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Abstract Let F be an infinite field of positive characteristic p > 2 and let G be a group. In this paper, we
study the graded identities satisfied by an associative algebra equipped with an elementary G-grading.
Let E be the infinite-dimensional Grassmann algebra. For every a, b ∈ N, we provide a basis for the
graded polynomial identities, up to graded monomial identities, for the verbally prime algebras Ma,b(E),
as well as their tensor products, with their elementary gradings. Moreover, we give an alternative proof
of the fact that the tensor product Ma,b(E) ⊗ Mr,s(E) and Mar+bs,as+br(E) are F -algebras which are
not PI equivalent. Actually, we prove that the TG-ideal of the former algebra is contained in the T -ideal
of the latter. Furthermore, the inclusion is proper. Recall that it is well known that these algebras satisfy
the same multilinear identities and hence in characteristic 0 they are PI equivalent.
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1. Introduction

The term “verbally prime algebra” was introduced by A. Kemer [23] in his solution to the
Specht problem. These algebras play a crucial role in the theory developed by Kemer.
An algebra A is verbally prime if, whenever f(x1, . . . , xr) and g(xr+1, . . . , xs) are two
polynomials in distinct variables and f · g is an identity for A, then either f or g is an
identity for A, or both are. Roughly speaking, A is verbally prime if its T-ideal (the
ideal of all polynomial identities satisfied by A) is prime inside the class of all T-ideals.
Kemer proved that, in characteristic 0, every non-trivial verbally prime PI algebra is
PI equivalent to one of the algebras Mn(F ), Mn(E) or certain subalgebras Ma,b(E) of
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Graded identities for algebras with elementary gradings 147

Ma+b(E). This latter algebra consists of all matrices of the form
(

A B
C D

)
,

where A ∈ Ma(E(0)), D ∈ Mb(E(0)), B ∈ Ma×b(E(1)), C ∈ Mb×a(E(1)). Here and in what
follows E stands for the Grassmann algebra of an infinite-dimensional vector space, E =
E(0) ⊕ E(1), where E(0) is the centre of E, and E(1) is the “anticommuting” part of E.

As a consequence of his structure theory, Kemer described the PI equivalences of the
tensor products of verbally prime algebras. This description is given below; it is known
as the Tensor Product Theorem.

Theorem 1.1 (Tensor Product Theorem). Let F be a field of characteristic zero.
Then the class of verbally prime algebras is closed under tensor products. Moreover one
has the following PI equivalences (meaning the corresponding algebras satisfy the same
polynomial identities):

(1) Ma,b(E) ⊗ E ∼ Ma+b(E);

(2) Ma,b(E) ⊗ Mc,d(E) ∼ Mac+bd,ad+bc(E);

(3) M1,1(E) ∼ E ⊗ E.

The remaining tensor products of verbally prime algebras can be deduced from the above
and easy isomorphisms.

Here and in what follows, all tensor products are supposed to be over F .
This theorem admits proofs that do not depend on the structure theory developed by

Kemer. The first such proof was given by Regev in [28]. Regev used implicitly adequate
gradings on the corresponding algebras. Later on, Di Vincenzo in [13] gave a proof of the
third statement by using gradings by the cyclic group of order 2. Di Vincenzo’s results
concerning the graded identities for M1,1(E) and E ⊗ E were extended in [26] where it was
proved that in positive characteristics the graded identities of these two algebras differ.
By using appropriate gradings and graded identities, the second statement of the previous
theorem was proved in [15, 16]. In [5, 6], the authors proved that Regev’s results hold
over an arbitrary infinite field of characteristic p �= 2 but only at multilinear level, and
consequently, they showed that if p > 2 then the third statement of the Tensor Product
Theorem fails. Moreover, they showed that in positive characteristic, the algebras M2(E)
and M1,1(E) ⊗ E are not PI equivalent. We refer the reader to the monograph [24] for
details about the important structure theory of PI algebras and Kemer’s contributions
to it.

Graded polynomial identities play an important role in the study of PI algebras. When
the grading group is Z2 they were used in the theory developed by Kemer. This should
not be surprising as the Grassmann algebra E possesses a natural grading by this group,
and this grading is essential in obtaining the verbally prime algebras. Another motivation
that favours the graded identities and their usage is that they are easier to describe in
many important cases and are related to the ordinary ones. We recall as an example that
if two graded algebras share the same graded identities, then they share the same ordinary
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identities. Let us also recall that the polynomial identities of the n × n matrix algebra
Mn(F ) are not known whenever n > 2. On the other hand, Mn(F ) admits a natural
Zn-grading by assuming the elementary matrix Eij of degree j − i (mod n). The graded
identities for this grading on Mn(F ) are well known, see [4, 31]. In [18], the authors
studied the graded identities of the algebras Ma,b(E) ⊗ Mc,d(E) and Mac+bd,ad+bc(E),
and they proved that TG(Mac+bd,ad+bc(E)) ⊆ TG(Ma,b(E) ⊗ Mc,d(E)). As a consequence,
they obtained the inclusion for ordinary polynomial identities. On that occasion, the
authors considered G as the group Zmn × Z2, a + b = m and c + d = n. Here and in
what follows we denote by T (A) and by TG(A) the ideal of the ordinary, respectively
G-graded identities for the algebra A.

However, over an infinite field of positive characteristic, very little is as yet known
about the concrete description of ordinary or graded identities apart from some particular
cases. It should be noted that the information on the verbally prime algebras in positive
characteristic is very far from complete. It is known that there exist other verbally prime
algebras but the complete classification seems to be out of reach at present. The interested
reader can consult the monograph [27, Section 33.2], and also [25] for more details.

Let F be an infinite field of positive characteristic p > 2. The paper is organized as
follows. In § 2, we give the necessary background on associative algebras, elementary grad-
ings and graded identities. The usage of gradings on algebras possessing a multiplicative
basis is essential. The interested reader may consult [9] for more details about this topic.
Considering graded algebras with multiplicative basis, in § 3, we exhibit a set of genera-
tors of degrees 2 and 3, up to graded monomial identities, that form a basis for the set
of all graded identities for these algebras. As a consequence, we exhibit a basis for the
graded identities of the algebras Ma,b(E) with respect to these elementary gradings, as
well as their tensor products, once again up to graded monomial identities. The problem
of describing these monomial identities is still open even in characteristic zero, and it is
still far from being understood, although it was done in several particular cases, see [20].

However, in § 4, we obtain an upper bound on the degrees of these monomial identities,
and moreover, we prove that all graded monomial identities of an algebra with elementary
G-grading, under a technical condition, follow from those of bounded degree.

Finally, in § 5, an alternative proof that the inclusion T (Mac+bd,ad+bc(E)) ⊆
T (Ma,b(E) ⊗ Mc,d(E)) holds, for the ordinary polynomial identities, is presented. To
this end, we make use of a generic construction similar to the one given in [18, Section 2].

2. Preliminaries

All algebras and vector spaces, as well as their tensor products, will be considered over a
fixed infinite field F of characteristic p �= 2.

Let G be a group with identity element ε and A an algebra. A grading by the group G on
A is a vector space decomposition A = ⊕g∈GAg such that AgAh ⊆ Agh for every g, h in G.
The subspaces Ag are called the homogeneous components of A. A non-zero element a ∈ A
is homogeneous of degree g if a ∈ Ag and we denote it by |a|G = g or αG(a) = g (or simply
|a| = g or α(a) = g when the group G is inferred from the context). If the grading group
is the direct product G × H of the groups G and H we denote the entries, in G and H, of
degree αG×H(a) of the homogeneous element a, by αG(a) and αH(a), respectively. The
support of A in the G-grading is the set supp A = {g ∈ G | Ag �= 0}. A vector subspace
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(subalgebra, ideal) B of A is said to be graded or homogeneous if B = ⊕g∈GAg ∩ B. Let
A = ⊕g∈GAg and B = ⊕h∈HBh be algebras graded by the groups G and H, respectively.
The tensor product A ⊗ B has a canonical G × H-grading where (A ⊗ B)(g,h) = Ag ⊗ Bh,
g ∈ G, h ∈ H. If A, B are G-graded algebras, an algebra homomorphism ϕ : A → B is a
homomorphism of graded algebras if ϕ(Ag) ⊆ Bg for all g ∈ G. Such homomorphisms are
called G-graded ones.

An important example of a graded algebra is the Grassmann algebra. Kemer proved
that every associative PI algebra over a field of characteristic zero is PI equivalent to
the Grassmann envelope of a finite-dimensional associative superalgebra. (Here, we deal
with associative algebras, and in this setting, a superalgebra is the same as a Z2-graded
algebra.) Let L be a vector space with a basis B = {e1, e2, . . .}. The infinite-dimensional
Grassmann (or exterior) algebra E of L has a basis BE consisting of 1 and all monomials
ei1ei2 · · · eik

, where i1 < i2 < . . . < ik for every k ≥ 1. The multiplication in E is induced
by eiej = −ejei for all i and j. Hence E = E(0) ⊕ E(1), where E(0) is the subspace spanned
by 1 and all monomials of even length while E(1) is spanned by the monomials of odd
length. This decomposition gives the natural (or canonical) Z2-grading on E, denoted
by Ecan. Recall that the Grassmann algebra has other gradings by the group Z2. Here
we are not going to discuss these constructions (since we will not need them here) but
instead, we refer the reader to [14, 22].

Another example of graded algebras is the so-called β-colour commutative algebras (or
simply colour commutative algebras). The case of β-colour Lie superalgebras was treated
extensively in the monograph [8]. Let H be an abelian group with the additive notation,
and let β : H × H → F× be a skew-symmetric bicharacter. This means β is a function
in two arguments from H taking values in the multiplicative group F× of F with the
properties

β(g + h, k) = β(g, k)β(h, k),

β(g, h + k) = β(g, h)β(g, k),

β(g, h) = β(h, g)−1

for all g, h, k ∈ H. Define the β-commutator in R = ⊕g∈HRg by [a, b]β = ab − β(g, h)ba
where a ∈ Rg, b ∈ Rh, and then extend it by linearity. We call R a H-graded colour
β-commutative algebra whenever [a, b]β = 0 for every a, b ∈ R. We draw the reader’s
attention that β can be omitted when it is inferred from the context. A particularly
interesting case of a colour commutative algebra is the Grassmann algebra. According
to [1, 29], an H-graded colour commutative algebra R is called regular if it satisfies the
following property: for every integer n > 0 and every n-tuple (h1, . . . , hn) of elements of
H, there exist r1, . . . , rn with rj ∈ Rhj

such that r1 · · · rn �= 0.
Let {Xg}g∈G be a family of pairwise disjoint sets Xg = {xg

1, xg
2, . . .}. We denote by

F 〈XG〉 the free G-graded algebra, freely generated by the set XG = ∪g∈GXg. This algebra
has a natural grading by G assuming the elements of Xg homogeneous of degree g.
Hence the homogeneous component (F 〈XG〉)g is the subspace spanned by all monomials
xg1

i1
· · ·xgm

im
such that g1 · · · gm = g. The elements in F 〈XG〉 are called graded polynomials

(or simply polynomials). Let f(xg1
1 , . . . , xgm

m ) be a polynomial in F 〈XG〉. The degree of
f in xgi

i , denoted by degx
gi
i

f , counts how many times the variable xgi

i appears in the
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monomial of largest degree in xgi

i with a non-zero coefficient in f , and it is defined in
the usual way. The definitions of multilinear and multihomogeneous polynomials are the
natural ones.

We will omit the upper indices of the free generators xg
i and we will write instead xi if

these are clear from the context.
Let A = ⊕g∈GAg be a G-graded algebra. An m-tuple (a1, . . . , am) such that ai ∈ Agi

,
for i = 1, . . . , m, is called f-admissible substitution (or simply admissible substitution).
The polynomial f is called a graded polynomial identity for A if f(a1, . . . , am) = 0 for
every admissible substitution (a1, . . . , am). We denote by TG(A) ⊆ F 〈XG〉 the set of all
graded identities for a given G-grading on A. If A and B are G-graded algebras we say
that A and B are PI equivalent as G-graded algebras if TG(A) = TG(B).

Let A be an algebra graded by the group G. It is clear that TG(A) is an ideal of F 〈XG〉,
moreover it is invariant under all G-graded endomorphisms of F 〈XG〉. Such ideals are
called TG-ideals. The intersection of TG-ideals of F 〈XG〉 is also a TG-ideal. A subset
P ⊂ F 〈XG〉 is a basis for the TG-ideal TG(A) if TG(A) is the intersection of all TG-ideals
in F 〈XG〉 which contain P; this TG-ideal is denoted by 〈P〉TG . If G = {ε} we recover
the definition of ordinary polynomial identities; in this case, we use the notation F 〈X〉
for the free-associative algebra and xi for the variables. It is well known that if A is a
G-graded algebra over a field of characteristic 0, the ideal TG(A) is generated, as a TG-
ideal, by its multilinear polynomials. Over an infinite field of positive characteristic, one
has to take into account the multihomogeneous polynomials instead of the multilinear
ones. Recall that if f is a multihomogeneous graded polynomial one can, by linearization
(or polarization), obtain a multilinear polynomial in 〈f〉TG . If the characteristic is 0 one
can recover f by symmetrization (or restitution) but in positive characteristic, this may
be impossible.

The next definition will be very important in what follows. It can be found in [17], we
recall it here for the readers’ convenience.

Definition 2.1 ([17, Definition 1]). Let B be a basis for the vector space of an
algebra A. We say B is a multiplicative basis for A if it satisfies the following condition.
For every b1, b2 ∈ B such that b1b2 �= 0 there exists a non-zero scalar λ = λ(b1, b2) in F
such that λb1b2 ∈ B.

Let G be a group. Suppose that there is a multiplicative basis B for A, and there is a
map | · | : B → G satisfying

b1b2 �= 0 implies |λ(b1, b2)b1b2| = |b1||b2|, for all b1, b2 ∈ B. (1)

Then we can endow A with a G-grading. More precisely, Ag = sp {b ∈ B | |b| = g} for
every g ∈ G. Then B is a basis of homogeneous elements. We shall express this by calling
B a G-multiplicative basis for the G-graded algebra A.

Definition 2.2 (Bemm et al. [9]). A multiplicative basis B for an algebra A is called
an elementary basis if there exists a set of pairwise orthogonal idempotents I ⊂ B such
that for every u ∈ B there exist idempotents au, bu ∈ I such that the equality u = auubu

holds. Moreover, we say that I is an elementary set of idempotents of B.
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The idempotents au and bu in the above definition are uniquely determined by the ele-
ment u. It is immediate that the canonical bases of the verbally prime algebras Mn(F ),
Mn(E) and Ma,b(E) are elementary ones. Moreover, if BA, BA′ are elementary bases for
the algebras A, A′, respectively, then BA⊗A′ = {u ⊗ u′ | u ∈ BA, u′ ∈ BA′} is an elemen-
tary basis for A ⊗ A′. Therefore, the canonical basis for the algebra Ma,b(E) ⊗ Mr,s(E)
is also an elementary one. Finally, if an algebra admits a multiplicative basis B we say
that a G-grading of A is a B-good grading if all elements of B are homogeneous.

Definition 2.3. Let A be an algebra with an elementary basis B and let I be the
corresponding elementary set of idempotents. Let G be a group. A G-grading of A is said
to be a B-elementary grading if it is a B-good grading such that there exists f : I → G
with the property |u| = [f(au)]−1f(bu), for all u ∈ B.

Let B be an elementary basis of A and let I be its elementary set of idempo-
tents. For each f : I → G, there exists a B-elementary G-grading of A such that |u| =
[f(au)]−1f(bu), for all u ∈ B. Moreover, according to [9, Remark 2.2], the set I is finite
and 1 =

∑
u∈I u.

Now let A, A′ be two algebras equipped with elementary gradings relative to the bases B
and B′, respectively. Furthermore, we suppose that the elements of supp A commute with
the elements of supp A′. Then the tensor product grading on A ⊗ A′ is a B′′-elementary
grading where B′′ = {b ⊗ b′ | b ∈ B, b′ ∈ B′}. The canonical basis of E, and more generally
of E⊗n, is an elementary basis with a set of idempotents I consisting of the unit element,
hence the only elementary grading on such algebras is the trivial grading.

We draw the readers’ attention that for the algebras Mn(F ), Mn(E), Ma,b(E) equipped
with their canonical (multiplicative) bases, the corresponding set I is non-trivial, that is,
it contains at least two elements, as long as n > 1, or a + b > 1, respectively.

3. Graded identities for algebras with elementary gradings

Let A be an algebra with a B-elementary grading, here we describe a basis for the graded
identities of A provided it satisfies the following graded identities of degrees 2 and 3:

x1x2 − x2x1, where αG(x1) = αG(x2) = ε, (2)

x1x2x3 − λgx3x2x1, where αG(x1) = αG(x2)−1 = αG(x3) = g, for every g ∈ G. (3)

Here λg is a non-zero scalar in F . Note that if the monomial x1x2x3 in (3.2) is not an
identity for A then λg = ±1.

Let I be the TG-ideal generated by the identities from (3.1) and (3.2). Variants of the
following lemma were proved in various situations, to the best of our knowledge, a similar
statement first appeared in [30, Lemma 6]. In our case, the proof of the lemma follows
word by word the one of [20, Lemma 6.4], and that is why we omit it here.

Lemma 3.1. Let A be an algebra with a B-elementary grading such that I ⊂ TG(A).
Let m, n be multilinear monomials in the same set of variables and let S be an admissible
substitution in A by elements of B such that nS = cmS �= 0 for some c ∈ F . Then n ≡ cm
(mod I).
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The previous lemma justifies our interest in investigating more closely the result for any
admissible substitution. We introduce the following notation: Let m be a graded monomial
and S an admissible substitution in A. Consider B = {bi | i ∈ Λ}, a G-multiplicative basis
of A. We denote

m|S =
∑
i∈Λ

(m|S)ibi,

the element of A obtained from m by the admissible substitution S where (m|S)i are
scalars in F almost all equal to 0 (that is all but finitely many of these scalars are equal
to 0).

Definition 3.2. Let A be an algebra with an elementary basis B, and with the cor-
responding set of idempotents I ⊂ B. The (n + 1)-tuple (a0, a1, . . . , an) of elements in
I is called a good sequence if there exist u1, u2, . . . , un in B such that ai−1uiai = ui,
for each i = 1, . . . , n, and u1u2 · · ·un �= 0.

We will assume, until the end of this paper that our G-graded algebras are finite
dimensional. In fact, Mn(F ) is finite dimensional while Ma,b(E) and Mn(E) are not. We
draw the readers’ attention to the fact that our arguments do apply to the latter two
algebras as well, see Remark 3.14. On the other hand, working with finite-dimensional
algebras simplifies the exposition. Let A be a G-graded algebra of dimension n with
G-multiplicative basis B. For each g ∈ supp A, we consider {ug

1, . . . , ug
ng
} ⊆ B, a basis

for the vector space Ag. Moreover, we define a countable set T g = {tgi,j | 1 ≤ j ≤
dimF Ag, j ≥ 1} of commuting variables. Let T = ∪g∈supp AT g and denote Γ = F [T ]
the polynomial ring in the commuting variables T .

Let A be an algebra with a B-elementary grading. The algebra A ⊗ Γ has an elementary
grading induced by the elements of set I, the elementary set of idempotents of B, which we
denote by I = {u1, . . . , ul}. Given h ∈ G, we are interested in determining the elements
uh

i,j of B whose G-degree equals h. Here we consider, without loss of generality, that
uh

i,j = uiu
h
i,juj where ui, uj ∈ I. Fixed i, 1 ≤ i ≤ l, there exists an element uh

i,j if and
only if there exists uj ∈ I such that uh

i,j = uiu
h
i,juj and f(ui)h = f(uj). Here f stands

for the function given in Definition 2.3.
Put f(I) = {f(u) | u ∈ I}. For each h ∈ G we denote by Lh the set of all indices k,

1 ≤ k ≤ l, such that f(uk)h ∈ f(I), and by sk
h, 1 ≤ sk

h ≤ l, an index satisfying f(uk)h =
f(usk

h
). It is easy to see that (A ⊗ Γ)h = 0 if and only if Lh = ∅, moreover if Lh �= ∅ then

{uk,sk
h
| k ∈ Lh} is the set of all elements in B of degree h. The algebra A ⊗ Γ has a

grading induced by the one on A. We consider, in A ⊗ Γ, the homogeneous elements

Y h
i =

∑
k∈Lh

thi,kuk,sk
h
. (4)

Clearly, the element Y h
i is homogeneous of degree h. Denote by R the G-graded

subalgebra of A ⊗ Γ generated by the generic elements Y h
i , for every h ∈ G and i > 0.

Remark 3.3. The previous construction can be performed on a free colour com-
mutative algebra graded by an abelian group H. Consider the H-graded set TH =
∪g∈suppA(∪h∈HT g

h ) where T g
h = {tg,h

i,j | 1 ≤ j ≤ dimF Ag, i ≥ 1} for each h ∈ H and
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g ∈ supp A ⊆ G. We construct the free H-colour commutative algebra on TH determined
by a skew-symmetric bicharacter β : H × H → F×. Here and in what follows we denote
this free algebra by Γβ = F β [TH ]. The relations it satisfies are xy = β(h1, h2)yx for all
x ∈ T g1

h1
and y ∈ T g2

h2
. Note that if a1, . . . , an are homogeneous elements of Γβ with non-

zero product a1 · · · an �= 0 and σ ∈ Sn then there exists λ ∈ F× depending only on the
degrees of each ai and on the permutation σ such that

λaσ(1) · · · aσ(n) = a1 · · · an.

Such construction can be found in [11]. Although our results will hold for the types of
algebras as in [11], we will only study free colour commutative algebras as in the general
case the arguments and notation become quite clumsy. In the next subsection, we will
display the free Z2-colour Lie algebra for β(0, 1) = β(0, 0) = 1 and β(1, 1) = −1.

Lemma 3.4. The relatively free G-graded algebra F 〈XG〉/TG(A) is isomorphic to the
algebra R.

Proof. The proof is standard. The map ϕ : F 〈XG〉 → R defined by ϕ(xi,g) = Y g
i , is a

G-graded homomorphism. Clearly ϕ is onto. Moreover, a standard argument shows that
ker ϕ = TG(A) and the result follows, as required. �

Thus, we can work in the graded algebra R instead of the graded relatively free algebra
F 〈XG〉/TG(A).

Definition 3.5. Let h = (h1, . . . , hq) ∈ Gq, the set

Lh = {k | 1 ≤ k ≤ l, f(uk)h1 · · ·hi ∈ f(I), for every i, 1 ≤ i ≤ q}
is the set associated with h. For each k ∈ Lh, we define the (q + 1)-tuples sk =
(sk

0 , sk
1 , . . . , sk

q ), inductively by setting:

(i) sk
0 = k,

(ii) for 1 ≤ i ≤ q we choose the index sk
i , 1 ≤ sk

i ≤ l such that f(usk
i
) = f(usk

i−1
)hi,

(iii) (usk
0
, usk

1
, . . . , usk

q
) is a good sequence in the sense of Definition 3.2.

Remark 3.6. Let (ai0 , ai1 , ai2 , . . . , aiq
) be a good sequence of elements in I, as

in Definition 3.2. In this case, i0 ∈ Lh for h = (|ui1 |, |ui2 |, . . . , |uiq−1 |) where |uil
| =

[f(ail−1)]
−1f(ail

), for every l, 1 ≤ l ≤ q − 1.

The following statements deal with an algebra A which is equipped with a B-elementary
grading such that I ⊂ TG(A).

Lemma 3.7. If L is the set of indices associated with the q-tuple (h1, . . . , hq) in Gq

and sk = (sk
0 , sk

1 , . . . , sk
q ) denotes the corresponding sequence determined by k ∈ L then

Y h1
i1

· · ·Y hq

iq
=

∑
k∈L

wkusk
0 ,sk

q
,

where wk = th1
i1,sk

1
th2
i2,sk

2
· · · thq

iq,sk
q
.
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Proof. From Definition 3.5, we conclude that

u
k1,s

k1
h1

u
k2,s

k2
h2

· · ·u
kq,s

kq
hq

�= 0

if and only if k1 ∈ L and for every i, 1 ≤ i ≤ q, we have ki = s
ki−1
hi−1

. From Eq. (3.3),
we have

Y h1
i1

· · ·Y hq

iq
=

∑
k∈L

(th1
i1,k1

· · · thq

iq,kq
)u

k1,s
k1
h1

· · ·u
kq,s

kq
hq

,

and the result follows. �

The following consequence of the above lemma will be useful in the next section. We
recall that given a monomial m = xi1 · · ·xiq

of length q, the sequence (h1, . . . , hq), where
hk is the G-degree of the variable xik

, is denoted by h(m).

Corollary 3.8. Let m1, m2 be monomials such that h(m1) = h(m2), then m1 ∈ TG(A)
if and only if m2 ∈ TG(A).

Proof. It follows directly from the above lemma, since mi ∈ TG(A) if and only if the
set associated with h(mi) is empty. �

The product Yi1Yi2 · · ·Yir
is a linear combination of the elements u = auubu ∈ B. Here

au, bu ∈ I ⊆ B are the corresponding idempotents. Since the elements u are linearly
independent, the coefficients of the combination are determined uniquely. We shall refer
to these coefficients as the entries of the product.

Lemma 3.9. If m = xi1xi2 · · ·xir
and n = xj1xj2 · · ·xjs

are graded monomials such
that the elements Yi1Yi2 · · ·Yir

and Yj1Yj2 · · ·Yjs
have in the same position the same

non-zero entry, up to a scalar multiple, then r = s and there exists σ ∈ Sr such that

n = mσ = xiσ(1)xiσ(2) · · ·xiσ(r) .

Proof. Let us assume Yi1Yi2 · · ·Yir
and Yj1Yj2 · · ·Yjs

have the same non-zero entry in
the basis element u = auubu ∈ B. Such entries are polynomials in Γ. By our hypothesis,
there exist monomials with variables in T , such that

ti1,a1ti2,a2 · · · tir,ar

and
tj1,a′

1
tj2,a′

2
· · · tjs,a′

s

are equal. Here the r-tuple (a1, . . . , ar) and the s-tuple (a′
1, . . . , a′

s) denote the good
sequences associated with the monomials m and n, respectively, whose entry is equal and
non-zero. From the equality of the monomials in Γ, and by homogeneity, we conclude
that r = s and there exists σ ∈ Sr such that jl = iσ(l), for every l, 1 ≤ l ≤ r. Thus the
proof is complete. �

Lemma 3.10. Let m and n be two graded monomials in the same set of variables and
of the same multidegree in F 〈XG〉. Suppose that there exist an admissible substitution
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S in R and a non-zero c ∈ F such that, for some r ∈ I, (m|S)r and c(n|S)r are non-zero,
and they share, in the same position, at least one common monomial, in T . Then m ≡ cn
(mod I).

Proof. If m and n are multilinear, then the result follows from Lemma 3.1. Therefore,
we can consider only the case when m (and consequently n) is not multilinear. Notice
that for every monomial

m = m(x1, . . . , xl) = xi1xi2 · · ·xiq

in F 〈XG〉 with l < q, which is not an identity for A, there exists a multilinear monomial

m′ = y1y2 · · · yq ∈ F 〈XG〉
which is not an identity for A either, and such that h(m) = h(m′).

Now we consider the specialization ϕm : F 〈y1, . . . , yq〉 → F 〈x1, . . . , xl〉 given by
ϕm(yk) = xik

. It is clear that ϕm is onto and a G-homomorphism of algebras. Let n
be a monomial in the same set of variables and of the same multidegree as m. In
this case, there exists a multilinear graded monomial n′ = z1z2 · · · zq ∈ F 〈XG〉 such that
ϕn(n′) = n. By hypothesis (m|S)r = c(n|S)r �= 0. Then Lemma 3.9 implies that

n′ = yσ(1)yσ(2) · · · yσ(q)

for some σ ∈ Sq, and consequently ϕm(n′) = ϕn(n′) = n. On the other hand, Lemma 3.1
implies that

m′ ≡ cn′ (mod I).

Hence,

m = ϕm(m′) ≡ cϕn(n′) = cn (mod I).

This concludes the proof of the lemma. �

The next proposition is a variation of [17, Proposition 8]. It can be traced back to the
papers by Vasilovsky [31] and later on Azevedo [4].

Proposition 3.11. Let A be a G-graded algebra equipped with a B-elementary grad-
ing and let I be the TG-ideal generated by the identities in (3.1) and (3.2) such that
I ⊆ TG(A). Let M denote the set of all monomials in F 〈XG〉. Assume that for every m,
m′ ∈ M \ TG(A) there exists an admissible substitution S in R (as in Lemma 3.4) and a
non-zero scalar c ∈ F such that, for some r = 1, . . . , n, satisfying the property

(P) (m|S)r and c(m′|S)r are non-zero and they share at least one monomial, in T,
if and only if m ≡ cm′ (mod I).

Then TG(A) is generated by the identities in (3.1) and (3.2) together with the graded
monomial identities from (M ∩ TG(A)).

Proof. Let J be the TG-ideal generated by (3.1) and (3.2) together with (M ∩ TG(A)).
One has I ⊆ J ⊆ TG(A). Therefore, we have to prove that every multihomogeneous
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graded identity for A lies in J . We consider a multihomogeneous polynomial f =
f(x1, . . . , xn) ∈ TG(A). We write,

f ≡
t∑

i=1

cimi (mod J)

for some monomials mi ∈ M of the same multidegree, non-zero scalars ci ∈ F , and a
positive integer t. Choose t minimal with respect to this property. Clearly t ≥ 2, and
hence, for each i, we have mi /∈ TG(A). Pay attention that if t = 2 then m1 − cm2 ∈ I
thus f = (c1c − c2)m2 ∈ I ⊆ J . We obtain c1c − c2 = 0 and f ∈ I. This says we can in
fact suppose without loss of generality that t > 2.

We have an admissible substitution S of elements in R such that m1|S �= 0. This implies

−c1m1|S =
t∑

i=2

cimi|S .

By Lemma 3.7, there exists some h, 2 ≤ h ≤ t such that (m1|S)r and c(mh|S)r are non-
zero and they have at least one monomial, in T , which are equal, for some c ∈ F and
r = 1, . . . , n. We can assume, without loss of generality, that h = 2. According to Property
(P), we have m1 ≡ cm2 (mod I). Therefore, f can be represented as

f ≡
t∑

i=1

cimi ≡ (cc1 + c2)m2 +
t∑

i=3

cimi (mod J).

Obviously, this contradicts the minimality of t, therefore f ∈ J and we are done. �

As a consequence of Lemma 3.10 and Proposition 3.11, we obtain the following theorem.

Theorem 3.12. Let A be a G-graded algebra with a B-elementary grading relative
to the G-multiplicative finite basis B such that I ⊂ TG(A). The TG-ideal of the graded
identities of A is generated by (3.1) and (3.2), together with all monomials which are
graded identities of A.

We recall that the graded identities in (3.1) and (3.2) do not depend on the character-
istic of the base field. On the other hand, the monomial identities satisfied by A might
depend on the characteristic of F .

The problem of describing the monomial identities that appear in Theorem 3.12 is still
open even in characteristic zero. The nature of these monomial identities is still far from
being understood, although they were described in several particular cases. The next
result will give us a bound on the length of monomials which are needed in the basis in
the theorem above.

Lemma 3.13. If a monomial xi1xi2 · · ·xiq
in F 〈XG〉 is a graded identity for A, then

it is a consequence of a monomial xi1xi2 · · ·xil
in TG(A). Here αG(xir

) ∈ supp A, and
the degree l is bounded by a function of |supp A| = s.
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Proof. If s = 1 then our grading is trivial, hence we suppose s > 1. By Corollary 3.8,
we can consider that the monomial xi1xi2 · · ·xiq

, in TG(A), is multilinear. Assume also
that if x1 · · ·xk /∈ TG(A) then x1 · · ·xkxk+1 · · ·x2k /∈ TG(A) where αG(xk+i) = αG(xi),
for every i = 1, . . . , k. In this case, the proof of [7, Proposition 4.2] yields that the set
M ∩ TG(A) in Theorem 3.12 may be replaced by finitely many elements in M ∩ TG(A)
whose degrees are bounded by a function of the number of elements in supp A. �

We point out that, in some cases, it is possible to find a better bound but the one we
find here is sufficient for the proof of the previous lemma, see the next section.

Remark 3.14. The conclusions of Lemmas 3.4, 3.9, 3.10, Proposition 3.11, and
Theorem 3.12 still hold if we change the polynomial ring Γ by the ring Γβ given in
Remark 3.3.

As a consequence, we obtain an alternative proof of the description of a basis for the
G-graded polynomial identities of the algebra of upper block-triangular matrices, denoted
by UT (d1, . . . , dn), with an elementary grading induced by an n-tuple of elements of a
group G such that the neutral component corresponds to the diagonal of UT (d1, . . . , dn),
see for example [19, Theorem 3.7].

4. Monomial identities for algebras with elementary gradings

Here we use the notation adopted in the preceding section. We consider A as a finite-
dimensional algebra with B-elementary grading. We draw the readers’ attention that we
do not require the inclusion I ⊂ TG(A) (recall that I is the TG-ideal generated by the
identities from (3.1) and (3.2). This means that our results from this section are in rather
general form.

We shall show that, under an additional restriction, all graded monomial identities in
TG(A) of length larger than |I| = n are consequences of those of length at most n. Recall
that I is the corresponding elementary set of idempotents of B.

We consider a basis element u = auubu ∈ B, where au, bu ∈ I ⊂ B are the corresponding
idempotents. We write

a =
∑
u∈B

αuu

an element of A. We say that αu is the entry (au, bu), if u = auubu. Moreover, au will
denote the row of αu while bu the column of αu. Clearly, this terminology is influenced
by matrix algebras.

Given an entry (au, bu), there may be no element u in B such that u = auubu. For
example, if we consider the canonical basis of UTn(F ), then, for every i < j, there will be
no corresponding Eji, since I = {Eii | i = 1, . . . , n}. This motivates our next definition.

Definition 4.1. Let A be an algebra with an elementary basis B and let I be the
corresponding elementary set of idempotents. We say that B is complete if every
sequence (u1, . . . , uq) of elements of I is good in the sense of Definition 3.2.
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It is easy to see that the standard bases of the algebras Mn(F ), Mn(E) and Ma,b(E)
are complete. We shall use this fact in the next section in order to describe a basis of the
graded identities for the latter algebra.

The next result, concerning graded monomial identities, is a key step in the proof of
the main theorem of this section.

Lemma 4.2. Let A be a G-graded algebra with a B-elementary grading relative to
the G-multiplicative finite basis B. For h ∈ supp A, let us denote

Y h
i =

∑
k∈Lh

thi,kuk,sk
h
.

Let h1, . . . , hk be elements of supp A. If h1 · · ·hk = ε, then the number of non-zero rows

in M1 = Y h1
i1

Y h2
i2

· · ·Y hq

iq
and M2 = Y h2

i2
· · ·Y hq

iq
is the same.

Proof. By Lemma 3.7, we have

Y h1
i1

· · ·Y hq

iq
=

∑
k∈L

(th1
i1,k1

· · · thq

iq,kq
)u

k1,s
k1
h1

· · ·u
kq,s

kq
hq

.

Let a1, . . . , ar be the indices of the rows of M1 which are non-zero. It is clear those rows
are also non-zero ones in Y h1

i1
. Define j1 = sa1

h1
, . . . , jr = sar

h1
. The claim follows once we

prove j1, . . . , jr are exactly the non-zero rows of M2.
Since Y h1

i1
is homogeneous of degree h1, we have M2 is homogeneous of degree h−1

1 .
If the j-th row of M2 is non-zero, then there exists i such that u = ajuai has degree
h−1

1 . Of course, there exists an element u1 ∈ B of Y h1
i1

such that |u1u| = ε. In this case,
u1 = aiu1aj . Hence j = si

h1
where i is a non-zero row of M1, since u1M2 �= 0. Hence the

result follows. �

Lemma 4.3. Let m = xi1xi2 · · ·xik
be a graded monomial identity of homogeneous

degree ε of A, where αG(xi1) ∈ supp A. Then it is a consequence of the graded monomial
identity m′ = xi2 · · ·xik

.

Proof. The statement follows immediately from the previous lemma. �

Now we have all the ingredients for the proof of the main result of the section.

Theorem 4.4. Let A be a G-graded algebra with a B-elementary grading relative to
the G-multiplicative complete finite basis B. Let I be the corresponding elementary set
of idempotents of B with |I| = n. If m = xi1 · · ·xik

is a graded monomial identity for A
and k > n then m is a consequence of a graded monomial identity of A of degree at most
n.

Proof. Suppose k > n. According to Corollary 3.8, there exists a multilinear monomial

m′ = y1y2 · · · yk ∈ F 〈XG〉
with h(m) = h(m′), and such that m ∈ TG(A) if and only if m′ ∈ TG(A). Hence it is
enough to prove the theorem for multilinear monomials. If x1 · · ·xn is a graded monomial
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identity for A we are done. Assume that x1 · · ·xn is not a graded identity for A. In this
case, there are indices i1, j1, . . . , in, jn such that ur = air

urajr
∈ B with αG(ur) =

αG(xr) = hr, for each r = 1, 2, . . . , n, and u1u2 · · ·un �= 0. Then jr = ir+1 for every r < n.
Defining jn = in+1 since ir ∈ {1, . . . , n}, for every r, at least two among the indices i1, i2,
. . . , in+1 are equal. Let is and it+1 = jt be such indices. Then αG(xs · · ·xt) = ε. In other
words m has a submonomial m′ = xs · · ·xt of degree ε.

Suppose first s = 1, that is m′ is at the beginning of the monomial m. Then Lemma 4.2
shows that m is a consequence of x2 · · ·xk, and the result follows by the induction
hypothesis.

Suppose now s > 1. If m[s,t] = xs · · ·xt is a graded identity for A then the result follows
again by the induction hypothesis. Therefore, we assume m[s,t] is not a graded identity
for A. We claim the monomial

x1 · · ·xs−2yxs+1 · · ·xk

is a graded monomial identity for A where αG(y) = hs−1hs = gs. To this end, it is enough
to show that the non-zero rows of Y hs−1Y hs · · ·Y ht and Y gsY hs+1 · · ·Y ht are the same.
In order to prove this claim, we notice that every non-zero row of the former product is
a non-zero rowof the latter.

Now, let i be a non-zero row of Y gsY hs+1 · · ·Y ht . As before, there are elements
ur = air

urajr
, for r ∈ {s + 1, . . . , t}, such that αG(ur) = hr and uus+1 · · ·ut �= 0 where

αG(u) = hs−1hs. Since hs · · ·ht = ε, we have hs = |f(ajt
)|−1|f(ais+1)| with f : I → G.

By comparing degrees, one gets ū ∈ B with αG(ū) = |f(ai)|−1|f(ajt
)|. Hence

ūuus+1 · · ·ut �= 0,

and this means i is a non-zero row of Y hs−1Y hsY hs+1 · · ·Y ht . The latter claim holds since
the basis is complete.

In order to finish the proof, we apply induction on k ≥ n + 1. If k = n + 1, the discus-
sion above shows that m is a consequence of a graded monomial of degree n and we are
done. Suppose the result holds for k − 1 ≥ n + 1, we shall prove it for k ≥ n + 2. As above,
m is a consequence of a graded identity of degree less than k. Hence, by induction, it is
a consequence of a graded monomial of degree ≤ n and now the proof is complete. �

The latter theorem generalizes [12, Theorem 3.5.]. In that paper, the authors proved
that all multilinear graded monomial identities of the full matrix algebra of order n follow
from those of degree n provided the grading is elementary. In the next section, we consider
elementary gradings on Ma,b(E), as well as their tensor product.

5. Graded polynomial identities of Ma,b(E) and Ma,b(E) ⊗ Mr,s(E)

In this section, we study concrete algebras that satisfy the graded identities (3.1) and
(3.2). We denote by Eij the elementary matrix having 1 at position (i, j) and 0 elsewhere.

5.1. Graded identities for Ma,b(E)

The main result in this subsection is the description of a basis for the graded polynomial
identities of Ma,b(E) equipped with certain B-elementary grading.
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Definition 5.1. Let m, n, and a ≥ b be positive integers such that a + b = mn. Let G
be a group and ϕ : {1, . . . , m} × {1, . . . , n} → G an injective function. Given 1 ≤ i ≤ mn
there exists a unique pair (ai, bi) ∈ {1, . . . , m} × {1, . . . , n} such that i = n(ai − 1) + bi.
For every aEij in the canonical basis of Ma,b(E) we set

|aEij | = (ϕ(ai, bi)ϕ(aj , bj)−1, |a|2) ∈ G∗ = G × Z2.

The map | · | satisfies Condition (2.1); therefore, it determines a G∗-grading on Ma,b(E).
This G∗-grading is called the grading induced by ϕ.

The grading introduced in the previous definition is a B-elementary grading relative
to the canonical basis B and the set of idempotents I = {Eii ⊗ 1E | 1 ≤ i ≤ a + b}. It is
induced by the function f : I → G∗ given by f(Eii) = (ϕ(ai, bi), 0) if i ≤ a and f(Eii) =
(ϕ(ai, bi), 1), otherwise. Here we observe that m can be equal to 1 and B is complete in
sense of Definition 4.1. The identities for Ma,b(E) with the elementary Za+b × Z2-grading
induced by ϕ(u, 1) = −u were described in [17], over a field of characteristic zero, and
in [18] when the ground field is infinite of characteristic different from 2. Here u stands
for u (mod a + b). Moreover, in [20], over a field of characteristic zero, it was provided a
basis of the graded identities for Ma,b(E) when equipped with the grading given in the
above definition.

Lemma 5.2. Let G be an arbitrary group, let a, b be positive integers such that a +
b = n, and ϕ : {1, . . . , n} = {1, . . . , n} × {1} → G be an injective function. Considering
Ma,b(E) equipped with the elementary grading induced by ϕ, the graded polynomials

x1x2 − x2x1, αG∗(x1) = αG∗(x2) = (ε, 0); (5)

x1x2x3 − x3x2x1, αG∗(x1) = αG∗(x3) = αG∗(x2)−1 = (g, 0); (6)

x1x2x3 + x3x2x1, αG∗(x1) = αG∗(x3) = αG∗(x2)−1 = (g, 1); (7)

are graded identities of Ma,b(E).

Proof. The proof of this lemma is well known, see for example [20, Theorem 4.6]. �

The next theorem then follows as a direct consequence of the previous lemma,
Remark 3.14 and Theorem 4.4.

Theorem 5.3. Let G be an arbitrary group, let a, b be positive integers such that
a + b = n, and ϕ : {1, . . . , n} → G be an injective function. Consider Ma,b(E) with the
elementary grading induced by ϕ. Over an infinite field of characteristic different from
2, the TG∗ -ideal TG∗(Ma,b(E)) is generated by the graded identities (5.1)–(5.3), together
with its graded monomial identities of degree at most n.

5.2. Graded identities for Ma,b(E) ⊗ Mr,s(E)

Here we consider the counterpart of the previous subsection for the graded identities
of the tensor product Ma,b(E) ⊗ Mr,s(E).
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Definition 5.4. Let G be a group and let ϕ : {1, . . . , a + b} × {1, . . . , r + s} → G be
an injective function. For every (aEij , bEuv) ∈ B1 × B2 = B we set

|aEij ⊗ bEuv| = (ϕ(i, u) · ϕ(j, v)−1, |a|2 + |b|2) ∈ G∗ = G × Z2.

The map | · | satisfies Condition (2.1). Therefore, it determines a G∗-grading on Ma,b(E) ⊗
Mr,s(E). It is called the grading induced by ϕ.

We assume that the elements of supp Ma,b(E) commute with the elements of
supp Mr,s(E). Then the comments stated after Definition 2.3 imply that the tensor
product grading on Ma,b(E) ⊗ Mr,s(E) given in the previous definition is an elementary
grading relative to the canonical basis and set of idempotents, on Ma,b(E) ⊗ Mr,s(E).
Moreover, this basis is complete.

The graded identities of Ma,b(E) ⊗ Mr,s(E) endowed with the elementary Zmn × Z2-
grading, where m = a + b, n = r + s, induced by ϕ(i, u) = −(ni + u), were studied in [17,
18]. Furthermore, over a field of characteristic zero, a description for the graded identities
discussed above was provided in [20].

Lemma 5.5. Let I be the TG×Z2-ideal in F 〈XG×Z2〉 generated by the polynomials
(5.1)–(5.3). Let G be a group such that the elements of supp Ma,b(E) commute with the
elements of supp Mr,s(E). Denote by A the algebra Ma,b(E) ⊗ Mr,s(E) equipped with
the elementary grading given in Definition 5.4. Then the TG×Z2-ideal I is contained in
TG×Z(A).

Proof. It is clear that the polynomial in (5.1) is a graded identity for Ma,b(E) ⊗
Mr,s(E). Let wh = ahEihjh

⊗ bhEuhvh
∈ B, for h = 1, 2, 3, and assume that αG×Z2(w1) =

αG×Z2(w3) = αG×Z2(w2)−1. If w1w2w3 �= 0 then |w1w2| = (ε, 0) and w1w2 �= 0. We have
j1 = i2, v1 = u2, and, since the function f is injective, j2 = i1, v2 = u1. Similarly j2 =
i3, v2 = u3, and j3 = i2, v3 = u2. Therefore, w1 = a1Eij ⊗ b1Euv, w2 = a2Eji ⊗ b2Evu,
and w3 = a3Eij ⊗ b2Euv for some 1 ≤ i, j ≤ a + b and 1 ≤ u, v ≤ r + s. Hence we obtain
w1w2w3 = a1a2a3Eij ⊗ b1b2b3Euv and w3w2w1 = a3a2a1Eij ⊗ b3b2b1Euv. In this way, we
conclude the proof since the ai and bj are elements in the canonical basis of E. �

The previous lemma, Theorem 3.12, Remark 3.14 and Theorem 4.4 imply the proof of
the next theorem.

Theorem 5.6. Assume the base field is infinite and of characteristic different from 2.
Let G be a group such that the elements of supp Ma,b(E) commute with the elements of
supp Mr,s(E). The TG×Z2-ideal of the graded identities of the algebra Ma,b(E) ⊗ Mr,s(E),
equipped with the grading given in Definition 5.4, is generated by (5.1)–(5.3), together
with its graded monomial identities of degree at most (a + b)(r + s).

5.3. Models for the relatively free graded algebras

Now we have all the ingredients in order to study the relationship between the graded
identities for the algebras Mar+bs,as+br(E) and Ma,b(E) ⊗ Mr,s(E). In this section, our
main goal will be to deduce that the TG-ideal of the former algebra is contained in the TG-
ideal of the latter. The intriguing fact that this inclusion, over an infinite field of positive
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characteristic p > 2, is proper, follows directly from the results obtained by Alves in
[2, Theorem 13].

The construction of appropriate generic models for the relatively free graded algebras
for Ma,b(E) ⊗ Mr,s(E) and Mar+bs,as+br(E) is essential. We relate these generic models
to the corresponding graded identities.

Let m, n, a ≥ b, and r ≥ s be positive integers such that a + b = m and r + s = n.
Let G be a group and let ϕ : {1, . . . , m} × {1, . . . , n} → G be an injective function.
We consider a grading on the full matrix algebra Mmn(F ) defined in the follow-
ing way: Given 1 ≤ i ≤ mn, there exists unique pair (ai, bi) ∈ {1, . . . , m} × {1, . . . , n}
such that i = n(ai − 1) + bi. For every Eij , in the canonical basis of Mmn(F ), we set
αG(Eij) = ϕ(ai, bi)ϕ(aj , bj)−1. This function satisfies Condition (2.1), hence it deter-
mines an elementary G-grading on Mmn(F ). Furthermore, if R is a Z2-graded algebra,
we consider the G × Z2-grading on Mmn(R) � Mmn(F ) ⊗ R defined over the tensor
product of graded algebras. Now we define the function γa,b : {1, . . . , m} → Z2 by
γa,b(i) = 0 when 1 ≤ i ≤ a, and γa,b(i) = 1 otherwise. We define similarly the function
γr,s : {1, . . . , n} → Z2.

Consider the following sets of variables:

Y = {yk
ij | 1 ≤ i, j ≤ m}, Z = {zk

ij | 1 ≤ i, j ≤ n}, U = {uk
ij | 1 ≤ i, j ≤ mn},

where k = 1, 2, . . . Notice that F 〈Y ∪ Z〉 is the free algebra and define a Z2-grading on
it by putting |yk

ij |2 = γa,b(i) + γa,b(j) and |zk
ij |2 = γr,s(i) + γr,s(j). Let P1 be the ideal in

F 〈Y ∪ Z〉 determined by the relations:

[yk1
i1j1

, zk2
i2j2

],

[yk1
i1j1

, yk2
i2j2

], if γa,b(i1) + γa,b(j1) = 0,

[zk1
i1j1

, zk2
i2j2

], if γr,s(i1) + γr,s(j1) = 0,

yk1
i1j1

◦ yk2
i2j2

, if γa,b(i1) + γa,b(j1) = γa,b(i2) + γa,b(j2) = 1,

zk1
i1j1

◦ zk2
i2j2

, if γr,s(i1) + γr,s(j1) = γr,s(i2) + γr,s(j2) = 1,

for every k1, k2, i1, i2, j1, j2. Here and in what follows [a, b] = ab − ba is the commutator
of a and b, and a ◦ b = ab + ba is the Jordan product of a and b. Define R1 = F 〈Y ∪ Z〉/P1.
We shall use the same letters yk

ij and zk
ij for the images of yk

ij and zk
ij under the projection

F 〈Y ∪ Z〉 → R1. It follows from the above relations that R1 is a Z2-graded algebra.
Moreover, the set Y generates a free supercommutative algebra (see, for example, [10]
for a precise definition) as well as the set Z does, and the elements of Y commute with
those of Z.

Let (g, a) ∈ G∗ = G × Z2 and define the following matrices in Mmn(R1):

A
(g,a)
k =

∑
ϕ(ai,bi)ϕ(aj ,bj)−1=g

δa,γyk
aiaj

zk
bibj

En(ai−1)+bi,n(aj−1)+bj
,

where γ = γa,b(ai) + γa,b(aj) + γr,s(bi) + γr,s(bj). Here δ is the usual Kronecker symbol
and, as above, Ev,w stands for the corresponding elementary matrices. Clearly A

(g,a)
k is

a homogeneous element in the G × Z2-graded algebra Mmn(R1).
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Put G(g,a) to be the set of all matrices A
(g,a)
k , k ≥ 1, and G = ∪(g,a)∈G∗G(g,a). Finally

define the algebra Fa,b,r,s as the one generated by the set G. Then the algebra Fa,b,r,s is
a G∗-graded subalgebra of Mmn(R1). Here we recall that R1 = F 〈Y ∪ Z〉/P1.

Now we will construct the algebra La,b,r,s. Considering Definition 5.1, for every w ∈
{1, . . . , mn}, we write w = n(a1 − 1) + b1 where a1 ∈ {1, . . . , m} and b1 ∈ {1, . . . , n}.
Thus, we denote ξ(w) = γa,b(a1) + γr,s(b1). Observe that ξ(w) is well defined since a1 and
b1 are determined uniquely by w. Set P2 the ideal in the free associative algebra F 〈U〉
determined by the relations

[uk1
i1j1

, uk2
i2j2

], if ξ(i1) + ξ(i2) = 0,

uk1
i1j1

◦ uk2
i2j2

, if ξ(i1) + ξ(j1) = ξ(i2) + ξ(j2) = 1.

Let R2 = F 〈U〉/P2, it is clear that R2 is a Z2-graded algebra which is free supercom-
mutative; its even variables are all uk

ij such that ξ(i) + ξ(j) = 0; the variables with
ξ(i) + ξ(j) = 1 are odd. (As above, in order to keep the notation as simple as possible,
we use the same letters uk

ij for the generators of F 〈U〉 and for their images in R2.)
Denoting p = ar + bs ≥ q = as + br and fixing (g, c) ∈ G∗, we define H(g,c) as the set

of all matrices
B

(g,c)
k =

∑
ϕ(ai,bi)ϕ(aj ,bj)−1∈G

δc,ξ(i)+ξ(j)u
k
ijEij (8)

in Mmn(R2). Hence we put H = ∪(g,c)∈G∗H(g,c). Let La,b,r,s be the algebra generated
by the set H. It is immediate that La,b,r,s is a G∗-graded subalgebra of Mmn(R2) in a
natural way.

Remark 5.7. We have (g, a) ∈ G∗. Fix a, b, r, s. Then due to the gradings on Fa,b,r,s

and La,b,r,s the positions of the non-zero entries of the matrix B
(g,c)
k are the same as those

of A
(g,c)
k .

Lemma 5.8. The algebra Fa,b,r,s is relatively free in the variety of G∗-graded algebras
determined by Ma,b(E) ⊗ Mr,s(E) in Definition 5.4. The algebra La,b,r,s is relatively free
in the variety of G∗-graded algebras determined by Mp,q(E) in the Definition 5.1 where
p = ar + bs and q = as + br.

Proof. One repeats verbatim the proofs from [18, Lemma 3 and Lemma 4]. �

Thus we generalize the models constructed in [18].
If M = M(x1, . . . , xd) is a graded monomial, we define the density of M in La,b,r,s

as the number of non-zero entries of the matrix M(B̃1, . . . , B̃d). Here B̃ stands for the
matrix of the same size as B, as given in (5.4), and obtained from B by substituting all
non-zero entries of B by 1 ∈ F , while preserving the zero entries.

Definition 5.9. The graded monomial M is said to be sparse in La,b,r,s if its density
in La,b,r,s equals 0.

The notion of sparse monomials in Fa,b,r,s is defined analogously. The next lemma
follows from Remark 5.7.
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Lemma 5.10. A monomial is sparse in Fa,b,r,s if and only if it is sparse in La,b,r,s.

Over a field of characteristic zero, it was proved in [20, Theorem 6.11] that the sets
TG∗(Mar+bs,as+br(E)) and TG∗(Ma,b(E) ⊗ Mr,s(E)) coincide. Such a condition may fail
when the field is infinite of positive characteristic p. In [3], whenever p > 2, the authors
constructed an ordinary polynomial identity for Ma,b(E) ⊗ Mr,s(E) which is not one for
Mar+bs,as+br(E), in the case (r, s) = (1, 1). We also mention that a generalization of the
latter result was obtained in [2, Theorem 13].

Theorem 5.11. Let G be a group and consider the gradings by the group G∗ = G × Z2

given in Definitions 5.4 and 5.1 such that the elements of supp Ma,b(E) commute with
the elements of supp Mr,s(E). Then TG∗(Mar+bs,as+br(E)) ⊆ TG∗(Ma,b(E) ⊗ Mr,s(E)).
Furthermore, over an infinite field of characteristic p > 2, the latter inclusion is proper.

Proof. Denote A = Mar+bs,as+br(E) and A′ = Ma,b(E) ⊗ Mr,s(E). By Theorems 5.3
and 5.6, it is enough to prove that all graded monomial identities for A are graded
identities for A′ as well. By [20, Theorem 6.11], we can consider monomials with at least
one variable which appears at least twice. Let m = m(x1, . . . , xd) be such a monomial
identity for A. If m is sparse then the result follows from Lemma 5.10. Thus we can
consider that m is not sparse. In this case there exist matrices B̃1, . . . , B̃d in Mn(Zp)
such that m(B̃1, . . . , B̃d) �= 0. Hence some variable uk

ij appears at least twice among
the non-zero entries of the element m(B1, . . . , Bd) in A. Suppose that all variables that
appear at least twice in m have even degrees. We make a substitution by elements of the
basis of E such that it respects the G∗-grading given in Definition 5.4, and moreover, we
require that mα1

1 · · ·mαd

d is non-zero. This implies that m is not an identity for TG∗(A),
which is impossible. Therefore, we can suppose that there exists at least one odd variable
uk

ij , in m. Thus

m = m1x
(g,1)
k m2x

(g,1)
k m3,

with αG∗(m1) = αG∗(m1x
(g,1)
k m2). But this implies αG∗(x(g,1)

k m2) = (ε, 0), since if
αG∗(x(g,1)

k m2) = (ε, 1) then, by induction hypothesis, m lies in TG∗(Ma,b(E) ⊗ Mr,s(E)).
Therefore, we obtain αG∗(m2) = (g−1, 1) and hence

m = m1x
(g,1)
k m2x

(g,1)
k m3 ≡ −m1x

(g,1)
k m2x

(g,1)
k m3 = −m (mod I).

Thus 2m ∈ I ⊆ TG∗(A′) and since charK �= 2, we obtain that m ∈ TG∗(A′).
The latter claim of the theorem is in fact [2, Theorem 13]. �

Acknowledgements. The authors thank the Referee for her/his valuable comments
and suggestions helped us in making the exposition more attractive.
C. Fidelis was supported by FAPESP grant No. 2019/12498-0, D. Diniz was supported
by CNPq grants No. 301704/2019-8, P. Koshlukov was partially supported by FAPESP
grant No. 2018/23690-6 and by CNPq grant No. 302238/2019-0

References

1. E. Aljadeff and D. Ofir, On regular G-gradings, Trans. Amer. Math. Soc. 367(6)
(2015), 4207–4233.

https://doi.org/10.1017/S0013091521000857 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000857


Graded identities for algebras with elementary gradings 165

2. S. M. Alves, PI (non) equivalence and Gelfand-Kirillov dimension in positive character-
istic, Rend. Circ. Mat. Palermo (2) 58(1) (2009), 109–124.

3. S. M. Alves and P. Koshlukov, Polynomial identities of algebras in positive character-
istic, J. Algebra 305(2) (2006), 1149–1165.

4. S. S. Azevedo, Graded identities for the matrix algebra of order n over an infinite field,
Commun. Algebra 30(12) (2002), 5849–5860.

5. S. S. Azevedo, M. Fidelis and P. Koshlukov, Tensor product theorems in positive
characteristic, J. Algebra 276(2) (2004), 836–845.

6. S. S. Azevedo, M. Fidelis and P. Koshlukov, Graded identities and PI equivalence
of algebras in positive characteristic, Commun. Algebra 33 (2005), 1011–1022.

7. Y. Bahturin and V. Drensky, Graded polynomial identities of matrices, Linear Algebra
Appl. 357(1-3) (2002), 15–34.

8. Yu. A. Bahturin, A. A. Mikhalev, V. M. Petrogradsky and M. Z. Zaicev, Infinite
Dimensional Lie Superalgebras, De Gruyter Expo. Math. Vol. 7 (Walter De Gruyter & Co.,
Berlin, 1992).

9. L. Bemm, E. Z. Fornaroli and E. A. Santulo Jr., A cohomological point of view
on gradings on algebras with multiplicative basis, J. Pure Appl. Algebra 223(2) (2019),
769–782.

10. A. Berele, Generic verbally prime algebras and their GK-dimensions, Comm. Algebra
21(5) (1993), 1487–1504.

11. A. Berele, Invariant theory and trace identities associated with Lie color algebras,
J. Algebra 310 (2007), 194–206.

12. L. Centrone, D. Diniz and T. C. de Mello, Graded monomial identities and almost
non-degenerate gradings on matrices, preprint arXiv:2001.00489v3 (2020).

13. O. M. Di Vincenzo, On the graded identities of M1,1(E), Israel J. Math. 80(3) (1992),
323–335.

14. O. M. Di Vincenzo and V. R. T. da Silva, On Z2-graded polynomial identities of the
Grassmann algebra, Linear Algebra Appl. 431(1-2) (2009), 56–72.

15. O. M. Di Vincenzo and V. Nardozza, Zk+l × Z2-graded polynomial identities for
Mk,l(E) ⊗ E, Rend. Sem. Mat. Univ. Padova 108 (2002), 27–39.

16. O. M. Di Vincenzo and V. Nardozza, Graded polynomial identities for tensor products
by the Grassmann algebra, Comm. Algebra 31(3) (2003), 1453–1474.

17. O. M. Di Vincenzo and V. Nardozza, Graded polynomial identities of verbally prime
algebras, J. Algebra Appl. 6(3) (2007), 385–401.

18. O. M. Di Vincenzo, P. Koshlukov and E. A. Santulo, Graded identities for tensor
products of matrix (super)algebras over the Grassmann algebra, Linear Algebra Appl.
432(2–3) (2010), 780–795.

19. D. Diniz and T. de Mello, Graded identities of block-triangular matrices, J. Algebra
464 (2016), 246–265.

20. C. Fidelis, D. Diniz, L. Bernardo and P. Koshlukov, Graded identities and central
polynomials for the verbally prime algebras, to appear

21. A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotic Methods, Math.
Surveys Monogr., Vol. 122 (Amer. Math. Soc., Providence, RI, 2005).
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