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Motion of red blood cells near microvessel
walls: effects of a porous wall layer
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A two-dimensional model is used to simulate the motion and deformation of a
single mammalian red blood cell (RBC) flowing close to the wall of a microvessel,
taking into account the effects of a porous endothelial surface layer (ESL) lining
the vessel wall. Migration of RBCs away from the wall leads to the formation of a
cell-depleted layer near the wall, which has a large effect on the resistance to blood
flow in microvessels. The objective is to examine the mechanical factors causing this
migration, including the effects of the ESL. The vessel is represented as a straight
parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic
elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous
medium, and plasma flow in the layer is computed using the Brinkman approximation.
It is shown that an initially circular cell positioned close to the ESL in a shear
flow is deformed into an asymmetric shape. This breaking of symmetry leads to
migration away from the wall. With increasing hydraulic resistivity of the layer, the
rate of lateral migration increases. It is concluded that mechanical interactions of
RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral
migration and hence reduce the width of the cell-depleted zone external to the ESL,
relative to the cell-depleted zone that would be formed if the interface between the
ESL and free-flowing plasma were replaced by an impermeable boundary.

Key words: blood flow, capsule/cell dynamics, flow–vessel interactions

1. Introduction
Resistance to blood flow in microvessels has been studied since the time of

Poiseuille in the nineteenth century (Poiseuille 1835, 1846). Flow resistance can be
expressed in terms of the apparent viscosity, i.e. the viscosity of a Newtonian fluid that
would result in the same flow rate for a given driving pressure. Observations in narrow
glass tubes show a marked decrease in the apparent viscosity with decreasing diameter
below 1000 µm, a phenomenon known as the Fåhraeus–Lindqvist effect (Fåhraeus &
Lindqvist 1931; Pries, Neuhaus & Gaehtgens 1992). This reflects the non-continuum
behaviour of blood near the tube wall, leading to the formation of a cell-free or
cell-depleted layer. A simple two-layer model, in which the red blood cells (RBCs)
are contained within a concentric cylindrical core region with relative diameter λ
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and with uniform viscosity µcore, and the surrounding cell-free annular wall layer has
viscosity µp, predicts apparent viscosity as µapp = µp/(1 − λ4(1 − µp/µcore)) (Vand
1948; Secomb 1995). Because of the fourth-power dependence in this relationship,
even a relatively narrow plasma layer (λ slightly less than unity) causes a substantial
reduction in apparent viscosity. Physically, the presence of such a layer decreases the
viscosity in the region near the wall where the shear rate is highest and where viscous
energy dissipation would otherwise be concentrated.

Experimental studies of blood flow in microvascular networks reveal major
differences from predictions based on in vitro observations of apparent viscosity
(Pries et al. 1994). The main cause of these differences is the presence of a
relatively thick layer, ∼1 µm wide, of macromolecules bound to the endothelial cells
lining microvessel walls (Pries, Secomb & Gaehtgens 2000). The volume fraction of
macromolecules in this gel-like endothelial surface layer (ESL) is very low, probably
much less than 1 % (Secomb, Hsu & Pries 1998). Even so, the ESL impedes the flow
of plasma and substantially increases flow resistance in microvessels, relative to the
values expected from data from glass tubes corresponding to the anatomical diameters
of the vessels. The presence of the ESL also reduces the volume fraction of RBCs
in microvessels (tube haematocrit), and affects interactions of blood cells with vessel
walls. The layer may shield RBCs from large stresses when the cells traverse irregular
capillary geometries during passage through the microcirculation (Secomb, Hsu &
Pries 2002).

Blood is a concentrated suspension of cells, mainly red blood cells (RBCs), in
plasma. The haematocrit (volume fraction of RBCs) is normally 40–45 %. The
unstressed shape of a normal human RBC is a biconcave disc with a diameter of
∼8 µm and a thickness of ∼2 µm. The interior is a concentrated haemoglobin solution,
which behaves as an incompressible viscous fluid. The cell membrane is viscoelastic,
with low resistance to bending and in-plane shear deformations. As a consequence
of these physical properties, RBCs are highly deformable, allowing blood to flow
readily through microvessels despite being a concentrated suspension of particles with
unstressed diameters comparable with microvessel diameters.

The physical mechanisms that determine the width of the cell-free or cell-depleted
layer when blood flows in microvessels have been examined in several previous
studies. In capillaries with diameters up to ∼8 µm, RBCs frequently flow in single
file. In such vessels, RBCs are compressed into narrow bullet-like shapes, and their
mechanics can be analysed by assuming that the RBC has axisymmetric geometry.
A further simplification is the use of lubrication theory to describe the motion of
the suspending fluid in the layer between the cell and the vessel wall. Under these
assumptions, the fluid–solid interaction problem can be expressed as a nonlinear
system of ordinary differential equations, which can be solved numerically to predict
cell shapes and apparent viscosity (Secomb et al. 1986). The width of the lubrication
layer between the cell and the wall and the resulting apparent viscosity are predicted
by this theory. Predictions agree well with experimental measurements in capillary-
sized glass tubes. For tube diameters above ∼8 µm, theoretical analyses must consider
multiple interacting RBCs. This is a challenging computational problem, particularly
if fully three-dimensional geometries are considered. The availability of increasing
computing power in recent years has led to an upsurge of interest in this area (Dupin
et al. 2007; Pivkin & Karniadakis 2008; McWhirter, Noguchi & Gompper 2009;
Doddi & Bagchi 2009). For tube diameters above 30 µm, a good fit to experimental
results is obtained from the two-layer model mentioned above, by assuming a cell-
free layer width of 1.8 µm and µcore/µp = 3.3 (Secomb 1995). This estimate for
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the effective width of the cell-free layer is consistent with results of recent three-
dimensional multi-cell simulations (Fedosov et al. 2010; Pan, Caswell & Karniadakis
2010).

Despite the inherent complexity of multi-RBC flows in microvessels, several
physical phenomena can be identified that influence the lateral migration of cells
(Goldsmith 1971; Secomb 2003). The formation of a cell-free or cell-depleted layer
results from the tendency of flexible particles, including RBCs, to migrate away
from the walls of a flowing channel. This migration is the focus of the present
study. In the absence of inertial effects, the possible fluid mechanical causes for
migration are interactions of the particle with the wall and with the non-uniform
shear rate in channel flow (Coupier et al. 2008). The presence of a solid wall
near the cell introduces an asymmetry in the forces on the cell, which can cause
migration of deformable cells, for example as result of tank-treading motion for
a spheroidal cell (Olla 1997) or the breaking of fore–aft symmetry in cell shape
(Cantat & Misbah 1999; Sukumaran & Seifert 2001). Analyses of vesicles bound to
a surface show the generation of lift forces due to asymmetry of vesicle shape or
orientation (Cantat & Misbah 1999; Seifert 1999). In three-dimensional simulations,
Pozrikidis (2005) showed the deformation and drift towards the centre-line of an
initially spherical flexible particle placed in an eccentric position within a cylindrical
tube. The dependence of migration rate of vesicles on lateral position has been studied
experimentally and in simulations (Coupier et al. 2008). In each case, the migration
is away from the wall. Even in the absence of wall effects, the nonlinear velocity
profile resulting from flow driven by a pressure gradient can result in lateral migration
towards the centre of the flow (Kaoui et al. 2008).

In a concentrated suspension such as blood, the formation of a region of low
concentration near the wall as a result of lateral migration is counteracted by the
phenomenon of ‘shear-induced diffusion’. The quasi-random effects of hydrodynamic
interactions of each cell with many other cells result in a tendency for net migration
down the concentration gradient, towards the wall (Goldsmith 1971; Leighton et al.
1987). The width of the cell-depleted layer that evolves as the flow travels along the
channel is dictated by the balance between the tendency to migrate away from the
wall and the effect of shear-induced dispersion. With increasing haematocrit, the latter
effect becomes stronger, leading to reduction in the width of the cell-depleted layer, as
observed experimentally (Maeda et al. 1996).

In a study motivated by the goal of understanding the effects of the ESL on cell
trajectories, Beaucourt, Biben & Misbah (2004) analysed the interactions of rigid and
deformable vesicles with a compressible but impermeable wall substrate, subject to a
linear shear flow. Depending on the substrate stiffness, a lateral lift force is generated
for rigid circular particles, whereas the reversibility of Stokes flow implies that no
such force would be generated if the layer were incompressible.

The effects of a porous wall layer on lateral migration of deformable particles do
not appear to have been examined in any previous study. The goal of the present study
is to examine the transverse migration of RBCs lying near the wall, and how this is
affected by the presence of the ESL, considered as a porous medium. We consider
the motion and deformation of a single cell with an initial position close to the layer
in a parallel-sided channel. The plasma flow within the layer is analysed using the
Brinkman approximation. The RBC is represented using a simplified two-dimensional
model that has previously been shown to yield behaviour in good agreement with
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in vitro and in vivo experimental results. The results are discussed in terms of their
significance for the development of the cell-depleted layer in microvessels.

2. Methods
2.1. Modelling approach

In the present study, a simplified two-dimensional model is used to represent the
motion and deformation of the RBC (Secomb, Styp-Rekowska & Pries 2007; Barber
et al. 2008). Two-dimensional models have been used in a number of previous
theoretical studies of deformation and lateral migration of vesicles and RBCs in
channel flow (Secomb & Skalak 1982; Cantat & Misbah 1999; Beaucourt et al.
2004; Freund 2007; Kaoui et al. 2008; Kaoui, Biros & Misbah 2009). Such models
allow representation of the main fluid mechanical phenomena involved, including the
effects of shear flow, proximity to boundaries, cell deformation, cell tumbling and
cyclic ‘tank-treading’ motion of the membrane around the cell interior. The latter
behaviour is observed when an RBC is placed in simple shear flow of a high-viscosity
fluid. In this context, a potential limitation of two-dimensional models for RBCs is
that tank-treading motion then requires only bending deformation of the membrane.
A three-dimensional RBC necessarily experiences in-plane shear deformation during
tank-treading, as bands of membrane around the cell are alternately lengthened and
shortened. This continuous deformation results in viscous energy dissipation in the
membrane (Fischer 1980). Neglect of the effect of membrane viscosity leads to
overestimation of tank-treading rates (Hsu & Secomb 1989; Fedosov et al. 2010).

The model used here is designed to overcome this limitation. The cross-sectional
shape of the RBC is represented by a set of viscoelastic elements on the perimeter of
the cell, together with a set of viscous elements in the interior (Secomb et al. 2007)
as shown in figure 1(a). The external elements represent the viscoelastic response of
the RBC membrane to elongation and shortening: the viscous component represents
the viscosity of the lipid bilayer and the elastic component represents the elasticity
of the cytoskeletal protein network. The internal elements represent both the viscosity
of the cell’s interior and the cell membrane’s viscous resistance to three-dimensional
out-of-plane deformations, as occur during tank-treading. Membrane bending elasticity
is represented by an elastic resistance at the nodes. The incompressibility of the
RBC interior is represented approximately in the model by assigning an internal
pressure that depends on the area of the model cell. The suspending medium is a
viscous incompressible fluid. In the approach used here, the equations of mechanical
equilibrium are imposed exactly at each node. This approach was taken to minimize
numerical errors that could affect the predicted lateral migration of cells, as could
arise if the continuum equations of the membrane were represented in discrete form. A
finite-element method is used to compute the flow external to the cell, simultaneously
with the equations of equilibrium at the nodes of the model cell.

This method was used to simulate the tank-treading of RBCs in simple shear flow
of a high-viscosity (13 cP) medium (Secomb et al. 2007). The predicted variations
of cell elongation and tank-treading frequency with shear rate were compared with
experimental data (Fischer, Stohr & Schmid-Schönbein 1978; Secomb 2003). With
suitably chosen values of the viscous and elastic parameters, this model closely
approximated the corresponding experimental data. If the internal viscous elements
were not included in the model, no such agreement could be obtained for any choice
of the parameter values. The model was then used to simulate the motion of RBCs
in microvessels (Secomb et al. 2007). When placed in off-axis positions, the cells
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(b)(a)

FIGURE 1. (a) Two-dimensional model for the RBC. Rectangles represent viscoelastic
elements. (b) Geometry of the system to be analysed. Shaded areas adjacent to channel
boundaries represent the ESL. The shaded circle represents the RBC. A typical velocity
profile in the channel is indicated.

assume asymmetric shapes and migrate towards the centre-line. Computed cell shapes
and centre-of-mass trajectories showed good quantitative agreement with experimental
observations obtained by intravital microscopy of the rat mesentery. Applications of
this model to study the motion of RBCs in diverging bifurcations and the migration of
RBCs initially positioned near the wall of a flowing parallel-sided channel have been
reported previously (Barber et al. 2008; Secomb 2010).

2.2. Equations of fluid flow
Blood vessels are represented in two dimensions as uniform channels of width 10
or 20 µm. The ESL region is assumed to be a layer of uniform width lining each
boundary, as shown in figure 1(b). Additional simulations are performed to show the
effect of a linear shear flow. In this case, parallel boundaries 20 µm apart are used.
The suspending medium is assumed to be an incompressible fluid with zero Reynolds
number, so that the inertial effects of flow can be neglected and the governing
equations are those of Stokes flow. The pressure and velocity components fields are
expressed in two-dimensional coordinates (x, y) as p(x, y) and u(x, y) where u= (u, v).
The components of stress are

σxx = 2µ
∂u

∂x
− p, σxy = µ

(
∂u

∂y
+ ∂v
∂x

)
, σyy = 2µ

∂v

∂y
− p, (2.1)

where µ is the fluid viscosity.
The ESL consists of a gel-like assembly of macromolecules with a low solid volume

fraction, anchored to the vessel wall. According to existing concepts (Pries et al.
2000), the resistance of the ESL to compression results from osmotic swelling, which
generates tension in the molecular chains that extend from the wall. When exposed
to shear stress, the strands in the layer are displaced from a perpendicular direction
(on average) from the wall, allowing transmission of the shear stress to the wall by
the strands. The majority of the fluid shear stress acting on endothelial cells is thus
transmitted by the ESL (Secomb, Hsu & Pries 2001). In the present model, the ESL
is therefore represented as a porous medium. The fluid flow in the layer is computed
using the Brinkman approximation (Brinkman 1947), such that the ESL imposes a
drag term on the fluid proportional to the local fluid velocity. Hydrostatic pressure is
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continuous across the edge of the layer, and variations in pressure do not result in
compression or expansion of the layer. Cases in which the RBC enters the layer are
not considered here. The effects of transient deformation of the ESL, here neglected,
have been analysed previously (Secomb et al. 2001). The equations for equilibrium of
stresses then yield

∂σxx

∂x
+ ∂σxy

∂y
= κu,

∂σxy

∂x
+ ∂σyy

∂y
= κv, (2.2)

where κ is the hydraulic resistivity, which is taken to be zero outside the ESL and a
uniform positive value inside the ESL. The divergence of the velocity field is given by

e= ∂u

∂x
+ ∂v
∂y
, (2.3)

with e = 0 since the fluid is incompressible. The boundary conditions are no-slip
conditions on solid boundaries, and continuity of fluid velocity and stress across the
boundary between the ESL and free plasma.

2.3. Simulation of red blood cells
RBCs are represented in two dimensions in terms of their cross-sections in a plane
through the centre of the cell. The cell membrane is modelled as a chain of straight
elements connected at nodes. Each element consists of viscous and elastic components
connected in parallel, to represent the viscoelastic response of the cell membrane. The
nodes at which the elements are connected are taken to be elastic, and thus represent
the cell membrane’s resistance to bending. This model also includes a central node
that is connected to all external nodes by viscous elements, representing the effects
both of the internal viscosity of the cell and also of the viscous resistance of the cell
membrane to the out-of-plane components of the deformation, as already discussed
(Secomb et al. 2007).

The nodes and elements are numbered successively, i = 1, . . . , n, where n is the
total number of external nodes. The external elements and nodes of the model cell
have forces acting on them as a result of the fluid flow. Consequently, the longitudinal
(tension) force ti(s), transverse (shear) force qi(s), and bending moment mi(s) acting
in the external element i are functions of distance s along the element from the node
i to node i + 1, where 0 6 s 6 li and li is the length of the external element i. The
equations of mechanical equilibrium are

dti

ds
=−gi,

dqi

ds
=−fi,

dmi

ds
= qi, (2.4)

where fi(s) and gi(s) are the normal and tangential components of the fluid loading.
The interior of a three-dimensional RBC is effectively incompressible, so that it

deforms at constant volume, and the membrane deforms at nearly constant surface
area. In two dimensions, the analogous properties are the perimeter and area in the
model-cell plane. These properties are not kept constant, but are constrained such
that they lie within a narrow range that would represent the possible shapes of a
three-dimensional cell with fixed surface area and volume. In the model, variations
of perimeter are resisted by the elasticity of the external elements (see below), and
variations of cell area A are resisted by assigning an interior pressure to the cell:

pint = kp(1− A/Aref ), (2.5)

where Aref and kp are constants.
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The normal and shear components of the stresses acting on external segment i are
then given by

fi =−pint − σxxsin2θi + 2σxy sin θi cos θi − σyycos2θi, (2.6)

gi = (σxx − σyy) sin θi cos θi − σxy(cos2θi − sin2θi), (2.7)

where θi is the angle of the element i relative to the x-axis.
In developing the equations for equilibrium at each node, it is useful to define the

mean longitudinal and transverse force in segment i as

t̄i = 1
li

∫ li

0
ti(s) ds, q̄i = 1

li

∫ li

0
qi(s) ds. (2.8)

The external elements forming the cell are viscoelastic with constitutive properties
defined by

t̄i = kt

(
li

l0
− 1
)
+ µm

1
li

dli

dt
(2.9)

for the external elements, where l0 is the reference length of the element, kt is the
elastic modulus and µm is the viscosity. The length changes occurring in the cases
considered here are not large, and a linear elastic model is used for simplicity. The
internal elements are assumed to have viscous resistance to changes in length, giving a
tension

Ti = µ′m
1
Li

dLi

dt
, (2.10)

where Li is the length of the internal element i and µ′m is its viscosity.
The bending resistance of the membrane is represented by introducing bending

moments at each node:

mi(0)=−kbαi

l0
, mi(li)=−kbαi+1

l0
, (2.11)

where kb is the bending modulus and αi = θi − θi−1 is the angle between elements i− 1
and i. Integrating the above equation for dmi/ds gives

q̄i = kb(αi − αi+1)

lil0
. (2.12)

By integration by parts, the loads acting on the endpoints of the elements,
qi(0), qi(li), ti(0) and ti(li), can each be expressed as a sum of the mean longitudinal
or transverse force, t̄i or q̄i, and an integral of the fluid stress fi(s) or gi(s). For
example,

qi(0)= q̄i + 1
li

∫ li

0
fi(s)(li − s) ds. (2.13)

The equations for equilibrium of forces at node i are

ti(0) cos θi − ti−1(li−1) cos θi−1 − qi(0) sin θi + qi−1(li−1) sin θi−1 + Ti cosφi = 0,
(2.14)

ti(0) sin θi − ti−1(li−1) sin θi−1 + qi(0) cos θi − qi−1(li−1) cos θi−1 + Ti sinφi = 0,
(2.15)
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where φi is the angle of the internal element i from the x-axis. Equilibrium of forces at
the central node results in

n∑
i=1

Ti cosφi =
n∑

i=1

Ti sinφi = 0. (2.16)

The equilibrium equations for a given configuration of the cell can thus be expressed
as a linear system involving the fluid loadings fi and gi on each external element
and the velocities of the nodes. The resulting coupled system of equations is used to
compute the cell’s motion.

2.4. Computational method
The system of coupled equations for the motion of the cell and the surrounding fluid
is solved using a finite-element package (FlexPDE, version 5.1.4, PDE Solutions Inc.,
Antioch, CA). Quadratic elements are used. Because of the structure of FlexPDE, the
incompressibility condition e= 0 cannot be specified, but instead the condition

∇2p= Ke, (2.17)

where K is a large value, approximately satisfies the condition. Generally, n = 20
nodes are used to represent the RBC. At each time step, the nodal velocities are
computed using the FlexPDE package. The cell shapes are then updated using the
computed nodal velocities and specified time step, using an explicit Euler scheme.
Numerical error in the calculation of the velocity field is controlled by the FlexPDE
package, which automatically refines the domain’s mesh until the solution errors are
within a specified tolerance. The integration with respect to time is performed using
an explicit Euler scheme. The time step must be set very small to avoid numerical
instability, which results primarily from the stiff constraint on cell area. The time
steps used, 0.5 ms for channel flow and 0.25 ms in the case of shear flow, are also
sufficiently small that the errors resulting from the use of an explicit scheme for time
integration are negligible.

2.5. Parameter values and initial conditions
The procedures for setting the dimensions and material parameters of the cell were
described previously (Secomb et al. 2007; Barber et al. 2008). The experimentally
determined shear elastic modulus, shear viscosity and bending resistance of the
membrane are 6 × 10−6 N m−1, 10−6 N s m−1 and 1.8 × 10−19 N m, respectively
(Evans 1983; Hochmuth & Waugh 1987). However, these values are not directly
applicable to the discrete two-dimensional representation of the cell. Therefore, the
parameters were chosen so that predictions closely matched experimental results
for RBCs tank-treading in a high-viscosity medium (Fischer et al. 1978; Secomb
2003). The resulting values were kt = 1.2 × 10−5 N m−1 representing membrane shear
elasticity, µm = 2 × 10−7 N s m−1 representing membrane viscous resistance to in-
plane deformation, µ′m = 10−7 N s m−1 representing effects of internal viscosity and of
membrane viscous resistance to out-of plane deformation, reference segment length
l0 = 0.97 µm with 20 nodes, and reference cell area Aref = 22.2 µm2. The fluid
viscosity is assumed to be µ = 10−3 Pa s. An ESL width of w = 1 µm is assumed
(Secomb et al. 1998). A dimensionless measure of hydraulic resistivity can be defined
as κ̄ = κw2/µ. Four different cases are considered with respect to the properties of
the ESL: no layer; layer with low hydraulic resistivity κ = 1010 N s m−4 (κ̄ = 10);
layer with high hydraulic resistivity κ = 1011 N s m−4 (κ̄ = 100); and impermeable
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layer, equivalent to a channel of width 8 µm with no layer. Secomb et al. (1998)
estimated that the actual hydraulic resistivity in normal capillaries is 1011 N s m−4 or
more. In abnormal situations such as haemodilution, the ESL hydraulic resistivity may
be attenuated (Pries et al. 1998).

In the simulations presented here, the initial condition for the cell shape is chosen
to be a circle with radius 2.66 µm, giving an area equal to Aref . Although the static
equilibrium shape of a human RBC is a biconcave disc, the position of the dimple
relative to the cell membrane changes readily during tank-treading motions with a
relatively small change in stored elastic energy (Fischer 2004). The use of a circular
reference shape is therefore more appropriate than choosing a biconcave reference
shape. The initial perimeter of the cell is 16.7 µm, or 86 % of the perimeter if all
20 exterior segments were at their reference lengths. During the initial phase of the
motion, the perimeter increases, allowing the cell to achieve non-circular shapes at
constant area.

3. Results
Sequences of computed cell shapes are shown in figure 2, for a cell initially

placed with its centre 0.9 µm from the centre-line in a channel of width 10 µm.
The computational domain is 20 µm in length, centred on the particle. A pressure
gradient of 105 Pa m−1 is imposed in each case. In the absence of a particle, this
would generate centre-line velocities in the range 0.8 mm s−1 (impermeable layer) to
1.25 mm s−1 (no layer) for the four cases considered. Predicted particle velocities are
generally in the range 0.5–1 mm s−1. Supplementary movies showing the motion and
deformation of the cell for each case, for a simulated period of 500 ms, are available
at journals.cambridge.org/flm.

The primary finding is that the cell in all cases drifts towards the centre-line of the
channel. Well-known symmetry arguments, based on the time reversibility of Stokes
flow, show that a rigid circular particle would not exhibit any transverse motion within
a parallel-sided channel. Any transverse migration is therefore a consequence of the
shape change of the flexible particle. The direction and rate of migration depend on
the deformed shape and orientation of the particle. When the four cases illustrated in
figure 2 are compared, it is evident that the shape change of the particle during the
initial phase of the motion (the first 20 ms) becomes more pronounced with increasing
resistivity of the ESL. These small differences in shape are most noticeable at the
trailing edge of the cell close to the wall. Of particular note is the generation of an
S-shaped profile, a lift-generating configuration, in the portion of the cell adjacent to
the vessel wall (Skotheim & Mahadevan 2005). At later times, the cells tend towards
similar shapes in all four cases.

To assess the deformation and orientation of the cell shape in more detail, the
two-dimensional moment-of-inertia tensor is used:

I =
(

Ixx Ixy

Iyx Iyy

)
, (3.1)

where

Ixx =
n∑

i=1

y2
i , Iyy =

n∑
i=1

x2
i , Ixy =−

n∑
i=1

xiyi. (3.2)
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FIGURE 2. Motion and deformation of a cell initially placed at 0.9 µm from the centre-line,
shown at 20 ms intervals for four different cases, as indicated. Total channel width is 10 µm
(8 µm in the impermeable case). Lines show channel boundaries. Shading shows location of
permeable ESL. The hydraulic resistivity κ of the ESL is in N s m−4.

Here (xi, yi) are the coordinates of external node i. The eigenvalues and eigenvectors
of I are computed. The inclination is defined as the angle between the channel axis
and eigenvector corresponding to the major axis of the shape. The eigenvalues are
normalized with respect to the (equal) eigenvalues of the undeformed shape, giving
indices of deformation in the directions of the major and minor axes.

The variations with time of these parameters are shown in figure 3(a,b). The
eigenvalues of I and the inclination of the major axis show similar behaviour in
all four cases. During the initial phase of the motion, the larger eigenvalue of I
increases. This increase is most rapid in the case of an impermeable boundary. At
the outset, the major principal axis of the cell shape is inclined at almost 45◦ to the
channel axis. This reflects the fact that the principal axis of the straining component
of a simple shear flow is at 45◦ to the flow direction. The inclination decreases with
time, as a consequence of the rotational component of the shear flow. In all cases, the
centre of mass moves towards, but does not reach, the channel centre-line (figure 3c).
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FIGURE 3. Motion and deformation of a flexible cell initially placed at 0.9 µm from the
centre-line. (a) Eigenvalues of shape (see text). (b) Inclination of major principal axis.
(c) Distance of centre of mass from centre-line. The hydraulic resistivity κ of the ESL is
in N s m−4.

The remaining offset from the centre-line reflects the asymmetry in the eventual cell
shape. During a short initial phase of the motion (∼20 ms), the lateral migration
is approximately independent of the layer permeability. However, the motion during
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the subsequent 200 ms is strongly influenced by the layer properties, with slower
migration in the absence of a layer and more rapid migration for an impermeable layer
and for a layer permeability of 1011 N s m−4.

The effect of channel width on particle migration from the wall is explored
in figure 4, for channel widths of 10 and 20 µm, and for a linear shear flow,
corresponding to the limit of infinite width. In each case, the particle centre is initially
4.1 µm from the wall. The migration is again almost independent of layer permeability
during the initial 20 ms, but generally decreases with increasing permeability at later
times. The behaviour shows a number of changes with increasing channel width. In a
wider channel, the particle centre of mass moves towards the wall in the initial phase
of the motion. This difference reflects the fact that the entire particle is subjected
to the shear flow in the case of a 20 µm channel and a shear flow, whereas the
particle lies across the centre-line of the 10 µm channel. As shown by the insets,
the cell therefore tends to be flattened close to the wall in the initial phase. In the
subsequent motion, the migration away from the wall is much more pronounced in
the 20 µm channel and in the shear flow than in the 10 µm channel. This suggests
that the curvature of the velocity profile is not one of the main factors responsible for
transverse migration in the cases considered here. Tumbling of the RBC is predicted
in the 20 µm channel and in the shear flow but not in the 10 µm channel. As would
be expected, tumbling tends to occur when the cell is immersed in a velocity gradient
that does not change sign, but is inhibited by proximity to an impermeable or nearly
impermeable boundary. In the tumbling regime, continuous changes in cell shape result
in apparently non-periodic motion and no steady regime is reached. In some cases,
simulations were terminated when a node angle αi approached ±π.

Further insight into the effect of the wall layer and its properties on the deformation
of the particle can be obtained by considering the distribution of stresses acting on
the particle at the initial instant of the flow. For clarity, we restrict attention to a rigid
circular particle. Figure 5 shows the distributions of normal and shear stress acting
on the circumference of the particle, obtained using FlexPDE as already described.
As before, four cases are considered with respect to the properties of the ESL. As
would be expected, the stresses on the particle are largest in the region near the
point of narrowest gap, and the magnitude of the stresses increases with increasing
hydraulic resistivity of the layer. The consequences of these force distributions for
particle deformation are discussed below.

4. Discussion
The transverse migration of RBCs, leading to the formation of a cell-depleted layer,

has important implications for the resistance to blood flow in the microcirculation, yet
the mechanisms responsible for this migration remain incompletely understood. The
walls of microvessels in vivo are lined with a relatively thick (∼1 µm) gel-like layer
of macromolecules (ESL) that has a major impact on flow resistance. The effect of the
ESL on the transverse migration of RBCs flowing in microvessels does not appear to
have been addressed previously.

The width of the cell-depleted layer in a microvessel depends on the balance
between two effects: the tendency of individual RBCs to move away from the wall;
and the tendency of RBCs to be driven out of the concentrated central region towards
the more dilute region at the wall. This latter effect probably occurs as a result of
shear-induced diffusion (Leighton et al. 1987). Frequent hydrodynamic interactions
occur between cells that are travelling with different speeds in a shear flow and
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FIGURE 4. Distance of particle centre of mass from wall: comparison of channel flow and
shear flow. (a) Flow in a 10 µm channel lined by a 1 µm permeable layer, with pressure
gradient 105 Pa m−1 as in figures 2 and 3. (b) Flow in a 20 µm channel lined by a 1 µm
permeable layer, with pressure gradient 5 × 104 Pa m−1. (c) Linear shear flow (500 s−1) over
a wall lined by a 1 µm permeable layer. Solid curves denote motion with stable particle
orientation, and dashed curves indicate tumbling motion. Open circles show approximate
time of transition to tumbling. Insets show predicted particle shapes 10 ms and 50 ms after
initiation of the motion, for the case of an impermeable layer. The hydraulic resistivity κ of
the ESL is in N s m−4.
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FIGURE 5. Distribution of dimensionless fluid stresses acting on the boundary of a rigid
circular particle of radius 2.66 µm placed at 0.9 µm from the centre-line of a 10 µm channel
lined by a 1 µm permeable layer: (a) normal stress; and (b) shear stress. Layer properties for
each case are as in figures 2 and 3. The horizontal axis shows distance around the particle,
starting from the point at the extreme right side of the particle. The vertical line shows
location of point of minimum gap width. Irregularity in curves results from the calculation of
stress by differentiation of velocity in the finite-element scheme. The hydraulic resistivity κ of
the ESL is in N s m−4.

‘collide’ with each other. During such interactions, cells are displaced laterally, and
occasionally cells are thereby driven close to the vessel wall. The initial condition
assumed here can be considered to represent such a case, as discussed further below.
The analysis of shear-induced diffusion in RBC suspensions presents a significant
challenge in understanding microvascular blood rheology, but this topic is not pursued
further here.

In this study, we consider the migration of an individual RBC away from a wall in
channel flow. In such a flow, RBCs undergo large deformations while simultaneously
tumbling and/or tank-treading (Secomb 2010). Here, we have focused on the initial
stage of this motion, about which some general conclusions can be drawn. When an
initially circular particle closely approaches the vessel wall, relatively large stresses
are generated on the part of the particle boundary closest to the wall. The distribution
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(b)(a)

FIGURE 6. Diagram showing forces acting on freely suspended particles in a channel flow
near a boundary. Arrows near particle indicate regions of high normal and shear stresses
acting on the particle. (a) Initial circular particle. Regions of high stress correspond to
those shown in figure 4. (b) Expected deformation of a flexible particle resulting from force
distribution shown in panel (a). Regions of positive and negative normal stress and high shear
stress result in deformation into a teardrop-like shape.

of forces on that point tends to deform the particle into a teardrop-like shape with
an S-shaped profile adjacent to the wall, as illustrated in figure 6. This shape is
aligned at a positive angle to the flow direction, considering both the overall shape
(principal axis) and the boundary close to the wall. From well-known arguments of
lubrication theory, such an inclination induces a lift that tends to drive the particle
away from the wall (Cameron 1966; Secomb & Hsu 1993). The generation of lift by
such a ‘soft slider’ has been analysed previously using lubrication theory (Skotheim &
Mahadevan 2005). If a permeable wall layer is present, the migration increases with
increasing hydraulic resistivity of the layer. Two causes for this effect are evident.
Firstly, the initial deformation of the particle, leading to the characteristic S-shaped
profile adjacent to the wall, is more pronounced if the layer is impermeable or nearly
impermeable. Secondly, the lubrication forces that are generated within the lubrication
layer are attenuated if the boundary is permeable.

In the analyses presented here, the initial shape was assumed to be circular. It could
be argued that such a shape is not representative of the observed shapes of RBCs in
flow. Regardless of the deformation of the cell, however, it maintains a curved profile
as a result of the bending resistance of the cell membrane. The shape of the part of
the RBC closest to the wall can be approximated as an arc of a circle, for which
the arguments presented above would still apply. If a non-circular shape (such as an
ellipse or a biconcave shape) were chosen for the initial shape, the particle migration
would be strongly biased by the orientation of the principal axes of this shape, making
the effects of flow-induced shape change more difficult to detect. An alternative, more
computationally expensive, approach would be to perform simulations assuming such
shapes and average the results over an ensemble of orientations.

Discussion of the effects of the ESL on particle migration requires definition of a
reference configuration with no ESL, but the choice of this configuration is not unique.
If a vessel of a given diameter were to shed its ESL, resulting in a vessel with larger
effective diameter, the rate of migration of a cell at a given initial position would
decrease, as indicated by the curves labelled ‘κ = 0’ in figures 3 and 4. The loss
of the ESL would result in a decreased vascular resistance and increased blood flow.
All microvessels are subject to long-term structural adaptation of diameters such that
blood flow is adjusted to meet tissue needs (Pries & Secomb 2008). In the long term,
therefore, a biologically relevant reference configuration is one with approximately the
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same flow resistance, i.e. with an internal diameter matching the diameter internal
to the ESL of a normal vessel. This case is represented by the curves labelled
‘impermeable’ in figures 3 and 4.

In conclusion, we have examined the mechanics of RBC migration away from
microvessel walls using a two-dimensional model, and considering the effects of an
ESL, represented as a porous medium using the Brinkman approximation. The model
predicts that RBCs that come close to the edge of the ESL have a tendency to migrate
away from it, and that this tendency decreases as the ESL becomes more permeable.
A reduction in transverse migration would be expected to result in decreased width
of the cell-depleted layer external to the ESL in microvessels in vivo, relative to the
cell-depleted layer that would form if the interface between the ESL and free-flowing
plasma were replaced by an impermeable boundary.
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