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ADAPTIVE BAYESIAN ESTIMATION
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We consider a nonparametric Bayesian model for conditional densities. The model
is a finite mixture of normal distributions with covariate dependent multinomial logit
mixing probabilities. A prior for the number of mixture components is specified on
positive integers. The marginal distribution of covariates is not modeled. We study
asymptotic frequentist behavior of the posterior in this model. Specifically, we show
that when the true conditional density has a certain smoothness level, then the pos-
terior contraction rate around the truth is equal up to a log factor to the frequentist
minimax rate of estimation. An extension to the case when the covariate space is
unbounded is also established. As our result holds without a priori knowledge of
the smoothness level of the true density, the established posterior contraction rates
are adaptive. Moreover, we show that the rate is not affected by inclusion of irrel-
evant covariates in the model. In Monte Carlo simulations, a version of the model
compares favorably to a cross-validated kernel conditional density estimator.

1. INTRODUCTION

Conditional distributions provide a general way to describe a relationship between
a response variable and covariates. An introduction to classical nonparametric es-
timation of conditional distributions and applications in economics can be found
in Chapters 5–6 of Li and Racine (2007). Applications of flexible Bayesian mod-
els for conditional densities include analysis of financial data and distribution of
earnings in Geweke and Keane (2007), estimation of health expenditures in Keane
and Stavrunova (2011), and analysis of firms leverage data in Villani, Kohn,
and Nott (2012); see also MacEachern (1999), De Iorio, Muller, Rosner, and
MacEachern (2004), Griffin and Steel (2006), Dunson, Pillai, and Park (2007),
Dunson and Park (2008), Villani, Kohn, and Giordani (2009), Chung and Dunson
(2009), Li, Villani, and Kohn (2010), Norets and Pelenis (2012), and Norets and
Pelenis (2014). This literature suggests that the Bayesian approach to nonpara-
metric conditional distribution estimation has several attractive properties. First,
it does not require fixing a bandwidth or similar tuning parameters. Instead, it
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provides estimates of the objects of interest where these tuning parameters are
averaged out with respect to their posterior distribution. Second, the Bayesian
approach naturally provides a measure of uncertainty through the posterior distri-
bution. Third, the Bayesian approach performs well in out-of-sample prediction
and Monte Carlo exercises. The present paper contributes to the literature on the-
oretical properties of these models and provides an explanation for their excellent
performance in applications.

We focus on mixtures of Gaussian densities with covariate dependent mixing
weights and a variable number of mixture components for which a prior on pos-
itive integers is specified. Conditional on the number of mixture components,
we model the mixing weights by a multinomial logit with a common scale pa-
rameter. The marginal distribution of covariates is not modeled. This model is
closely related to mixture-of-experts (Jacobs, Jordan, Nowlan, and Hinton (1991),
Jordan and Xu (1995), Peng, Jacobs, and Tanner (1996), Wood, Jiang, and Tanner
(2002)), also known as smooth mixtures in econometrics (Geweke and Keane
(2007), Villani et al. (2009), Norets (2010)). We study asymptotic frequentist
properties of the posterior distribution in this model.

Understanding frequentist properties of Bayesian nonparametric procedures is
important because frequentist properties, such as posterior consistency and op-
timal contraction rates, guarantee that the prior distribution is not dogmatic in
a precise sense. It is not clear how to formalize this using other approaches,
especially, in high or infinite dimensional settings. There is a considerable lit-
erature on frequentist properties of nonparametric Bayesian density estimation
(Barron, Schervish, and Wasserman (1999), Ghosal, Ghosh, and Ramamoorthi
(1999), Ghosal and van der Vaart (2001), Ghosal, Ghosh, and van der Vaart
(2000), Ghosal and van der Vaart (2007), Huang (2004), Scricciolo (2006),
van der Vaart and van Zanten (2009), Rousseau (2010), Kruijer, Rousseau, and
van der Vaart (2010), Shen, Tokdar, and Ghosal (2013)). There are fewer re-
sults for conditional distribution models in which the distribution of covariates
is left unspecified. Norets (2010) studies approximation bounds in Kullback–
Leibler distance for several classes of conditional density models. Norets and
Pelenis (2014) consider posterior consistency for a slightly more general ver-
sion of the model we consider here and kernel stick breaking mixtures for
conditional densities. Pati, Dunson, and Tokdar (2013) study posterior consis-
tency when mixing probabilities are modeled by transformed Gaussian processes.
Tokdar, Zhu, and Ghosh (2010) show posterior consistency for models based
on logistic Gaussian process priors. Shen and Ghosal (2016) obtain posterior
contraction rates for a compactly supported conditional density model based on
splines.

In this article, we show that under reasonable conditions on the prior, the pos-
terior in our model contracts at an optimal rate up to a logarithmic factor. The
assumed prior distribution does not depend on the smoothness level of the
true conditional density. Thus, the obtained posterior contraction rate is adap-
tive across all smoothness levels. An interpretation of this is that the prior puts
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sufficient amount of weight around conditional densities of all smoothness levels
and, thus, the posterior can concentrate around the true density of any smoothness
nearly as quickly as possible. In this particular sense, the prior is not dogmatic
with regard to smoothness.

Adaptive posterior convergence rates in the context of density estimation are
obtained by Huang (2004), Scricciolo (2006), van der Vaart and van Zanten
(2009), Rousseau (2010), Kruijer et al. (2010), and Shen et al. (2013). If the joint
and conditional densities have the same smoothness, adaptive posterior contrac-
tion rates for multivariate joint densities in van der Vaart and van Zanten (2009)
and Shen et al. (2013) imply adaptive rates for the conditional densities. However,
it is important to note here that when the conditional density is smoother than the
joint density in the sense of Hölder, it is not clear if the optimal adaptive rates
for the conditional density can be achieved with a model for the joint distribution.
A closely related concern, which is occasionally raised by researchers using mix-
tures for modeling a joint multivariate distribution and then extracting conditional
distributions of interest, is that many mixture components might be used primarily
to provide a good fit to the marginal density of covariates and, as a result, the fit
for conditional densities deteriorates (see, for example, Wade, Dunson, Petrone,
and Trippa (2014)). In our settings, this problem does not arise as we put a prior
on the conditional density directly and do not model the marginal density of the
covariates. The resulting convergence rate depends only on the smoothness level
of the conditional density.

An important advantage of estimating the conditional density directly is that
the problem of covariate selection can be easily addressed. We show that in a
version of our model the posterior contraction rate is not affected by the presence
of a fixed number of irrelevant covariates. Also, an application of Bayesian model
averaging to the covariate selection problem delivers posterior contraction rates
that are not affected by irrelevant covariates. Thus, we can say that the posterior
contraction rates we obtain are also adaptive with respect to the dimension of the
relevant covariates.

Our results hold for expected total variation and Hellinger distances for condi-
tional densities, where the expectation is taken with respect to the distribution of
covariates. The use of these distances allows us to easily adapt a general posterior
contraction theorem from Ghosal et al. (2000) to the case of a model for condi-
tional distributions only. An important part of our proof strategy is to recognize
that our model for the conditional density is consistent with a joint density that is
a mixture of multivariate normal distributions so that we can exploit approxima-
tion results for mixtures of multivariate normal distributions obtained in De Jonge
and van Zanten (2010) and Shen et al. (2013). Our entropy calculations improve
considerably the bounds obtained in Norets and Pelenis (2014).

We also evaluate the finite sample performance of our conditional density
model in Monte Carlo simulations. The model performs consistently with the es-
tablished asymptotic properties and compares favorably to a cross-validated ker-
nel conditional density estimator from Hall, Racine, and Li (2004).
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The paper is organized as follows. Section 2 presents the assumptions on the
true conditional density, the proposed prior distributions, and the main theorem
on posterior convergence rates. The prior thickness results are given in Section 3.
Section 4 describes the sieve construction and entropy calculations. An extension
of the results to an unbounded covariate space is considered in Section 5. The
presence of irrelevant covariates is analyzed in Section 6. Section 7 presents re-
sults of Monte Carlo simulations. We conclude with a discussion of the results in
Section 8.

2. MAIN RESULTS

2.1. Notation

Let Y ⊂ R
dy be the response space, X ⊂ R

dx be the covariate space, and Z =
Y×X . Let F denote a space of conditional densities with respect to the Lebesgue
measure,

F =
{

f : Y ×X → [0,∞) - Borel measurable,
∫

f (y|x)dy = 1, ∀x ∈ X
}
.

Suppose (Y n, Xn) = (Y1, X1, . . . ,Yn , Xn) is a random sample from the joint den-
sity f0g0, where f0 ∈ F and g0 is a density on X with respect to the Lebesgue
measure. Let P0 and E0 denote the probability measure and expectation corre-
sponding to f0g0. For f1, f2 ∈ F ,

dh( f1, f2) =
(∫ (√

f1(y|x)−√
f2(y|x)

)2
g0(x)dydx

)1/2

and

d1( f1, f2) =
∫

| f1(y|x)− f2(y|x)|g0(x)dydx

denote analogs of the Hellinger and total variation distances correspondingly.
Also, let us denote the Hellinger distance for the joint densities by dH .

Let us denote the largest integer that is strictly smaller than β by �β	. For
L : Z → [0,∞), τ0 ≥ 0, and β > 0, a class of locally Hölder functions, Cβ,L ,τ0 ,
consists of f : Rd → R such that for k = (k1, . . . ,kd), k1 +·· ·+ kd ≤ �β	, mixed
partial derivative of order k, Dk f , is finite and for k1 +·· ·+kd = �β	 and �z ∈Z ,∣∣∣Dk f (z +�z)− Dk f (z)

∣∣∣≤ L(z)||�z||β−�β	eτ0||�z||2 .

Operator “�” denotes less or equal up to a multiplicative positive constant rela-
tion. J (ε, A,ρ) denotes the ε-covering number of the set A with respect to the
metric ρ. For a finite set A, let |A| denote the cardinality of A. The set of natural
numbers is denoted by N. The m-dimensional simplex is denoted by �m−1. Ik

stands for the k ×k identity matrix. Let φμ,σ denote a multivariate normal density
with mean μ ∈R

k and covariance matrix σ 2 Ik (or a diagonal matrix with squared
elements of σ on the diagonal, when σ is a k-vector).
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2.2. Assumptions About Data Generating Process

First, we assume that f0 ∈ Cβ,L ,τ0. Second, we assume that X = [0,1]dx , except
for Section 5 where we consider possibly unbounded X . Third, g0 is assumed to
be bounded above. Fourth, for all k ≤ �β	 and some ε > 0,∫
Z

∣∣∣∣Dk f0(y|x)

f0(y|x)

∣∣∣∣
(2β+ε)/k

f0(y|x)dydx < ∞,

∫
Z

∣∣∣∣ L(y,x)

f0(y|x)

∣∣∣∣(2β+ε)/β

f0(y|x)dydx < ∞. (2.1)

Finally, for all x ∈ X , all sufficiently large y ∈ Y and some positive (c,b,τ ),

f0(y|x) ≤ c exp(−b||y||τ ). (2.2)

2.3. Prior

The prior, 
, on F is defined by a location mixture of normal densities

p(y|x,θ,m) =
m∑

j=1

αj exp
{
−0.5||x −μx

j ||2/σ 2
}

∑m
i=1 αi exp

{−0.5||x −μx
i ||2/σ 2

}φμ
y
j ,σ (y), (2.3)

and a prior on m ∈ N and θ = (μ
y
j ,μ

x
j ,αj , j = 1,2, . . . ; σ), where μ

y
j ∈ R

dy ,

μx
j ∈ R

dx , αj ∈ [0,1], σ ∈ (0,∞). The covariate dependent mixing weights are
modeled by multinomial logit with restrictions on the coefficients and a common
scale parameter σ . To facilitate simpler notations and shorter proofs, we assume
σ to be the same for all components of (y,x), except for Section 6. Extensions to
component-specific σ ’s, which would result in near optimal posterior contraction
rates for anisotropic f0, can be done along the lines of Section 5 in Shen et al.
(2013).

We assume the following conditions on the prior. For positive constants
a1,a2, . . . ,a9, the prior for σ satisfies



(
σ−2 ≥ s

)
≤ a1 exp{−a2sa3} for all sufficiently large s > 0 (2.4)



(
σ−2 < s

)
≤ a4sa5 for all sufficiently small s > 0 (2.5)



{

s < σ−2 < s(1 + t)
}

≥ a6sa7 ta8 exp
{
−a9s1/2

}
, s > 0, t ∈ (0,1). (2.6)

An example of a prior that satisfies (2.4)–(2.5) is the inverse Gamma prior for
σ . The usual conditionally conjugate inverse Gamma prior for σ 2 satisfies (2.4)
and (2.5), but not (2.6). (2.6) requires the probability to values of σ near 0 to be
higher than the corresponding probability for inverse Gamma prior for σ 2. This
assumption is in line with the previous work on adaptive posterior contraction
rates for mixture models, see Kruijer et al. (2010); Shen and Ghosal (2016). Prior
for (α1, . . . ,αm) given m is Dirichlet(a/m, . . .,a/m), a > 0.
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(m = i) ∝ exp(−a10i(log i)τ1), i = 2,3, . . . , a10 > 0,τ1 ≥ 0. (2.7)

A priori, μj = (
μ

y
j ,μ

x
j

)
’s are independent from other parameters and across j ,

and μ
y
j is independent of μx

j . Prior density for μx
j is bounded away from 0 on

X and equal to 0 elsewhere. Prior density for μ
y
j is bounded below for some

a12,τ2 > 0 by

a11 exp
(
−a12||μy

j ||τ2
)
, (2.8)

and for some a13,τ3 > 0 and all sufficiently large r > 0,

1 −

(
μ

y
j ∈ [−r,r ]dy

)
≤ exp

(−a13r τ3
)
. (2.9)

2.4. Results

To prove the main result, we adapt a general posterior contraction theorem to
the case of conditional densities. We define the Hellinger, total variation, and
Kullback–Leibler distances for conditional distributions as special cases of the
corresponding distances for the joint densities. Therefore, the proof of the fol-
lowing result is essentially the same as the proof of Theorem 2.1 in Ghosal and
van der Vaart (2001) and is omitted here.

THEOREM 2.1. Let εn and ε̃n be positive sequences with ε̃n ≤ εn, εn → 0,
and nε̃2

n → ∞, and c1, c2, c3, and c4 be some positive constants. Let ρ be dh or
d1. Suppose Fn ⊂ F is a sieve with the following bound on the metric entropy
J (εn,Fn,ρ)

log J (εn,Fn,ρ) ≤ c1nε2
n , (2.10)


(Fc
n ) ≤ c3 exp

{
−(c2 + 4)nε̃2

n

}
, (2.11)

and for a generalized Kullback–Leibler neighborhood

K( f0,ε) =
{

f :
∫

f0g0 log( f0/ f ) < ε2,

∫
f0g0[log( f0/ f )]2 < ε2

}
,


(K( f0, ε̃n)) ≥ c4 exp
{
−c2nε̃2

n

}
. (2.12)

Then, there exists M > 0 such that



(

f : ρ( f, f0) > Mεn |Y n, Xn) Pn
0→ 0.

Let us briefly discuss the assumptions of the theorem and their role in the proof.
Condition (2.10) controls the size of the sieve Fn measured by the metric entropy.
The left (right) hand side of the condition increases (decreases) as εn decreases
and, thus, the condition provides a lower bound for the smallest posterior con-
traction rate the theorem can deliver. The condition implies the existence of a test
φn of f = f0 against { f ∈ Fn : ρ( f, f0) > Mεn} with appropriately decreasing
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errors of both types. This test is used in the proof to bound the expectation of the
integrand in the numerator of



(

f : ρ( f, f0) > Mεn |Y n, Xn)
=
∫

f :ρ( f, f0)>Mεn

∏
i f (Yi |Xi )/ f0(Yi |Xi )d
( f )∫ ∏

i f (Yi |Xi )/ f0(Yi |Xi )d
( f )
(2.13)

multiplied by (1 − φn) for f ∈ Fn . A bound for the the remaining part of the
numerator, where f /∈ Fn , is obtained from condition (2.11). Condition (2.12)
requires the prior to put sufficient probability on the Kullback–Leibler neighbor-
hoods of the true density. The left (right) hand side of the condition decreases
(increases) as ε̃n decreases and, thus, the condition provides a lower bound for
the smallest contraction rate. In the proof of the theorem, (2.12) is used to show
that the denominator in (2.13) has an appropriate lower bound with probability
converging to 1.

Ghosal et al. (2000), who originally introduced a slightly more restrictive ver-
sion of the theorem with εn = ε̃n , argue that the theorem requires the prior to
spread the mass on the model space almost “uniformly” in the following sense:
Suppose all the distances are equivalent and Fn = F so that (2.11) holds; then,
(2.10) implies that the model space can be covered by exp(c1nε2

n ) balls of ra-
dius εn and (2.12) requires the probability of each ball to be comparable to
exp(−c1nε2

n ). We refer the reader to Ghosal et al. (2000) for a further discussion.

THEOREM 2.2. Under the assumptions in Sections 2.2 and 2.3, the sufficient
conditions of Theorem 2.1 hold with

εn = n−β/(2β+d)(logn)t ,

where t > t0 + max{0,(1 − τ1)/2}, t0 = (ds + max{τ1,1,τ2/τ })/(2 + d/β), d =
dy + dx, and s = 1 + 1/β + 1/τ .

The proof of the theorem is divided into two main parts. First, we establish the
prior thickness condition (2.12) in Theorem 3.1. Then, the conditions on the sieve
are established in Theorems 4.1 and 4.2.

3. PRIOR THICKNESS

The prior thickness condition is formally proved in Theorem 3.1. Let us briefly
describe the main steps of the proof placing it in the context of the previous lit-
erature. First, we recognize that the covariate dependent mixture defined in (2.3)
is consistent with the following mixture of normals for the joint distribution of
(y,x),

p(y,x |θ,m) =
m∑

j=1

αj φμj ,σ (y,x), (3.1)

where μj = (
μ

y
j ,μ

x
j

)
.
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Second, we bound the Hellinger distance between conditional densities f0(y|x)
and p(y|x,θ,m) by a distance between the joint densities f0(y|x)u(x) and
p(y,x |θ,m), where u(x) is a uniform density on X . It is important to note that
f0(y|x)u(x) has the same smoothness level as f0(y|x).

Third, we obtain a suitable approximation for the joint distribution f0(y|x)u(x)
by mixtures p(y,x |θ,m) using modified results from Shen et al. (2013). The idea
of the approximation argument is introduced in Rousseau (2010) in the context of
approximation of a univariate density by mixtures of beta densities. Kruijer et al.
(2010) use this idea for obtaining approximation results for mixtures of univariate
normal densities. De Jonge and van Zanten (2010) extend the idea to approxima-
tion of multivariate functions, but the functions they approximate are not neces-
sarily densities and their weights αj ’s could be negative. Shen et al. (2013) use
the same techniques with an additional step to approximate multivariate densities
by mixtures with αj ’s belonging to a simplex. It is not clear whether the mixing
weights they obtain are actually non-negative. In Lemma A.3 in the appendix,
we state a modified version of their Theorem 3 that ensures non-negativity of the
weights. With a suitable approximation at hand, verification of condition (2.12)
proceeds along the lines of similar results in Ghosal and van der Vaart (2001),
Ghosal and van der Vaart (2007), Kruijer et al. (2010), and, especially, Shen et al.
(2013), with modifications necessary to handle the case of conditional distribu-
tions.

THEOREM 3.1. Suppose the assumptions from Sections 2.2 and 2.3 hold.
Then, for any C > 0 and all sufficiently large n,


(K( f0, ε̃n)) ≥ exp
{
−Cnε̃2

n

}
, (3.2)

where ε̃n = n−β/(2β+d)(logn)t , t > (ds + max{τ1,1,τ2/τ })/(2 + d/β), s = 1 +
1/β + 1/τ , and (τ,τ1,τ2) are defined in Sections 2.2 and 2.3.

Proof. By Lemma A.1, for p(·|·,θ,m) defined in (3.1),

d2
h ( f0, p(·|·,θ,m)) =

∫ (√
f0(y|x)−√

p(y|x,θ,m)
)2

g0(x)dydx

≤ C1

∫ (√
f0(y|x)u(x)−√

p(y,x |θ,m)
)2

d(y,x)

= C1d2
H ( f0u, p(·|θ,m)), (3.3)

where u(x) is a uniform density on X .
For σn = [ε̃n/ log(1/ε̃n)]1/β , ε defined in (2.1), a sufficiently small δ > 0, b and

τ defined in (2.2), a0 = {(8β + 4ε + 16)/(bδ)}1/τ , aσn = a0{log(1/σn)}1/τ , and
b1 > max{1,1/2β} satisfying ε̃

b1
n {log(1/ε̃n)}5/4 ≤ ε̃n , the proof of Theorem 4 in

Shen et al. (2013) implies the following three claims. First, there exists a partition
of {z ∈ Z : ||z|| ≤ aσn}, {Uj , j = 1, . . . , K } such that for j = 1, . . . , N , Uj is a ball

with diameter σn ε̃
2b1
n and center zj = (xj , yj ); for j = N + 1, . . . , K , Uj is a set
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with a diameter bounded above by σn ; 1 ≤ N < K ≤ C2σ
−d
n {log(1/ε̃n)}d+d/τ ,

where C2 > 0 does not depend on n. Second, there exist θ� = {μ�
j ,α

�
j , j =

1,2, . . . ; σn} with α�
j = 0 for j > N , μ�

j = zj for j = 1, . . . , N , and μ�
j ∈ Uj for

j = N + 1, . . . , K such that for m = K and a positive constant C3,

dH ( f0u, p(·|θ�,m)) ≤ C3σ
β
n . (3.4)

Third, there exists constant B0 > 0 such that

P0(‖z‖ > aσn) ≤ B0σ
4β+2ε+8
n . (3.5)

For θ in set

Sθ� =
{
(μj ,αj , j = 1,2, . . . ; σ) : μj ∈ Uj , j = 1, . . . , K ,

K∑
j=1

∣∣∣αj −α�
j

∣∣∣≤ 2ε̃2db1
n , min

j=1,...,K
αj ≥ ε̃4db1

n /2,σ 2 ∈
[
σ 2

n /
(

1 +σ 2β
n

)
,σ 2

n

]}
,

we have

d2
H (p(·|θ�,m), p(·|θ,m)) ≤

∥∥∥∥∥∥
K∑

j=1

α�
j φμ�

j ,σn −
K∑

j=1

αjφμj ,σ

∥∥∥∥∥∥
1

≤
K∑

j=1

∣∣∣α�
j −αj

∣∣∣
+

N∑
j=1

α�
j

[∥∥∥φμ�
j ,σn −φμj ,σn

∥∥∥
1
+∥∥φμj ,σn −φμj ,σ

∥∥
1

]
.

For j = 1, . . . , N ,
∥∥∥φμ�

j ,σn −φμj ,σn

∥∥∥
1
≤
∥∥∥μ�

j −μj

∥∥∥/σn ≤ ε̃
2b1
n . Also,

∥∥φμj ,σn −φμj ,σ

∥∥
1
≤√

d/2

∣∣∣∣∣σ
2
n

σ 2
− 1 − log

σ 2
n

σ 2

∣∣∣∣∣
1/2

≤ C4
√

d/2

∣∣∣∣∣σ
2
n

σ 2
− 1

∣∣∣∣∣� σ 2β
n , (3.6)

where the penultimate inequality follows from the fact that |log x − x + 1| ≤
C4 |x − 1|2 for x in a neighborhood of 1 and some C4 > 0. Hence,
dH (p(·|θ,m), p(·|θ�,m)) � σ

β
n and, by (3.3), (3.4) and the triangle inequality,

dh( f0, p(·|·,θ,m)) ≤ C5σ
β
n for some C5 > 0, all θ ∈ Sθ� , and m = K .

Next, for θ ∈ Sθ� , let us consider a lower bound on the ratio
p(y|x,θ,m)/ f0(y|x). Note that supy,x f0(y|x) < ∞ and p(y|x,θ,m) ≥
σ dx p(y,x |θ,m). For z ∈ Z with ‖z‖ ≤ aσn , there exists J ≤ K for which
||z −μJ || ≤ σn . Thus, for all sufficiently large n such that σ 2

n /σ 2 ≤ 2, p(z|θ,m) ≥
minj αj ·φμJ ,σ (z) ≥ [ε̃4db1

n /2] ·σ−d
n e−1/(2π)d/2 and
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p(y|x,θ,m)

f0(y|x)
≥ C6ε̃

4db1
n σ

−dy
n , for some C6 > 0. (3.7)

For z ∈ Z with ‖z‖ > aσn ,
∥∥z −μj

∥∥2 ≤ 2(‖z‖2 + ‖μ‖2) ≤ 4‖z‖2

for all j = 1, . . . , K . Thus, for all sufficiently large n, p(z|θ,m) ≥
σ−d

n exp(−4‖z‖2 /σ 2
n )/(2π)d/2 and

p(y|x,θ,m)

f0(y|x)
≥ C7σ

−dy
n exp

(
−4‖z‖2 /σ 2

n

)
, for some C7 > 0.

Denote the lower bound in (3.7) by λn and consider all sufficiently large n such
that λn < e−1. For any θ ∈ Sθ� ,

∫ (
log

f0(y|x)

p(y|x,θ,m)

)2

1

{
p(y|x,θ,m)

f0(y|x)
< λn

}
f0(y|x)g0(x)dydx

=
∫ (

log
f0(y|x)

p(y|x,θ,m)

)2

1

{
p(y|x,θ,m)

f0(y|x)
< λn, ||(y,x)|| > aσn

}
f0(y|x)g0(x)dydx

≤ 4

σ 4
n

∫
‖z‖>aσn

‖z‖4 f0g0dz ≤ 4

σ 4
n

E0(‖Z‖8)1/2(P0(‖Z‖ > aσn ))
1/2 ≤ C8σ

2β+ε
n

for some constant C8. The last inequality follows from (3.5) and tail condition in
(2.2). Also note that

log
f0(y|x)

p(y|x,θ,m)
1

{
p(y|x,θ,m)

f0(y|x)
< λn

}

≤
{

log
f0(y|x)

p(y|x,θ,m)

}2

1

{
p(y|x,θ,m)

f0(y|x)
< λn

}

and, thus,∫
log

f0(y|x)

p(y|x,θ,m)
1

{
p(y|x,θ,m)

f0(y|x)
< λn

}
f0g0dz ≤ C8σ

2β+ε
n .

By Lemma A.4, both E0(log( f0(Y |X)/p(Y |X,θ,m))) and
E0
(
[log( f0(Y |X)/p(Y |X,θ,m))]2

)
are bounded by C9 log(1/λn)

2σ
2β
n ≤ Aε̃2

n for
some constant A.

Finally, we calculate a lower bound on the prior probability of m = K and
{θ ∈ Sθ�}. By (2.7), for some C10 > 0,


(m = K ) ∝ exp
[−a10K (log K )τ1

]
≥ exp

[
−C10ε̃

−d/β
n {log(1/ε̃n)}d+d/β+d/τ+τ1

]
. (3.8)

From Lemma 10 of Ghosal and van der Vaart (2007), for some constants
C11,C12 > 0 and all sufficiently large n,
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⎛
⎝ K∑

j=1

∣∣∣αj −α�
j

∣∣∣≥ 2ε̃2db1
n , min

j=1,...,K
αj ≥ ε̃4db1

n /2

∣∣∣∣m = K

⎞
⎠

≥ exp
[−C11 K log(1/ε̃n)

]
≥ exp

[
−C12ε̃

−d/β
n {log(1/ε̃n)}d/β+d/τ+d+1

]
. (3.9)

For πμ denoting the prior density of μ
y
j and some C13,C14 > 0, (2.8) implies


(μj ∈ Uj , j = 1, . . . , N)

≥
{

C13πμ(aσ )diam(U1)
d
}N

≥ exp
[
−C14ε̃

−d/β
n {log(1/ε̃n)}d+d/β+d/τ+max{1,τ2/τ }] . (3.10)

Assumption (2.6) on the prior for σ , implies



(
σ−2 ∈

{
σ−2

n ,σ−2
n

(
1 +σ 2β

n

)})
≥ a8σ

−2a7
n σ 2βa8

n exp
{
−a9σ

−1
n

}
≥ exp

{
−C15σ

−1
n

}
. (3.11)

It follows from (3.8)–(3.11), that for all sufficiently large n, s = 1 + 1/β + 1/τ ,
and some C16 > 0


(K( f0, Aε̃n)) ≥ 
(m = N,θp ∈ Sθp )

≥ exp
[
−C16ε̃

−d/β
n

{
log(1/ε̃n)

}ds+max{τ1,1,τ2/τ }]
.

The last expression of the above display is bounded below by exp
{− Cnε̃2

n

}
for

any C > 0, ε̃n = n−β/(2β+d)(logn)t , any t > (ds + max{τ1,1,τ2/τ })/(2 + d/β),
and all sufficiently large n. Since the inequality in the definition of t is strict, the
claim of the theorem follows immediately. �

4. SIEVE CONSTRUCTION AND ENTROPY BOUNDS

For H ∈ N, 0 < σ < σ , and μ,α > 0, let us define a sieve

F = {p(y|x,θ,m) : m ≤ H, αj ≥ α,

σ ∈ [σ,σ ],μy
j ∈ [−μ,μ]dy , j = 1, . . . ,m}. (4.1)

In the following theorem, we bound the covering number of F in norm

dSS( f1, f2) = sup
x∈X

‖ f1(y|x)− f2(y|x)‖1 .
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THEOREM 4.1. For 0 < ε < 1 and σ ≤ 1,

J (ε,F ,dSS) ≤H ·
⌈

16μdy

σε

⌉Hdy

·
⌈

48dx

σ 2ε

⌉Hdx

· H

⌈
log(α−1)

log(1 + ε/[12H ])

⌉H−1

·
⌈

log(σ/σ)

log(1 +σ2ε/[48max{dx,dy}])
⌉

.

For α ≤ 1/2, all sufficiently large H , large σ and small σ ,


(Fc) ≤H 2 exp{−a13μ
τ3}+ H 2αa/H + exp{−a10H (log H )τ1}

+ a1 exp{−a2σ
−2a3}+ a4 exp{−2a5 logσ }.

Proof. We will start with the first assertion. Fix a value of m. Define set Sm
μy

to contain centers of |Sm
μy | = �16μdy/(σε)� equal length intervals partitioning

[−μ,μ]. Similarly, define set Sm
μx to contain centers of |Sm

μx | = �48dx/
(
σ 2ε

)�
equal length intervals partitioning [0,1].

For Nα = �log
(
α−1

)
/ log(1 + ε/(12m))�, define

Qα = {γj , j = 1, . . . , Nα : γ1 = α, (γj+1 −γj )/γj = ε/(12m), j = 1, . . . , Nα −1}
and note that for any γ ∈ [α,1] there exists j ≤ Nα such that 0 ≤ (γ −γj )/γj ≤
ε/(12m). Let Sm

α = {(α̃1, . . . , α̃m ) ∈ �m−1 : α̃jk ∈ Qα, 1 ≤ j1 < j2 < · · · < jm−1 ≤
m}. Note that |Sm

α | ≤ m(Nα)m−1. Let us consider an arbitrary α ∈ �m−1. Since Sm
α

is permutation invariant, we can assume without loss of generality that αm ≥ 1/m.
By definition of Sm

α , there exists α̃ ∈ Sm
α such that 0 ≤ (αj − α̃j )/α̃j ≤ ε/(12m)

for j = 1, . . . ,m − 1. Also,

|αm − α̃m |
min(αm, α̃m )

= |αm − α̃m |
αm

=
∑m−1

j=1 α̃j (αj − α̃j )/α̃j

αm
≤ ε

12
.

Define Sσ = {σ l ,l = 1, . . . , Nσ = �log(σ /σ)/(log(1 +σ2ε/(48max{dx ,dy})�,
σ 1 = σ,(σ l+1 −σ l)/σ l = σ 2ε/(48max{dx,dy})}. Then |Sσ | = Nσ .

Below we show that

SF = {p(y|x,θ,m) : m ≤ H, α ∈ Sm
α , σ ∈ Sσ ,

μx
j l ∈ Sm

μx , μ
y
jk ∈ Sm

μy , j ≤ m, l ≤ dx , k ≤ dy}
provides an ε-net for F in dSS. Fix p(y|x,θ,m) ∈ F for some m ≤ H,α ∈ �m−1

with αj ≥ α, μx ∈ [0,1]dx , μy ∈ [−μ,μ]dy and σ ∈ [σ,σ ] with σ l ≤ σ ≤ σ l+1.
Find α̃ ∈ Sm

α , μ̃x
j l ∈ Sm

μx , μ̃y
jk ∈ Sm

μy , and σ̃ = σl ∈ Sσ such that for all j = 1, . . . ,m,
k = 1, . . . ,dy , and l = 1, . . . ,dx

|μy
jk − μ̃

y
jk | ≤

σε

16dy
, |μx

j l − μ̃x
j l| ≤

σ 2ε

96dx
,

αj − α̃j

αj
≤ ε

12
,

|σ − σ̃ |
σ

≤ σ 2ε

48max{dx ,dy} .

Let Kj = exp{−0.5||x −μx
j ||2/σ 2}. The proof of Proposition 3.1 in Norets and

Pelenis (2014) implies the following inequality for any x ∈ X 1

https://doi.org/10.1017/S0266466616000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000220


992 ANDRIY NORETS AND DEBDEEP PATI∫
|p(y|x, θ,m)− p(y|x, θ̃,m)|dy ≤ 2 max

j=1,...,m
||φμ

y
j ,σ −φμ̃

y
j ,σ̃

||1

+ 2

(∑m
j=1 αj |Kj − K̃ j |∑m

j=1 αj Kj
+
∑m

j=1 K̃ j |αj − α̃j |∑m
j=1 αj Kj

)
.

It is easy to see that

||φμ
y
j ,σ −φμ̃

y
j ,σ̃

||1 ≤ 2

dy∑
k=1

{ |μy
jk − μ̃

y
jk|

σ ∧ σ̃
+ |σ − σ̃ |

σ ∧ σ̃

}
≤ ε

4
.

Also,∑m
j=1 αj |Kj − K̃ j |∑m

j=1 αj Kj
+
∑m

j=1 K̃ j |αj − α̃j |∑m
j=1 αj Kj

≤ max
j

|Kj − K̃ j |
Kj

+ max
j

|αj − α̃j |
αj

+ max
j

|Kj − K̃ j ||αj − α̃j |
αj Kj

.

Since |αj − α̃j |/αj ≤ ε/12 and ε < 1, the above display is bounded by ε/4 if we
can show |Kj − K̃ j |/Kj ≤ ε/12. Observe that∣∣∣∣∣
||x −μx

j ||2
2σ 2

− ||x − μ̃x
j ||2

2σ̃ 2

∣∣∣∣∣
≤ 1

2

∣∣∣∣ 1

σ 2 − 1

σ̃ 2

∣∣∣∣
∥∥∥x −μx

j

∥∥∥2 + 1

2σ̃ 2

∣∣∣∣
∥∥∥x −μx

j

∥∥∥2 −
∥∥∥x − μ̃x

j

∥∥∥2
∣∣∣∣

≤ ||x −μx
j ||2 |(σ − σ̃ )/σ |

σ 2
+

||μx
j − μ̃x

j ||
(

2||x ||+ ||μx
j ||+ ||μ̃x

j ||
)

2σ 2

≤ ε

48
+ ε

48
= ε

24
, (4.2)

where the penultimate inequality follows from ||x −μx
j ||2 ≤ dx , 2||x ||+ ||μx

j ||+
||μ̃x

j || ≤ 4d1/2
x , and ||μx

j − μ̃x
j || ≤ d1/2

x maxl |μx
j l − μ̃x

j l|. Now since |1−ex| < 2|x |
for |x | < 1,∣∣∣Kj − K̃ j

∣∣∣
Kj

=
∣∣∣∣∣1 − exp

{ ||x −μx
j ||2

2σ 2
− ||x − μ̃x

j ||2
2σ̃ 2

}∣∣∣∣∣ (4.3)

≤ 2

∣∣∣∣∣
||x −μx

j ||2
2σ 2

− ||x − μ̃x
j ||2

2σ̃ 2

∣∣∣∣∣≤ ε

12
.

This concludes the proof for the covering number.
Next, let us obtain an upper bound for 
(Fc). From the assumptions in

Section 2.3,
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(∃ j ∈ {1, . . . ,m}, s.t.μy
j ∈ [−μ,μ]dy ) ≤ m exp(−a13μ

τ3).

For all sufficiently large H ,


(m > H )= C1

∞∑
i=H+1

e−a10i(log i)τ1 ≤ C1

∫ ∞

H
e−a10r(log H)τ1 dr ≤ e−a10 H(log H)τ1

.

Observe that αj |m ∼ Beta(a/m,a(m − 1)/m). Considering separately a(m −
1)/m −1 < 0 and a(m −1)/m −1 ≥ 0, it is easy to see that (1−q)a(m−1)/m−1 ≤ 2
for any q ∈ [0,α] and α ≤ 1/2. Thus,


(αj < α|m) = �(a)

�(a/m)�(a(m − 1)/m)

∫ α

0
qa/m−1(1 − q)a(m−1)/m−1dq

≤ �(a)

�(a/m)�(a(m − 1)/m)
2
∫ α

0
qa/m−1dq

= �(a)2αa/m

�(a/m + 1)�(a(m − 1)/m)
≤ e22�(a + 1)αa/m = C(a)αa/m, (4.4)

where the final inequality is implied by the following facts: �(a/m +
1) ≥ ∫∞

1 qa/me−qdq ≥ e−1 and �(a(m − 1)/m) ≥ ∫ 1
0 qa(m−1)/m−1e−qdq ≥

me−1/a(m − 1).
Consider 
(σ /∈ [σ,σ ]) = 
(σ−1 ≥ σ−1) + 
(σ−1 ≤ σ−1). Since the prior

for σ satisfies (2.4) and (2.5), for sufficiently large σ and small σ


(σ−1 ≥ σ−1) ≤ a1 exp
{− a2σ

−2a3
}
,


(σ−1 ≤ σ −1) ≤ a4σ
−2a5 = a4 exp{−2a5 logσ }. (4.5)

Now observe that


(Fc) ≤ 

(
∃m ≤ H, ∃ j ≤ m, s.t.μy

j /∈ {[−μ,μ]dy }c
)

+
(m > H )

+ 
(σ /∈ [σ,σ ])+

(∃m ≤ H,∃ j ≤ m, s.t.αj < α

∣∣m)
≤

H∑
m=1

m

(
μ

y
j /∈ {[−μ,μ]dy }c

)

+
H∑

m=1

m
(αj < α|m)+
(m > H )+
(σ /∈ [σ,σ ])

≤ H (H + 1)

2
exp{−a13μ

τ3}+ H (H + 1)

2
C(a)αa/H

+ exp{−0.5a10H (log H )τ1}+
(σ /∈ [σ,σ ])

≤ H 2 exp{−a13μ
τ3}+ H 2αa/H

+ exp{−a10H (log H )τ1}+
(σ /∈ [σ,σ ]). �

THEOREM 4.2. For n ≥ 1, let εn = n−β/(2β+d)(logn)t , ε̃n =
n−β/(2β+d)(logn)t0 for t0 > (ds + max{τ1,1,τ2/τ })/(2 + d/β) and define
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Fn as in (4.1) with ε = εn, H = nε2
n/(logn), α = e−nH , σ = n−1/(2a3), σ = en,

and μ = n1/τ3 . Then for all t > t0 + max{0,(1 − τ1)/2}, and some constants
c1,c3 > 0 and every c2 > 0, Fn satisfies (2.10) and (2.11) for all large n.

Proof. Since d1 ≤ dSS and dh ≤ d2
1 , Theorem 4.1 implies

log J (εn,Fn,ρ) ≤ c1 H logn = c1nε2
n .

Also,


(Fc
n ) ≤ H 2 exp{−a13n}+ H 2 exp{−an}+ exp{−a10H (log H )τ1}

+ a1 exp{−a2n}+ a4 exp{−2a5n}.
Hence, 
(Fc

n ) ≤ e−(c2+4)nε̃2
n for any c2 if ε2

n(logn)τ1−1/ε̃2
n → ∞, which holds

for t > t0 + max{0,(1 − τ1)/2}. �

5. UNBOUNDED COVARIATE SPACE

The assumption of bounded covariate space X in Section 2 could be restrictive
in some applications. In this section, we consider a generalization of our result
to the case when the covariate space is possibly unbounded. We re-formulate the
assumptions on the data generating process and the prior distributions below.

5.1. Assumptions About Data Generating Process

Let X ⊂R
dx . First, let us assume that there exist a constant η > 0 and a probability

density function ḡ0(x) with respect to the Lebesgue measure such that ηḡ0(x) ≥
g0(x) for all x ∈ X and f̃0(y,x) = f0(y|x)ḡ0(x) ∈ Cβ,L ,τ0. Second, we assume
g0 satisfies∫

eκ‖x‖2
g0(x)dx ≤ B < ∞ (5.1)

for some constant κ > 0. Third, f̃0(y,x) is assumed to satisfy

∫
Z

∣∣∣∣∣Dk f̃0(y,x)

f̃0(y,x)

∣∣∣∣∣
(2β+ε)/k

f̃0(y,x)dydx < ∞,

∫
Z

∣∣∣∣ L(y,x)

f̃0(y,x)

∣∣∣∣(2β+ε)/β

f̃0(y,x)dydx < ∞ (5.2)

for all k ≤ �β	 and some ε > 0. Finally, for all sufficiently large (y,x) ∈ Y ×X
and some positive (c,b,τ ),

f̃0(y,x) ≤ c exp(−b||(y,x)||τ ). (5.3)

Let us elaborate on how the above assumptions allow for f0 of smoothness
level β. First of all, the original assumptions on the data generating process for
the boundedX are a special case of the assumptions here with ḡ0 being a uniform
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density on X . Second, when covariate density g0 has a higher smoothness level
than β and ḡ0 = g0, the assumption f̃0 ∈ Cβ,L ,τ0 essentially restricts the smooth-
ness of f0 only. Finally, when g0 has a lower smoothness level than β, then our
assumptions require existence of a sufficiently smooth and well behaved upper
bound on g0 in addition to f0 having smoothness level β.

5.2. Prior

The assumption on the prior for μx
j is the only part of the prior from Section 2.3

that we need to modify here. Similarly to the prior on μ
y
j , we assume that the prior

density for μx
j is bounded below for some a14,a15,τ4 > 0 by

a14 exp
(
−a15||μx

j ||τ4
)
,

and for some a16,τ5 > 0 and all sufficiently large r > 0,

1 −

(
μx

j ∈ [−r,r ]dx
)

≥ exp
(−a16r τ5

)
.

COROLLARY 5.1. Under the assumptions in Sections 5.1 and 5.2, the poste-
rior contracts at the rate specified in Theorem 2.2.

Proof. We will first show that an analog of the prior thickness result from The-
orem 3.1 holds with the same choice of ε̃n . By Corollary A.2 in the appendix, for
p(·|·,θ,m) defined in (3.1),

d2
h ( f0, p(·|·,θ,m)) ≤ C1d2

H ( f0 ḡ0, p(·|θ,m)). (5.4)

Since the joint density f0 ḡ0 satisfies the assumptions of Theorem 4 in Shen et al.
(2013), the rest of the proof of the prior thickness result is exactly the same as the
proof of Theorem 3.1 except for πμ in (3.10) would now denote the joint prior
density of

(
μ

y
j ,μ

x
j

)
.

Next, we will construct an appropriate sieve. For sequences α,μ,μx , H,σ ,σ
to be chosen later, define:

F = {p(y|x,θ,m) : m ≤ H, αj ≥ α, σ ∈ [σ,σ ],

μ
y
j ∈ [−μ,μ]dy ,μx

j ∈ [−μx ,μx ]dx , j = 1, . . . ,m}.
The choice of SF , an ε-net of F is the same as in the proof of Theorem
4.1 with the following modifications. Sm

μx now contains centers of |Sm
μx | =

�192dx(μ
x)2/(σ 2ε)� equal length intervals partitioning [−μx ,μx ]. We also need

an adjustment to Sσ here:

Sσ =
{
σ l ,l = 1, . . . , Nσ =

⌈
log(σ/σ)/

(
log

(
1+σ 2ε/

(
384

(
μx)2 max{dx ,dy}

)⌉
,σ 1 = σ,

(σ l+1 −σ l )/σ l = σ 2ε/
(

384
(
μx )2 max{dx ,dy}

)}
.

Since we are dealing with possibly unbounded X here, we will find the
covering number of F in d1 instead of dSS. The only part different from
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the proof of Theorem 4.1 is the treatment of
∣∣∣Kj − K̃ j

∣∣∣/Kj . To show that∫ ∣∣∣Kj − K̃ j

∣∣∣/Kj g0(x)dx ≤ ε/12, we divide the range of integration into two

parts: X1 = {x ∈ X : |xl | ≤ μx , l = 1, . . . ,dx } and X \X1.
For x ∈ X1, the same argument as in the bounded covariate space (inequal-

ities in (4.2) and (4.3)) combined with ‖x‖ ≤ d1/2
x μx , ||x − μx

j ||2 ≤ 4(μx )2dx ,

2||x || + ||μx
j || + ||μ̃x

j || ≤ 4μxd1/2
x , |σ − σ̃ |/σ ≤ σ 2ε/(384(μx )2dx) and |μj l −

μ̃j l | ≤ εσ 2/(192dxμ
x) imply

∣∣∣Kj − K̃ j

∣∣∣/Kj ≤ ε/24.

For x ∈ X \X1, the left hand side of (4.2) is bounded above by(
2||x ||2 + 2||μx

j ||2
)
ε/
(

384(μx)2dx

)
+
(
||x ||+ d1/2

x μx
)

d1/2
x ε/(192μxdx) (5.5)

≤ ε/96 +||x ||2ε/
(

192(μx )2dx

)
+||x ||ε/

(
192μxd1/2

x

)
(5.6)

≤ ε/96 +||x ||2ε/
(

96μxd1/2
x

)
, (5.7)

where the last inequality holds for μx ≥ 1 as ||x || ≥ μx for x ∈ X \X1. Since
|1 − er | ≤ e|r | for all r ∈ R,∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣≤ exp

(
ε

96
+ ε ‖x‖2

96d1/2
x μx

)
, ∀x ∈ X \X1.

Now,∫ ∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx ≤
∫
X1

∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx +
∫
X \X1

∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx

≤ ε

24
+ exp

(
ε

96

)∫
X \X1

exp

(
ε ‖x‖2

96d1/2
x μx

)
g0(x)dx

≤ ε

24
+ exp

(
ε

96

)∫
X \X1

exp
(−κε ‖x‖2 )exp

(
κ ‖x‖2

)
g0(x)dx ,

where κε = κ − ε/(96d1/2
x μx) ≥ κ/2 for small ε and large μx . Since ‖x‖ ≥ μx in

X \X1, we have∫ ∣∣∣∣∣ Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx ≤ ε

24
+exp

(
ε

96

)
exp

(−κ(μx )2/2
)∫

X \X1

exp
(
κ ‖x‖2 )g0(x)dx

≤ ε

24
+ B exp

(
ε

96

)
exp

(−κ(μx )2/2
)
,

where B is defined in (5.1). For (μx)2 ≥ −(2/κ) log{εe−ε/96/24B},∫ ∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx ≤ ε

12
.

Hence for (μx )2 ≥ −(2/κ) log{εe−ε/96/24B}, following the proof of Theorem
4.1 we obtain,
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J (ε,F ,d1) ≤ H ·
⌈

16μdy

σε

⌉Hdy

·
⌈
192dx(μ

x)2

σ 2ε

⌉Hdx

· H

⌈
log(α−1)

log(1 + ε/[12H ])

⌉H−1

·
⌈

log(σ/σ)

log(1 +σ 2ε/[384(μx )2 max{dx ,dy}])
⌉

.

Observe that 
(Fc) is bounded above by

H 2 exp{−a13μ
τ3}+ H 2 exp{−a16(μ

x)τ5}+ H 2αa/H

+ exp{−a10H (log H )τ1}+
(σ /∈ [σ,σ ]).

The rest of the proof follows the argument in the proof of Theorem 4.2 with the
same sequences and μx = n1/τ5 . �

6. IRRELEVANT COVARIATES

In applications, researchers often tackle the problem of selecting a set of relevant
covariates for regression or conditional distribution estimation. In the Bayesian
framework, this is usually achieved by introducing latent indicator variables for
inclusion of covariates in the model, see, for example, Bhattacharya, Pati, and
Dunson (2014), Shen and Ghosal (2016), Yang and Tokdar (2015). This is equiv-
alent to a Bayesian model averaging procedure, where every possible subset of
covariates represents a model. It is straightforward to extend the results of the
previous sections to a model with latent indicator variables for covariate inclusion
and show that the posterior contraction rate will not be affected by the irrelevant
covariates. In this section, we show that even without introduction of the indica-
tor variables, irrelevant covariates do not affect the posterior contraction rate in a
version of our model with component specific scale parameters.

Let θ = {
μ

y
j ,μ

x
j ,αj , j = 1,2, . . . ; σ y = (

σ
y
1 , . . . ,σ

y
dy

)
,σ x = (

σ x
1 , . . . ,σ x

dx

)}
and

p(y|x,θ,m) =
m∑

j=1

αj exp

{
−0.5

∑
k

(
xk −μx

jk

)2
/
(
σ x

k

)2
}

∑m
i=1 αi exp

{
−0.5

∑
k

(
xk −μx

ik

)2
/
(
σ x

k

)2}φμ
y
j ,σ y (y).

Suppose f0 depends only on the first d0
x < dx covariates x1d0

x
= (x1, . . . ,xd0

x
)

with the marginal density g1d0
x
. Let us assume conditions (5.1)–(5.3) from Section

5.1 with the following change in the definition of f̃0: for η > 0 and a probabil-
ity density function ḡ1d0

x
(x1d0

x
) with respect to the Lebesgue measure such that

ηḡ1d0
x
(x1d0

x
) ≥ g1d0

x
(x1d0

x
) for all x ∈ X and f̃0(y,x1d0

x
) = f0(y|x1d0

x
)ḡ1d0

x
(x1d0

x
) ∈

Cβ,L ,τ0 . In addition, let us assume that the tail condition (5.3) holds for f0g0.
For l = 1, . . . ,dy and k = 1, . . . ,dx , σ

y
l and σ x

k are assumed to be independent
a priori with densities satisfying (2.4)–(2.6). Other parts of the prior are assumed
to be the same as in Section 5.2.

Let us briefly explain why we introduce component specific scale parameters.
Our proof of the following corollary exploits the fact that when μx

jk = 0 for k > d0
x
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and all j , covariates xk for k > d0
x do not enter the model, and for μx

jk near zero

and large σ x
k for k > d0

x this holds approximately. At the same time, approximation
arguments in the prior thickness results require σ x

k very close to zero for k ≤ d0
x .

Thus, we need to allow scale parameters for relevant and irrelevant covariates to
take different values (our assumption of different scale parameters for components
of y is not essential for the result).

COROLLARY 6.1. Under the assumptions of this section, the posterior con-
tracts at the rate specified in Theorem 2.2 with d = dy + dx replaced by d0 =
dy + d0

x .

Proof. First, consider the prior thickness result in Theorem 3.1. For any θ let

θd0
x
=
{
μ

y
j ,μ

x
j1, . . . ,μ

x
jd0

x
,αj , j = 1,2, . . . ; σ y,σ x

1 , . . . ,σ x
d0

x

}
and define p(·|·,θd0

x
,m) and p(·|θd0

x
,m) as before with (y,x1d0

x
) as the arguments.

By the triangle inequality,

dh( f0, p(·|·,θ,m)) ≤ dh( f0, p(·|·,θd0
x
,m))+ dh(p(·|·,θd0

x
,m), p(·|·,θ,m)).

By Corollary A.2 in the Appendix, dh( f0, p(·|·,θd0
x
)) ≤ C1dH ( f0 ḡ1d0

x
, p(·|θd0

x
)).

By the argument leading to (3.4) and (3.5), there exist θ�
d0

x
such that

dH ( f0 ḡ1d0
x
, p(·|θ�

d0
x
,m)) ≤ C2σ

β
n , P0(‖y,x‖ > aσn ) ≤ B0σ

4β+2ε+8
n , zj and Uj are

defined on the space for (y,x1d0
x
), and 1 ≤ N < K ≤ C2σ

−d0

n {log(1/ε̃n)}d0+d0/τ .
Let

Sθ� =
{(

μj ,αj , j = 1,2, . . . ; σ y,σ x) :
(
μ

y
j ,μ

x
j1, . . . ,μ

x
jd0

x

)
∈ Uj ,∥∥∥(μx

jd0
x +1, . . . ,μ

x
jdx

)∥∥∥≤ σn ε̃2b1
n , j ≤ K ;

K∑
j=1

∣∣∣αj −α�
j

∣∣∣≤ 2ε̃2d0b1
n , min

j=1,...,K
αj ≥ ε̃4d0b1

n /2;
(
σ x

k

)2
,
(
σ

y
l

)2 ∈
[
σ 2

n /(1 +σ 2β
n ),σ 2

n

]
, l ≤ dy, k ≤ d0

x ;(
σ x

k

)2 ∈
[
a2
σn

,2a2
σn

]
, k = d0

x + 1, . . . ,dx

}
.

For θ ∈ Sθ� and m = K , as in the proof of Theorem 3.1,

dH

(
f0 ḡ1d0

x
, p
(
·∣∣θd0

x
,m
))

≤ dH

(
f0 ḡ1d0

x
, p
(
·∣∣θ∗

d0
x
,m
))

+ dH

(
p
(
·∣∣θd0

x
,m
)
, p
(
·∣∣θ∗

d0
x
,m
))

≤ C3σ
β
n . (6.1)

Next, we tackle dh(p(·|·,θd0
x
,m), p(·|·,θ,m)). Following the entropy calculations

in Theorem 4.1, we have for m = K ,
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d2
h (p(·|·,θd0

x
,m), p(·|·,θ,m)) ≤

∫
max

1≤ j≤K
|Kj − K̃ j |/

∣∣Kj
∣∣g0(x)dx,

where

Kj = exp

⎧⎪⎨
⎪⎩−

dx∑
k=1

(
xk −μx

jk

)2

2
(
σ x

k

)2

⎫⎪⎬
⎪⎭ ,

K̃ j = exp

⎧⎪⎨
⎪⎩−

d0
x∑

k=1

(
xk −μx

jk

)2

2
(
σ x

k

)2
−

dx∑
k=d0

x +1

x2
k

2
(
σ x

k

)2
⎫⎪⎬
⎪⎭ ,

and K̃ j is normalized in a convenient way. To show that
∫ |Kj −

K̃ j |/Kj g0(x)dx ≤ 2σ
2β
n , we divide the range of integration into two parts: X1 =

{x ∈ X : |xl | ≤ An, l = d0
x + 1, . . . ,dx } and X \X1, where An = a2

σn
log(B/σ

2β
n )

and B is defined in assumption (5.1). Observe that for θ ∈ Sθ� , x ∈ X1, and all
sufficiently large n,∣∣∣∣∣∣

dx∑
k=d0

x +1

(2xk −μx
jk)(−μx

jk)

2(σ x
k )2

∣∣∣∣∣∣≤
2An(dx − d0

x )σn ε̃
2b1
n

a2
σn

≤ 1

and, hence, using |1 − er | ≤ |r | for |r | ≤ 1, we obtain for θ ∈ Sθ� and x ∈ X1,∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣=
∣∣∣∣∣∣1 − exp

⎧⎨
⎩

dx∑
k=d0

x +1

(2xk −μx
jk)(−μx

jk)

2(σ x
k )2

⎫⎬
⎭
∣∣∣∣∣∣

≤ 2An(dx − d0
x )σn ε̃

2b1
n

a2
σn

≤ σ 2β
n . (6.2)

For x ∈ X \X1 using |1 − er | ≤ e|r |,∫
X \X1

max
1≤ j≤K

∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx ≤
∫
X \X1

e

∑dx
k=d0

x +1

|xk |
a2
σn

−κ‖x‖2

eκ‖x‖2
g0(x)dx .

For x ∈ X \X1, κ ‖x‖2 ≥ κ(dx − d0
x )−1(

∑dx

k=d0
x +1

|xk|)2 ≥ 2
∑dx

k=d0
x +1

|xk |/a2
σn

and hence∫
X \X1

max
1≤ j≤K

∣∣∣∣∣Kj − K̃ j

Kj

∣∣∣∣∣g0(x)dx ≤ Be−An/a2
σn ≤ σ 2β

n . (6.3)

From (6.2) and (6.3), it follows that dh(p(·|·,θd0
x
), p(·|·,θ)) ≤ 21/2σ

β
n .

Next let us establish an analog of (3.7) when ‖(y,x)‖ ≤ aσn . Using the ar-

gument leading to (3.7) with
∥∥∥(y,x1d0

x
)
∥∥∥ ≤ aσn and ((xk − μx

jk)/σ
x
k )2 ≤ 4 for

k = d0
x + 1, . . . ,dx , j = 1, . . . ,m, we get for θ ∈ Sθ� and ‖(y,x)‖ ≤ aσn ,
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p(y|x,θ,m)

f0(y|x)
≥ 1

f0(y|x)
min

j=1,...,K
αj ·σ−dy

n exp

⎧⎨
⎩−

dx∑
k=d0

x +1

(xk −μx
jk)

2

2(σ x
k )2

⎫⎬
⎭

≥ C5ε̃
4d0b1
n σ

−dy
n = λn .

For ‖(y,x)‖ ≥ aσn ,

p(y | x,θ,m) ≥ min
1≤ j≤m

C6σ
−dy
n exp

{
−||y −μ

y
j ||2

2σ 2
n

}

≥ C7σ
−dy
n exp

(
−C8

a2
σn

σ 2
n

− C9
‖y‖2

σ 2
n

)

implies{
log

f0(y|x)

p(y|x,θ,m)

}2

≤ C10

(
a4
σn

σ 4
n

+ ‖y‖4

σ 4
n

)
.

Then, following the proof of Theorem 3.1,∫ {
log

f0(y|x)

p(y|x,θ,m)

}2

1

{
p(y|x,θ,m)

f0(y|x)
< λn

}
f (y|x)g0(x)dydx

≤ C11

{
a4
σn

P0(‖Z‖ > aσn)

σ 4
n

+ E0
(‖Y‖8 )1/2

(P0(‖Z‖ > aσn ))
1/2

σ 4
n

}

≤ C12σ
2β+ε/2
n σ

ε/2
n a4

σn
≤ C12σ

2β+ε/2
n .

The rest of the proof of E0(log( f0(Y |X)/p(Y |X,θ,m))) ≤ Aε̃2
n and

E0([log( f0(Y |X)/p(Y |X,θ,m))]2) ≤ Aε̃2
n goes through without any changes.

The lower bound for the prior probability of Sθ� and m = K is the same as the
one in Theorem 3.1, except d is replaced with d0. The only additional calculation
for σ x

k , k = d0
x + 1, . . . ,dx follows from Assumption (2.6),


((σ x
k )−2 ∈ [a−2

σn
/2,a−2

σn
]) � a−2a7

σn
.

In the definition of sieve (4.1), let us replace condition σ ∈ [σ,σ ] by

σ
y

l ,σ x
k ∈ [σ,σ ], l = 1, . . . ,dy, k = 1, . . . ,dx .

The presence of the component specific scale parameters and the dimension of
x affect only constants in the sieve entropy bound and the bound on the prior
probability of the sieve complement. Thus, Theorem 4.2 holds with d replaced
by d0. �

7. FINITE SAMPLE PERFORMANCE

In this section, we evaluate the finite sample performance of our conditional den-
sity model in Monte Carlo simulations. Specifically, we explore how the sample
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size and irrelevant covariates affect estimation results. We also compare our esti-
mator with a conditional density kernel estimator from Hall et al. (2004) that is
based on a cross-validation method for obtaining the bandwidth. Hall et al. (2004)
showed that irrelevant covariates do not affect the convergence rate of their esti-
mator, and, thus, this estimator appears to be a suitable benchmark. The kernel
estimation results are obtained by the publicly available R package np (Hayfield
and Racine (2008)).

It has been established in the literature (see, for example, Villani et al. (2009)),
that slightly more general specifications of covariate dependent mixture models
perform better in practice. Thus, we use the following specification

p(y|x,θ,m) =
m∑

j=1

αj exp

{
−0.5

∑dx
k=1

(
xk −μx

jk

)2
/
(
σ x

k sx
jk

)2
}

∑m
i=1 αi exp

{
−0.5

∑dx
k=1

(
xk −μx

ik

)2
/
(
σ x

k sx
ik

)2
}φx′βj ,σ ys y

j
(y), (7.1)

where x ′βj are used instead of locations μ
y
j , x includes zeroth coordinate equal 1,

and local scale parameters
(
sy

j ,sx
jk

)
introduced in addition to the global

(
σ y,σ x

k

)
.

The prior is specified as follows,

βj
iid∼ N

(
β, H−1

β

)
, μj

iid∼ N
(
μ, H−1

μ

)
,(

sy
j

)−2 iid∼ G
(

Asy, Bsy

)
,
(

sx
jk

)−2 iid∼ G
(
Asxk, Bsxk

)
, k = 1, . . . ,dx ,(

σ y)−1 iid∼ G
(

Aσ y, Bσ y

)
,
(
σ x

k

)−1 iid∼ G
(

Aσ xk, Bσ xk

)
, k = 1, . . . ,dx ,

(α1, . . . ,αm) |m iid∼ D
(
a/m, . . . ,a/m

)
,



(
m = k

)= (eAm − 1)e−Am ·k,

where G(A, B) stands for a Gamma distribution with shape A and rate B . In
Theorem A.5 in the Appendix, we show that an analog of Corollary 6.1 holds for
this slightly more general setup. To obtain estimation results for this model we
use an MCMC algorithm developed in Norets (2015).

We use the following (data-dependent) values for prior hyper-parameters:

β =
(∑

i

xi x ′
i

)−1∑
i

xi yi , H−1
β = cβ

(∑
i

xi x ′
i

)−1∑
i

(
yi − x ′

iβ
)2

/n,

μ =
∑

i

xi/n, H−1
μ =

∑
i

(
xi −μ

)(
xi −μ

)′
/n,

Aσ y = cσ /

(∑
i

(
yi − x ′

iβ
)2

/n

)
, Bσ y = cσ /

(∑
i

(
yi − x ′

iβ
)2

/n

)1/2

,

Aσ xl = cσ /

⎛
⎝∑

i

(
xil −

∑
i

xil/n

)2

/n

⎞
⎠, Bσ xl = cσ /

⎛
⎝∑

i

(
xil −

∑
i

xil/n

)2

/n

⎞
⎠

1/2

,
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Asxk = cs, Bsxk = cs, Asy = cs , Bsy = cs,

a = 15, Am = 1,

where cβ = 100, cσ = 0.1, cs = 10. Thus, a modal prior draw would have one
mixture component and it would be near a normal linear regression estimated
by the least squares. As Figure 1 illustrates, the prior variances are chosen suffi-
ciently large so that a wide range of densities can be easily accommodated by the
prior.

FIGURE 1. Simulated prior conditional densities for dx = 2 and x ∈ {(0.1,0.1)′,
(0.5,0.5)′, (0.9,0.9)′}. The solid lines are the true DGP values, the dash-dotted lines are
the prior means, and the dashed lines are pointwise 1% and 99% prior quantiles.
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The DGP for simulation experiments is as follows: xi = (xi1, . . . ,xidx ), xik ∼
U [0,1] (or xik ∼ N

(
0.5,12−1/2

)
for an unbounded support case) and the true

conditional density is

f0(yi |xi1) = e−2xi1 N
(
yi ; xi1,0.12)+ (

1 − e−2xi1
)
N
(
yi ; x4

i1,0.22). (7.2)

Note that the DGP conditional density depends only on the first coordinate of xi ,
the rest of the coordinates are irrelevant. This DGP was previously used without
irrelevant covariates by Dunson et al. (2007), Dunson and Park (2008), and Norets
and Pelenis (2014).

The kernel estimates reported below are obtained by functions npcdensbw

(bandwidth selection) and npcdens (conditional density estimation) from R pack-
age np. We use np’s default parameter values for these functions: Gaussian kernels
and likelihood cross-validation for selecting a vector of bandwidths.

For each estimation exercise, we perform 5,000 MCMC iterations, of which
the first 500 are discarded for burn-in. The MCMC draws of m mostly belong
to {3, . . . ,13}. Figure 2 presents Bayesian and kernel estimation results for one
dataset of size n = 1000 and dx = 2. Each panel in the figure shows the DGP den-
sities, the kernel estimates, the posterior means, and the posterior 0.01%-quantiles
conditional on a particular value of covariate x . As can be seen from the figure,
the estimation results from both approaches can be pretty close.

In every Monte Carlo experiment we perform, 50 simulated datasets are used.
For each dataset, the performance of an estimator is evaluated by the mean abso-
lute error

MAE =
∑Ny

i=1

∑Nx
j=1

∣∣∣ f̂ (yi |xj )− f0(yi |xj )
∣∣∣

Ny Nx
,

where xj ∈ {0.1,0.5,0.9}dx and yi belongs to a 100 points equal spaced grid on
the range of simulated values for y. The results for the root mean squared error,
the Hellinger distance, and the MAE are qualitatively the same, and, thus, only
results for MAE are reported here.

Table 1 presents estimation results for 9 Monte Carlo experiments based on
different values of n, dx , the covariate support, and the prior. The table gives
MAE for the kernel and posterior mean estimators averaged over 50 simulated
datasets. It also shows the average difference between MAEs of the two estima-
tors and the corresponding t-statistics. In all the experiments, the posterior mean
estimator performs better than the kernel estimator and the differences are highly
statistically significant. The first three rows of the table present the results for the
covariates with bounded support, dx = 1, and n ∈ {102,103,104}. As expected,
the MAE decreases as the sample size increases for both estimators. The next five
rows of the table show the results for dx ∈ {1,3,5} and n = 103 for covariates
with bounded and unbounded support. Even though the posterior mean outper-
forms the kernel estimator in absolute terms, the MAE for the kernel estimator
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FIGURE 2. Estimated conditional densities for dx = 2 and x ∈ {(0.1,0.1)′,
(0.5,0.5)′, (0.9,0.9)′}. The solid lines are the true values, the dash-dotted lines are the
posterior means, the dotted lines are kernel estimates, and the dashed lines are pointwise
0.01% and 99.99% posterior quantiles.

increases slower in the number of irrelevant covariates: for xik ∼ N(0.5,12−1/2)
(xik ∼ U [0,1]), the MAE increases only by 0.0007 (0.002) as dx changes from 1
to 5; the corresponding increase for the posterior mean estimator is 0.01 (0.022).
The last row of the table shows the results for dx = 1, n = 103, and the fol-
lowing alternative prior hyperparameters: cβ = 200, cσ = 0.2, cs = 15, a = 12,
and Am = 2. Thus, the results are not very sensitive to reasonable variations in
(cβ,cσ ,cs,a, Am).

The dimension of the covariates does not noticeably affect the computing time
for the posterior mean estimator. The computations for the kernel estimator are
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TABLE 1. MAE for kernel and posterior mean estimators

xik ∼ g0 dx n Bayes Kernel B-K %(B < K) t-stat

U [0,1] 1 102 0.107 0.164 −0.058 1 −15.47
U [0,1] 1 104 0.032 0.040 −0.008 0.88 −8.28
U [0,1] 1 103 0.062 0.096 −0.033 1 −16.16
U [0,1] 3 103 0.074 0.097 −0.022 0.96 −13.40
U [0,1] 5 103 0.084 0.098 −0.015 0.86 −7.88
N
(
0.5,12−1/2) 1 103 0.028 0.054 −0.026 1 −15.33

N
(
0.5,12−1/2) 3 103 0.033 0.054 −0.021 1 −11.78

N
(
0.5,12−1/2) 5 103 0.038 0.054 −0.017 0.92 −8.88

U [0,1] 1 103 0.060 0.096 −0.036 1 −17.72

very fast for low-dimensional covariates. They slow down considerably when dx

increases. For dx = 5, the posterior mean is slightly faster to compute than the
kernel estimator.

Overall, the Monte Carlo experiments suggest that the model proposed in
this paper is a practical and promising alternative to classical nonparametric
methods.

8. CONCLUSION

We show above that under a reasonable prior distribution, the posterior contrac-
tion rate in our model is bounded above by εn = n−β/(2β+d)(logn)t for any

t > [d(1 + 1/β + 1/τ)+ max{τ1,1,τ2/τ }]/(2 + d/β)+ max{0,(1 − τ1)/2}.

Rate n−β/(2β+d) is minimax for estimation of multivariate densities when their
smoothness level is β and dimension of (y,x) is d . Since the total variation dis-
tance between joint densities for (y,x) is bounded by the sum of the integrated
total variation distance between the conditional densities and the total variation
distance between the densities of x , the minimax rate for estimation of con-
ditional densities of smoothness β in integrated total variation distance cannot
be faster than n−β/(2β+d). Thus, we can claim that our Bayesian nonparametric
model achieves optimal contraction rate up to a log factor. We are not aware of
analogous results for estimators based on kernels or mixtures. In the classical set-
tings, Efromovich (2007) develops an estimator based on orthogonal series that
achieves minimax rates for one-dimensional y and x . In a recent paper, Shen and
Ghosal (2016) consider a compactly supported Bayesian model for conditional
densities based on tensor products of spline functions. They show that under suit-
able sparsity assumptions, the posterior contracts at an optimal rate even when
the dimension of covariates increases exponentially with the sample size. An ad-
vantage of our results is that we do not need to assume a known upper bound on
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the smoothness level and the boundedness away from zero for the true density.
The analysis of the posterior contraction rates in our model under sparsity and
increasing dimension of covariates is an important direction for future work.

NOTE

1. Norets and Pelenis (2014) use this inequality in conjunction with a lower bound on Kj , which
leads to entropy bounds that are not sufficiently tight for adaptive contraction rates.
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APPENDIX

LEMMA A.1. Suppose f, f0 ∈ F , g0(x) ≤ ḡ < ∞, g(x) and u(x) are densities on X ,
u(x) ≥ u > 0. Then,

d2
h ( f0, f ) ≤ 4ḡ

u

∫ (√
f0(y|x)u(x)−√ f (y|x)g(x)

)2
dydx.
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Proof. Observe that

d2
h ( f0, f ) =

∫ (√
f0(y|x)−√ f (y|x)

)2
g0(x)dydx

≤ ḡ

u

∫ (√
f0(y|x)u(x)−√ f (y|x)u(x)

)2
dydx

≤ 2ḡ

u
(I+ II), (A.1)

where I = ∫ (√
f0(y|x)u(x) − √

f (y|x)g(x)
)2dydx , II = ∫ (√

f (y|x)g(x) −√
f (y|x)u(x)

)2dydx .
Observe that

II ≤
∫ (√

g(x)−√u(x)
)2

dx = 2

(
1−

∫ √
g(x)u(x)dx

)
≤ I. (A.2)

The final inequality in (A.2) follows since
∫ √

f0(y|x) f (y|x)dy ≤
1
2

(∫
f0(y|x)dy +∫ f (y|x)dy

) = 1. Combining (A.1) and (A.2), we obtain

d2
h ( f0, f ) ≤ 4I = 4ḡ

u

∫ (√
f0(y|x)u(x)−√ f (y|x)g(x)

)2
dydx. �

COROLLARY A.2. Suppose f, f0 ∈ F , g(x) and ḡ0(x) are densities on X , with ḡ0
satisfying ηḡ0(x) ≥ g0(x) for some constant η > 0 and all x ∈ X . Then,

d2
h ( f0, f ) ≤ 4η

∫ (√
f0(y|x)ḡ0(x)−√ f (y|x)g(x)

)2
dydx.

To prove the corollary note that the inequality (A.1) in the proof of Lemma A.1 holds
under ηḡ0(x) ≥ g0(x) with u replaced by ḡ0 and ḡ/u replaced by η. The rest of the lemma’s
proof applies with ḡ0 replacing u.

LEMMA A.3. In Theorem 3 of Shen et al. (2013), replace their gσ = fσ +
(1/2) f01{ fσ < (1/2) f0} with gσ = fσ +2| fσ |1{ fσ < 0}, where notation from Shen et al.
(2013) is used. Then, the claim of the theorem holds.

Proof. With the alternative definition of gσ , the proof of Shen et al. (2013) goes through
with the following changes. First, 1 ≤ ∫

gσ (x)dx = ∫
fσ (x)dx + 2

∫ | fσ |1{( fσ < 0} ≤
1+3

∫
Ac

σ
f0(x)dx ≤ 1+ K2σ

2β . Second, replace inequality rσ ≤ gσ with (1/2)rσ ≤ gσ . �

LEMMA A.4. There is a λ0 ∈ (0,1) such that for any λ ∈ (0,λ0) and any two condi-
tional densities p,q ∈ F , a probability measure P on Z that has a conditional density
equal to p, and dh defined with the distribution on X implied by P,

P log
p

q
≤ d2

h (p,q)

(
1+2log

1

λ

)
+2P

{(
log

p

q

)
1

(
q

p
≤ λ

)}
,

P

(
log

p

q

)2
≤ d2

h (p,q)

(
12+2

(
log

1

λ

)2
)

+8P

{(
log

p

q

)2
1

(
q

p
≤ λ

)}
.
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Proof. The proof is exactly the same as the proof of Lemma 4 of Shen et al. (2013),
which in turn, follows the proof of Lemma 7 in Ghosal and van der Vaart (2007). �

THEOREM A.5. Assume f0 satisfies the assumptions in Section 6 with dy = 1. Then
the model (7.1) in Section 7 and the prior specifications following it leads to the same
posterior contraction rate as specified in Corollary 6.1.

Proof. In the following we will verify prior thickness condition with the same ε̃n (with
dy = 1) as in Corollary 6.1 and modify the sieve construction accordingly. The proof pro-
ceeds along the lines of the proof of Corollary 6.1. The main difference is that the following
joint density is used in bounds for the distance between conditional densities

p̃(y, x | θ,m) =
m∑

j=1

αj exp{−0.5
∑dx

k=1(xk −μx
jk)2/(σ x

k sx
jk)

2}∑m
i=1 αi exp{−0.5

∑dx
k=1(xk −μx

ik )2/(σ x
k sx

ik )2}
φμ

y
j +x ′βj ,σ ys y

j
(y)

·
m∑

j=1

αj φμx
j ,σ x ◦sx

j
(x),

where ◦ denotes the Hadamard product. The intercept absorbed in the notation “x ′βj ” in

(7.1) is denoted by μ
y
j here. Let

θd0
x

= {μy
j ,μx

j1d0
x

= (μx
j1, . . . ,μ

x
jd0

x
),αj ,sy

j ,sx
j1d0

x
= (sx

j1, . . . ,sx
jd0

x
),

βj1d0
x

= (βj1, . . . ,βj d0
x
), j = 1,2, . . . ; σ y,σ x

1d0
x

= (σ x
1 , . . . ,σ x

d0
x
)},

Sθ� ={(μj ,αj , j = 1,2, . . . ; σ y,σ x ) : (μ
y
j ,μx

j1, . . . ,μ
x
jd0

x
) ∈ Uj ,

||(μx
jd0

x +1
, . . . ,μx

jdx
)|| ≤ σn ε̃

2b1
n , ||βj || ≤ σn ε̃

2b1
n j ≤ K ;

K∑
j=1

∣∣∣αj −α�
j

∣∣∣≤ 2ε̃
2d0b1
n , min

j=1,...,K
αj ≥ ε̃

4d0b1
n /2;

(σ x
k )2, (σ y)2 ∈ [σ 2

n /(1+σ
2β
n ),σ 2

n ], k ≤ d0
x ;

(σ x
k )2 ∈ [a2

σn
,2a2

σn
], k = d0

x +1, . . . ,dx ;
sx

jk,sy
j ∈ [1,1+σ

2β
n ], j = 1,2, . . . , K ; k = 1, . . . ,dx

}
,

and sx
jk = sy

j = 1 and βj k = 0 in θ∗
d0

x
for k = 1,2, . . . ,d0

x and j = 1, . . . , K .

Similarly to the proof of Corollary 6.1,

dh ( f0, p(·|·,θ,m)) � σ
β
n +dH ( p̃(·|θ∗

d0
x
,m), p̃(·|θd0

x
,m))+dh (p(·|·,θd0

x
,m), p(·|·,θ,m)).

Consider θ ∈ Sθ� and let s· j = ∏d0
x

k=1 sjk . Then, dH ( p̃(·|θ∗
d0

x
,m), p̃(·|θd0

x
,m))2 can be

bounded by∥∥∥∥∥∥∥∥
K∑

j=1

α∗
j φμ∗

j ,σn
(·)−

K∑
j=1

αj s· j φμ
y
j +x ′

1d0
x

β
j1d0

x
,s

y
j σ

y
j

(·)φμx
j1d0

x
,sx

j1d0
x

◦σ x
1d0

x

(·)

∑K
j=1 αj φμx

j1d0
x

,sx
j1d0

x
◦σ x

1d0
x

(·)
∑K

j=1 αj s· j φμx
j1d0

x
,sx

j1d0
x

◦σ x
1d0

x

(·)

∥∥∥∥∥∥∥∥
1
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≤
∥∥∥∥∥∥

K∑
j=1

α∗
j φμ∗

j ,σn
(·)−

K∑
j=1

αj s· j φμ
y
j +x ′

1d0
x

β
j1d0

x
,s

y
j σ y (·)φμx

j1d0
x

,sx
j1d0

x
◦σ x

1d0
x

(·)
∥∥∥∥∥∥

1

+

∥∥∥∥∥∥∥∥
K∑

j=1

αj s· j φμ
y
j +x ′

1d0
x

β
j1d0

x
,s

y
j σ y (·)φμx

j1d0
x

,sx
j1d0

x
◦σ x

1d0
x

(·)

⎧⎪⎪⎨
⎪⎪⎩

∑K
j=1 αj φμx

j1d0
x

,sx
j1d0

x
◦σ x

1d0
x

(·)
∑K

j=1 s· j αj φμx
j1d0

x
,sx

j1d0
x

◦σ x
1d0

x

(·) −1

⎫⎪⎪⎬
⎪⎪⎭

∥∥∥∥∥∥∥∥
1

�

⎡
⎢⎢⎣

K∑
j=1

∣∣∣αj −α∗
j

∣∣∣+σ
2β
n +

K∑
j=1

α∗
j

⎛
⎜⎜⎝ ||μj −μ∗

j ||
σn

+

∥∥∥∥βj1d0
x

∥∥∥∥aσn

σn
+σ

2β
n

⎞
⎟⎟⎠+σ

2β
n

⎤
⎥⎥⎦� σ

2β
n ,

where the penultimate inequality is implied by
∣∣∣σ 2

n /(sy
j σ y)2 −1

∣∣∣ ≤ 3σ
2β
n ,∣∣∣σ 2

n /(sx
jkσ

x
k )2 −1

∣∣∣≤ 3σ
2β
n ,

∣∣s· j −1
∣∣≤ d0

x σ
2β
n ,

∫ ||x1d0
x
||φμx

j1d0
x
,sx

j1d0
x
◦σ x

1d0
x

(x1d0
x
)d(x1d0

x
)�

||μx
j1d0

x
|| ≤ aσn , and an argument similar to the one preceding (3.6).

Next note that for θ ∈ Sθ� ,

d2
h

(
p
(
·|·,θd0

x
,m
)
, p (·|·,θ,m)

)
�
∫

max
1≤ j≤m

|Kj − K̃ j |/
∣∣Kj

∣∣g0(x)dx

+
∫

max
1≤ j≤m

∣∣x ′βj
∣∣

σn
g0(x)dx

� σ
2β
n + ε̃

2b1
n

∫
‖x‖g0(x)dx � σ

2β
n ,

where the first part of the penultimate inequality follows similarly to the proof of Corol-
lary 6.1.

Next, let us bound the ratio p(y|x,θ,m)/ f0(y|x). For ||(y, x)|| ≤ aσn , observe that
exp

{−|y −μ
y
j − x ′βj |2/(2σ 2

n )
} ≥ exp

{−|y −μ
y
j |2/σ 2

n −|x ′βj |2/σ 2
n
}

and |x ′βj |/σn ≤
aσn ε

2b1
n ≤ 1. Thus, λn can be defined by (3.7).

For ‖(y, x)‖ ≥ aσn ,

{
log

f0(y|x)

p(y|x,θ,m)

}2
�
(

a4
σn

σ 4
n

+ |y|4
σ 4

n
+‖x‖4 ε̃

4b1
n

)
,

which implies that

∫ {
log

f0(y|x)

p(y|x,θ,m

}2
1

{
p(y|x,θ,m

f0(y|x)
< λn

}
f (y|x)g0(x)dydx

�
[

a4
σn

P0(‖Z‖ > aσn )

σ 4
n

+
{

E0(|Y |8)1/2

σ 4
n

+ ε̃
4b1
n E0(‖X‖8)1/2

}
(P0(‖Z‖ > aσn ))1/2

]

� σ
2β+ε/2
n ,

as in the proof of Corollary 6.1.
The lower bound for the prior probability of Sθ� and m = K is the same as the one in

Theorem 3.1, except d is replaced with d0. The only additional calculation is as follows,



(

sy
j ,sx

jk ∈
[
1,1+σ

2β
n

]
, j = 1,2, . . . , K ; k = 1, . . . ,dx

)
� exp{−2βK d log (1/σn)} ,
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which can be bounded from below as required by the arguments in the proof of
Theorem 3.1. Thus, the prior thickness condition follows.

Finally, let us consider bounds on the sieve entropy and the prior probability of the
sieve’s complement. The argument here involves only minor changes in the proofs of
Theorem 4.1 and Corollary 5.1. In the definition of sieve (4.1), let us add the following
conditions for the βj s and the local scale parameters

βj ∈
[
−β

x
,β

x
]dx

,β
x = μx , j = 1, . . . ,m

sy
j ,sx

jk ∈ [σ ,σ
]
,k = 1, . . . ,dx , j = 1,2, . . . ,m.

As in Corollary 5.1 and Corollary 6.1, we aim to find the covering number of F in d1
instead of dSS. First, let us replace the definition of Sσ in the proof of Corollary 5.1 with

Sσ =
{
σ l , l = 1, . . . , Nσ =

⌈
log

(
σ 2/σ 2)/(log

(
1+σ 4ε

)
/
(
2 ·384(μx )2 max{dx ,dy}))⌉ ,

σ 1 = σ,
(
σ l+1 −σ l

)
/σ l = σ 4ε/

(
2 ·384(μx )2 max{dx ,dy}

)}
and use this Sσ as the grid for sy

j , sx
jk , σ y , and σ x

k , k = 1, . . . ,dx , j = 1,2, . . . ,m. Note
that for σ̃ > σ and s̃ > s, |σ s − σ̃ s̃|/(σ s) ≤ |σ − σ̃ |/σ + |s − s̃|/s and that is why 384
is replaced by 2 · 384 in the new definition of Sσ . Since sy

j σ y,sx
jkσ

x
k ∈ [σ 2,σ2], all the

bounds obtained in Corollary 5.1 now involve (σ2,σ2) in place of (σ ,σ ).

Another difference is in the treatment of the new term x ′βj . Observe that for β
(1)
j ,β

(2)
j ∈

F for j = 1, . . . ,m,∫
X

max
1≤ j≤m

∣∣∣x ′β(1)
j − x ′β(2)

j

∣∣∣g0(x)dx ≤ max
1≤ j≤m

∥∥∥β(1)
j −β

(2)
j

∥∥∥∫
X

‖x‖g0(x)dx.

Let us define Sm
β to contain centers of |Sm

β | = �2 · 192dx
∫
X ‖x‖g0(x)dx(β

x
)2/(σ 4ε)�

equal length intervals partitioning [−β,β]. Sm
μx now contains centers of |Sm

μx | =
�2 ·192dx (μx )2/(σ2ε)� equal length intervals partitioning [−μx ,μx ].

As in the proof of Corollary 5.1, we thus obtain

J (ε,F,d1) ≤ H ·
⌈

16μdy

σ2ε

⌉Hdy

·
⌈

2 ·192dx (μx )2

σ 4ε

⌉Hdx

· H

⌈
log(α−1)

log(1+ε/[12H ])

⌉H−1

·
⌈

2 ·192dx
∫
X ‖x‖ g0(x)dx ·β2

σ4ε

⌉Hdx

·
⎡
⎢⎢⎢

log
(
σ 2/σ2

)
log

(
1+σ 4ε/

[
2 ·384(μx )2 max{dx ,dy}])

⎤
⎥⎥⎥

d(H+1)

.

Observe that 
(Fc) is bounded above by

H2 exp
{−a13μτ3

}+ H2 exp
{−a16(μx )τ5

}+ H2αa/H +exp
{−a10 H(log H)τ1

}
+ d


(
σ y /∈ [σ ,σ ]

)+d H

(

sy
j /∈ [σ ,σ ]

)
.
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The rest of the proof follows the argument in the proof of Theorem 4.2 with the same

sequences, except σ = n−1/a3 (as the prior for
(
sy

j

)2 satisfies the same conditions ((2.4)–

(2.6)) as the prior for σ y) and μx = n1/τ5 . Thus, the claim of Corollary 6.1 holds. �
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