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1. Introduction

For a function f ∈ Lp(Rd), d � 2, we consider the spherical means

Atf(x) =
∫

Sd−1
f(x − ty) dσ(y), (1.1)

where dσ is the rotationally invariant measure on Sd−1, normalized so that σ(Sd−1) = 1.
We wish to study the question of pointwise convergence as t → 0 where the radii t are
restricted to a subset E of (0,∞). Pointwise convergence is established from boundedness
properties of the maximal function

MEf(x) = sup
t∈E

|Atf(x)|

for f ∈ Lp(Rd).
Stein [14] showed that for E = R+ the maximal operator ME is bounded on Lp if

and only if p > d/(d − 1), d � 3; the same result for the case d = 2 was later proved
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by Bourgain [2]. The critical exponent p(E) for Lp boundedness of ME , for any set
E ∈ (0,∞), was determined by Seeger et al . [11]. It is computed using a dilation invariant
notion of Minkowski dimension. In order to describe the result we let N(E, δ) be the
δ-entropy number of E, that is the minimal number of intervals of length δ needed to
cover E (we shall always redefine N(∅, δ) = 1). Define

Ek = [2k, 2k+1) ∩ E

and

p(E) = 1 +
1

d − 1

(
sup
δ>0

sup
k∈Z

log N(Ek, 2kδ)
log δ−1

)
.

Then ME is bounded on Lp for p > p(E) and unbounded on Lp if p < p(E). Moreover,
various Lp results were proven in [11] for the critical exponent p = p(E); however, these
results fell short of being necessary and sufficient.

For the case that our maximal operator acts only on radial functions sharp endpoint
estimates in almost all cases have been obtained in [12]. The relevant condition for
1 < p < d/(d − 1) turned out to be as follows.

Condition (Cp,q). We have

sup
j

(∑
n�0

[N(Ej+n, 2j)]q/p2−n(d−1)q/p′
)1/q

< ∞ if p � q < ∞, (1.2)

sup
k∈Z

δ>0

N(Ek, 2kδ)1/pδ(d−1)/p′
< ∞ if q = ∞. (1.3)

It is shown in [12] that for ME to map Lp
rad to the Lorentz space Lp,q, 1 < p < d/(d−1),

p � q � ∞ it is necessary and sufficient that Condition (Cp,q) holds. The necessity can be
shown by testing ME on characteristic functions of small balls. Observe that (Cp,∞) is the
limiting case of (Cp,q) as q → ∞. For p = d/(d − 1) there are different characterizations
for Lp

rad → Lp,q boundedness, at least when d > 2.
The main purpose of this paper is to prove analogues of the Lp

rad → Lp and
Lp

rad → Lp,∞ endpoint estimates for general functions in Lp, assuming, however, an addi-
tional regularity assumption (see Hypothesis (Rp) below). The main general results for
1 < p � d/(d − 1) are stated in Theorems I, II, III and IV below. The case where each
set Ek = E ∩ [2k, 2k+1] is a convex sequence serves as a model case (see § 8 below). In
particular we have the following result.

Theorem 1.1.

(i) Let 0 < α < ∞ and let

E(α) = {2k(1 + ν−α) : k ∈ Z, ν ∈ Z
+}. (1.4)

Then ME(α) is of weak type (p, p) if and only if p � 1 + [(d − 1)(α + 1)]−1.
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(ii) Let 1/(d − 1) < β < ∞ and let

Ẽ(β) = {2k(1 + log−β(2 + ν)) : k ∈ Z, ν ∈ Z
+}. (1.5)

Then MẼ(β) is of weak type (p, p) if and only if p � d/(d − 1).

Remark 1.2. Only the endpoint cases p = 1 + [(d − 1)(α + 1)]−1 and p = d/(d − 1) are
new. When β < 1/(d − 1), MẼ(β) fails to be weak type (d/(d − 1), d/(d − 1)). The case
β = 1/(d − 1) remains open.

Remark 1.3. For p = 1, a slight variant was obtained by Christ [4], who proved that
the lacunary spherical maximal operator (with E = {2k : k ∈ Z}) maps the Hardy space
H1 to L1,∞. This can be deduced from a simple modification of the proof below, and in
fact the weak type estimates in § 5 are extensions of Christ’s argument.

Remark 1.4. It is not known whether the lacunary spherical maximal function maps
L1 to L1,∞. The closest known result is a weak type L log log L inequality proved by the
authors in [13].

We shall now formulate a technical result on Lp boundedness for ME which is only a
minor improvement of the result in [11]. It gives a reasonably sharp but not yet definitive
estimate for general sets E of dilations. It will be applied, however, to sets which tend
to be much thinner than the original sets.

Proposition 1.5. Suppose that d � 2 and 1 < p � d/(d − 1). Suppose that {ωj}∞
j=0 is

a sequence of positive numbers satisfying∑
j�0

ω−p′

j � 1 (1.6)

and suppose that
sup
k∈Z

∑
j�0

ωp
j N(Ek+j , 2k)2−j(d−1)p/p′ � Ap

0. (1.7)

Then ME is bounded on Lp(Rd), with operator norm dominated by CA0.

We now describe our regularity assumption and begin with the following definitions.

Definition 1.6. A set J ⊂ R
+ is equally spaced with width δ and possible deviation

C > 1 if for all t ∈ J the inequalities

C−1δ � dist(t, J \ {t}) � Cδ (1.8)

hold.

Definition 1.7. A family J = {J} of subsets of R
+ is uniformly equally spaced if for

every J ∈ J there is a δ = δ(J) > 0 so that (1.8) holds with δ(J) and a constant C

independent of J .

Definition 1.8. Let J be an equally spaced subset of R
+. Then we call aJ = inf J and

bJ = supJ the endpoints of J .
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Definition 1.9. Let J be uniformly equally spaced family of subsets of R
+. Then we

denote by D(J ) the set of endpoints D(J ) =
⋃

J∈J {aJ , bJ}.

Our regularity assumption will say that each Ek can be split into ‘not too many’
equally spaced sets. This gives a large class of examples, since in general the sets Dk of
endpoints are often much thinner than the sets Ek.

Regularity Hypothesis (Rp). E satisfies Hypothesis (Rp) if for each k there is a
collection J k = {J} of subsets of [2k, 2k+1] such that Ek ⊂

⋃
J∈J k J and the following

three conditions are satisfied.

(a) The family {J : J ∈
⋃

k∈Z
J k} is uniformly equally spaced (with uniform possible

deviation C).

(b) There is a positive sequence ω = {ωj}∞
j=0 with

∑∞
j=0 ω−p′

j � 1 so that the sets of
endpoints Dk ≡ D(J k) =

⋃
J∈J k{aJ , bJ} satisfy

sup
k�0

(∑
j�0

N(Dk+j , 2k)2−j(d−1)p/p′
ωp

j

)1/p

� C0 < ∞. (1.9)

(c) Let J k
µ denote the subfamily of all J ∈ J k which are equally spaced with width

2k−µ and possible deviation C. Then we assume that there is C1 > 1 such that∑
J∈J k

µ

card(J) � C1N(Ek, 2k−µ) (1.10)

for every k ∈ Z, µ ∈ N.

Note that, by Proposition 1.5, Hypothesis (Rp) insures that the maximal operator
associated to the set of endpoints,

⋃
k>0 Dk, maps Lp to Lp.

Our main results are as follows.

Theorem I. Suppose that 1 < p < d/(d− 1) and suppose that E satisfies the regularity
hypothesis (Rp). Then ME is bounded on Lp(Rd) if and only if Condition (Cp,p) holds.

Theorem II. Suppose that 1 < p < d/(d − 1), and suppose that E satisfies regularity
hypothesis (Rp). Then ME is of weak type (p, p) if and only if Condition (Cp,∞) holds.

It is well known that the weak type-(p, p) bounds imply pointwise convergence the-
orems. By the theorems of Calderón and Stein [15, Chapter X, § 2] and the fact that
(Cp,∞) is necessary for the Lp → Lp,∞ inequality, these are sharp.

Corollary 1.10. Let {tj}∞
j=1 be a sequence with limj→∞ tj = 0 and assume that

E = {tj} satisfies Condition (Rp) for some p ∈ (1, d/(d − 1)). Let

Atj f(x) =
∫

Sd−1
f(x − tjy

′) dσ(y′).
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(i) Suppose that E satisfies Condition (Cp,∞). Then limj→∞ Atj
f(x) = f(x) almost

everywhere.

(ii) If Condition (Cp,∞) is not satisfied then there is a non-negative function f ∈ Lp(Rd)
such that lim supj→∞ Atj

f(x) = ∞ almost everywhere.

Remark 1.11. It would of course be interesting to know whether some regularity
assumption is needed. As a typical example where the regularity assumption fails consider
the Cantor middle third set, translated by 1, so that

E0 =
{

1 +
∞∑

ν=1

bν3−ν : bν ∈ {0, 2}
}

and let E =
⋃

k∈Z
E0. Now the critical exponent is pcr = 1 + (d − 1)−1 log 2/ log 3. The

set E0 satisfies Condition (Cpcr,pcr) and the set E satisfies Condition (Cpcr,∞). However,
Rpcr fails to hold and thus Theorems I and II above do not apply. It is not known
whether ME0 or ME are of weak type (pcr, pcr) (see, however, a counterexample for a
closely related maximal operator in § 8.2 below). A much easier result is that ME is of
restricted weak type (see Proposition 1.12 below).

We now turn to the limiting case p = pd := d/(d − 1). There are sharp results, at least
for Lpd boundedness, although Conditions (Rp) and (Cp,p) are replaced by the following
different Conditions (R̃pd

) and (C̃pd
), respectively.

Regularity Hypothesis (R̃pd
). E satisfies Hypothesis (R̃pd

) if for each k there is a
collection J k = {J} of subsets of [2k, 2k+1] so that assumptions (a) and (b) in Hypoth-
esis (Rp) hold but (c) is replaced by the following condition.

(c̃) There is a C1 > 1 such that∑
µ�n

2−µ
∑

J∈J k
µ

card(J) � C12−nN(Ek, 2k−n) (1.11)

holds uniformly in n ∈ N.

The analogue of Condition (Cp,p) is the following.

Condition (C̃pd). The discrete measure∑
k∈Z

∑
n>0

N(Ek, 2k−n)2−nn1/(d−1)δk,n

is a Carleson measure on the upper half-plane, i.e.

sup
|I|�1

1
|I|

∑
(k,n)∈T (I)

N(Ek, 2k−n)2−nn1/(d−1) < ∞, (1.12)

where the supremum is taken over all intervals of length � 1 and T (I) is the tent of I,
i.e. T (I) = {(x, t) : x ∈ I, 0 � t � |I|}.
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It was shown in [12] that for d � 3 Condition (C̃pd
) is equivalent with the Lpd bound-

edness of ME on radial functions. For general Lp functions we have a similar result
provided that Hypothesis (R̃pd

) is satisfied.

Theorem III. Let d � 2 and pd = d/(d − 1) and suppose that E satisfies the regularity
hypothesis (R̃pd

). Then ME is bounded on Lpd(Rd) if and only if Condition (C̃pd
) holds.

Concerning a weak type-(pd, pd) inequality in dimensions d � 3 one may conjecture
that the hypothesis

N(Ek, 2kδ) � Cδ−1[log(1/δ)]−1/(d−1) (1.13)

is necessary and sufficient for Lpd → Lpd,∞ boundedness as this is shown to hold in [12]
on Lpd

rad. For general functions f and under the regularity assumption (R̃pd
) we prove the

following slightly weaker result.

Theorem IV. Let d � 3 and pd = d/(d − 1) and suppose that E satisfies the regularity
hypothesis (R̃pd

) and suppose that

N(Ek, 2kδ) � Cδ−1[log(1/δ)]−1/(d−1)[log log(1/δ)]−1 (1.14)

uniformly in k ∈ Z and δ � e−2. Then ME is of weak type (pd, pd).

At present we do not know whether the same conclusion holds under the weaker
condition (1.13). This accounts for the as yet undecided weak type-(pd, pd) estimate
for MẼ(β) in the remaining case β = 1/(d − 1) in Theorem 1.1.

We now briefly turn to the question of restricted weak type inequalities. Here no regu-
larity assumption is needed.

Proposition 1.12. Let 1 < p � d/(d − 1), d � 3 or 1 < p < 2, d = 2 and suppose that
E satisfies Condition (Cp,∞). Then ME is of restricted weak type (p, p), i.e. it maps Lp,1

to Lp,∞.

It remains open whether for the range 1 < p < d/(d − 1) the operator is of weak type
(p, p), under Condition (Cp,∞) alone, without the regularity assumption. Proposition 1.12
is much more straightforward than Theorem II above and we shall not give the details
of the proof here. For pd = d/(d − 1), d � 3, the result had been already proved by
Bourgain [1], and a variant of his argument applies for 1 < p < d/(d − 1) as well. Indeed
let Aj

t be the frequency localized operator as in (2.1) below and define the maximal
operator Mj by Mjf(x) = supt∈E |Aj

tf(x)|. Then the estimates in [11] show that for
1 < q � 2 the operator Mj is bounded on Lq with norm O(2j(d−1)(1/q′−(p−1)/q)) and the
argument in [1] shows the restricted weak type estimate. The argument fails for p = d = 2
and in fact the question whether the full circular maximal function is of restricted weak
type (2, 2) (i.e. maps L2,1 to L2,∞) had been posed in [16]. We note that Leckband [7]
proved that for radial functions one has indeed L2,1

rad → L2,∞ boundedness. However,
a Besicovitch set construction can be used to disprove the restricted weak type-(2, 2)
inequality for general functions. The argument (see § 8 below) shows the following.
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Proposition 1.13. Suppose d = 2 and

sup
k>0

sup
δ<1/10

N(Ek, 2kδ)δ log δ−1 = ∞.

Then ME is not of restricted weak type (2, 2).

The structure of the paper is as follows. In § 2 we shall review some essentially known
estimates for spherical means which are needed later. In § 3 we shall review atomic decom-
positions in Lp. Section 4 contains a proof of the Lp estimates as stated in Proposition 1.5
and Theorem I. The weak type-(p, p) inequalities (Theorem II) are proved in § 5. The
necessary modifications for the proofs of Theorems III and IV are discussed in §§ 6 and 7,
respectively. In § 8 we discuss some examples and include the proof of Proposition 1.13.

2. Estimates on spherical means

We shall need to introduce regularizations of At in (1.1) via dyadic frequency cutoffs.
Let β0 be a radial C∞

0 function so that β0(ξ) = 1 if |ξ| � 1 and β0(ξ) = 0 if |ξ| � 2. For
j = 1, 2, . . . let βj(ξ) = β0(2−jξ) − β0(21−jξ) and define Aj

t by

Âj
tf(ξ) = d̂σ(tξ)βj(tξ)f̂(ξ) (2.1)

so that

At =
∞∑

j=0

Aj
t .

Let β̃ be a radial C∞
0 function which is supported where 2−6 � |ξ| � 26 and equal to

1 when 2−5 � |ξ| � 25. Let P lf be defined by P̂ lf(ξ) = β̃(2−lξ)f̂(ξ) and observe that

Aj
tf = Aj

tP
j−kf if t ∈ Ek. (2.2)

Clearly, the maximal function supt>0 |Aj
tf(x)| is dominated by CjMHLf(x), where

MHL is the Hardy–Littlewood maximal function of f ; in fact Cj = O(2j) (cf. Lemma 2.1
below). Therefore,

MEf(x) � MHLf(x) + sup
k∈Z

sup
t∈Ek

∣∣∣∣∑
j�10

Aj
tPj−kf(x)

∣∣∣∣, (2.3)

and throughout this paper we shall assume that summations in j are extended over
j � 10.

Here we collect well-known estimates on spherical means and its regularization Aj
t

which were used in this or a related form in previous papers (in particular see [11] for
some of the more technical statements).

Lemma 2.1. Let Aj
t be as above and let Bj

t = (d/dt)Aj
t . Suppose that 2k � t � 2k+1,

j � 10 and that 1 � p � 2.
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(i)
|Aj

tf(x)| + 2−jt|Bj
t f(x)| � CM2j

∫
t−d

(1 + 2j ||x − y|/t − 1|)M
|f(y)| dy.

(ii)
‖Aj

t‖Lp→Lp + 2k−j‖Bj
t ‖Lp→Lp � 2−j(d−1)/p′

.

(iii) Let I ⊂ [2k−1, 2k+2] be an interval of length 2k−j . Then

‖ sup
t∈I

|Aj
tf |‖Lp � 2−j(d−1)/p′‖f‖Lp .

Sketch of proof. (i) is a straightforward calculation, which also implies (ii) for p = 1.
It is well known that |d̂σ(ξ)| � (1 + |ξ|)−(d−1)/2 and thus (ii) for p = 2 follows, and inter-
polation settles the case 1 < p < 2. (iii) follows by writing

Aj
t = Aj

t0 +
∫ t

t0

Bj
s ds

for t0 ∈ I. �

Definition 2.2. For a set E of dilations and L ∈ Z, let IL(E) be a minimal collection of
dyadic intervals of length 2L covering E . For I ∈ IL(E) let rI denote the midpoint of the
interval I, and for a dyadic cube Q, let 2L(Q) denote its side length. Then for η � 1, we
define

VQ,η(E) =
⋃

I∈IL(Q)(E)

{x ∈ R
d : ||x − xQ| − rI | � 2L(Q)+4η}; (2.4)

for η = 1 we also write VQ(E) = VQ,1(E).

Lemma 2.3. Let E ⊂ [2k, 2k+1].

(i) For 1 � p � 2, ∥∥∥∥ sup
t∈E

|Aj
tf |
∥∥∥∥

Lp

� [N(E , 2k−j)]1/p2−j(d−1)/p′‖f‖Lp .

(ii) Let Q be a dyadic cube, let fQ be an L2 function supported on Q and suppose
k − j � L(Q) � k − 10. Then∥∥∥∥ sup

t∈E
|Aj

tfQ|
∥∥∥∥

L1(VQ(E))
� 2(−L(Q)+k−j)(d−1)/2N(E , 2k−j)2L(Q)d/2‖fQ‖L2 .

(iii) Let Q be a collection of pairwise disjoint cubes of side length 2k−j+σ where σ � 0.
Then, for σ � j,∥∥∥∥sup

t∈E

∣∣∣∣Aj
t

[∑
Q∈Q

fQ

]∣∣∣∣∥∥∥∥
Lp

� 2−σ(d−1)(1/p−1/2)[N(E , 2k−j)]1/p2−j(d−1)/p′
(∑

Q∈Q
|Q|1−p/2‖fQ‖p

L2

)1/p

.
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(iv) Let Q be as in (iii) and let V be an open set containing
⋃

Q∈Q VQ,η(E). Then, for
η � 1,∥∥∥∥sup

t∈E

∣∣∣∣Aj
t

[∑
Q∈Q

fQ

]∣∣∣∣∥∥∥∥
Lp(Rd\V)

� CM (2ση)−M(2/p−1)[N(E , 2k−j)]1/p2−j(d−1)/p′
(∑

Q∈Q
‖fQ‖p

Lp

)1/p

.

(v) The estimates in (i), (ii), (iii) and (iv) remain valid if for t ∈ E the operator Aj
t is

replaced by 2k−jBj
t = 2k−j(d/dt)Aj

t .

Sketch of proof. (i) is a rather straightforward consequence of Lemma 2.1 (iii). To
prove (ii) we use Cauchy–Schwarz to pass from an L1 estimate on the exceptional set
VQ(E) to an L2 estimate (namely Lemma 2.1 (ii) with p = 2), and for the estimate
off the exceptional set we use the explicit form (2.4). (iv) for p = 2 is a consequence
of (i), and (iv) for p = 1 follows from the explicit form of the kernel in Lemma 2.1 (i).
The general case is obtained by interpolation. (iii) for p = 2 is a consequence of (i), and
(iii) for p = 1 follows from (ii) and (iv). The general case is obtained by interpolation. �

A small variant is as follows.

Lemma 2.4. Let J ⊂ [2k, 2k+1] be an equally spaced set with width 2k−µ (here,
µ � 0) and possible deviation B, and let aJ < bJ be the endpoints of J . Suppose that
bJ − aJ � 2k−j and µ � j. Then the following statements hold.

(i) ∥∥∥∥ sup
t∈J

|Aj
tf |
∥∥∥∥

Lp

� CBN(J, 2k−µ)1/p2−j(d−1)/p′
2(j−µ)/p‖f‖Lp .

(ii) Let Q be a collection of pairwise disjoint cubes of side length 2k−j+σ where σ � 0.
Then, for σ � j,∥∥∥∥sup

t∈J

∣∣∣∣Aj
t

[∑
Q∈Q

fQ

]∣∣∣∣∥∥∥∥
Lp

� CB2−σ(d−1)(1/p−1/2) card(J)1/p2−j(d−1)/p′
2(j−µ)/p

(∑
Q∈Q

|Q|1−p/2‖fQ‖p
L2

)1/p

.

(iii) Let Q be as in (ii) and let V be an open set containing
⋃

Q∈Q VQ,η(E). Then, for
η � 1,∥∥∥∥sup

t∈J

∣∣∣∣Aj
t

[∑
Q∈Q

fQ

]∣∣∣∣∥∥∥∥
Lp(Rd\V)

� CB,M (2ση)−M(2/p−1) card(J)1/p2(j−µ)/p2−j(d−1)/p′
(∑

Q∈Q
‖fQ‖p

Lp

)1/p

.
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Proof. We simply observe that if bJ − aJ � 2k−j then

N(J, 2k−j) ≈ 2j−µN(J, 2k−µ) ≈ 2j−µ card(J) (2.5)

and the conclusions (i)–(iii) follow from Lemma 2.3. �

3. Atomic decompositions

We give a decomposition of the maximal operator and also the function it acts on. This
is motivated by one of the proofs of the standard atomic decomposition (following [3,9])
based on square functions (used for example in the theory of Hardy spaces on product
domains).

For c0 = 10
√

d let

N kf(x) = sup
|y|�c02−k

|P kf(x + y)|

and define the maximal square function

Nf(x) =
( ∞∑

k=−∞
|N kf(x)|2

)1/2

.

Then

‖Nf‖Lp ≈p ‖f‖Lp , 1 < p < ∞, (3.1)

and ‖Nf‖L1 ≈ ‖f‖H1 (see, for example, [8,15]).
Consider the level sets Ωn = {x : Nf(x) > 2n} and the expanded sets Ω̃n =

{x : MHLχΩ(x) > 1
2}; here, MHL is the Hardy–Littlewood maximal function. Then

|Ω̃n| � C|Ωn|. Let R denote the family of all dyadic cubes and let Rn, for n ∈ Z,
denote the collection of all dyadic cubes R with the property that |R ∩ Ωn| > 1

2 |R| but
|R ∩ Ωn+1| � 1

2 |R|. Then from these definitions one easily deduces

∞∑
k=−∞

∑
R∈Rn

L(R)=−k

‖(P kf)χR‖2
L2 � 22n|Ωn| (3.2)

(see, for example, Lemma 3.1 in [9]).
Let eR = (P lf)χR if L(R) = −l. Then from (2.2) we have

Aj
tf = Aj

tP
j−kf = Aj

t

[ ∑
L(R)=k−j

eR

]
(3.3)

if t ∈ Ek.
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Now Ω̃n is an open set with finite measure and we can form the Whitney decomposition
into dyadic cubes. Let Wn be the set of Whitney cubes and observe that every R ∈ Rn

is contained in a unique Whitney cube Q(R). This defines a function R �→ Q(R) for all
dyadic cubes.

For a dyadic cube Q we define now

F l
Q(f) =

∑
Q(R)=Q
L(R)=−l

eR. (3.4)

Notice that F l
Q = 0 if −l > L(Q).

From (2.3) and (3.3), we have the pointwise estimate

MEf(x) � MHLf(x) + sup
k∈Z

sup
t∈Ek

∑
j�10

∣∣∣∣Aj
t

[ ∑
L(Q)�k−j

F j−k
Q (f)

]
(x)
∣∣∣∣. (3.5)

It is useful to introduce a space Xp of vector-valued functions as follows.

Definition 3.1. Let Xp be the space of vector-valued functions F = (F l
Q) where the

dyadic cubes Q satisfy L(Q) + l � 0, F l
Q is supported on Q, and

‖F‖Xp =
(∑

Q

|Q|1−p/2
( ∑

l:L(Q)+l�0

‖F l
Q‖2

L2

)p/2)1/p

(3.6)

is finite.

We first observe the following.

Lemma 3.2. For 1 � p � 2,

‖F (f)‖Xp � ‖Nf‖Lp .

Proof. We write

‖F (f)‖Xp =
(∑

Q

|Q|1−p/2
( ∑

�:L(Q)+��0

∥∥∥∥ ∑
Q(R)=Q
L(R)=−�

eR

∥∥∥∥2

L2

)p/2)1/p

�
(∑

Q

|Q|1−p/2
( ∑

�:L(Q)+��0

∑
n

∑
R∈Rn

Q(R)=Q
L(R)=−�

‖eR‖2
L2

)p/2)1/p

.

Now we use the imbedding �p ⊂ �2 for p � 2 to estimate the last expression by(∑
Q

|Q|1−p/2
∑

n

( ∑
�:L(Q)+��0

∑
R∈Rn

Q(R)=Q
L(R)=−�

‖eR‖2
L2

)p/2)1/p

�
(∑

n

∑
Q∈Wn

|Q|1−p/2
( ∑

R∈Rn

Q(R)=Q

‖eR‖2
L2

)p/2)1/p
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and by (3.2) and several applications of Hölder’s inequality this in turn is estimated by

(∑
n

( ∑
Q∈Wn

|Q|
)1−p/2(∑

Q

∑
R∈Rn

Q(R)=Q

‖eR‖2
L2

)p/2)1/p

�
(∑

n

|Ω̃n|1−p/2
( ∑

R∈Rn

‖eR‖2
L2

)p/2)1/p

�
(∑

n

|Ω̃n|1−p/2(22n|Ωn|)p/2
)1/p

�
(∑

n

|Ωn|2np

)1/p

� ‖Nf‖Lp .

This proves the lemma. �

We now return to estimate the second term on the right-hand side of (3.5). The part
where the sum extends over cubes Q with L(Q) � k is the most difficult to handle. In
the following lemma we shall first dispose of the remaining part which is dealt with by
straightforward L2 estimates.

Lemma 3.3. Let 1 < p � 2, ε > 0 and suppose that

sup
k

N(Ek, 2kδ)1/2δ(d−1−ε)/2 � A.

Let {χQ,l} be a family of measurable functions so that

sup
l

∥∥∥∥∑
Q

|χQ,l|
∥∥∥∥

L2

� 1 (3.7)

and define

NjF (x) = sup
k∈Z

sup
t∈Ek

∣∣∣∣Aj
t

[ ∑
L(Q)�k

χQ,kF j−k
Q

]
(x)
∣∣∣∣. (3.8)

Then

‖NjF‖Lp � C2−εjA‖F‖Xp , (3.9)

where C is independent of the choice of the particular family {χQ,k}.

Proof. We shall verify (3.9) for p = 1 and for p = 2; the general case follows by
interpolation.
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For p = 2 we replace the sup in k by a square function and use Lemma 2.3 (i) to obtain

‖NjF‖L2 �
(∑

k

∥∥∥∥ sup
t∈Ek

∣∣∣∣Aj
t

[ ∑
Q:L(Q)�k

χQ,kF j−k
Q

]∣∣∣∣∥∥∥∥2

L2

)1/2

� CA2−εj

(∑
k

∥∥∥∥ ∑
Q:L(Q)�k

χQ,kF j−k
Q

∥∥∥∥2

L2

)1/2

� CA2−εj

(∑
k

∑
Q:L(Q)�k

‖F j−k
Q ‖2

L2

)1/2

,

where for the last inequality we have used the assumption on the family {χQ,l}. This
proves (3.9) for p = 2.

Now consider the case p = 1. Given a cube Q we let Q∗ denote the cube with same
centre but tenfold side length. We then estimate (following standard procedure in esti-
mations of singular integrals acting on atoms)

‖NjF‖L1 �
∑
Q

(IQ + IIQ),

where

IQ =
∥∥∥∥ sup

k
sup
t∈Ek

|Aj
t [χQ,kF j−k

Q ]|
∥∥∥∥

L1(Q∗)
,

IIQ =
∥∥∥∥ sup

k
sup
t∈Ek

|Aj
t [χQ,kF j−k

Q ]|
∥∥∥∥

L1(Rd\Q∗)
.

Now for IQ we use the Cauchy–Schwarz inequality and the L2 estimate above to deduce
that

IQ � |Q|1/2
∥∥∥∥ sup

k
sup
t∈Ek

|Aj
t [χQ,kF j−k

Q ]|
∥∥∥∥

L2

� CA2−εj |Q|1/2
(∑

k

‖F j−k
Q ‖2

L2

)1/2

.

For IIQ we use Lemma 2.1 (i). In that formula we use that if y ∈ Q, x ∈ Q∗, L(Q) � k,
t � 2k+1 then |t−1|x − y| − 1| ≈ t−1|x − y| and thus for M > d � 2,

IIQ � 2j
∑

k�L(Q)

∫
|x−yQ|�2L(Q)+2

2k(M−d)2−jM

∫
Q

|x − y|−M |F j−k
Q (y)| dy dx

� 2j(1−M)
∑

k�L(Q)

2(k−L(Q))(M−d)‖F j−k
Q ‖L1(Q)

� 2j(1−M)|Q|1/2
(∑

k

‖F j−k
Q ‖2

L2

)1/2

.

Now M can be chosen to be � 1 + ε and we obtain that
∑

Q(IQ + IIQ) is bounded by
CA2−εj‖F‖X1 , thus proving (3.9) for p = 1. �
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For the remainder of the paper we will only have to deal with the part in (3.5) dealing
with the contribution k > L(Q). Define, for a positive integer σ,

MσF (x) = sup
k

sup
t∈Ek

∣∣∣∣∑
j�σ

Aj
t

[ ∑
Q:L(Q)=k−j+σ

F j−k
Q

]
(x)
∣∣∣∣. (3.10)

Our main reduction in this section is the following.

Proposition 3.4. Let 1 < p < 2, suppose that Hypothesis (Cp,∞) is satisfied and suppose
that for some ε0 > 0 the inequality

‖MσF‖Lp,q � C02−ε0σ‖F‖Xp (3.11)

holds for all compactly supported F (meaning that F l
Q vanishes for all but finitely many

l and Q). Then there is c(p, ε0) > 0 so that

‖MEf‖Lp,q � c(p, ε0)C0‖f‖Lp

for all f ∈ Lp(Rd).

Proof. Let F l
Q(f) be as in (3.4). For σ = 1, 2, . . . , define F

(1)
σ (f) by

[F (1)
σ ]lQ(f) = F l

Q(f) if L(Q) = σ − l,

[F (1)
σ ]lQ(f) = 0 if L(Q) �= σ − l.

For j � 10, define F
(2)
σ (f) by

[F (2)
j ]lQ(f) =

{
F j+l

Q (f) if L(Q) � −l,

0 otherwise,

and let χj
Q,l be the characteristic function of⋃

n∈Z

⋃
R∈Rn

L(R)=−l−j
Q(R)=Q

R.

Then for every fixed j condition (3.7) is satisfied for the family {χj
Q,l}.

From (3.5) we get

MEf(x) � MHLf(x) +
∑
σ>0

Mσ[F (1)
σ (f)](x) +

∑
j�10

Nj [F
(2)
j (f)](x).

Note that it follows from Lemma 3.2 and (3.1) that ‖F
(1)
σ (f)‖Xp � Cp‖f‖p and

‖F
(2)
j (f)‖Xp � Cp‖f‖p for 1 < p � 2, uniformly in σ and j. From Hypothesis (Cp,∞) it

follows that the assumption of Lemma 3.3 holds with ε = (d − 1)(2 − p) which is positive
since we are assuming p < 2. Thus∥∥∥∥∑

j�10

Nj [F
(2)
j (f)]

∥∥∥∥
Lp,q

�
∑
j�10

2−εj‖F
(2)
j (f)‖Xp � ‖f‖p.
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By our assumption we also have∥∥∥∥∑
σ>0

Mσ[F (1)
σ (f)]

∥∥∥∥
Lp,q

�
∑
σ>0

2−ε0σ‖F (1)
σ (f)‖Xp � ‖f‖p

and the proposition is proved. �

4. Lp estimates

We shall use Proposition 3.4 and in order to prove Lp estimates we have to verify the
Xp → Lp estimate for Mσ in (3.10). We shall first prove Proposition 1.5 where no
regularity assumption is needed.

We shall also use the following definitions,

Gl
σ(F ) =

∑
Q:L(Q)=−l+σ

F l
Q, (4.1)

and let Gσ(F ) = {Gl
σ(F )}l∈Z be the corresponding vector-valued analogue.

Proposition 4.1. Suppose that 1 < p < 2 and suppose that
∑

n ω−p′

n � 1. Let

λj,k = N(Ek, 2k−j)1/p2−j(d−1)/p′
. (4.2)

Then

‖MσF‖Lp � 2−σ(d−1)(1/p−1/2) sup
l

( ∞∑
n=0

|ωn|pλp
n,l+n

)1/p

‖F‖Xp .

Proof. We estimate using Hölder’s inequality

|MσF (x)| �
(∑

k

‖{ω−1
n }‖p

�p′

∞∑
j=10

ωp
j sup

t∈Ek

|Aj
tG

j−k
σ (F )|p

)1/p

.

By Lemma 2.3 (iii) the Lp norm of this expression is estimated as

‖MσF‖Lp � 2−σ(d−1)(1/p−1/2)
(∑

k

∑
j

[ωjλj,k]p
∑

L(Q)=k−j+σ

|Q|1−p/2‖F j−k
Q ‖p

L2

)1/p

� 2−σ(d−1)(1/p−1/2)
(∑

Q

∑
j

[ωjλj,L(Q)+j−σ]p|Q|1−p/2‖F
σ−L(Q)
Q ‖p

L2

)1/p

� 2−σ(d−1)(1/p−1/2)
(∑

l

∑
Q:L(Q)=σ−l

∑
j

[ωjλj,l+j ]p|Q|1−p/2‖F l
Q‖p

L2

)1/p

� 2−σ(d−1)(1/p−1/2)‖F‖Xp .

�

Proof of Proposition 1.5. Immediate from Propositions 3.4 and 4.1 when 1 < p < 2.
The case p = 2 (and hence d = 2) follows as in the proof of Proposition 4.1 where now
we treat the whole operator ME . �

We now turn to the proof of the Lp estimates under the regularity hypothesis.
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4.1. Lp estimates under the regularity hypothesis

For the remainder of this section we shall fix a choice of J k, J k
µ as in the definition of

regularity assumption (Rp).
Let σ be a positive integer. Let

RσF (x) = sup
k

sup
J∈J k

sup
t∈J

∣∣∣∣∣∣∣∣
∑
j�σ:

bJ−aJ�2k−j

Aj
tG

j−k
σ (F )(x)

∣∣∣∣∣∣∣∣ (4.3)

and, for m � 0,

Sm,σF (x) = sup
k

sup
µ:µ+m�σ

sup
J∈J k

µ

bJ−aJ>2k−µ−m

sup
t∈J

|Aµ+m
t Gµ+m−k

σ (F )(x)|. (4.4)

Next let

MσF (x) = sup
k

sup
µ>σ

sup
J∈J k

µ

sup
t∈J

∣∣∣∣∣∣∣∣
∑

σ<j<µ

bJ−aJ>2k−j

Aj
tG

j−k
σ (F )(x)

∣∣∣∣∣∣∣∣ . (4.5)

Thus
MσF (x) � RσF (x) +

∑
m

Sm,σF (x) + MσF (x). (4.6)

Finally, for � > 0, let

J k,�
µ = {J ∈ J k

µ : bJ − aJ � 2k−µ+�} (4.7)

and define
M�,σF (x) = sup

k
sup

µ>�+σ
sup

J∈J k,�
µ

sup
t∈J

|Aµ−�
t Gµ−�−k

σ (F )(x)| (4.8)

so that
MσF (x) �

∑
�>0

M�,σF (x). (4.9)

The claim in Theorem I will be a consequence of the following Propositions 4.2–4.4, in
conjunction with Proposition 3.4.

The following result is essentially Proposition 4.1 applied to the set of ‘endpoints’,
i.e.
⋃

k Dk.

Proposition 4.2. Suppose that 1 � p � 2 and E satisfies the Regularity Hypothe-
sis (Rp), and let Dk be as in (1.9). Assume that {ω−1

n } ∈ �p′
with norm � 1. Then

‖RσF‖Lp � 2−σ(d−1)(1/p−1/2) sup
l

(∑
j�0

[ωjN(Dj+l, 2l)1/p2−j(d−1)/p′
]p
)1/p

‖F‖Xp . (4.10)
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Proof. Using Hölder’s inequality as above (with {ω−1
n } ∈ �p′

) we may estimate

RσF (x) �
(∑

k

∑
j�σ

ωp
j sup

J:bJ−aJ�2k−j

sup
t∈J

|Aj
tG

j−k
σ F (x)|p

)1/p

.

Now if for fixed j, k we let E =
⋃

J∈J k:bJ−aJ�2k−j J , then N(E , 2k−j) � N(Dk, 2k−j).
Hence by Lemma 2.3 (iii),

‖RσF‖Lp �
(∑

k

∑
j

ωp
j ‖ sup

J∈J k:bJ−aJ�2k−j

sup
t∈J

|Aj
tG

j−k
σ (F )|‖p

Lp

)1/p

� 2−σ(d−1)(1/p−1/2)
(∑

k

∑
j

ωp
j N(Dk, 2k−j)2−j(d−1)p/p′

×
∑

L(Q)=k−j+σ

|Q|1−p/2‖F j−k
Q ‖p

L2

)1/p

and from here on the proof proceeds exactly as in Proposition 4.1. �

Proposition 4.3. For 1 � p � 2,

‖Sm,σF‖Lp � 2−m(d−1)/p′
2−σ(d−1)(1/p−1/2) sup

l

(∑
j�0

N(Ej+l, 2l)2−j(d−1)p/p′
)1/p

‖F‖Xp .

(4.11)

Proof. We have (using Lemma 2.3 (iii) for the sets J ∈ J k
µ and noting N(J, 2k−µ−m) ≈

card(J))

‖Sm,σF‖Lp �
∥∥∥∥(∑

k,µ

∑
J∈J k

µ

bJ−aJ>2k−µ−m

[
sup
t∈J

∣∣∣∣Aµ+m
t

∑
L(Q)=k−µ−m+σ

Fµ+m−k
Q

∣∣∣∣]p)1/p∥∥∥∥
Lp

�
(∑

k,µ

∑
J∈J k

µ

[2−σ(d−1)(1/p−1/2)2−(µ+m)(d−1)/p′
card(J)1/p]p

×
( ∑

L(Q)=k−µ−m+σ

|Q|1−p/2‖Fµ+m−k
Q ‖p

L2

))1/p

.

Now by (1.10) the latter expression is estimated by 2−σ(d−1)(1/p−1/2)2−m(d−1)/p′
times

the quantity(∑
k,µ

N(Ek, 2k−µ)2−µ(d−1)p/p′ ∑
L(Q)=k−µ−m+σ

|Q|1−p/2‖Fµ+m−k
Q ‖p

L2

)1/p

,

which is bounded by

sup
�

{∑
µ

N(E�+µ, 2�)2−µ(d−1)p/p′
}1/p(∑

l

∑
L(Q)=l−m+σ

|Q|1−p/2‖Fm−l
Q ‖p

L2

)1/p

.

This gives the claimed estimate. �
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Proposition 4.4. Suppose that

sup
k

∑
j�0

2−j(d−1)p/p′
N(Ej+k, 2k) � Cp

1 .

Then for 1 � p � 2 we have the inequality

‖M�,σF‖Lp � C12−σ(d−1)(1/p−1/2)2−�(1−d/p′)‖F‖Xp . (4.12)

Proof. This is a small (but crucial) variation of the proof of Proposition 4.3. We have
by Lemma 2.4 (ii),

‖M�,σF‖Lp �
(∑

k

∑
µ>�+σ

∑
J∈J k,�

µ

‖ sup
t∈J

|Aµ−�
t Gµ−�−k

σ (F )|‖p
Lp

)1/p

� 2−σ(d−1)(1/p−1/2)
(∑

k

∑
µ>�

∑
J∈J k,�

µ

card(J)2−(µ−�)(d−1)p/p′
2−�

×
∑

Q:L(Q)=σ−µ+�+k

|Q|1−p/2‖Fµ−�−k
Q ‖p

L2

)1/p

and this expression, by (1.10), is controlled by 2−�(1−d/p′)2−σ(d−1)(1/p−1/2) times the
expression(∑

n

∑
Q:L(Q)=σ+n+�

|Q|1−p/2‖F−n−�
Q ‖p

2

∑
µ>�

N(En+µ, 2n)2−µ(d−1)p/p′
)1/p

,

which is

� sup
n

(∑
µ>�

N(En+µ, 2n)2−µ(d−1)p/p′
)1/p

‖F‖Xp .

Thus (4.12) follows. �

Proof of Theorem I. Immediate by Propositions 3.4, 4.2, 4.3 and 4.4. �

5. Weak type-(p, p) estimates

In this section we shall mostly assume that p < d/(d − 1) and

sup
k

sup
j�0

N(Ek, 2k−j)1/p2−j(d−1)/p′ � C0. (5.1)

Some statements, however, will extend to the limiting case p = d/(d − 1).
The proof of Theorem II follows from Propositions 3.4, 4.2, equations (4.6), (4.9)

and estimates for the operators Sm,σ and M�,σ, stated in the following Propositions 5.1
and 5.2.
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Proposition 5.1. Let Sm,σF be as in (4.4). Suppose that 1 < p � d/(d−1) if d = 3, and
1 < p < d/(d− 1) = 2 if d = 2, and assume that (5.1) is valid. Then there is ε = ε(p) > 0
so that for all σ, m � 0,

‖Sm,σF‖Lp,∞ � 2−ε(σ+m)‖F‖Xp . (5.2)

Proposition 5.2. Let M�,σF be as in (4.8). Suppose that 1 < p < d/(d − 1) and
that (5.1) holds. Then there is ε = ε(p) > 0 so that for σ, � � 0,

‖M�,σF‖Lp,∞ � 2−ε(σ+�)‖F‖Xp . (5.3)

5.1. Proof of Proposition 5.1

We have to show that for every α > 0,

meas({x : |Sm,σF (x)| � 3α}) � 2−ε(m+σ)pα−p‖F‖p
Xp . (5.4)

Now fix α > 0 and let

cQ = |Q|1/p−1/2
( ∑

l:L(Q)+l�0

‖F l
Q‖2

L2

)1/2

, (5.5)

so that
∑

cp
Q = ‖F‖p

Xp . Fix a small ε0 > 0 to be chosen later. We divide up the dyadic
cubes into two families,

G =
{

Q : cp
Q

1
|Q| � 2ε0(σ+m)pαp

}
, (5.6)

and complementary family Γ , so that {Q} = G ∪ Γ and G ∩ Γ = ∅. Define

G(F ) = {F l
Q}L(Q)+l�0

Q∈G
, B(F ) = {F l

Q}L(Q)+l�0
Q∈Γ

.

For Sm,σG(F ) we use a straightforward L2 estimate. From Lemma 2.3 (iii) (with
E = J ∈ J k

µ ) and inequalities (1.10) and (5.1) we deduce

‖Sm,σG(F )‖2
L2

�
∥∥∥∥(∑

k

∑
µ>0:µ+m�σ

∑
J∈J k

µ

bJ−aJ>2k−µ−m

sup
t∈J

∣∣∣∣Aµ+m
t

[ ∑
Q∈G

L(Q)=k−µ−m+σ

Fµ+m−k
Q

]∣∣∣∣2)1/2∥∥∥∥2

L2

�
∑

k

∑
µ>0:

µ�σ−m

N(Ek, 2k−µ)2−(µ+m)(d−1)
∑
Q∈G

L(Q)=k−µ−m+σ

‖Fµ+m−k
Q ‖2

L2

� 2−m(d−1)
∑

k

∑
µ>0:

µ�σ−m

2−µ(d−1)(2−p)
∑
Q∈G

L(Q)=k−µ−m+σ

‖Fµ+m−k
Q ‖2

L2 . (5.7)
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From (5.5) and (5.6) we have, for Q ∈ G,

‖Fµ+m−k
Q ‖L2 � cQ/|Q|1/p−1/2 � 2ε0(σ+m)|Q|1/2α. (5.8)

By Čebyšev’s inequality and (5.7), (5.8) we obtain

meas({x : |Sm,σG(F )(x)| > α})

� α−2‖Sm,σG(F )‖2
L2

� α−22−m(d−1)
∑

k

∑
µ>0:

µ�σ−m

2−µ(d−1)(2−p)

×
∑
Q∈G

L(Q)=k−µ−m+σ

‖Fµ+m−k
Q ‖p

L2‖Fµ+m−k
Q ‖2−p

L2

� α−p2ε0σ(2−p)2−m[(d−1)−ε0(2−p)]

×
∑

k

∑
µ>0:µ�σ−m

2−µ(d−1)(2−p)
∑
Q∈G

|Q|1−p/2‖F
σ−L(Q)
Q ‖p

L2

� α−p2−εσ2−εm‖F‖p
Xp (5.9)

for some ε > 0 if ε0 > 0 is small enough.
We now concentrate on the family Γ of dyadic cubes which do not belong to G. Define

A(Q, τ) ≡ Aα,σ,m(Q, τ) := 2(σ+m)ε0pαp2τ(d−1)p2L(Q)[1/p−(d−1)/p′]p; (5.10)

note that τ �→ A(Q, τ) defines an increasing unbounded sequence for τ � L(Q) and in
particular

A(Q, L(Q)) = 2(σ+m)ε0pαp|Q| (5.11)

so that for every Q ∈ Γ , cp
Q > A(Q, L(Q)).

Definition 5.3. For every Q ∈ Γ we define τ(Q) to be the smallest integer τ > L(Q)
so that A(Q, τ) � cp

Q.

For each Q ∈ Γ we then define k(Q, γ) = (L(Q) + γτ(Q))/(γ + 1) and

W (Q) =
⋃

k(Q,γ)<k�τ(Q)

⋃
I∈IL(Q)(Ek)

{x ∈ R
d : ||x−xQ|− rI | � 2L(Q)+42(τ(Q)−k)γ}, (5.12)

where γ < (d − 1)p and we note that

meas(W (Q)) �
∑

k�τ(Q)

N(Ek, 2k−(k−L(Q)))2L(Q)+k(d−1)2(τ(Q)−k)γ

�
∑

k�τ(Q)

2(τ(Q)−k)γ2(k−L(Q))((d−1)/p′)p2L(Q)+k(d−1)

� 2τ(Q)(d−1)p2L(Q)[1/p−(d−1)/p′]p. (5.13)
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Let

W =
⋃

Q∈Γ

({x ∈ R
d : |x − xQ| � 2k(Q,γ)+4} ∪ W (Q)). (5.14)

By (5.10), (5.13) and the definition of τ(Q),

meas(W) �
∑
Q∈Γ

[2k(Q,γ)d + meas(W (Q))]

� 2τ(Q)(d−1)p2L(Q)[1/p−(d−1)/p′]p

�
∑
Q∈Γ

2−(σ+m)ε0pα−pA(Q, τ(Q))

� 2−(σ+m)ε0pα−p
∑
Q∈Γ

cp
Q

� 2−(σ+m)ε0pα−p‖F‖p
Xp .

It remains to be shown that

meas({x /∈ W : Sm,σ(B(F )) > 2α}) � 2−(σ+m)ε0pα−p‖F‖p
Xp . (5.15)

We split Sm,σ(B(F )) =
∑∞

s=−∞ Is, where

Is = sup
k

sup
µ+m−σ�max{s,0}

sup
J∈J k

µ

bJ−aJ�2k−µ−m

sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
Aµ+m

t


∑
Q∈Γ

L(Q)=k−µ−m+σ
τ(Q)=k−s

Fµ+m−k
Q



∣∣∣∣∣∣∣∣∣∣∣
.

We shall prove

‖Is‖2
L2 � 2−s(d−1)(2−p)2−σ(2−p)(d−1−ε0)2−m[(d−1)(p−1)−ε0(2−p)]α2−p‖F‖p

Xp , s � 0,

(5.16)
and

‖Is‖p
Lp(Rd\W) � CM2−M(σ+γ|s|)(2−p)2−m(d−1)(p−1)‖F‖p

Xp , s � 0. (5.17)

Note that for ε0 > 0 small enough inequalities (5.16) and (5.17) imply (5.15) since

meas({x /∈ W : Sm,σ(B(F )) > 2α}) � α−2
∥∥∥∥∑

s�0

Is

∥∥∥∥2

L2

+ α−p

∥∥∥∥∑
s<0

Is

∥∥∥∥p

Lp(Rd\W)

� 2−ε(σ+m)pα−p‖F‖p
Xp (5.18)

for suitable ε = ε(p) > 0.
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Proof of (5.16). We use Lemma 2.3 (iii) for E = J ∈ J k
µ and inequalities (1.10), (5.1)

to obtain

‖Is‖2
L2 �

∑
k,µ,J

∥∥∥∥∥∥∥∥∥∥∥
sup
t∈J

Aµ+m
t


∑
Q∈Γ

τ(Q)=k−s
L(Q)=k−µ−m+σ

Fµ+m−k
Q



∥∥∥∥∥∥∥∥∥∥∥

2

L2

�
∑

k,µ,J

card(J)2−(µ+m)(d−1)
∑
Q∈Γ

τ(Q)=k−s
L(Q)=k−µ−m+σ

‖Fµ+m−k
Q ‖2

L2

� 2−m(d−1)
∑
k,µ

2−µ(d−1)(2−p)
∑
Q∈Γ

τ(Q)=k−s
L(Q)=k−µ−m+σ

‖Fµ+m−k
Q ‖2

L2 .

As k = τ(Q) + s and µ = τ(Q) − L(Q) + s + σ − m this inequality can be rewritten as

‖Is‖2
L2 � 2−m(d−1)

∑
Q∈Γ

2(τ(Q)−L(Q)+s+σ−m)(d−1)(p−2)‖F
σ−L(Q)
Q ‖2

L2 . (5.19)

Now we use that, for Q ∈ Γ ,

‖F
σ−L(Q)
Q ‖2−p

L2 � (cQ|Q|1/p−1/2)2−p

� (2−d(1/p−1/2)L(Q)A(Q, τ(Q)))2−p

� [α2ε0(σ+m)2(d−1)τ(Q)2L(Q)(1/p−(d−1)/p′−d(1/p−1/2))]2−p

and combine this with (5.19) to obtain, after a little algebra,

‖Is‖2
L2 � 2m((d−1)(1−p)+ε0(2−p))2−σ(d−1−ε0)(2−p)2−s(d−1)(2−p)α2−p

∑
Q

|Q|1−p/2‖FQ‖p
L2 ,

which is the desired bound. �

Proof of (5.17). We use the estimate away from the exceptional set in Lemma 2.3 (iv),
with η = 2|s|γ (γ < (d − 1)p) and s = k − τ(Q). Then

‖Is‖p
Lp(Rd\W) �

∑
k,µ

∥∥∥∥∥∥∥∥sup
t∈J

Aµ+m
t

 ∑
τ(Q)=k−s

L(Q)=k−µ−m+σ

Fµ+m−k
Q


∥∥∥∥∥∥∥∥

p

Lp(Rd\W)

�
∑
k,µ

N(Ek, 2k−µ)2−(µ+m)(d−1)p/p′
2−(σ+γ|s|)M(2−p)

×
∑

τ(Q)=k−s
L(Q)=k−µ−m+σ

|Q|1−p/2‖Fµ+m−k
Q ‖p

L2

� 2−m(d−1)p/p′
2−σM(2−p)2−|s|γ(2−p)‖F‖p

Xp .

�
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5.2. Proof of Proposition 5.2

This is similar to the proof of Proposition 5.1. We have to show that for every α > 0

meas({x : |M�,σF (x)| � 3α}) � 2−ε(�+σ)pα−p‖F‖p
Xp . (5.20)

We indicate the changes in the proof of Proposition 5.1. Of course we systematically
replace Sm,σ by M�,σ. The definition (5.6) is the same except that 2ε0mp has to be replaced
by 2ε0�p; then the arguments up to (5.9) are similar; we have to use Lemma 2.4 (ii) instead
of Lemma 2.3 (iii). Similarly, the definition (5.10) is changed to

A(Q, τ) ≡ Aα,σ,�(Q, τ) := 2(σ+�)ε0pαp2τ(d−1)p2L(Q)[1/p−(d−1)/p′]p;

and the further arguments up to (5.15) have obvious analogues. In the definition of
A(Q, τ) we shall need to take ε0 so that ε0(2 − p) < 1 − (d − 1)(p − 1) which is possible
since p < d/(d − 1).

We then split M�,σ(B(F )) =
∑

IIs, where

IIs = sup
k

sup
µ��+σ

sup
J∈J k,�

µ

sup
t∈J

|Aµ−�
t Gµ−�−k

σ,s (F )|,

Gµ−�−k
σ,s F :=

∑
Q:L(Q)=k−µ+�+σ

τ(Q)=k−s

Fµ−�−k
Q .

 (5.21)

The inequalities (5.16) and (5.17) are replaced by

‖IIs‖2
L2 � 2−s(d−1)(2−p)2−σ(2−p)(d−1−ε0)2−�[(1−(d−1)(p−1))−ε0(2−p)]α2−p‖F‖p

Xp , s � 0,

(5.22)
and

‖IIs‖p
Lp(Rd\W) � 2−�(1−d/p′)p2−s(d−1)(1−p/2)2−(σ+|s|γ)Mpα2−p‖F‖p

Xp , s � 0, (5.23)

from which we can as before conclude the assertion of the proposition.

Proof of (5.22) and (5.23). We prove (5.22) and use Lemma 2.4 to estimate

‖IIs‖2
L2 �

∑
k

∑
µ��+σ

∑
J∈J k,�

µ

∥∥∥∥ sup
t∈J

|Aµ−�
t Gµ−�−k

σ,s (F )
∥∥∥∥2

L2

�
∑

k

∑
µ��+σ

∑
J∈J k,�

µ

card(J)2−(µ−�)(d−2)2−µ
∑
Q∈Γ

L(Q)=k−µ+�+σ
τ(Q)=k−s

‖Fµ−�−k
Q ‖2

L2 .

Now ∑
J∈J k,�

µ

card J � N(Ek, 2k−µ) � 2µ(d−1)(p−1)
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by assumption (1.10) and (Cp,∞). We also observe that µ = τ(Q) − L(Q) + s + σ + � in
the above sum and thus we obtain

‖IIs‖2
L2 � 2�(d−2)

∑
k

∑
µ��+σ

2µ(d−1)(p−2)
∑
Q∈Γ

L(Q)=k−µ+�+σ
τ(Q)=k−s

‖Fµ−�−k
Q ‖2

L2

� 2�(d−2)
∑
Q∈Γ

τ(Q)−L(Q)�−s

‖F
σ−L(Q)
Q ‖2

L22(τ(Q)−L(Q)+s+σ+�)(d−1)(p−2).

Now as before

‖F
σ−L(Q)
Q ‖2−p

L2 � [α2ε0(σ+�)2(d−1)τ(Q)2L(Q)(1/p−(d−1)/p′−d(1/p−1/2))]2−p

and after doing the algebra we arrive at

‖IIs‖2
2 � α2−p2�((d−1)p−d+ε0(2−p))2−σ(d−1−ε0)(2−p)2−s(d−1)(2−p)

×
∑
Q∈Γ

|Q|1−p/2‖F
σ−L(Q)
Q ‖p

L2 ,

which is what we were aiming for.
Similarly, the proof of (5.23) is analogous to the proof of (5.17). �

6. Lp estimates in the limiting case

We assume throughout this section that the regularity condition (R̃pd
), pd = d/(d − 1),

is satisfied. We first give a reformulation of the Carleson-measure condition.

Lemma 6.1. Suppose that the Carleson-measure condition (C̃pd
) holds. Then the mea-

sure ∑
k∈Z

∑
µ�0

δk,µ

∑
J∈J k

µ

card(J)2−µ(1 + µ)d/(d−1)

is also a Carleson measure.

Proof. We first observe that

N(Ek, 2k−j)2k−j ≈ |{t ∈ [2k, 2k+1) : dist(t, Ek) � 2k−j}|

and thus

N(Ek, 2k−j)2−j � CN(Ek, 2k−j′
)2−j′

if j′ � j. (6.1)
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Let I be an interval of length greater than 1 and I∗ the interval with same midpoint
and double length. Then∑

(k,µ)∈T (I)

∑
J∈J k

µ

card(J)2−µ(1 + µ)d/(d−1)

�
∑
k∈I

1+log2 |I|∑
s=0

2sd/(d−1)
∑

2s−1�µ<2s

2−µ
∑

J∈J k
µ

card(J)

�
∑
k∈I

1+log2 |I|∑
s=0

2sd/(d−1)N(Ek, 2k−2s−1
)2−2s−1

�
∑
k∈I

1+log2 |I|∑
s=0

∑
2s−2�µ<2s−1

N(Ek, 2k−µ)2−µ(1 + µ)1/(d−1)

�
∑

(k,µ)∈T (I∗)

N(Ek, 2k−µ)2−µ(1 + µ)1/(d−1).

Here we have used the regularity assumption (1.11) for the second inequality and (6.1)
for the third inequality. �

The following is an even more elementary observation.

Lemma 6.2. Suppose that the Carleson-measure condition (C̃pd
) holds. Then

sup
ν

∑
µ

∑
J∈J µ+ν

µ

card(J)2−µ � C. (6.2)

Proof. Let Is(r) = {x : |x − r| � 2s}. Then

∑
µ

∑
J∈J µ+r

µ

card(J)2−µ

�
∞∑

s=0

2−sd/(d−1)
∑

0�µ�2s

∑
J∈J µ+r

µ

card(J)2−µ(1 + µ)d/(d−1)

�
∞∑

s=0

2−s/(d−1) 1
|Is(r)|

∑
(k,µ)∈T (Is(r))

∑
J∈J k

µ

card(J)2−µ(1 + µ)d/(d−1)

and the last expression is bounded by Lemma 6.1. �

The following Carleson-measure estimate is a standard consequence of the Lp bound-
edness of the Hardy–Littlewood maximal operator (for the proof see [14, Chapter II.2]).
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Lemma 6.3. Suppose the doubly indexed non-negative sequence {ωk,µ, (k, µ) ∈ Z×Z
+}

satisfies

sup
|I|�1

1
|I|

∑
(k,µ)∈T (I)

ωk,µ � Ap,

i.e.
∑

ωk,µδk,µ is a Carleson measure. Then for {ak} ∈ �p, p > 1,(∑
k,µ

ωk,µ

[
1

1 + µ

∑
|j|�µ

|ak+j |
]p)1/p

� CpA

(∑
k

|ak|p
)1/p

.

6.1. L2 estimates in two dimensions

We are concerned with the L2(R2) estimates in Theorem III. The claim is a consequence
of the following estimates,∥∥∥∥∥∥∥∥sup

k,µ
sup

J∈J k
µ

sup
t∈J

∣∣∣∣∣∣∣∣
∑
j�µ

bJ−aJ>2k−j

Aj
tf

∣∣∣∣∣∣∣∣
∥∥∥∥∥∥∥∥

L2

� ‖f‖L2 (6.3)

and, for m � 0, ∥∥∥∥∥∥∥∥sup
k,µ

sup
J∈J k

µ

bJ−aj>2k−µ−m

sup
t∈J

|Aµ+m
t f |

∥∥∥∥∥∥∥∥
L2

� 2−m/2‖f‖L2 (6.4)

and finally ∥∥∥∥∥∥sup
k

sup
J∈J k

sup
t∈J

∣∣∣∣∣∣
∑

j:bJ−aJ�2k−j

Aj
tf

∣∣∣∣∣∣
∥∥∥∥∥∥

L2

� ‖f‖L2 . (6.5)

To prove (6.3) we use Lemma 2.4 to see that the left-hand side is dominated by

(∑
k,µ

∑
J∈J k

µ

[ ∑
j�µ

bJ−aJ>2k−j

∥∥∥∥ sup
t∈J

|Aj
tf |
∥∥∥∥

L2

]2)1/2

�
(∑

k,µ

∑
J∈J k

µ

card(J)2−µ(1 + µ)2
[

1
1 + µ

∑
j�µ

‖P j−kf‖L2

]2)1/2

and by Lemmas 6.3 and 6.1 the last expression is controlled by(∑
k∈Z

‖P kf‖2
L2

)1/2

� ‖f‖L2 .
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Concerning (6.4) we use Lemma 2.3 and bound the left-hand side by(∑
k,µ

∑
J∈J k

µ

bJ−aJ>2k−j

∥∥∥∥ sup
t∈J

|Aµ+m
t f |

∥∥∥∥2

L2

)1/2

�
(∑

k,µ

∑
J∈J k

µ

N(J, 2k−m−µ)2−(µ+m)‖Pµ+m−kf‖2
L2

)1/2

� 2−m/2 sup
l∈Z

(∑
µ

∑
J∈J µ+m−l

µ

card(J)2−µ

)1/2(∑
k

‖P kf‖2
L2

)1/2

and by Lemma 6.2 the last expression is � 2−m/2‖f‖L2 .
Finally, equation (6.5) holds in view of the assumption (1.9) (cf. the argument in the

proof of Proposition 4.1). We shall not repeat the details.

6.2. Xp estimates and the proof of Theorem III

We use a similar decomposition as in § 4. However, instead of considering the maximal
operators M�,σ we shall not decompose in � and work with Mσ in (4.5) directly. We shall
prove

‖MσF‖Lpd � 2−σ(d−1)(1/pd−1/2)‖F‖Xpd . (6.6)

This together with already-proved estimates in § 4 implies the statement of Theorem III.
We argue as before and set

al =
( ∑

L(Q)=σ−l

|Q|1−pd/2‖F l
Q‖pd

L2

)1/pd

.

Using Lemma 2.4 (ii) we get

‖MσF‖Lpd

�

∑
k

∑
µ

∑
J∈J k

µ

 ∑
j�µ

bJ−aJ>2k−j

∥∥∥∥ sup
t∈J

|Aj
tG

j−k
σ (F )|

∥∥∥∥
Lpd


pd


1/pd

�
(∑

k

∑
µ

∑
J∈J k

µ

[ ∑
10<j�µ

2−σ(d−1)(1/pd−1/2) card(J)1/pd2−µ/pdaj−k

]pd
)1/pd

� 2−σ(d−1)(1/pd−1/2)
(∑

k

∑
µ

∑
J∈J k

µ

card(J)2−µµpd

(
1

µ + 1

∑
0�j�µ

aj−k

)pd
)1/pd

.

By Condition (C̃pd
) and Lemmas 6.3 and 6.1 we obtain (6.6).
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7. Weak type-(p, p) estimates in the limiting case

Throughout this section we shall assume that d � 3 and that the regularity assumption
and condition (1.14) hold. Thus

sup
k

2−nN(Ek, 2k−n) � C(n1/(d−1) log n)−1 (7.1)

uniformly in n � 10. We follow the proof of Theorem II in § 5, using the same decompo-
sitions except we do not decompose Mσ in (4.5) further as in the proof of Theorem III.
We recall that Proposition 5.1 remains valid for the limiting case p = pd if d � 3, under
the weaker condition (Cpd,∞). Therefore, the claim in Theorem IV will be a consequence
of the following result.

Proposition 7.1. Let MσF be as in (4.5). Suppose (7.1) holds. Then there is an ε > 0
so that for all σ, α � 0,

meas({x : MσF (x) > 3α}) � 2−εσpdα−pd‖F‖pd

Xpd . (7.2)

Proof. As in § 5 we fix ε0 > 0 and define G, Γ , A(Q, τ), G(F ), B(F ) and W as before
except we replace 2ε0(σ+m)p with 2ε0σpd . In particular we have now, for τ � L(Q),

A(Q, τ)1/pd = 2σε0α2τ(d−1).

We shall have to take ε0 so that 0 < ε0(2 − pd) < d − 2.
For MσG(F ) we use an L2 estimate. From Lemma 2.4 (ii) and the regularity assump-

tion (1.11), we deduce

‖MσG(F )‖2
L2

�
∑

k

∑
µ�σ

∑
J∈J k

µ

( ∑
σ�j�µ

∥∥∥∥sup
t∈J

Aj
t

( ∑
Q∈G

L(Q)=k−j+σ

F j−k
Q

)∥∥∥∥
L2

)2

�
∑

k

∑
µ�σ

2−µ
∑

J∈J k
µ

card(J)
( ∑

σ�j�µ

2−j(d−2)/2
( ∑

Q∈G
L(Q)=k−j+σ

‖F j−k
Q ‖2

L2

)1/2)2

� [sup
k

2−σN(Ek, 2k−σ)]
(∑

σ�j

2−j(d−2)/2
(∑

Q∈G
‖F

σ−L(Q)
Q ‖2

L2

)1/2)2
� 2σ(d−2)

∑
Q∈G

‖F
σ−L(Q)
Q ‖2

L2 . (7.3)

For Q ∈ G we have

‖F
σ−L(Q)
Q ‖L2 � cQ/|Q|1/pd−1/2 � 2ε0σ(2−pd)|Q|1/2α
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and therefore, by Čebyšev’s inequality and (7.3),

meas({Mσ(F ) > α}) � α−2‖Mσ(F )‖2
L2

� 2−σ[(d−2)−ε0(2−pd)]α−pd

∑
Q

|Q|1−pd/2‖F
σ−L(Q)
Q ‖pd

L2

� 2−εσα−pd‖F‖pd

Xpd

for some ε > 0.
Furthermore, the estimate for the measure of the exceptional set W in § 5 is still valid.

Therefore, it remains to be shown that

meas({x /∈ W : MσB(F )(x) > 3α}) � 2−εσα−pd‖F‖pd

Xpd (7.4)

for some ε > 0. We may estimate

MσB(F ) � III +
∞∑

s=0

IVs +
−1∑

s=−∞
Vs,

where

III = sup
k

sup
µ�σ

sup
J∈J k

µ

sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
∑

σ�j�µ

bJ−aJ�2k−j

Aj
t


∑
Q∈Γ

L(Q)=k−j+σ

eε1|k−τ(Q)|�µ

F j−k
Q



∣∣∣∣∣∣∣∣∣∣∣
,

IVs = sup
k

sup
σ�µ�eε1s

sup
J∈J k

µ

sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
∑

σ�j�µ

bJ−aJ�2k−j

Aj
t


∑
Q∈Γ

L(Q)=k−j+σ
τ(Q)=k−s

F j−k
Q



∣∣∣∣∣∣∣∣∣∣∣
, s > 0,

Vs = sup
k

sup
σ�µ�eε1|s|

sup
J∈J k

µ

sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
∑

σ�j�µ

bJ−aJ�2k−j

Aj
t


∑
Q∈Γ

L(Q)=k−j+σ
τ(Q)=k−s

F j−k
Q



∣∣∣∣∣∣∣∣∣∣∣
, s < 0.

Here we may choose 0 < ε1 < 1
2 (d − 2). We then prove

‖III‖pd

Lpd � 2−σ(d−1)(1−pd/2) log(2 + σ)‖F‖pd

Xpd , (7.5)

‖IVs‖2
L2 � 2−σ(d−2−ε0(2−pd))2−s(d−2−2ε1)α2−pd‖F‖pd

Xpd , s � 0, (7.6)

‖Vs‖pd

Lpd (Rd\W) � 2−M(2−pd)(σ+γ|s|)‖F‖pd

Xpd , s < 0. (7.7)

Equation (7.4) follows from (7.5)–(7.7) in the usual way. We remark that our assump-
tion (1.14) is needed for (7.5). For the error terms (7.6), (7.7) we can get away with just
the regularity hypothesis (1.11) and (Cpd,∞).
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In the proof we shall use arguments that occur in the proof of Hardy’s inequality
(see [5]).

Proof of (7.5). We further split III =
∑

2n�σ IIIn, where

IIIn = sup
k

sup
µ�2n

sup
J∈J k

µ

sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
∑

2−nµ<j�2−n+1µ

bJ−aJ�2k−j

Aj
t


∑
Q∈Γ

L(Q)=k−j+σ

eε1|k−τ(Q)|�µ

F j−k
Q



∣∣∣∣∣∣∣∣∣∣∣
.

We replace various sups by �pd norms and use Lemma (2.3) (ii). We obtain

‖IIIn‖pd

Lpd �
∑

k

∑
µ�2n

∑
J∈J k

µ


∑

2−nµ<j�2−n+1µ

2(j−µ)/pd2−j(d−1)/p′
d

× card(J)1/pd2−σ(d−1)(1/pd−1/2)

×


∑
Q∈Γ

L(Q)=k−j+σ

|k−τ(Q)|�ε−1
1 log µ

|Q|1−pd/2‖F j−k
Q ‖pd

L2


1/pd


pd

.

If we abbreviate

wµ,k = 2−µ
∑

J∈J k
µ

card J, bQ,σ = |Q|1−pd/2‖F
σ−L(Q)
Q ‖pd

L2 , (7.8)

this yields

‖IIIn‖pd

Lpd � 2−σ(d−1)(1−pd/2)

×
∑

k

∑
µ�2n

wk,µ


∑

2−nµ<j�2−n+1µ


∑
Q∈Γ

L(Q)=k−j+σ

|k−τ(Q)|�ε−1
1 log µ

bQ,σ


1/pd


pd

� 2−σ(d−1)(1−pd/2)
∑

k

∑
µ�2n

wk,µµpd−1
∑

2−nµ<j�2−n+1µ

∑
L(Q)=k−j+σ

|k−τ(Q)|�ε−1
1 log µ

bQ,σ

� 2−σ(d−1)(1−pd/2)2−n(pd−1)

×
∑
Q

∑
k:|k−τ(Q)|�

ε−1
1 log(2n(k−L(Q)+σ))

∑
µ:2n−1(k−L(Q)+σ)
�µ�2n(k−L(Q)+σ)

wk,µµpd−1bQ,σ. (7.9)
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Now by the regularity assumption (R̃pd
) and by (1.14) we have∑

µ:2n−1(k−L(Q)+σ)�µ�2n(k−L(Q)+σ)

wk,µµpd−1

� 2n(pd−1)(k − L(Q) + σ + 1)pd−1N(Ek, 2k−2n(k−L(Q)+σ))2−2n(|k−L(Q)|+σ)

� [log log(22n(|k−L(Q)|+σ))]−1,

and thus the expression (7.9) is controlled by

2−σ(d−1)(1−pd/2)2−n(pd−1)

×
∑
Q

bQ,σ

∑
k:|k−τ(Q)|�ε−1

1 (n+log(k−L(Q)+σ))

(1 + n + log(|k − L(Q)| + σ))−1

� 2−σ(d−1)(1−pd/2)2−n(pd−1)(log(2 + σ) + n)
∑
Q

bQ,σ.

Hence
‖IIIn‖pd

Lpd � 2−σ(d−1)(1−pd/2)2−n(pd−1)(log(2 + σ) + n)‖F‖X
pd
pd

,

which yields the asserted bound (7.5). �

Proof of (7.6). We estimate IVs �
∑

2n>σ IVs,n, where

IVs,n = sup
k

sup
σ�µ�eε1s

sup
J∈J k

µ

sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
∑

2−nµ<j�2−n+1µ

bJ−aJ�2k−j

Aj
t


∑
Q∈Γ

L(Q)=k−j+σ
k−τ(Q)=s

F j−k
Q



∣∣∣∣∣∣∣∣∣∣∣
.

We apply Hölder’s inequality for the sum in j and apply Lemma 2.4 to get

‖IVs,n‖2
L2 �

∑
k

∑
σ�µ�eε1s

∑
J∈J k

µ

2−n(µ + 1)

×
∑

2−nµ<j�2−n+1µ

bJ−aJ�2k−j

∥∥∥∥∥∥∥∥∥∥∥
sup
t∈J

∣∣∣∣∣∣∣∣∣∣∣
Aj

t


∑
Q∈Γ

L(Q)=k−j+σ
k−τ(Q)=s

F j−k
Q



∣∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥∥

2

L2

� 2−neε1s
∑

k

∑
σ�µ�eε1s

∑
J∈J k

µ

card(J)

×
∑

2−nµ<j�2−n+1µ

2−j(d−2)2−µ
∑
Q∈Γ

L(Q)=k−j+σ
k−τ(Q)=s

‖F j−k
Q ‖2

L2 .
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Now we use
2L(Q)d(1/pd−1/2)‖F j−k

Q ‖L2 � 2ε0σ2τ(Q)(d−1)α

and the fact that k = τ(Q) + s, j = τ(Q) − L(Q) + s + σ and derive

‖IVs,n‖2
L2 � 2−neε1s

∑
Q∈Γ

τ(Q)−L(Q)�−s

‖F
σ−L(Q)
Q ‖pd

L22ε0σ(2−pd)2τ(Q)(d−1)(2−pd)α2−pd

× 2−(τ(Q)−L(Q)+s+σ)(d−2)


∑

σ�µ�eε1s

µ�2n(τ(Q)−L(Q)+s+σ)
µ�2n−1(τ(Q)−L(Q)+s+σ)

2−µ
∑

J∈J τ(Q)+s
µ

card J


.

The expression {· · · } is O(1) by (1.11). We compute that

(d − 2) − d(1/pd − 1
2 )(2 − pd) = d(1 − 1

2pd) and (d − 1)(2 − pd) = d − 2.

Thus the last estimate simplifies to

‖IVs,n‖2
L2 � 2−neε1s

∑
Q∈Γ

τ(Q)−L(Q)�−s

2L(Q)d(1−pd/2)‖F
σ−L(Q)
Q ‖pd

L2

× 2ε0σ(2−pd)α2−pd2−(s+σ)(d−2)

� α2−pd2−n2−σ(d−2−ε0(2−pd))2−s(d−2−2ε1)
∑
Q

|Q|1−pd/2‖F
σ−L(Q)
Q ‖pd

L2 ,

which implies (7.6). �

Proof of (7.7). This Lpd estimate away from the exceptional set follows by analogous
arguments; Lemma 2.4 (iii) is used. We omit the details. �

This completes the proof of Proposition 7.1. �

8. Examples and counterexamples

We consider a simple class of sets E to which Theorems I–IV can be applied. They satisfy
the following condition.

Convexity Assumption. For each k ∈ Z the set Ek is given by {tkν}∞
ν=1 where tkν

is a monotone sequence contained in [2k, 2k+1], so that the sequence tkν+1 − tkν is also
monotone.

The following lemma shows that if (Cp,∞) holds for some p < d/(d − 1) and E satisfies
the Convexity Assumption, then it also satisfies the regularity assumption for all p > 1.
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Lemma 8.1. Suppose E satisfies the Convexity Assumption. Suppose that for some
β > 0 the estimate

sup
k

N(Ek, 2k−n) � C
2n

(1 + n)β
(8.1)

holds uniformly in k ∈ Z. Then E satisfies regularity assumption (Rp) for all p >

1 + [(d − 1)(β + 1)]−1. Moreover, it satisfies regularity assumption (R̃d/(d−1)).

Proof. We write Ek as a sequence tkν and let Jk
µ consist of those t ∈ Ek where 2k−µ �

tkν − tkν+1 < 2k−µ+1 (assuming without loss of generality that the tkν are decreasing in ν).
We clearly have card Jk

µ � N(Ek, 2k−µ).
Let ak

µ and bk
µ denote the endpoints of the equally spaced set Jk

µ . Let Dk =
⋃

µ{ak
µ, bk

µ}
be the set of endpoints. The assertion is implied by the estimate

N(Dk, 2k−j) � 2j/(1+β). (8.2)

Let L = Lj be the smallest integer � 2j/(1+β). Note that the set
⋃

µ�Lj
Jk

µ is contained
in an interval of length

� N(Ek, 2k−Lj )2k−Lj � 2Lj (1 + Lj)−β2k−Lj � (1 + Lj)−β2k.

This interval can be covered by intervals of length 2k−j and we need at most (1+Lj)−β2j

such intervals to do this. But (1 + Lj)−β2j � 2j/(1+β).
We still need to cover the points in Dk which do not belong to

⋃
µ�Lj

Jk
µ . But Dk

consists just of the ak
µ and the bk

µ and there are at most 2Lj � 2j/(1+β) points in Dk

which are not yet covered. This implies (8.2).
In order to verify the condition (1.11) it suffices to show∑

µ>n

2−µ card(Jk
µ) � 2−nN(Ek, 2k−n). (8.3)

But if ak = infµ ak
µ = inf Ek then the left-hand side of (8.3) is ≈ 2−k(bk

n − ak). More-
over, every subinterval of length 2k−n of [ak, bk

n] contains points in Ek and therefore
bk
n − ak � 2k−nN(Ek, 2k−n). Thus (8.3) holds. �

Proof of Theorem 1.1. The set

Ek = {2k(1 + ν−α) : ν ∈ Z
+}

satisfies N(Ek, 2kδ) � δ1/(α+1) and assertion (i) follows from Lemma 8.1 and Theorem II.
On the other hand, the set

Ek = {2k(1 + log−β(2 + ν) : ν ∈ Z
+}

satisfies N(Ek, 2kδ) � δ−1[log(1/δ)]−β and assertion (ii) follows from Lemma 8.1 and
Theorem IV. �
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8.1. A counter-example to Lp boundedness for a related maximal function

Let E0 be any set in [1, 2] and define the modified maximal function

M̃E0f(x) := sup
r∈E0

f ∗ dσ(x + re1)

in R
d, where e1 is a unit vector. If E0 satisfies the regularity assumption (Rp),

p < d/(d − 1), then the condition Cp,p is necessary and sufficient for Lp boundedness
of M̃E0 ; indeed a notational modification of the proof of Theorem I applies to show the
sufficiency. Note that for sets E0 supported in [1, 2] the conditions Cp,p and Cp,∞ both
amount to the inequality N(E0, δ) � δ−(d−1)(p−1). However, Lp boundedness and indeed
the weak type-(p, p) property may fail if we drop the regularity assumption.

Let E0 be the middle-halves Cantor set consisting of all t = 1 +
∑∞

j=1 bj4−j where
bj ∈ {0, 2}. Then the Minkowski dimension of E0 is 1

2 and M̃E0 is bounded on Lp(R2)
for p > 3

2 and unbounded on Lp(R2) for p < 3
2 . Moreover, Cp,p holds for p = 3

2 . We show
that nevertheless M̃E0 is not of weak type ( 3

2 , 3
2 ).

Let N be large and define

f(x) :=
N∑

i=1

4iχ2Ce1+B(0,a4−i)(x),

where C is the Cantor set

C =
{∑

j

cj4−j : j = 0, 1
}

and a is small. Note that ‖f‖3/2 � N2/3 (each i contributes an L3/2 norm of O(1), and
the contributions are mostly disjointly supported).

Now E0 + C fills out the interval [1, 2] and thus the maximal function M̃E0f has size
about N on a fixed portion of the unit annulus, thus ‖M̃E0f‖L3/2,∞ � cN . This shows
that M̃E0 is not of weak type (3

2 , 3
2 ). A closer examination shows that f belongs to the

Lorentz space L3/2,s with norm O(Ns) so that M̃E0 fails to map the Lorentz space L3/2,s

to L3/2,∞ when s > 1. Unfortunately, this example is too rigid in order to apply to the
maximal operator ME0 considered in this paper.

8.2. Failure of restricted weak type (2, 2) in two dimensions

We shall now turn to the counterexample mentioned in the introduction and give a
proof of Proposition 1.13.

Suppose that there is a large constant B so that there exists k and n � 100 such that

N(Ek, 2k−2n) � B22n/n.

We then show that ‖ME‖L2,1→L2,∞ � c
√

B for some absolute constant c. By rescaling
we may assume k = 0 and n � 1.

We use the construction of a Kakeya set as given by Keich [6], rescaled to a square of
side length 2−n. It gives us ≈ 2n rectangles Rl with side lengths 2−n−3 and 2−2n−6 so
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that Rl ⊂ [−2−n, 2−n]2 and the longer side of Rl is parallel to el := (cos l2−n, sin l2−n),
and the union A =

⋃
Rl has measure � 2−2nn−1. Thus ‖χA‖L2,1 ≈ ‖χA‖2 � 2−nn−1/2.

Let {Iν}N
ν=1 be a cover of the set E0 by dyadic intervals of length 2−2n, with dis-

joint interior so that N � B22n/n. Let Iν = [aν , bν ], and assume aν < aν+1. We then
pick every tenth interval = I10ν , moreover we pick every tenth rectangle R10l in the
above Kakeya construction. Let e⊥

l := (− sin l2−n, cos l2−n) and let Rl,ν be the translate
a10νe⊥

10l + R10l. Then the rectangles Rl,ν are disjoint; however, on a tenth fraction of
each of these rectangles we have that MEχA(x) > c2−n. There are about 1

100N2n such
rectangles and thus

meas({x : MEχA(x) > c2−n}) � c′N2n2−3n � Bn−1;

but on the other hand ‖χA‖2
2/(2−2n) � n−1 so that the L2,1 → L2,∞ operator norm

is �
√

B. This proves the proposition.
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