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This paper presents an analytic solution for gust–aerofoil interaction noise for flat
plates with spanwise-varying periodic leading edges in uniform mean flow. The
solution is obtained by solving the linear inviscid equations via separation of variables
and the Wiener–Hopf technique, and is suitable for calculating the far-field noise
generated by any leading edge with a single-valued piecewise linear periodic spanwise
geometry. Acoustic results for homogeneous isotropic turbulent flow are calculated
by integrating the single-gust solution over a wavenumber spectrum. The far-sound
pressure level is calculated for five test-case geometries; sawtooth serration, slitted
v-root, slitted u-root, chopped peak and square wave, and compared to experimental
measurements. Good agreement is seen over a range of frequencies and tip-to-root
ratios (varying the sharpness of the serration). The analytic solution is then used
to calculate the propagating pressure along the leading edge of the serration for
fixed spanwise wavenumbers, i.e. only the contribution to the surface pressure which
propagates to the far field. Using these results, two primary mechanisms for noise
reduction are discussed; tip and root interference, and a redistribution of energy
from cuton modes to cutoff modes. A secondary noise-reduction mechanism due to
nonlinear features is also discussed and seen to be particularly important for leading
edges with very narrow slits.

Key words: aeroacoustics

1. Introduction
Leading-edge noise is a common and important source of noise generated by

aeroengines when the wakes from forward rotor rows interact with rearward stator
rows (Peake & Parry 2012). Noise generated in this way can be reduced by altering
the geometry of the blades, such as increasing blade thickness (Olsen & Wagner 1982),
varying mean loading (Mish & Devenport 2006a,b), leading-edge radius (Ayton &
Chaitanya 2017) or a combination of these (Glegg & Devenport 2017) however within

† Email address for correspondence: L.J.Ayton@damtp.cam.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0001-6280-9460
https://orcid.org/0000-0001-5410-4006
mailto:L.J.Ayton@damtp.cam.ac.uk
https://doi.org/10.1017/jfm.2019.78


138 L. J. Ayton and P. Chaitanya

the confines of an aeroengine some adaptations are not always practical. Therefore it
is important to develop different alterations to the blades which will reduce noise but
are appropriate for use within an aeroengine.

A popular adaptation to reduce leading-edge noise is to alter the spanwise straight
leading edge of a blade to be serrated, which is inspired by the leading edges of
owls’ wings (Graham 1934; Lilley 1998) (albeit for the owl this likely yields and
aerodynamic improvement rather than an acoustic improvement). A single-frequency
serration is the most common adaptation investigated numerically (Clair et al. 2013;
Lau, Haeri & Kim 2013; Kim, Haeri & Joseph 2016), experimentally (Hansen, Kelso
& Doolan 2012; Narayanan et al. 2015; Biedermann et al. 2017; Chaitanya et al.
2017) and analytically (Huang 2017; Lyu & Azarpeyvand 2017; Ayton & Kim 2018).
Whilst analytical solutions use very simplified models of convective gusts interacting
with semi-infinite flat plates with leading-edge serrations, they can highlight key
noise-reduction mechanisms that can only be speculated on from experimental and
numerical results.

The single-frequency sawtooth serration (Hersh, Soderman & Hayden 1974)
is believed to be effective in reducing leading-edge noise due to a destructive
interference of scattered acoustics in the far field (Narayanan et al. 2015; Chaitanya
et al. 2017; Lyu & Azarpeyvand 2017), but recent analytical work has indicated a
redistribution of acoustic energy from cuton modes to cutoff modes with increasing
serration tip-to-root heights can also be important for overall noise reduction (Ayton &
Kim 2018). With this understood the task is now to determine if different leading-edge
geometries can result in better noise reductions through either an increased destructive
interference, or greater ability to redistribute energy to the cutoff modes.

Current different designs include single-frequency sinusoidal leading edges
(Mathews & Peake 2015; Kim et al. 2016), double-frequency sinusoidal edges
(Chaitanya et al. 2018b) and slitted profiles (Chaitanya et al. 2016; Chaitanya &
Joseph 2018) and leading-edge hook structures (Geyer et al. 2016). Experimentally
it has been seen that different designs perform optimally in different flow situations
(Chaitanya et al. 2016; Chaitanya, Joseph & Ayton 2018a). Since each design could
be optimal in a different flow regime it is hard from purely experimental studies
to conclusively determine which design is best overall. An analytic solution is
valuable for understanding this; once the scattered acoustic field for an arbitrary
leading-edge geometry has been determined, one can find the noise reductions
predicted over a continuous range of flow parameters quickly without the need for
repeated experiments or numerical simulations.

This paper therefore presents an analytic solution for the noise generated by
a convective gust interacting with a semi-infinite flat plate with an arbitrary
single-valued piecewise linear leading edge. To do so, we generalise the method
used in Ayton & Kim (2018) (adapted from the method used by Envia 1988),
which considers specifically the case of a single-frequency sawtooth serration, to
a more general leading-edge geometry. This previous method utilises a tailored
orthogonal expansion in the spanwise coordinate (i.e. not simply a Fourier series) that
permits fully analytical progress through separation of variables and the Wiener–Hopf
technique. Here we too shall tailor an expansion in the spanwise coordinate to
the specific leading-edge geometry that will enable us to produce a fully analytic
solution. This approach for an arbitrary piecewise linear serration geometry has been
successfully used by Ayton (2018) to analytically predict trailing-edge noise (the
scattering of boundary-layer pressure fluctuations by the trailing edge of a plate).

We shall compare the analytic results against experimental measurements for five
different leading-edge serration geometries. The experimental set-up uses a finite
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Spanwise-varying leading edges 139

flat plate with a tripped boundary layer interacting with a straight trailing edge,
therefore acoustic measurements are contaminated by trailing-edge self-noise. To
account for this in the analytical model we add to the serrated leading-edge solution
a simple analytical description of trailing-edge noise as developed by Amiet (1976).
Backscattering (of the leading-edge field by the trailing edge, or the trailing-edge field
by the leading edge), as discussed by Roger & Moreau (2005), Moreau & Roger
(2009), is not accounted for therefore we are able to treat each edge independently
in this manner. This combined analytic and experimental study will enable us to
validate the mathematical approach which can then be used to understand the key
mechanisms for noise reduction due to a spanwise variable leading-edge geometry.

In addition to the simplicity of the solutions, a key benefit of these analytic
results for the leading-edge field is that they permit a higher range of frequencies
to be considered for leading-edge noise than experimental measurements (which are
compounded by self-noise at high frequencies due to the finite trailing edge). It is
important to have a clear understanding of the pure leading-edge noise as trailing-edge
noise-reduction designs are also being investigated; porous and/or elastic trailing
edges (Jaworski & Peake 2013; Geyer & Sarradj 2014; Ayton 2016), serrated trailing
edges (Lyu, Azarpeyvand & Sinayoko 2016; Oerlemans 2016), finlets (Clark et al.
2016) and trailing-edge brushes (Herr 2006). These trailing-edge adaptations would
reduce not only trailing-edge self-noise but also any rescattering of leading-edge noise
(Huang 2017), therefore an optimally quiet aerofoil would possess both a leading-edge
adaptation and a trailing-edge adaptation. Whilst it is beyond the scope of this paper
to consider the possible effects of both leading- and trailing-edge adaptations, we bear
in mind that for an optimal design, any noise attributed to the trailing edge would
also be significantly reduced from that predicted for a straight trailing edge and thus
the leading-edge noise could become important over a wider range of frequencies
than those for a plate with straight leading and trailing edges.

The layout of this paper is as follows. In § 2 we present the formulation of the
mathematical problem for leading-edge noise generated by a semi-infinite flat plate
with varying leading-edge geometry in the spanwise direction, which is similar to the
formulation in Ayton & Kim (2018). In § 3 we obtain the general analytic solution
for an arbitrary periodic piecewise linear leading-edge geometry. In § 4 we discuss the
experimental set-up, with § 4.5 discussing the effect of trailing-edge self-noise. In § 5
we present results for the far-field noise due to different leading-edge geometries and
compare to the experimental results. Section 6 contains our conclusions.

2. Formulation of the problem
We consider the interaction of a convective unsteady gust in uniform flow of

Mach number M over a semi-infinite flat plate with a spanwise periodic leading
edge. The plate lies in the region x > c̃F(z), y = 0, with x denoting the streamwise
direction, y the normal direction and c̃F(z) the periodic leading edge as a function
of spanwise direction, z. We non-dimensionalise lengths by the wavelength of the
serration, velocities by the far upstream steady velocity and pressures by the far
upstream density and velocity. We further normalise F(z) for each geometry such
that maxz F(z) − minz F(z) = 1/2. This ensures definitions are aligned with Ayton &
Kim (2018) where such a normalisation was chosen so that sawtooth edges have unit
derivatives, |F′(z)| = 1. The parameter c̃ therefore permits a variable ‘tip-to-root’ ratio,
i.e. varies the sharpness of the serration.

Since F(z) is periodic we simplify the problem to considering a single wavelength
of the leading-edge geometry, restricting to the spanwise region 06 z6 1. We impose
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x

z = 0 z = 1

z

Sawtooth Slitted √-root Slitted u-root

Chopped peak Square wave Coordinate system

(a) (b) (c)

(d) (e) (f)

FIGURE 1. Leading-edge geometries, x=F(z). The shaded area depicts the rigid plate and
the dashed line is along x= 0. Flow approaches the plate from the negative x direction.

quasi-periodic boundary conditions across z = 0, 1. We restrict the leading-edge
geometry such that F(z) is a single-valued piecewise linear function, therefore we
can investigate the most commonly used geometries such as the sawtooth serration and
slitted root serration easily. Specifically in this paper we consider the five leading-edge
geometries as depicted in figure 1 inspired by Chaitanya et al. (2016), although the
results are applicable to any piecewise linear geometry (including piecewise linear
approximations of any continuous periodic leading edge geometry such as a sinusoid),
and dual-frequency serrations. Note in all geometry cases, the z= 0, 1 boundaries of
the periodic function are chosen to be away from any region of discontinuity of the
leading edge. This ensures the solution captures any influence of the discontinuities.

The unsteady gust incident from far upstream takes the form

vg =Aeik1x+ik2y+ik3z−iωt, (2.1)

where the amplitude, A= (A1,A2,A3)
T, is constant. For simplicity we take A= (0,1,0).

As done for the specific sawtooth serration case in Ayton & Kim (2018) we
decompose the total unsteady flow field into a convective gust part and an acoustic
response part, v = vg + va, and write the response as va = ∇φ. We suppose φ

is harmonic in time ∼e−iωt therefore spatially satisfies the convective Helmholtz
equation,

β2 ∂
2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
+ 2ikM

∂φ

∂x
+ k2φ = 0, (2.2)

where β2
= 1−M2 and k=ω/c0 with c0 the speed of sound of the background steady

flow. Since the gust convects with the background flow, we require k= k1M. The zero
normal velocity boundary condition on the aerofoil surface requires

∂φ

∂y

∣∣∣∣
y=0

=−eik1x+ik3z x> c̃F(z). (2.3a)

We also impose continuity of the potential upstream

1φ|y=0 = 0 x< c̃F(z) (2.3b)
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Spanwise-varying leading edges 141

and quasi-periodic conditions across z= 0, 1,

φ|z=1 = φ|z=0eik3,
∂φ

∂z

∣∣∣∣
z=1

=
∂φ

∂z

∣∣∣∣
z=0

eik3 . (2.3c,d)

To simplify the governing equation, (2.2), we apply a convective transform,

h= φ(x, y, z)eik1M2x/β2
, (2.4)

to eliminate the convective terms. The resulting governing equation and boundary
conditions for h(x, y, z) are

β2 ∂
2h
∂x2
+
∂2h
∂y2
+
∂2h
∂z2
+

(
k1M
β

)2

h= 0, (2.5a)

∂h
∂y

∣∣∣∣
y=0

=−ei(k1/β
2)x+ik3z x> c̃F(z), (2.5b)

1h|y=0 = 0 x< c̃F(z), (2.5c)

h|z=1 = h|z=0eik3,
∂h
∂z

∣∣∣∣
z=1

=
∂h
∂z

∣∣∣∣
z=0

eik3 . (2.5d,e)

This system of equations, (2.5), is identical to that in Ayton & Kim (2018), however,
now, as we are considering a much broader range of leading-edge geometries, we must
employ a different system of variable changes in order to solve it. We choose the
following variables, as used by Roger, Schram & De Santana (2013);

ξ =
x
β
− cF(z), (2.6a)

η= y, (2.6b)
ζ = z, (2.6c)

where c= c̃/β, which converts the governing equation and boundary conditions, (2.5),
to

(1+ c2F′(ζ )2)
∂2h
∂ξ 2
+
∂2h
∂η2
+
∂2h
∂ζ 2
− 2cF′(ζ )

∂2h
∂ξ∂ζ

− cF′′(ζ )
∂h
∂ξ
+ (δM)2h= 0, (2.7a)

∂h
∂η

∣∣∣∣
η=0

=−eiδξ+ik1cF(ζ )+ik3ζ ξ > 0, (2.7b)

1h|η=0 = 0 ξ < 0, (2.7c)
h|ζ=1 = h|ζ=0eik3, (2.7d)

∂h
∂ζ

∣∣∣∣
ζ=1

=
∂h
∂ζ

∣∣∣∣
ζ=0

eik3, (2.7e)

where δ = k1/β. Note, where the geometry F(z) is not continuously differentiable,
derivatives are formally defined as weak derivatives.

This completes the formulation of the mathematical model.
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3. Analytic solution
We proceed to solve (2.7) by following a similar set of steps initially used by Envia

(1988) and then later by Ayton & Kim (2018), however we take care over the new
terms in the governing equations which were not present when F(z) was restricted to
a single swept section (in the case of Envia 1988) or sawtooth serration (in the case
of Ayton & Kim 2018). Previously in Ayton (2018), a similar separation approach
was used for the trailing-edge noise generated by an arbitrary periodic trailing-edge
serration. Here we shall combine the approaches of Envia (1988), Ayton (2018) and
Ayton & Kim (2018) to obtain a solution suitable for leading-edge noise predictions
for an arbitrary periodic leading-edge geometry. We outline the combined procedure
here.

We first apply a Fourier transform in the ξ variable,

H(λ, η, ζ )=
∫
∞

−∞

h(ξ , η, ζ )eiλξ dξ, (3.1)

then separate the solution into η and ζ dependencies, H(λ, η, ζ )=Y(λ, η)Z(λ, ζ ), with
separation constant χ . This results in governing equations

Y ′′ + ((δM)2 − λ2
− χ 2)Y = 0, (3.2)

and
Z′′ + 2iλcF′Z′ + (iλcF′′ − λ2c2(F′)2 + χ 2)Z = 0, (3.3)

which are the same separated equations as found in Ayton (2018). The general solution
is therefore identical to that found in Ayton (2018) and is given below.

Equation (3.2) has solutions

Y(λ, η)= sgn(η)e−|η|
√
λ2−w2

, (3.4)

where
w2
= (δM)2 − χ 2. (3.5)

Equation (3.3) has solutions

Z(λ, ζ )= e−iλcF(ζ )(A(λ) cos(χζ )+ B(λ) sin(χζ )). (3.6)

We impose the quasi-periodic boundary conditions to Z to solve for χ and eliminate
one of A, B. This yields a spanwise orthogonal basis;

Zn(λ, ζ )= e−iλcF(ζ )eik3ζ+2nπiζ , (3.7)

and a general solution given by

H(λ, η, ζ )=
∞∑

n=−∞

An(λ)sgn(η)e−|η|
√
λ2−w2

nZn(λ, ζ ), (3.8)

where
w2

n = (δM)
2
− χ 2

n , χn =±k3 + 2nπ. (3.9)

Now that we have the necessary orthogonal spanwise basis, we proceed to solve for
the An using the Wiener–Hopf technique. We do so now following a similar analysis
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to Ayton & Kim (2018) which is summarised here (full details of the derivation can
be found in appendix A). We obtain

An(λ)=
G+n (λ)En(λ)
√
λ+wn

, (3.10)

with
G+n (λ)=

i
λ+ δ

1
√
−δ −wn

, (3.11)

hence

H(λ, η, ζ )= sgn(η)
∞∑

n=−∞

G+n (λ)En(λ)e−|η|
√
λ2−w2

n

√
λ+wn

Zn(λ, ζ ), (3.12)

where the En arise from the orthogonal expansion of the spanwise part of the normal
velocity boundary condition on the plate,

eik1cF(ζ )+ik3ζ =

∞∑
n=−∞

En(λ)Zn(λ, ζ ). (3.13)

The functions En(λ) are known and dependent on the specific leading-edge
geometry. For the sawtooth edge, Ayton & Kim (2018) showed that the En are
the key functions determining the overall magnitude of the far-field acoustic pressure
and its level of modulation (i.e. how oscillatory it is in the far field). In § 3.1 we
explicitly calculate these functions for our five test-case edges shown figure 1.

The modified velocity potential is given by inverting the Fourier transform,

h(x, y, z)=
1

2πi

∫
∞

−∞

e−iλ(x/β−cF(z))H(λ, y, z) dλ, (3.14)

which we can explicitly calculate in the far field by applying the method of steepest
descent yielding

h(r, θ, z) ∼
∞∑

n=−∞

eπi/4

√
π

G+n (−wn cos θ)En(−wn cos θ)

× cos
(
θ

2

)
eiwnr

√
r

Zn(−wn cos θ, z)e−iwn cos θcF(z), (3.15)

where (r, θ, z) are cylindrical polar coordinates with origin corresponding to Cartesian
origin x= y= z= 0.

Acoustic pressure is determined from the modified potential via

p=−
(
∂h
∂x
−

ik1

β2
h
)

e−ik1M2x/β2
, (3.16)

which in the far field is given analytically by

p(r, θ, z) ∼ i
∞∑

n=−∞

(
k1

β2
−wn cos θ

)
eπi/4

√
π

G+n (−wn cos θ)En(−wn cos θ)

× cos
(
θ

2

)
eiwnr

√
r

Zn(−wn cos θ, z)e−iwn cos θcF(z). (3.17)
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This solution is identical to the solution presented in Ayton & Kim (2018) when
F(z) is a sawtooth serration, however now is generalised for F(z) defined by any
piecewise linear function. This solution is obviously different from the solution for
trailing-edge noise presented in Ayton (2018) due to the different physical problem
set-up, but is able to utilise the same orthogonal spanwise basis functions, Zn.

For any given far-field result we only need to sum a finite number of propagating
modes to calculate the pressure (3.17), as high-order modes are cutoff (Im(wn) > 0).
In the following subsection we explicitly state the geometries used in the five
leading-edge test cases depicted in figure 1, and calculate the modal coefficients,
En(λ), required.

3.1. Explicit calculation of the modal coefficients En(λ)

Here we determine the expansion coefficients En as defined in (3.13) which are
required for the far-field solution (3.17), for the five leading-edge geometries given
in figure 1.

The En are calculated for the expansion (3.13) by using the orthogonality relations
of the Zn;

En(λ)=

∫ 1

0
eik1cF(ζ )+ik3ζZn(λ̄, ζ ) dζ . (3.18)

We specifically use leading-edge functions F(z) given by

sawtooth Fa(z)=


−z, z ∈

[
0, 1

4

)
z− 1

2 , z ∈
(

1
4 ,

3
4

)
1− z, z ∈

(
3
4 , 1
]
,

(3.19a)

slitted v-root Fb(z)=
10
13



−z, z ∈
[
0, 1

4

)
z− 1

2 , z ∈
(

1
4 ,

7
10

)
4z− 13

5 z ∈
(

7
10 ,

3
4

)
17
5 − 4z z ∈

(
3
4 ,

4
5

)
1− z, z ∈

(
4
5 , 1
]
,

(3.19b)

slitted u-root Fc(z)=
10
13


−z, z ∈

[
0, 1

4

)
z− 1

2 , z ∈
(

1
4 ,

7
10

)
2
5 z ∈

(
7
10 ,

4
5

)
1− z, z ∈

(
4
5 , 1
]
,

(3.19c)

chopped peak Fd(z)=
5
4


−z, z ∈

[
0, 3

20

)
−

3
20 z ∈

(
3
20 ,

7
20

)
z− 1

2 z ∈
(

7
20 ,

3
4

)
1− z, z ∈

(
3
4 , 1
]
,

(3.19d)

square wave Fe(z)=
1
4


−1, z ∈

[
0, 1

4

)
+1, z ∈

(
1
4 ,

3
4

)
−1, z ∈

(
3
4 , 1
]
,

(3.19e)

where the subscript a, b, c, d, e correspond to the geometries shown in figure 1.
Fa(z) is equivalent to the sawtooth serration function used in Ayton & Kim (2018).
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Recall, these functions are all normalised such that maxz F(z)−minz F(z)= 1/2, and
the parameter c is used to vary the tip-to-root ratio (i.e. the sharpness) of the leading
edge.

We use (3.18) for each leading-edge geometry to obtain the following expressions
for the modal coefficients, En(λ);

E(a)n (λ)=
4(−1)ns

s2 − 4n2π2
sin
(

1
4
(s− 2nπ)

)
, (3.20a)

E(b)n (λ) =
65i3n+1e−5is/26s

(5s− 13πn)(13πn+ 5s)
−

195ise(3iπn/5)+(2is/13)

2(5s− 13πn)(20s− 13πn)

−
195ise(2iπn/5)+(2is/13)

2(13πn+ 5s)(13πn+ 20s)
−

260ise(iπn/2)+(4is/13)

(20s− 13πn)(13πn+ 20s)
, (3.20b)

E(c)n (λ) = −
i(−1+ eiπn/10)(1+ eiπn/10)e(4is/13)−(8iπn/5)

2πn
−

65ise−(1/2)iπn−(5is/26)

(13πn− 5s)(13πn+ 5s)

+
13ie(2is/13)−(8iπn/5)(5eiπn/5s+ 13πeiπn/5n− 13πn+ 5s)

2(13πn− 5s)(13πn+ 5s)
(3.20c)

E(d)n (λ) =
40ise(iπn/2)+(5is/16)

(8πn− 5s)(8πn+ 5s)

−

5ise(iπn/2)−(3is/16)
(
−5i(−1)ns sin

(πn
5

)
+ 4πe4iπn/5n+ 4πe6iπn/5n

)
πn(8πn− 5s)(8πn+ 5s)

(3.20d)

E(e)n (λ)=
−2in
|sin(nπ)| sin(s/4)

πn
, (3.20e)

where s= c(k1 + λ).

4. Experimental set-up and instrumentation
In this section we detail the experimental set-up and measurement procedure for the

noise generated by flat plates with our five test-case serrated leading edges in uniform
flow with grid generated turbulence.

4.1. Flat-plate leading-edge serrations
For economy and ease of manufacture, a comparative study on noise reductions of
different leading-edge profiles was performed on flat plates situated within a turbulent
flow. The flat plate with a mean chord (b) of 150 mm and span of 450 mm was
constructed by joining together two 1 mm thick metallic sheets to allow serrated flat-
plate inserts 2 mm thick to be inserted between them. All corners were rounded and
the trailing edge sharpened to eliminate vortex shedding noise. Further details of this
flat-plate construction can be found in Narayanan et al. (2015).

A total of 15 flat-plate serrations, which includes the five different edges, (3.19),
with tip-to-root ratios c of 1, 2 and 4 were investigated to explore the sensitivity
on noise reductions. For each case the serration wavelength, λ, was kept constant at
25 mm.
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Microphone array

Nozzle

FIGURE 2. (Colour online) Photograph of jet nozzle and test set-up inside the ISVR
anechoic chamber.

4.2. Open-jet test facility and instrumentation
Far-field noise measurements were carried out at the Institute of Sound and Vibration
Research’s open-jet wind tunnel facility. The wind tunnel is located within the
anechoic chamber, of dimension 8 m × 8 m × 8 m as shown in figure 2. The walls
are acoustically treated with glass wool wedges and the cutoff frequency is 80 Hz.
The nozzle has dimensions of 150 and 450 mm and provides a maximum flow speed
of 100 m s−1. A detailed description of the wind tunnel, including its characteristics,
is presented by Chong, Joseph & Davis (2008). To maintain two-dimensional flow
around the flat plate, side plates are mounted to the nozzle exits that will also support
the plate in the flow. The mean leading edge of the flat plate is located 150 mm
downstream from the nozzle exit.

In order to prevent tonal noise generation due to Tollmien–Schlichting waves
convecting in the laminar boundary layer, and to ensure complete consistency between
the different cases, the flow near the leading edge of the aerofoil was tripped to force
transition to turbulence using a rough band of tape of width 1.25 cm located 16.6 %
of the chord from the leading edge, on both suction and pressure sides. The tape has
roughness of SS 100, corresponding to a surface roughness of 140 µm. Transition
is forced by the use of the trip tape, which is many orders of magnitude rougher
than the aerofoil surface, and is therefore highly unlikely to affect transition. Previous
noise measurements in our facility have indicated that self-noise is insensitive to the
method of tripping.

4.3. Far-field noise measurements
Far-field noise measurements from the flat plate were made using 11, half-inch
condenser microphones (B&K type 4189) located at a constant radial distance of
1.2 m from the mid-span of the flat-plate leading edge. These microphones are
placed at emission angles between 40◦ and 140◦ measured relative to the downstream
jet axis. Measurements were carried out for a 10 s duration at a sampling frequency
of 50 kHz, and the noise spectra were calculated with a window size of 1024 data
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FIGURE 3. (Colour online) Comparison between the measured axial velocity spectra and
theoretical Liepmann spectra.

points corresponding to a frequency resolution of 48.83 Hz and a bandwidth–time
(BT) product of approximately 500, which is sufficient to ensure negligible variance
in the spectral estimate at this frequency resolution.

The acoustic pressure at the microphones was recorded at a mean flow velocity
(U) of 60 m s−1. Noise measurements are presented in terms of the sound pressure
level spectra SPL( f ) using the procedure described in Narayanan et al. (2015). Sound
pressure level reductions, 1SPL, are determined by subtracting the sound pressure
level spectra due to the serrated flat plate from that due to the baseline straight edge
profile.

4.4. Turbulence characterisation

A bi-planar rectangular grid with overall dimensions of 630× 690 mm2 located in the
contraction section 75 cm upstream of the nozzle exit was used to generate turbulent
flow that provides a velocity spectrum that is a close approximation to homogeneous
and isotropic turbulence at the aerofoil leading edge. However, we emphasise that the
condition of isotropy is not a key requirement for predicting the noise radiation but
only that the velocity spectrum at the aerofoil leading edge is needed for model fitting.
A comparison of the streamwise velocity spectra measured at 145 mm from the nozzle
exit (Suu/U) plotted against f /U is compared in figure 3 to the theoretical Liepmann
velocity spectrum, where the mean square velocity and integral length scale are chosen
to give best fit to the measured data. Close agreement is observed for 2.5 % turbulence
intensity and a 7.5 mm streamwise integral length scale.

4.5. Effect of trailing-edge self-noise
The experimental set-up cannot avoid the generation of trailing-edge self-noise.
Figure 4(a) shows the comparison of the sound power levels for baseline and sawtooth
serrated aerofoils (c = 4) with M = 0.17. Self-noise measurements for the baseline
aerofoil are also plotted in the figure demonstrating the influence of self-noise on
total noise. We see self-noise becomes increasingly dominant at high frequencies
f & 6000, and thus it appears as if the serration becomes less effective at high
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FIGURE 4. (Colour online) Trailing-edge self-noise. (a) Far-field power spectra as a
function of frequency for baseline and serrated aerofoils. Self-noise measurements for
baseline are obtained when the grid is not placed over the flow nozzle. (b) Comparison
of experimetally measured PWL (dashed) and analytic prediction of pressure at θ = 90◦
(solid) for trailing-edge self noise.

frequencies due to the dominance of this self-noise in the total noise measurements.
This superficial drop in leading-edge serration performance due to the unavoidable
contamination of self-noise was also previously shown by Narayanan et al. (2015).
As these frequencies are within the range we wish to consider for our experimental
and analytical comparison, we must include a simple trailing-edge noise model to the
analytical prediction.

We use Amiet’s trailing-edge noise model (Amiet 1976) with Howe’s approximation
(Howe 1998) to Chase’s wall-normal turbulent spectrum (Chase 1987), as detailed
in Glegg & Devenport (2017, §§ 9–10). This provides us with a far-field spectrum
directly above the trailing edge, in the mid-span, of

SPLTE = 10 log10(Spp(0, rt, 0, ωt)), (4.1)

where

Spp(xt, yt, 0, ωt)≈πb
(
ωtchyt

4πc0r2
t

)2

φpp(ωt)|L|2. (4.2)

Here (xt, yt, zt) are standard Cartesian coordinates centred on the trailing edge, rt is
the radial distance from the trailing edge, b is the chord span and ch is the chord
length. The frequency, ωt, is assumed to satisfy k1=ωt/Uc where Uc is the convection
velocity within the boundary layer, Uc ≈ 0.7U. L is Amiet’s generalised lift function
(Glegg & Devenport 2017, equation (15.2.11)), and φpp is the expected wall pressure
spectrum (Glegg & Devenport 2017, equation (9.2.37) denoted as Gpp). We compare
the experimental self-noise measurements to the analytical expression in figure 4(b)
seeing good agreement over the range of frequencies of interest, noting oscillations
are more dominant in the analytic predictions as these are solely at θ = 90◦.

We make two final notes; first figure 4(a) also illustrates the influence of jet noise
from the nozzle is dominant in the experimental measurements at low frequencies,
f . 200 Hz. The noise for frequencies below 200 Hz is due to typical jet shear layer
noise which is also observed in the self-noise spectra. Whereas in the frequency region
of 200–400 Hz, the peak in the total noise spectra is due to the interaction of a
shedding vortex from the turbulence grid with the aerofoil leading edge. This is absent
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in the case of self-noise as the measurements are performed without the turbulence
grid. However, as these noise sources are unconnected to aerofoil broadband noise,
we do not attempt to account for them in the analytic model. Second, as the analytic
model assumes an infinite chord, no Kutta condition is imposed at the trailing edge;
the effect of the Kutta condition is thought to be important for k∗c∗h/(2β

2) 6 0.75;
this also corresponds to low frequencies, f . 500 Hz, and is not accounted for in the
present analytical model.

5. Results
5.1. Comparison of analytical and experimental results

Here we validate our analytic results by comparing to the experimental measurements
for the five leading-edge test geometries, at three different tip-to-root ratios 1, 2 and 4.

We define the total analytic SPL as

SPL= 10 log10

(∫
∞

−∞

|p∗|2Φ(∞)(k1, k3) dk3

)
+ SPLTE, (5.1)

where Φ(∞)(k1, k3) is the upstream Liepmann spectrum given by

3u∗ 2L∗ 2

4π

L2(k2
1 + k2

3)

(1+ L2(k2
1 + k3

3))
5/2
, (5.2)

with L = 0.3 the non-dimensional integral length scale of turbulence (defined as the
integral length scale, 7.5 mm, divided by the serration wavelength, 25 mm), L∗ =
0.0075 m the dimensional integral length scale and u∗ = 0.025U∗ is the turbulence
intensity (2.5 % of the free-stream velocity, U∗). In (5.1), p∗ denotes the dimensional
pressure, ρ∗0 U∗ 2p(r, θ, z), where p is the far-field pressure given analytically in (3.17),
and ρ∗0 =1.225 kg m−3. The trailing-edge self-noise contribution to the SPL is denoted
SPLTE, and is calculated from (4.1).

We evaluate (5.1) using the inbuilt NIntegrate feature of Mathematica. For a given
k1 we restrict k3 values such that |k3| < k1, as is expected in the experimentally
generated grid turbulence. We sum only the propagating modes of (3.17), the number
of which can be easily calculated once given k1, k3, and M.

In figures 5–7 we plot the SPL evaluated from the analytic expression (5.1) at r=
10, θ = 90◦, z= 0.5, against the experimental measurements from the microphone at
θ = 90◦ in the plate mid-span. We do so for each of the five leading-edge geometries,
at three different tip-to-root ratios, c= 1, 2, 4, with M = 0.17. In each subfigure the
straight-edge results are plotted alongside the results for one specific leading-edge
geometry. The analytic straight-edged results are calculated by setting c = 0.001 for
the relevant geometry. Overall we see good agreement between the analytic solutions
and the experimental measurements across a range of tip to root ratios, and for mid-
and high-range frequencies f & 1000 Hz. The sawtooth and square wave results have a
greatest error of 3 dB, whilst the other geometries have greatest error of 5 dB. We are
primarily concerned with the frequency range f ∈ [1, 10] kHz as this is the range in
which human hearing is most sensitive (frequencies outside of this range are perceived
as quieter by the human ear), and it is clear from figures 5–7 serrations can provide
good noise reduction in this frequency range.

The analytic solutions capture correctly the overall level of noise reduction found
experimentally over a wide range of frequencies and correctly capture the trends for
varying tip-to-root ratio. With the increase of tip-to-root ratio c, the noise reductions
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FIGURE 5. (Colour online) The SPL from analytic results (solid) and experimental
measurements (dashed) for each of the five test-case geometries: red (a), orange (b),
purple (c), green (d), cyan (e). The straight-edge results are blue throughout. In each case
M = 0.17, c= 1.

for all the designs except for the square wave move towards lower frequencies and the
absolute noise reductions compared to the baseline (straight-edged) case is increased.
These results are consistent with the previous experimental work of Chaitanya et al.
(2017), who demonstrated that the noise reductions are a function of fc/U (this will
be shown explicitly later in § 5.3). The square wave profile does not show a clear
fc/U dependence as observed from figures 5(e), 6(e) and 7(e). The analytic solution
proposed in this paper is also able to capture these noise reduction trends accurately.
However the oscillations in the experimental SPL are not fully captured by the
theoretical predictions. These oscillations arise in both the serrated and straight edged
cases of the experimental measurements therefore at least in part can be attributed to
backscattering effects which are neglected in the theoretical analysis.

A key mechanism permitting good noise reduction from a serrated leading edge
is the interference of coherent acoustic fields scattered by the tip and root of the
serration (Chaitanya et al. 2018a). We see this feature alluded to in the analytical
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FIGURE 6. (Colour online) The SPL from analytic results (solid) and experimental
measurements (dashed) for each of the five test-case geometries: red (a), orange (b),
purple (c), green (d), cyan (e). The straight-edge results are blue throughout. In each case
M = 0.17, c= 2.

solution through the modal coefficients, En(λ), given in (3.20), which contain
oscillatory functions. A second feature discussed in Ayton & Kim (2018) is that
of a redistribution of acoustic energy from low cuton modes to higher cutoff modes
at large k1c values, and is also represented by the modal coefficients En(λ); at large
k1c values, corresponding to a large s limit in (3.20), we see all Ea

n and Eb
n behave

as O(1/s) except for very high modes n = O(s) which are cutoff. Therefore for
these geometries, the sawtooth and slitted v-root, as frequency or tip-to-root ratio
is increased, energy is transferred from lower cuton modes to higher cutoff modes.
The slitted u-root and chopped peak geometries, (c) and (d), exhibit only part of
their modal coefficients decaying with large s, therefore do not redistribute energy
as efficiently as the sawtooth and the u-root. The square wave, (e), has no modal
coefficient parts which decay with large s therefore does not redistribute energy at all.

The noise-reduction mechanism for slitted profiles (which includes the square wave
geometry considered in this paper) is proposed by Chaitanya & Joseph (2018) where
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FIGURE 7. (Colour online) The SPL from analytic results (solid) and experimental
measurements (dashed) for each of the five test-case geometries: red (a), orange (b),
purple (c), green (d), cyan (e). The straight-edge results are blue throughout. In each case
M = 0.17, c= 4.

optimum slitted profiles are discussed. The reason for this optimum slitted geometry
is attributed to the difference in the source strength at the two opposite locations
of the slit. A preliminary computational study of the noise reduction mechanism of
the leading-edge slits has been performed by Cannard et al. (2018) wherein it is
shown that narrow slits along an otherwise straight leading edge are able to generate
comparatively high source levels at the root through the formation of a secondary
streamwise vortex generated along the edge of the slit and then interacting with the
root. This secondary feature which is important for slitted profiles is not accounted
for in the analytic model, but will be discussed further in § 5.4.

To consider the primary noise-reduction mechanisms of interference and redistribu-
tion more closely, we look at the analytically predicted scattered surface pressure
along the leading edge of the serration.
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FIGURE 8. Absolute value of surface pressure contributing to outgoing acoustic waves
along the leading edge of the sawtooth serrated blade. In each case M = 0.17, k1 = 5,
k3 = 0. Solid: c= 1, dashed: c= 2, dotted: c= 4.

5.2. Surface pressure
For simplicity here we restrict to considering single-frequency gusts, i.e. fixed k3
wavenumbers rather than integrating over a wavenumber spectrum. This will give us
a simple idea of how the interference and redistribution mechanisms manifest as a
pressure variation on the surface, and how this is affected by oblique gusts.

We calculate the surface pressure from (3.16) where h is given by (3.14). By
interchanging the integration and differentiation we may express the surface pressure
(on the upper surface of the plate) as

ps(x, 0+, z)=
∞∑

n=−∞

1
2πβ
√
−δ −wn

∫
∞

−∞

e−iλx/βEn(λ)
√
λ+wn

dλeik3z+2nπize−ik1M2x/β2
. (5.3)

As we are interested only in the surface pressure which relates to the dominant
contributions to the far-field noise, we restrict the infinite sum to a sum only over a
finite number of modes (including all with Im(wn)= 0). To obtain the solution along
the leading-edge of the plate, we evaluate (5.3) at x= βcF(z), which corresponds to
the surface pressure distribution at the leading edge of the flat plate.

5.2.1. Sawtooth profile
We start by considering the surface pressure distribution for the sawtooth profile.

Figure 8(a) shows the absolute value of surface pressure distribution along the leading
edge of the sawtooth profile for three different values of c = 1, 2 and 4 at a fixed
M= 0.17, k1 = 5, k3 = 0. We see that the source strength decreases with the increase
of tip-to-root ratio, c. This illustrates the redistribution of acoustic energy away from
the low propagating modes with the increase of tip-to-root ratio.

The source strength distribution does not appear to have a clear dominant source
region as seen previously by Chaitanya et al. (2017), Turner & Kim (2017). Turner &
Kim (2017) showed that the root of the serrated leading edge is the dominant noise
source due to the presence of a secondary horseshoe-like vortex system generated by
the serrated leading edge, which alters the upstream velocity field, thereby enhancing
the surface pressure at the serration root. However, the current (linear) mathematical
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FIGURE 9. (Colour online) Variation of absolute value of surface pressure contributing to
outgoing acoustic waves at the root (black) and peak (red) locations with respect to k1

for M = 0.17, k3 = 0, c= 1. Dashed: 1/
√

k1 fit.

model does not capture these secondary flow features, which are a purely nonlinear
feature. This nonlinear feature is not the primary noise-reduction mechanism of
sawtooth serrated leading-edge profiles; the primary noise-reduction mechanism, as
demonstrated by many authors previously (Kim et al. 2016; Chaitanya et al. 2017;
Ayton & Kim 2018), is the destructive interference along the serrated profile. This
is further demonstrated by the analytic solution by the phase distribution along the
leading edge of the sawtooth profile for three different values of c= 1, 2 and 4 at a
fixed M = 0.17, k1 = 5, k3 = 0 in figure 8(b). The phase variation along the sawtooth
profile behaves similarly to the geometry of the profile itself, for all the three
tip-to-root ratios. This demonstrates the phase variation due to incoming parallel gust
along with the variable surface pressure distribution results in destructive interference
phenomena. This is consistent with the simple phase model hypothesis proposed by
Chaitanya et al. (2017) where e−k1x is the key term responsible for noise reductions
by serrated leading-edge profiles.

Figure 9 shows the variation of absolute surface pressure at two locations, the tip
and the root on the leading edge of the sawtooth profile, with k1 at M= 0.17, k3= 0,
c = 1. Also plotted is the 1/

√
k1 curve for the two locations. The absolute surface

pressure shows a 1/
√

k1 dependence which is consistent with the high-frequency
approximation of the Sommerfeld half-plate problem. The two locations considered
here have similar characteristics to those of the flat plate and demonstrate the
local gradient of the serrated edge is a key factor governing the surface pressure
distribution.

To demonstrate this explicitly, variation of absolute surface pressure at the
mid-location of the oblique edge for the sawtooth profile is predicted for varying tip
to root ratio c= 1 to 10. Figure 10(a) shows the variation of absolute surface pressure
plotted against the cosine of the inclination angle θ for k1 = 5, 10 respectively. The
surface pressure along the oblique edge seems to be proportional to cos θ which is
consistent with Roger & Carazo (2010). They suggested an analytical expression to
predict the aerofoil noise due to sinusoidal gust when the aerofoil/blade is swept
relative to the free-stream direction. According to their analysis, the surface pressure
is proportional to cos θ , where θ is the sweep angle. The larger the inclination angle
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FIGURE 10. Variation of absolute value of surface pressure contributing to outgoing
acoustic waves at the mid location of sawtooth serrated profile with respect to c. In each
case M = 0.17, c= 1, k3 = 0. Solid: k1 = 5, dashed: k1 = 10.

of the serration, i.e. the larger the tip-to-root ratio c, the more the surface pressure is
reduced (proportional to cos θ ).

The total phase change along the sawtooth profile is also calculated for varying
tip to root ratio of c = 1 to 10 and plotted in figure 10(b) for k1 = 5, 10. The total
phase change is seen to be proportional to k1 and the tip to root ratio c, where the
rapid phase change along the oblique surface is a key noise reduction mechanism for
serrated leading-edge profiles. These observations are consistent with the Kim et al.
(2016) who proposed the two dominant noise-reduction mechanisms. One is due to a
source cutoff effect arising from the obliqueness of the inclined leading edge and the
second is due to interference between the sources along the serrated leading edge.

These observations demonstrate the current generalised model proposed in this paper
captures the primary noise-reduction mechanism of sawtooth leading-edge profiles.

5.2.2. Other profiles
In figure 11 we see the leading-edge surface pressures for k3=0 at a fixed frequency

k1= 5 for the remaining four test-case profiles. We see in the cases of the triangular-
based geometries (a–c) as the tip to root ratio is increased the overall magnitude of
the absolute surface pressure is reduced which is consistent with the sawtooth profile
as seen in figure 8. This illustrates the redistribution of acoustic energy away from the
low propagating modes towards higher cutoff modes. Similarly the second mechanism
of interference is illustrated by figure 12 through the phase distribution along the
leading-edge profiles. All the phase variations are consistent with the geometry of the
serrated profile.

The characteristics of the square wave profile are different compared to the other
triangular-based geometries. For the square wave, there are principally only two
deviations of surface pressure along the leading edge for a serrated case compared
to the straight case. These deviations can efficiently destructively interfere with each
other in the far field, much more effectively than the multiple variable pressures
associated with the triangular-based geometries, but this will only happen when the
two source strengths are specifically tuned in such a way that they both interfere
destructively. This has been demonstrated by Chaitanya et al. (2018a). The square
wave illustrates how it is not necessary to have a rapidly varying pressure along the
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FIGURE 11. Absolute value of surface pressure contributing to outgoing acoustic waves
along the leading edge of the serrated blade. In each case M= 0.17, k1= 5, k3= 0. Solid;
c= 1, dashed; c= 2, dotted; c= 4. The shaded shape in each panel denotes the leading-
edge geometry.

leading edge, but important to have variable pressure at the tip and root regions to
enable a good destructive interference in the far field. We discuss the unique features
of the square wave geometry further in § 5.4.

5.2.3. Influence of oblique gusts
We now consider an oblique gust impinging onto the serrated profiles. The absolute

value of the surface pressures and the phase variations along the leading edge are
plotted in figures 13 and 14 for three different tip-to-root ratios c= 1, 2, 4 at M= 0.17,
k1 = 5, k3 = 10. The absolute surface pressures are consistently lower than those for
a parallel gust of k3 = 0 but continue the trend with increasing tip-to-root ratio
as seen previously for the parallel gust in figure 8(a). This indicates that whilst
the redistribution mechanism is similar for both oblique and non-oblique gusts, the
influence on non-oblique gusts is more significant to the overall noise levels.

The phase distribution for oblique gusts is significantly different compared to non-
oblique gusts. The edge parallel to the oblique gust will be excited in phase as seen in
figure 14(a) in the ranges z∈ [0, 0.25] and z∈ [0.75, 1] in the case of c= 2; here the
inclination angle (tan−1 c) of the oblique edge is equal to the oblique angle of the gust
(tan−1 k3/k1). This reduces the effectiveness of the phase interference along the leading
edge, however, only half the leading-edge profile is excited in phase, so the other half
will interfere destructively therefore some noise reduction will occur. The overall far-
field radiated pressure is the sum of pressures due to all oblique wavenumber gusts
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FIGURE 12. Argument of surface pressure contributing to outgoing acoustic waves along
the leading edge of the serrated blade. In each case M= 0.17, k1= 5, k3= 0. Solid; c= 1,
dashed; c = 2, dotted; c = 4. The shaded shape in each panel denotes the leading-edge
geometry.

impinging of the leading-edge profiles, therefore this particular case of an oblique gust
parallel to a section of the serration with a slightly reduced interference ability is an
anomaly.

5.3. Noise-reduction variation with observer angle
In this section we consider the effect of varying Mach number and observer angle
on the leading-edge far-field noise reduction for our different leading-edge geometries
by using the analytic solution. Here the noise reductions for various leading-edge
geometries are calculated with respect to baseline (straight leading edge). Note this
does not include the contamination of trailing-edge noise, thus is governed by (3.17).
We initially focus on k3= 0 to illustrate the key features of the scattering of a single
gust by the leading edge. We then integrate over all spanwise wavenumbers using the
Liepmann spectrum to obtain predictions for realistic noise reductions in a turbulent
stream.

Figure 15(a–e) shows the directivity of noise reduction in dB for various leading-
edge configurations at two different tip to root ratio c of 1, 2 and three different
non-dimensional frequencies k1 of π, 2π and 3π, at a fixed Mach number M= 0.17,
and fixed k3= 0. Similarly, Figure 16(a–e) shows the directivity of noise reduction in
dB at a fixed Mach number M=0.5 and fixed k3=0. The rationale behind considering
these frequencies is based on the previous work of Chaitanya et al. (2017), where
the authors demonstrated the noise reductions are functions of tip-to-root distance c

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.78


158 L. J. Ayton and P. Chaitanya

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.10

0.08

0.06

0.04

0.02

0.10

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0
z

z z

|p
s|

|p
s|

0.09282
0.09280
0.09278
0.09276
0.09274
0.09272
0.09270
0.09268
0.09266

(a) (b)

(c) (d)

(e)

|p
s|

√-root

Chopped peak

Square wave

Sawtooth

u-root

FIGURE 13. Absolute value of surface pressure contributing to outgoing acoustic waves
along the leading edge of the serrated blade. In each case M= 0.17, k1= 5, k3= 10. Solid;
c= 1, dashed; c= 2, dotted; c= 4.

and hydrodynamic wavelength U/f , i.e. functions of k1c. This is illustrated in the
analytical solutions as we see a good overlap of the directivity curves in figures 15
and 16 for a fixed k1c= 2π.

Figures 15 and 16 demonstrate the directivity patterns are strong functions of
non-dimensional frequency k1c and Mach number M. Optimum noise reductions of
up to 40 dB are observed at specific observer angles, conversely at other specific
observer angles no noise reductions are observed. These oscillations are a result of
the strong interference of the scattered acoustic fields from different sources located
along the leading edge of the aerofoil. These interference patterns are functions of
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FIGURE 14. Argument of surface pressure contributing to outgoing acoustic waves along
the leading edge of the serrated blade. In each case M= 0.17, k1= 5, k3= 10. Solid; c= 1,
dashed; c = 2, dotted; c = 4. The shaded shape in each panel denotes the leading-edge
geometry.

the path difference between these leading-edge sources and the far-field observer
location, convective sound speed, flow Mach number M. For higher Mach numbers
and greater values of k1c the oscillations for a given geometry increase due to rapid
phase changes resulting in more directivity lobes. This is particularly evident in the
case of square wave where we have two dominant sources on either end of the slit.

Since figures 15 and 16 account only for k3 = 0, the constructive (no noise
reduction) or destructive (large noise reduction) interference is over-exaggerated, as
these specific angles will differ with different values of k3. To consider the noise
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FIGURE 15. (Colour online) Noise reduction (dB) with respect to baseline (straight edge)
in the blade mid-span, r= 10, M= 0.17, k3 = 0. Dashed: c= 1, dot-dashed: c= 2. Black:
k1 =π, red: k1 = 2π, blue: k1 = 3π.

reduction in a fully turbulent stream, we integrate the individual k3 components over
the Liepmann spectrum to obtain figures 17 and 18. We see clearly the noise-reduction
directivities are now much more uniform with far fewer oscillations. The noise
reductions still adhere to being functions of k1c, although due to the additional
length scale of the incident turbulence, L, there is now not perfect overlap at fixed
k1c= 2π.

What we also observe from figures 17 and 18 is that leading-edge geometries
with straight sections, the u-root (c), chopped peak (d) and square wave (e), tend
to a limited noise-reduction value (increasing k1c does not continue to decrease
noise), whereas the sawtooth (a) and v-root (b) continue to reduce leading-edge
noise with increasing k1c. This is consistent with Chaitanya et al. (2017), where the
noise reductions for a sawtooth edge are shown to be proportional to the Strouhal
number relative to the serration amplitude i.e. k1c. Similarly as shown by Chaitanya
et al. (2018a), for the cases of the u-root (c), chopped peak (d) and square wave (e),
additional noise-reduction mechanisms i.e. destructive interference occurs between
the dominant sources as their strengths becomes comparatively equal due to their
straight sections. The square wave once again behaves most distinctly in comparison
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FIGURE 16. (Colour online) Noise reduction (dB) with respect to baseline (straight edge)
in the blade mid-span, r = 10, M = 0.5, k3 = 0. Dashed: c= 1, dot-dashed: c= 2. Black:
k1 =π, red: k1 = 2π, blue: k1 = 3π.

with the other four triangular-based geometries. Peak noise reductions for the square
wave occur when the two sources are 180◦ out of phase which occurs when the
non-dimensional frequency k1c becomes 2(2n − 1)π, where n is any given integer.
Hence, the cases c = 1, k1 = 2π and c = 2, k1 = π demonstrate the greatest noise
reductions for the square wave profile. We shall discuss the square wave, and more
general slitted geometries further in the following section.

Finally, an important idea to be taken away from the comparison of the single-
frequency noise reductions of figures 15 and 16, and the full homogeneous turbulence
reductions of figures 17 and 18, is that the noise reductions could depend strongly
on the structure of the incident turbulence. For example, if the k3 = 0 mode strongly
dominated (i.e. the incident turbulence was not homogeneous and isotropic), we would
expect the total noise reductions to be more oscillatory and have observer angles
where constructive and destructive interference mirrors that from figures 15 and 16.
Therefore in a practical setting, knowledge of the upstream turbulence could be key
to assessing the total noise reduction due to a serrated leading edge and its variation
with observer angle.
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FIGURE 17. (Colour online) Noise reduction (dB) with respect to baseline (straight edge)
in the blade mid-span, r = 10, M = 0.17, integrated over a Liepmann spectrum of k3
wavenumbers with L= 0.28. Dashed: c= 1, dot-dashed: c= 2. Black: k1=π, red: k1= 2π,
blue: k1 = 3π.

5.4. Slitted profiles and the applicability of the analytical model
We have consistently seen the square wave profile behave differently to the triangular
based profiles. This section discusses some of the features specific to the square wave
as illustrated by figure 1(e).

For a general slitted profile, the leading-edge function F(z) is given by

slitted Fs(z)=
1
4


−1, z ∈ [0, a)
+1, z ∈ (a, b)
−1, z ∈ (b, 1],

(5.4)

where b− a is the width of the slit relative to total wavelength of the serration.
Optimum slitted serration profiles have previously been discussed by Chaitanya

et al. (2016), and the additional nonlinear noise-reduction mechanism is discussed
by Chaitanya et al. (2018b), Chaitanya & Joseph (2018). This mechanism is due to
secondary flow structures which, as mentioned earlier, are not captured by current
analytic formulation. Also shown by Cannard et al. (2018), narrow slits (small values
of b − a) are able to generate comparatively high source levels at the root through

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.78


Spanwise-varying leading edges 163

12
180°

165°

150°

135°

120°
105° 90°

75°

60°

45°

30°

15°

0
0 2 4 6 8 10

180°

165°

150°

135°

120°
105° 90°

75°

60°

45°

30°

15°

0
0 2 4 6 8 10

12

12

12
180°

165°

150°

135°

120°
105° 90°

75°

60°

45°

30°

15°

0
0 2 4 6 8 10

180°

165°

150°

135°

120°
105° 90°

75°

60°

45°

30°

15°

0
0 2 4 6 8 10

12
180°

165°

150°

135°

120°
105° 90°

75°

60°

45°

30°

15°

0
0 2 4 6 8 10

(a) (b)

(c) (d)

(e)

√-root

Chopped peak

Square wave

Sawtooth

u-root

FIGURE 18. (Colour online) Noise reduction (dB) with respect to baseline (straight edge)
in the blade mid-span, r = 10, M = 0.5, integrated over a Liepmann spectrum of k3
wavenumbers with L= 0.28. Dashed: c= 1, dot-dashed: c= 2. Black: k1=π, red: k1= 2π,
blue: k1 = 3π.

the formation of a secondary streamwise vortex generated along the edge of the
slit and then interacting with the root. These secondary flow structures, which are
significant for the noise-reduction capabilities of slitted profiles, are only captured
by the nonlinear equations whereas the current analytic formulation is linear. Having
said this, the current formulation is capable of capturing the primary noise reduction
mechanism i.e. redistribution of energy and phase cancellation along the leading edge
of the profile where there are no secondary flow structures present which changes
the surface pressure distribution.

In this section, by comparing the experimental data for slitted profiles to the linear
analytic model, we are able to quantify the effect of this secondary flow feature.
Specifically, we consider three slitted profiles given by (a, b) = (0.28, 0.72), (0.435,
0.565), (0.45, 0.55) which correspond to slits whose ratios of lengths between the
back edge and front edge of the profile, (b − a)/2a equals to 0.78, 0.15 and 0.11
respectively.
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FIGURE 19. (Colour online) Sound pressure level reduction (1SPL) comparisons for a
slitted profile for three width ratios of 0.78, 0.15 and 0.11, at jet velocity of 60 m s−1.
Black: = 0.78, Red: = 0.15, Blue = 0.11.

Figure 19 shows the comparison of the sound power reduction spectra for three
different width ratios of 0.78, 0.15 and 0.11 at a jet velocity of 60 m s−1. Analytical
predictions are also presented for the same cases. It is clear from the experimental
results that the noise-reduction trend does not vary linearly with altering the slit
width, since width ratio 0.15 out-performs both others in terms of greatest noise
reduction. Conversely, the analytical results show a linear trend; decreasing slit width
decreases noise reduction. Whilst the quantitative agreement between analytic and
experimental noise reduction is good for the widest slits, 0.78, the narrow slits do
not agree at all well. This indicates that as the slit becomes narrower, the nonlinear
noise-reduction mechanisms become stronger, and in fact become the most influential
mechanism for overall noise reduction. Since the analytic model does not account for
nonlinear features, we should not expect agreement.

By comparing the analytical results with the experimental measurements we quantify
the effect of the nonlinear mechanism; for the widest slit, 0.78, the effect is minimal
∼0.5 dB difference between the results at the peak noise-reduction frequency of
fc/2U = 0.6. For the mid-range slit, 0.15, the effect is largest at ∼12 dB additional
noise reduction due to the nonlinear interactions, and for the narrowest slit, 0.11,
the effect is ∼8 dB. Thus, the increased root source strength (the key nonlinear
feature) does not vary linearly with slit width. Instead, an optimum slit width due to
an optimally increased root source strength must occur. Experimentally, it has been
demonstrated that at this optimum ratio of 0.15, the source strengths on the either end
of the slit are equal resulting in enhanced destructive interference. Whereas in case
of the analytical predictions the precise ratio of source strengths are not captured due
to its limitation in capturing the secondary flow features. Further work is required to
understand this relationship between slit width and increase of root source strength,
and to include this feature in a theoretical model.

6. Conclusion
This paper presents a theoretical model for gust–aerofoil interaction for semi-infinite

flat plates with serrated leading edges. The serration must be periodic but otherwise
any single-valued piecewise geometry is permitted and yields closed-form solutions for
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the far-field radiated noise from a single-frequency gust. These results are integrated
over a Liepmann spectrum of spanwise wavenumbers for comparison to experimental
results in homogeneous isotropic turbulence. The comparison is very good over a
range of frequencies, geometries, and tip-to-root ratios.

The analytic solution has been used to investigate the surface pressure due to
the dominant modes contributing to the far-field noise, something which cannot
be extracted from experimental measurements. We see, similarly to the serrated
solution of Lyu & Azarpeyvand (2017), an increase of tip-to-root ratio increases the
variation of surface pressure along the leading edge resulting in an enhanced level
of interference. For spanwise invariant incident gusts (k3 = 0), the triangular-based
geometries show continuous oscillation in the pressure along the whole length of
the leading edge, however the square wave exhibits only two (different) values of
pressure, one each along the two sections of the geometry. This indicates the square
wave could be tuned to be most effective for reducing noise due to the tip-and-root
interference mechanism, by tuning the two surface pressure sources, as alluded to
in the experimental investigation of Chaitanya et al. (2018a). However, tip-to-root
interference is most effective only at specific low- or mid-range frequencies, and if
one wishes for noise reduction over a wider range of frequencies, a triangular-based
geometry which promotes redistribution of energy from lower cuton modes to higher
cutoff modes at large serration heights is more beneficial.

The simple analytic solution neglects viscous, nonlinear, and backscattering effects.
A known feature which is therefore neglected in the analytical model due to this is
that of increased source strength at the root of the serration. This is observed by
Turner & Kim (2017) as a nonlinear effect, and as seen in Ayton & Kim (2018),
neglecting all nonlinear effects analytically can lead to far-field acoustic directivity
patterns which differ from fully nonlinear numerical results. The increased source
strength at the root of the serration is believed to alter the tip-and-root interference
(Cannard et al. 2018) which benefits predominantly low- and mid-frequency noise
reductions (Ayton & Kim 2018). In the case of leading-edge slits, the increase of
source strength at the root is seen to be significant, resulting in up to 12 dB additional
noise reduction at specific frequencies. Further work will be needed to develop an
analytic model capable of dealing with this root strength flow feature, with the first
task being understanding how the root strength varies as a function of slit width.
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Appendix A. Solution for An

The general solution for H(λ, η, ζ ) found by separation of variables is given by (3.8)
where the An are to be determined functions of λ. The upstream continuity condition,
(2.7c) requires An(λ) to be a positive half-Fourier transform only, therefore An(λ) is
analytic in the upper half λ-plane which we denote by a superscript + (analyticity in
the lower half-plane is similarly denoted by a superscript −).

The zero normal velocity condition, (2.7b), upon applying the Fourier transform
becomes

∂H
∂η
(λ, 0, ζ )=K+(λ, ζ )+U−(λ, ζ ), (A 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.78


166 L. J. Ayton and P. Chaitanya

where
K+(λ, ζ )=−

i
λ+ k1

eik1cF(ζ )+ik3ζ (A 2)

and U−(λ, ζ ) is an unknown function which is analytic in the lower half λ-plane.
Using (3.8) we find

−

∞∑
n=−∞

√
λ2 −w2

nA+n (λ)Zn(λ, ζ )=−
i

λ+ k1
eik1cF(ζ )+ik3ζ +U−(λ, ζ ). (A 3)

We expand all ζ -dependent functions in the Zn basis given by (3.7). In particular
U−(λ, ζ ) can be expressed as

U−(λ, ζ )=
∞∑

n=−∞

Dn(λ)Zn(λ, ζ ) (A 4)

and we write eik1cF(ζ )+ik3ζ as

eik1cF(ζ )+ik3ζ =

∞∑
n=−∞

En(λ)Zn(λ, ζ ) (A 5)

as done in (3.13).
To solve (A 3) we suppose (as in Envia (1988) and Ayton & Kim (2018)) that the

normal velocity just upstream of the plate must have the same spanwise ζ -dependence
as the normal velocity just downstream of the leading edge, hence each A+n and each
D−n must contain a factor of En(λ). We factor out En in our Wiener–Hopf equation to
obtain √

λ2 −w2
nÃ+n (λ)=

i
λ+ k1

+ D̃n(λ), (A 6)

where
Ã+n En = A+n , D̃−n En =D−n (A 7a,b)

The En(λ) are entire, therefore we can factor them out of the terms A+n and D−n
without affecting the domain of analyticity.

We rearrange (A 6) to give√
λ+wnÃ+n (λ)=

i
λ+ k1

1
√
λ−wn

−
D−n (λ)
√
λ−wn

, (A 8)

which is a standard scalar Wiener–Hopf equation that can be solved for A+n , which is
given by (3.10).
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