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PRICING EXOTIC OPTIONS

MONOTONICITY IN VOLATILITY AND
EFFICIENT SIMULATION
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We show that if the payoff of a European option is a convex function of the prices
of the security at a fixed set of timethen the geometric Brownian motion risk
neutral option price is increasing in the volatility of the secuitfe also give ef-
ficient simulation procedures for determining the no-arbitrage prices of European
barrier Asian and lookback options

1. WHEN THE OPTION PRICE INCREASES IN VOLATILITY
Let S(t) be the price of a security at timigand make the usual risk neutral assump-

tion that{S(t),t = 0} is a geometric Brownian motion with process volatility pa-
rameters and mean parametgrthat satisfies

0.2
=r-—.
H 2
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Herg r is the continuously compounded interest rdteen
S(t)}
E| —|=¢e" t=0.
[S(O)
FurthermoreX(t) := In{S(t)/S(0)} is normally distributed with mean

E[X(1)] = (r — %2>t, t=0,

and variance
Var(X(t)) = o, t=0.

SupposeS(0) = sand consider an option that expires at some fixed tirmed that
paysP; to its holder at timda. We assumé®; is defined as followsFor a positive
integern, a monotone time sequence=0t, < t; < --- <t, =1t, and a functiorh:
RT - R

P, = h(S(t), k=12,...,n).
Defineg: R?T — R, such that

k
9(X1, Xoy vy Xp) = h(sH X, k= L2,...,n>.
I1=1
TueEOREM 1: Suppose gis componentwise cex Then E[e "P,]is an increasing
function ofo.

Proor: DefineY, = S(t,)/S(tx_1), k=212,...,n. Then Y,k=12,...,n, are inde-
pendent log-normal random variabl&sirthermoreE[ Y, | = €™ andX, := In{Y,} is

normally distributed with meafr — o%/2) s, and variancer 2s,, wheres, = t, — t,_4,

k=12,...,n. Observing that

k
S(tk) = Sl_IYI’ k:L29---7n7
=1

one has
h(S(tk)’k = ]127"-9n) = g(Yk’k: LZ""yn)-

BecauseY,,k=12,...,n, are independentrom Theorem 5A.6 and(5.A.4) of [ 7],
it follows that if Y is increasing in the convex ordering én{i.e., for any convex
functiony: R, — R E[¢(Y,)]is increasing inr}, then

E[e "P.] = E[e "g(Y k=12,...,n)]

is increasing ino. Next, we shall show thal, is increasing ino in the convex
ordering Let Z be a unit normal random variabl€hen for

?k(U) = e—(a2/2)sk+arskz’
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we have

Y. £ E[Y, V..
Foro, > 0, > 0 andg: R, — R, given by
b (X) = (€722 oVs/2) g2 /o,
we have
Vk(U'z) = d)(?k(a-l))

Observing tha is non-negativgincreasingand star-shapdaneaning tha (x)/x
is nondecreasing ixfor x > 0], it follows from Theorem 2A.10 and(2.A.16) of [ 7]
thatY,is increasing inr in the convex ordering3ecausé [ Y, ] is independent of,
it immediately follows that, too is increasing ifr in the convex ordering H

Remark 1:If his convex or for ank,y € R such thax, = vy,, k=1,2,...,n,
h(ax+ (1 - a)y) = ah(x) + (1 - a)h(y), 0<a<] (1)
theng is componentwise convekience we have the following corollaty

CoRrOLLARY 1: Suppose h is caex or satisfieg1). Then E[e "P,] is an increas
ing function ofo.

Some examples of options that satisfy the condition of Theorem 1 are as fol-
lows:

1. European vanilla option with strike prid¢e
Pe_v = (S(t) —K)™.
2. European option with a convex payoff function
Pe_c = h(S(1)).
3. Asian option with average end-of-day strike price
1 n +
Pa-a = <Sj(n) - - E %(k)) )
Ng=1
whereS; (k) is the price at the end of trading day
4. Asian option with minimum end-of-day strike price
Paomin = Si(n) — min{§;(k),k=12,...,n}.
5. With payoff maximum of end-of-day prices and a strike pric&of
PMAX = (maX{Sﬂ(k)7 k= 172a ceey n} - K)+
6. Maximum deviation payoff
Puax-o = max{§(k),k=12,...,n} — min{S;(k),k=12,...,n}.
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Remark: Part 2 of Corollary 1the case of a European option with a convex payoff
function was proven if1] and[4] by other methods

2. EFFICIENT SIMULATION OF BARRIER OPTIONS

To define a European barrier call option with strike pricand exercise timg a
barrier value is specifieddepending on the type of barrier optidhe option either
becomes alive or is killed when this barrier is crosgedown and irbarrier option
becomes alive only if the security’s price goes beldvefore timet, whereas @own
and outbarrier option is killed if the security’s price goes belowefore timet. In
both casew is a specified value that is less than the initial piScé# the securityln
addition in most applicationsthe barrier is only considered to be breached if an
end-of-day price is lower than that is a price below that occurs in the middle of

a trading day is not considered to breach the bamew, if one owns both a down
and in option and a down and out optjdaoth having the same valueskandt, then
exactly one will be in play at timg hence owning both is equivalent to owning a
vanilla option with exercise timeand exercise prick. As a resultif D;(s,t,K) and
Do(s, t,K) represent respectively the risk neutral present values of owning the down
and in and the down and out optigitisen

D|(S) tv K) + DO(S) t’ K) = C(S> t’ K)

whereC(s, t,K) is the Black—Scholes valuation of the standard call opthkma
result determining either one of the valuBsg(s, t,K) or Dy(s, t, K) automatically
yields the other

Let S(i) denote the price of the security at the end of dapd let

X() = Iog<$(_l)l)>.

Because successive daily price ratio changes are independent under geometric Brown-
ian motion it follows thatX(1),..., X(n) are independent normal random variables
each having meafr — ¢%/2)/N and variancer?/N, whereN is the number of
trading days in a yeaNow, suppose that we want to find the risk neutral valuation

of a down and in barrier option with strike pri¢€ barrier valuev, whose initial

value isS(0) = s, and whose exercise time is at the end of dayo do sq generate
nindependent normal random variables with méan o2/2)/N and variance %/N;

set them equal t&%(1),..., X(n) and use them to determine the sequence of end-of-
day pricesLetting

1 ifS(i)<vforsomei=1,...,n
B {0 if (i)=vforalli=1,...,n,

then

Present value payoff of the down and in optiere ™Ml (S,(n) — K)™.
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Now, let X; = (X(1),..., X(i)) and letf be the joint density function of,,. If g is
another joint densitythen the importance sampling identity yields that
If (X)) (Si(n) —K)*
9(Xn) '

LetTequaln+ 1 if the option never becomes alivand let it equal if the option first
becomes alive at the end of dayThen for T = n,

E[1(S(n)—K)']= Eg[

If (Xn) (Si(n) = K)*
g[ 9(X,) T’XT}
_ f(XT) f(XT+1,...,Xn) _ N
- 9(Xt) g|:g(XT+1,-..,Xn) (S(n) = K) |T’XT]
- I E[(Su(n) — K)|T, X1]
- 9(X+) ' VAT
~ f(Xy)

m/N —
90 e™NC(S(T), (n—T)/N,K).
DefiningC(s, t,K) to equal 0 whem < 0, the preceding also holds whénr=n + 1.
Hence combining importance sampling and conditional expectatioeX; can be
generated according to a density that makes it more likely that the barrier is grossed
once the barrier is crossgthat simulation run ends with the following estimator of
the risk neutral price

mC(Sj(T) (n—T)/N,K) (2)
g(Xt) ’ T
If we generate th&; as normal random variables with mefan- ¢2/2)/N — b and
varianceo %/N, then the estimator from that run is

Tb®N  Nb T Tb o?
C(S(T), (n—T)/N,K)exp{ + 5 XX - ;(r——)}. (3)

202 o 2

Implementation requires an appropriate choicb,afhich can be arrived at empir-
ically. However in an importance sampling application that did not utilize the con-
ditional expectation improvemerit was noted i 3] that the choice

_ (H+0a?%2)  2log(S(0)/v) + log(K/S(0))
N n

b

works well

Remark: Variance reduction by conditional expectation and by importance sam-
pling were both suggested [2]. That these procedures could be simultaneously
utilized was however not noted The estimatof3) has a smaller variance than the
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importance sampling estimator suggested@hand also requires less simulation
time.

2.1. An Estimator with Smaller Variance

The estimator given by E@2) can be improved upon by using an approach that we
will first describe in more generality.et M;,i = 0, be a Markov chain with given
initial stateM, = O; let L denote a fixed set of states and set

T=min{n+1min(i=1...,n: M, € L)}.
Suppose that we want to use simulation to estimate
0 =E[(T=nH(M,...,Mq) +I(T=n+1)G(My,...,M,)],

whereH andG are specified functions defined on partial sequences of statels

I (B) is the indicator variable for the evel® Although 6 can be estimated by
stopping a simulation run either when it hitsor aftern states have been simu-
lated consider the following way of doing the simulatioGenerate the sequence
Uy, L4, Uy Loy,...,U,, L, as follows Let U, = 0; then whenever the value df
has been determingday it is equal tas, do the following

1. Generaté; , by letting its distribution be the conditional distribution of the
next state of the Markov chain given that the present statarl given that
this next state is if.

2. GeneratéJ; ., by letting its distribution be the conditional distribution of the
next state of the Markov chain given that the present statams given that
this next state is not ih.

3. Generate a random variahlg ; such that

P{Ji1=1=P(u=1-P{J,, =0}
where
P(U) = P{Mi+l E L|M| = U}

The preceding can be used to generate the successive states of the Markov chain
stopping either when it hitk or aftern states have been generatby letting

T = min{n + L min(i: J = 1)}

and letting the states b, ..., Ut 4, L+ if T=n,orU,,...,U,if T=n+ 1 Inother

words Jis an indicator for the event that the next state ik;if J=1, we usel as

the final state in that rurand ifJ = 0, we useU as the next statd he estimator from
that run is the raw simulation estimator

55 |(TS n)H(Ul,...,UT_l,LT) + I(T: n-+ 1)G(U1,...,Un).
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However an improved estimataone with the same mean and smaller variance
can be obtained by taking the conditional expectatio& given the valued/ =
(U, L4,...,U,, Ly). Calling this new estimatof,, we have

n+1

& =E[EIV]= 2 E[EIV,T=i]P{T=i|V}

= H(LYPO + 3 HUy,..., U 1, L)PU-1) [] Q)
j=0

i=2

n—1
+ G(Ul’ '“’Un) 1_[0 Q(U]),
j=

where

Q(u) = 1—-P(u).

Note that the preceding estimator only requires Ythaind not thel;, be generated

One difficulty with the estimato€, is that it generates valués and computes
H(U,,...,U;_4,L;) evenin situations where the probability thé&te L is extremely
small From a practical point of viewthe technique used in this estimator should
only be employed when transitions iritdegin having non-negligible probabilities
that is one should employ some stopping tilfNe= n, which will depend on the
states generatednd then start the simulation by generating the successive states
My,..., Mpinc.ny- If T= N, then the estimatdd (My,...,My) isusedIf T > N, then
the new simulation procedukef generating théJ; andL;) begins with the states
Ma,..., My; that is it setsUy = My and then generates,, ; andUy.,, and so on
The final estimator is
n i—2 n—1
> HU,...,U_1,L)P(U_y) 1_'[\‘ QW) + G(Uy,...,Uy) 1_'[\‘ QW)),

1= 1=

i=N+1

where
N—1
U=M, i=1.,N and [[QU)=L1
i=N

Another variation that can improve the tirfreot variancgefficiency of the estima-
tor is to switch back to the raw simulation estimator wign, Q(U;) becomes very
small If we switch back at timéN*, then with

s

g=TI QU
j=N

https://doi.org/10.1017/50269964800143037 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964800143037

324 S. M. Ross and J. G. Shanthikumar

the estimator is

> HU,...,U_4,L)P(U;_y) 1:[ Q) + B¢E,
j=N

i=N+1

where€ is the raw simulation estimator
Remark: Another estimator is
E,=H(L)P(0)

min(T, n)

+ E HU,...,Ui_,L)PU;_1) + (T>n—-1)Q(U,_1)G(Uy,...,Up).

i=2

Rewriting &, as

52 = H(Ll)P(O) + En: I(Tz i)H(Ul,...,Ui_l, Li)P(Ui—l)

i=2
+1(T>n-1)Q(U,_,)G(Uq,,...,U,)
shows that
E[&,|V] = E[EIV] = &,

The preceding shows that althoughis also an unbiased estimat@s variance is
larger than that of;. Its advantagehoweveyis that it stops a simulation run &
which may save quite a bit of computational time and thus offset the increased
variance

The estimato€, can be obtained as follownitially, let Mg = Uy = Ly = 0;
whenM;_,, U;_4, andL;_, have been determingdenerateVl; according to the
transition probabilities of the Markov chain given that the preceding statdvas
If M; € L, let U, = M; and generaté; by letting its distribution be the conditional
distribution of the next state of the Markov chain fra_, given that it is inL. If
M; € L, letL; = M; and end that simulation rumn addition the time efficiency
improvements noted for the estimatrcan also be implemented 6.

In applying the preceding to the barrier simulation moded can let

Mi = 2 X(j),
j=1
L = {m: se€" < v},
H(M,,...,M;) = f(Xy) C(se™, (n— T)/N,K),
9(X1)
G=0.

To implement the methqdat each step we will need to generate normal random
variables conditioned to be either smaller or larger than some wahieh can be
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accomplished by generating a standard normal conditioned to be greater than some
positive valueAn efficient approach for generating a standard normal conditioned
to exceedb > 0 is to use the acceptance rejection technique either with the distri-
bution of an exponential random variable that is conditioned to exbéadd so is
equal tob plus the exponentiabr with the distribution function

G(x) =1—e *P) x>p,

Details are given if6].

3. EFFICIENT SIMULATION OF ASIAN AND LOOKBACK OPTION PRICES

Consider an Asian option whose strike price is the average end-of-day thiat &
if the option expires at the end oftrading daysthen the present value of its payoff

is
pe N — g~ m/N <Sj(n) -3 %)Jr

i=1

+

231(1)
1

= n;1e N\ S (n) —

To estimateE[Pe™"™N], first condition on the data value$,_; = (X(1),...,
X(n —1)) to obtain

N1 E Sd(')
E[Peim/lenfl] = n e "NE Si( ) - —1 an
B n—1 +
L 3 s
= e e "™NE|\Sy(n—1)eX™ — T Xn-1

n—-1 1=
— — "~ a—m/N _ —
—e C(S,(n N ;

) (4)

Hence we can estimat€E[e "™NP] by generatingX,_, to obtain §(1),...,
Si(n — 1), and then using the estimator given by.E4), whereC(s, t,K) is the
Black—Scholes risk neutral call option valuation

This estimator can be improved by first noting that

1 n—1 n—1 Sj(')
C<Sﬁ(n N 2, > <Sd( -1 - .1n—1>
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Hence as a simulation run consists of generatid),..., X(n — 1), independent
normal random variables with medn — %/2)/N and variancer %N, and then
setting

Su(i) = SOV X i=1...,n-1

it follows thatC(Sy(n— 1),1/N, 3" S (i)/(n— 1)) will be large if the latter values
of the sequenc¥(1), X(2),..., X(n — 1) are among the largesind small if the re-
verse is trueConsequentlyone could try a control variable of the typ&—; w; X(i),
where the weightes; are increasing in However a better approach is to let the sim-
ulation itself determine the weightby using all of the variableX (1), X(2),...,
X(n —1) as control variableghat is from each run consider the estimator

C(Sd(n—l),%,tj n&%'i) + i G (xm - w>

The values of the constants, ..., c, can then be determined from the simulation
runs(see[5]). (An important technical point is that because the suggested control
variables are independent random variallesre is not much additional computa-
tion needed to determine the values of the

We also suggest first conditioning of(1), X(2),..., X(n — 1), and then using
these variables as control variables in the lookback optipBsahd 6 of Corollary
1. When the payoff is a convex function &ft), thenS(t) itself can be used as a
control variable

Remark: Another possibility is to use*),i = 1,..., n, rather than theX(i) them-
selvesas the control variates
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