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We show that if the payoff of a European option is a convex function of the prices
of the security at a fixed set of times, then the geometric Brownian motion risk
neutral option price is increasing in the volatility of the security+We also give ef-
ficient simulation procedures for determining the no-arbitrage prices of European
barrier, Asian, and lookback options+

1. WHEN THE OPTION PRICE INCREASES IN VOLATILITY

Let S~t! be the price of a security at timet, and make the usual risk neutral assump-
tion that$S~t!, t $ 0% is a geometric Brownian motion with process volatility pa-
rameters and mean parameterm that satisfies

µ 5 r 2
s2

2
+
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Here, r is the continuously compounded interest rate+ Then,

EF S~t!

S~0!
G 5 ert, t $ 0+

Furthermore, X~t! :5 ln$S~t!0S~0!% is normally distributed with mean

E @X~t!# 5 Sr 2
s2

2
D t, t $ 0,

and variance

Var~X~t!! 5 s2t, t $ 0+

SupposeS~0! 5 s and consider an option that expires at some fixed timet and that
paysPs to its holder at timet+ We assumePs is defined as follows: For a positive
integern, a monotone time sequence 05 t0 , t1 , {{{ , tn 5 t, and a functionh:
R1

n r R,

Ps 5 h~S~tk!, k 5 1,2, + + + , n!+

Defineg: R1
n r R, such that

g~x1, x2, + + + , xn! 5 hSs)
l51

k

xl , k 5 1,2, + + + , nD+
Theorem 1: Suppose g is componentwise convex+ Then, E @e2rtPs# is an increasing
function ofs+

Proof: DefineYk 5 S~tk!0S~tk21!, k 51,2, + + + , n+ Then, Yk, k 51,2, + + + , n, are inde-
pendent log-normal random variables+ Furthermore, E@Yk# 5 ersk andXk :5 ln$Yk% is
normally distributed with mean~r 2s202!sk and variances2sk,wheresk5 tk2 tk21,
k 5 1,2, + + + , n+ Observing that

S~tk! 5 s)
l51

k

Yl , k 5 1,2, + + + , n,

one has

h~S~tk!, k 5 1,2, + + + , n! 5 g~Yk, k 5 1,2, + + + , n!+

BecauseYk, k51,2, + + + , n, are independent, from Theorem 5+A+6 and~5+A+4! of @7# ,
it follows that if Yk is increasing in the convex ordering ins $i+e+, for any convex
functionc: R1 r R,E @c~Yk!# is increasing ins%, then

E @e2rtPs# 5 E @e2rtg~Yk, k 5 1,2, + + + , n!#

is increasing ins+ Next, we shall show thatYk is increasing ins in the convex
ordering+ Let Z be a unit normal random variable+ Then, for

ZYk~s! :5 e2~s202!sk1s!sk Z,
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we have

Yk 5
d

E @Yk# ZYk+

For s2 . s1 . 0 andf: R1 r R, given by

f~x! 5 ~e2s2~s22s1!sk02!xs20s1,

we have

ZYk~s2! 5 f~ ZYk~s1!!+

Observing thatf is non-negative, increasing, and star-shaped@meaning thatf~x!0x
is nondecreasing inx for x . 0# , it follows from Theorem 2+A+10 and~2+A+16! of @7#
that ZYk is increasing ins in the convex ordering+ BecauseE @Yk# is independent ofs,
it immediately follows thatYk too is increasing ins in the convex ordering+ n

Remark 1: If h is convex or for anyx, y [ R1
n such thatxk # yk, k 5 1,2, + + + , n,

h~ax 1 ~12 a!y! # ah~x! 1 ~12 a!h~ y!, 0 , a , 1, (1)

theng is componentwise convex+ Hence, we have the following corollary+

Corollary 1: Suppose h is convex or satisfies~1!+ Then, E @e2rtPs# is an increas-
ing function ofs+

Some examples of options that satisfy the condition of Theorem 1 are as fol-
lows:

1+ European vanilla option with strike priceK

PE2V 5 ~S~t! 2 K !1+

2+ European option with a convex payoff functionh,

PE2C 5 h~S~t!!+

3+ Asian option with average end-of-day strike price

PA2A 5 SSd ~n! 2
1

n (
k51

n

Sd~k!D1

,

whereSd~k! is the price at the end of trading dayk+

4+ Asian option with minimum end-of-day strike price,

PA2MIN 5 Sd~n! 2 min$Sd~k!, k 5 1,2, + + + , n%+

5+ With payoff maximum of end-of-day prices and a strike price ofK,

PMAX 5 ~max$Sd~k!, k 5 1,2, + + + , n% 2 K !1+

6+ Maximum deviation payoff,

PMAX 2D 5 max$Sd~k!, k 5 1,2, + + + , n% 2 min$Sd~k!, k 5 1,2, + + + , n%+
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Remark: Part 2 of Corollary 1, the case of a European option with a convex payoff
function, was proven in@1# and@4# by other methods+

2. EFFICIENT SIMULATION OF BARRIER OPTIONS

To define a European barrier call option with strike priceK and exercise timet, a
barrier valuev is specified; depending on the type of barrier option, the option either
becomes alive or is killed when this barrier is crossed+A down and inbarrier option
becomes alive only if the security’s price goes belowv before timet,whereas adown
and outbarrier option is killed if the security’s price goes belowv before timet+ In
both cases, v is a specified value that is less than the initial pricesof the security+ In
addition, in most applications, the barrier is only considered to be breached if an
end-of-day price is lower thanv; that is, a price belowv that occurs in the middle of
a trading day is not considered to breach the barrier+ Now, if one owns both a down
and in option and a down and out option, both having the same values ofK andt, then
exactly one will be in play at timet; hence, owning both is equivalent to owning a
vanilla option with exercise timet and exercise priceK+ As a result, if Di ~s, t,K ! and
Do~s, t,K ! represent respectively the risk neutral present values of owning the down
and in and the down and out options, then

Di ~s, t,K ! 1 Do~s, t,K ! 5 C~s, t,K !

whereC~s, t,K ! is the Black–Scholes valuation of the standard call option+ As a
result, determining either one of the valuesDi ~s, t,K ! or Do~s, t,K ! automatically
yields the other+

Let Sd~i ! denote the price of the security at the end of dayi and let

X~i ! 5 logS Sd~i !

Sd~i 2 1!D+
Because successive daily price ratio changes are independent under geometric Brown-
ian motion, it follows thatX~1!, + + + ,X~n! are independent normal random variables,
each having mean~r 2 s202!0N and variances20N, whereN is the number of
trading days in a year+ Now, suppose that we want to find the risk neutral valuation
of a down and in barrier option with strike priceK, barrier valuev, whose initial
value isS~0! 5 s, and whose exercise time is at the end of dayn+ To do so, generate
n independent normal random variables with mean~r 2s202!0Nand variances 20N;
set them equal toX~1!, + + + ,X~n! and use them to determine the sequence of end-of-
day prices+ Letting

I 5 H1 if Sd~i ! , v for somei 5 1, + + + , n

0 if Sd~i ! $ v for all i 5 1, + + + , n,

then

Present value payoff of the down and in option5 e2rn0NI ~Sd~n! 2 K !1+
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Now, let X i 5 ~X~1!, + + + ,X~i !! and letf be the joint density function ofXn+ If g is
another joint density, then the importance sampling identity yields that

Ef @I ~Sd~n! 2 K !1# 5 EgF If ~Xn!~Sd~n! 2 K !1

g~Xn! G+
LetTequaln11 if the option never becomes alive, and let it equali if the option first
becomes alive at the end of dayi+ Then, for T # n,

EgF If ~Xn!~Sd~n! 2 K !1

g~Xn! *T,XTG
5

f ~XT !

g~XT !
EgF f ~XT11, + + + ,Xn!

g~XT11, + + + ,Xn!
~Sd~n! 2 K !1 6T,XTG

5
f ~XT !

g~XT !
Ef @~Sd~n! 2 K !1 6T,XT #

5
f ~XT !

g~XT !
ern0NC~Sd~T !, ~n 2 T !0N,K !+

DefiningC~s, t,K ! to equal 0 whent , 0, the preceding also holds whenT5 n11+
Hence, combining importance sampling and conditional expectation, theXi can be
generated according to a density that makes it more likely that the barrier is crossed;
once the barrier is crossed, that simulation run ends with the following estimator of
the risk neutral price:

f ~XT !

g~XT !
C~Sd~T !, ~n 2 T !0N,K !+ (2)

If we generate theXi as normal random variables with mean~r 2 s202!0N2 b and
variances20N, then the estimator from that run is

C~Sd~T !, ~n 2 T !0N,K ! expH Tb2N

2s2 1
Nb

s2 (
i51

T

Xi 2
Tb

s2 S r 2
s2

2 DJ + (3)

Implementation requires an appropriate choice ofb, which can be arrived at empir-
ically+ However, in an importance sampling application that did not utilize the con-
ditional expectation improvement, it was noted in@3# that the choice

b 5
~µ1 s202!

N
2

2log~S~0!0v! 1 log~K0S~0!!

n

works well+

Remark: Variance reduction by conditional expectation and by importance sam-
pling were both suggested in@2# + That these procedures could be simultaneously
utilized was, however, not noted+ The estimator~3! has a smaller variance than the
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importance sampling estimator suggested in@3# and also requires less simulation
time+

2.1. An Estimator with Smaller Variance

The estimator given by Eq+ ~2! can be improved upon by using an approach that we
will first describe in more generality+ Let Mi , i $ 0, be a Markov chain with given
initial stateM0 5 0; let L denote a fixed set of states and set

T 5 min$n 1 1,min~i 5 1, + + + , n: Mi [ L!%+

Suppose that we want to use simulation to estimate

u [ E @I ~T # n!H~M1, + + + ,MT ! 1 I ~T 5 n 1 1!G~M1, + + + ,Mn!# ,

whereH andG are specified functions defined on partial sequences of states, and
I ~B! is the indicator variable for the eventB+ Although u can be estimated by
stopping a simulation run either when it hitsL or aftern states have been simu-
lated, consider the following way of doing the simulation+ Generate the sequence
U1, L1,U2, L2, + + + ,Un, Ln as follows: Let U0 5 0; then, whenever the value ofUi

has been determined, say it is equal tou, do the following:

1+ GenerateLi11 by letting its distribution be the conditional distribution of the
next state of the Markov chain given that the present state isu and given that
this next state is inL+

2+ GenerateUi11 by letting its distribution be the conditional distribution of the
next state of the Markov chain given that the present state isu and given that
this next state is not inL+

3+ Generate a random variableJi11 such that

P$Ji11 5 1% 5 P~u! 5 1 2 P$Ji11 5 0%,

where

P~u! 5 P$Mi11 [ L6Mi 5 u%+

The preceding can be used to generate the successive states of the Markov chain,
stopping either when it hitsL or aftern states have been generated, by letting

T 5 min$n 1 1,min~i : Ji 5 1!%

and letting the states beU1, + + + ,UT21, LT if T # n, or U1, + + + ,Un if T5 n11+ In other
words, J is an indicator for the event that the next state is inL; if J51, we useL as
the final state in that run, and ifJ5 0,we useU as the next state+ The estimator from
that run is the raw simulation estimator

E [ I ~T # n!H~U1, + + + ,UT21, LT ! 1 I ~T 5 n 1 1!G~U1, + + + ,Un!+
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However, an improved estimator~one with the same mean and smaller variance!
can be obtained by taking the conditional expectation ofE given the valuesV [
~U1, L1, + + + ,Un, Ln!+ Calling this new estimatorE1, we have

E1 5 E @E6V# 5 (
i51

n11

E @E6V,T 5 i # P$T 5 i 6V%

5 H~L1!P~0! 1 (
i52

n

H~U1, + + + ,Ui21, Li !P~Ui21! )
j50

i22

Q~Uj !

1 G~U1, + + + ,Un! )
j50

n21

Q~Uj !,

where

Q~u! 5 12 P~u!+

Note that the preceding estimator only requires thatV, and not theJi , be generated+
One difficulty with the estimatorE1 is that it generates valuesLi and computes

H~U1, + + + ,Ui21, Li ! even in situations where the probability thatMi [ L is extremely
small+ From a practical point of view, the technique used in this estimator should
only be employed when transitions intoL begin having non-negligible probabilities;
that is, one should employ some stopping timeN # n, which will depend on the
states generated, and then start the simulation by generating the successive states
M1, + + + ,Mmin~T,N!+ If T# N, then the estimatorH~M1, + + + ,MT! is used+ If T . N, then
the new simulation procedure~of generating theUi andLi ! begins with the states
M1, + + + ,MN; that is, it setsUN 5 MN and then generatesLN11 andUN11, and so on+
The final estimator is

(
i5N11

n

H~U1, + + + ,Ui21, Li !P~Ui21! )
j5N

i22

Q~Uj ! 1 G~U1, + + + ,Un! )
j5N

n21

Q~Uj !,

where

Ui 5 Mi , i 5 1, + + + ,N, and )
j5N

N21

Q~Uj ! [ 1+

Another variation that can improve the time~not variance! efficiency of the estima-
tor is to switch back to the raw simulation estimator when) j50

i Q~Uj ! becomes very
small+ If we switch back at timeN*, then with

b 5 )
j5N

N*21

Q~Uj !,
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the estimator is

(
i5N11

N*

H~U1, + + + ,Ui21, Li !P~Ui21! )
j5N

i22

Q~Uj ! 1 bE,

whereE is the raw simulation estimator+

Remark: Another estimator is

E2 [ H~L1!P~0!

1 (
i52

min~T, n!

H~U1, + + + ,Ui21, Li !P~Ui21! 1 I ~T . n 2 1!Q~Un21!G~U1, + + + ,Un!+

RewritingE2 as

E2 5 H~L1!P~0! 1 (
i52

n

I ~T $ i !H~U1, + + + ,Ui21, Li !P~Ui21!

1 I ~T . n 2 1!Q~Un21!G~U1, + + + ,Un!

shows that

E @E26V# 5 E @E6V# 5 E1+

The preceding shows that althoughE2 is also an unbiased estimator, its variance is
larger than that ofE1+ Its advantage, however, is that it stops a simulation run atT,
which may save quite a bit of computational time and thus offset the increased
variance+

The estimatorE2 can be obtained as follows+ Initially, let M0 5 U0 5 L0 5 0;
when Mi21, Ui21, and Li21 have been determined, generateMi according to the
transition probabilities of the Markov chain given that the preceding state wasMi21+
If Mi Ó L, let Ui 5 Mi and generateLi by letting its distribution be the conditional
distribution of the next state of the Markov chain fromMi21 given that it is inL+ If
Mi [ L, let Li 5 Mi and end that simulation run+ In addition, the time efficiency
improvements noted for the estimatorE1 can also be implemented forE2+

In applying the preceding to the barrier simulation model, we can let

Mi 5 (
j51

i

X~ j !,

L 5 $m: sem , v%,

H~M1, + + + ,MT ! 5
f ~XT !

g~XT !
C~seMT, ~n 2 T !0N,K !,

G [ 0+

To implement the method, at each step we will need to generate normal random
variables conditioned to be either smaller or larger than some value, which can be
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accomplished by generating a standard normal conditioned to be greater than some
positive value+ An efficient approach for generating a standard normal conditioned
to exceedb . 0 is to use the acceptance rejection technique either with the distri-
bution of an exponential random variable that is conditioned to exceedb ~and so is
equal tob plus the exponential! or with the distribution function

G~x! 5 12 e2~x22b2!, x . b+

Details are given in@6# +

3. EFFICIENT SIMULATION OF ASIAN AND LOOKBACK OPTION PRICES

Consider an Asian option whose strike price is the average end-of-day price; that is,
if the option expires at the end ofn trading days, then the present value of its payoff
is

Pe2rn0N [ e2rn0NSSd~n! 2 (
i51

n Sd~i !

n D1

5
n 2 1

n
e2rn0NSSd~n! 2

(
i51

n21

Sd~i !

n 2 1
D1

+

To estimateE @Pe2rn0N# , first condition on the data valuesXn21 5 ~X~1!, + + + ,
X~n 2 1!! to obtain

E @Pe2rn0N 6Xn21# 5
n 2 1

n
e2rn0NEFSSd~n! 2

(
i51

n21

Sd~i !

n 2 1
D1

*Xn21
G

5
n 2 1

n
e2rn0NEFSSd~n 2 1!eX~n! 2

(
i51

n21

Sd~i !

n 2 1
D1

*Xn21
G

5
n 2 1

n
e2rn0NCSSd~n 2 1!,

1

N
,(

i51

n21 Sd~i !

n 2 1D+ (4)

Hence, we can estimateE @e2rn0NP# by generatingXn21 to obtain Sd~1!, + + + ,
Sd~n 2 1!, and then using the estimator given by Eq+ ~4!, whereC~s, t,K ! is the
Black–Scholes risk neutral call option valuation+

This estimator can be improved by first noting that

CSSd~n 2 1!,
1

N
,(

i51

n21 Sd~i !

n 2 1D ' SSd~n 2 1! 2 (
i51

n21 Sd~i !

n 2 1D1

+
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Hence, as a simulation run consists of generatingX~1!, + + + ,X~n 2 1!, independent
normal random variables with mean~r 2 s202!0N and variances20N, and then
setting

Sd~i ! 5 S~0!eX~1!1{{{1X~i !, i 5 1, + + + , n 2 1,

it follows thatC~Sd~n2 1!,10N,(i51
n21 Sd~i !0~n2 1!! will be large if the latter values

of the sequenceX~1!,X~2!, + + + ,X~n 2 1! are among the largest, and small if the re-
verse is true+Consequently, one could try a control variable of the type(i51

n21 wi X~i !,
where the weightswi are increasing ini+However, a better approach is to let the sim-
ulation itself determine the weights, by using all of the variablesX~1!,X~2!, + + + ,
X~n21! as control variables; that is, from each run consider the estimator

CSSd~n 2 1!,
1

N
,(

i51

n21 Sd~i !

n 2 1D1 (
i51

n21

ciSX~i ! 2
~r 2 s202!

N D+
The values of the constantsc1, + + + ,cn can then be determined from the simulation
runs~see@5# !+ ~An important technical point is that because the suggested control
variables are independent random variables, there is not much additional computa-
tion needed to determine the values of theci +!

We also suggest first conditioning onX~1!,X~2!, + + + ,X~n 2 1!, and then using
these variables as control variables in the lookback options 4, 5, and 6 of Corollary
1+ When the payoff is a convex function ofS~t!, thenS~t! itself can be used as a
control variable+

Remark: Another possibility is to useeX~i !, i 5 1, + + + , n, rather than theX~i ! them-
selves, as the control variates+
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