebra
Appl. 357(1-3) (2002), 15-34.

YUu. A. BAHTURIN, A. A. MIKHALEV, V. M. PETROGRADSKY AND M. Z. ZAICEV, Infinite
Dimensional Lie Superalgebras, De Gruyter Expo. Math. Vol. 7 (Walter De Gruyter & Co.,
Berlin, 1992).

L. BEmM, E. Z. FORNAROLI AND E. A. SANTULO JR., A cohomological point of view
on gradings on algebras with multiplicative basis, J. Pure Appl. Algebra 223(2) (2019),
769-782.

A. BERELE, Generic verbally prime algebras and their GK-dimensions, Comm. Algebra
21(5) (1993), 1487-1504.

A. BERELE, Invariant theory and trace identities associated with Lie color algebras,
J. Algebra 310 (2007), 194-206.

L. CENTRONE, D. DiNiz AND T. C. DE MELLO, Graded monomial identities and almost
non-degenerate gradings on matrices, preprint arXiv:2001.00489v3 (2020).

O. M. D1 VINCENZzO, On the graded identities of My 1(E), Israel J. Math. 80(3) (1992),
323-335.

O. M. D1 VINCENZO AND V. R. T. DA SILVA, On Za-graded polynomial identities of the
Grassmann algebra, Linear Algebra Appl. 431(1-2) (2009), 56-72.

O. M. D1 VINCENZO AND V. NARDOZZA, Zj4| X Zo-graded polynomial identities for
M}, (E) ® E, Rend. Sem. Mat. Univ. Padova 108 (2002), 27-39.

O. M. D1 VINCENZO AND V. NARDOZZA, Graded polynomial identities for tensor products
by the Grassmann algebra, Comm. Algebra 31(3) (2003), 1453-1474.

O. M. D1 VINCENZO AND V. NARDOZzA, Graded polynomial identities of verbally prime
algebras, J. Algebra Appl. 6(3) (2007), 385-401.

O. M. D1 VINCENZO, P. KOSHLUKOV AND E. A. SANTULO, Graded identities for tensor
products of matrix (super)algebras over the Grassmann algebra, Linear Algebra Appl.
432(2-3) (2010), 780-795.

D. Diniz AND T. DE MELLO, Graded identities of block-triangular matrices, J. Algebra
464 (2016), 246-265.

C. FipeLis, D. Diniz, L. BERNARDO AND P. KOSHLUKOV, Graded identities and central
polynomials for the verbally prime algebras, to appear

A. GIAMBRUNO AND M. ZAICEV, Polynomial Identities and Asymptotic Methods, Math.
Surveys Monogr., Vol. 122 (Amer. Math. Soc., Providence, RI, 2005).

A. A. GUIMARAES AND P. KOSHLUKOV, Automorphisms and superalgebra structures on
the Grassmann algebra, preprint arXiv:2009.00175v1, 2020.

A. R. KEMER, Varieties and Zy-graded algebras, Izv. Akad. Nauk SSSR Ser. Mat. 48(5)
(1984), 1042-1059.

A. R. KEMER, Ideals of identities of associative algebras. Translations Math. Monographs,
Vol. 87 (Providence, RI: Amer. Math. Soc, 1991).

A. R. KEMER, Remarks on the prime varieties, Israel J. Math. 96, Pt. B (1996), 341-356.

https://doi.org/10.1017/50013091521000857 Published online by Cambridge University Press


arXiv:2001.00489v3
arXiv :2009.00175v1
https://doi.org/10.1017/S0013091521000857

166

26.

27.

28.

29.

30.

31.

D. Diniz, C. Fidelis and P. Koshlukov

P. KOSHLUKOV AND S. S. AZEVEDO, Graded identities for T-prime algebras over fields of
positive characteristic, Israel J. Math. 128 (2002), 157-176.

Yu. P. Razmysrov, Identities of algebras and their representations, Transl. Math.
Monographs, Vol. 138 (Providence, RI: Amer. Math. Soc., 1994).

A. REGEv, Tensor products of matrix algebras over the Grassmann algebra, J. Algebra
133(2) (1990), 512-526.

A. REGEV AND T. SEEMAN, Zg-graded tensor product of p.i. algebras, J. Algebra 291(1)
(2005), 274-296.

S.YU. VASILOVSKY, Z-graded polynomial identities of the full matrix algebra, Commun.
Algebra 26(2) (1998), 601-612.

S.YU. VASILOVSKY, Zy-graded polynomial identities of the full matrix algebra of order n,
Proc. Amer. Math. Soc. 127(12) (1999), 3517-3524.

https://doi.org/10.1017/50013091521000857 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091521000857

	1 Introduction
	2 Preliminaries
	3 Graded identities for algebras with elementary gradings
	4 Monomial identities for algebras with elementary gradings
	5 Graded polynomial identities of Ma,b(E) and Ma,b(E)Mr,s(E)
	5.1 Graded identities for Ma,b(E)
	5.2 Graded identities for Ma,b(E)Mr,s(E)
	5.3 Models for the relatively free graded algebras

	References

