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The behaviour of liquid crystal materials used in display devices is discussed. The underlying

continuum theory developed by Frank, Ericksen and Leslie for describing this behaviour

is reviewed. Particular attention is paid to the approximations and extensions relevant to

existing device technology areas where mathematical analysis would aid device development.

To illustrate some of the special behaviour of liquid crystals and in order to demonstrate the

techniques employed, the specific case of a nematic liquid crystal held between two parallel

electrical conductors is considered. It has long been known that there is a critical voltage

below which the internal elastic strength of the liquid crystal exceeds the electric forces and

hence the system remains undeformed from its base state. This bifurcation behaviour is

called the Freedericksz transition. Conventional analytic analysis of this problem normally

considers a magnetic, rather than electric, field or a near-transition voltage since in these cases

the electromagnetic field structure decouples from the rest of the problem. Here we consider

more practical situations where the electromagnetic field interacts with the liquid crystal

deformation. Assuming strong anchoring at surfaces and a one dimensional deformation,

three nondimensional parameters are identified. These relate to the applied voltage, the

anisotropy of the electrical permittivity of the liquid crystal, and to the anisotropy of the

elastic stiffness of the liquid crystal. The analysis uses asymptotic methods to determine the

solution in a numerous of different regimes defined by physically relevant limiting cases of

the parameters. In particular, results are presented showing the delicate balance between an

anisotropic material trying to push the electric field away from regions of large deformation

and the deformation trying to be maximum in regions of high electric field.

1 Introduction

Liquid crystals display a rich diversity of behaviour which is reflected by the complexity

of their governing equations and the large number of material parameters involved. A

general survey can be found in de Gennes & Prost [6] and more detailed accounts in the

references given below. Liquid crystals are anisotropic materials whose (often elongated)

molecular structure induces a locally preferred common direction, described by means of

a unit vector n, called the director. Several types of liquid crystal exist depending on the

spatial distribution of the director in the absence of distorting influences and whether

or not some degree of positional order exists in addition to the orientational order. The

simplest are nematics and cholesterics. In nematics there is a globally preferred direction
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and, when undisturbed, n is constant throughout the sample, while for cholesterics the

locally preferred direction varies in such a way that the director twists to form a helical

pattern.

Despite the great many studies undertaken, much of the behaviour of liquid crystals is

yet to be systematically investigated and this is as true of nematics and cholesterics as it

is of the more complicated smectic liquid crystal phases. From a practical point of view,

and in spite of interest in new electro-optic devices that use smectic materials, there is

still considerable interest in novel and improved nematic devices. In addition there are a

great many parallels between the behaviour of nematics and smectics which makes the

systematic investigation of the simpler nematic phase an important task. Some recent

results in the theory of both smectics and nematics was recently reported in a special

edition of this journal [19].

From a technological point of view the main interest is in the optical properties

of devices but these can only be modified by altering the director field. Consequently

determining the behaviour of the director field is the crucial problem of interest. The

desired improvements in optical performance of devices relating, for instance, to speed of

operation, adequate grey scale, large viewing angles and stability to external disruption,

can all be interpreted as requirements on the underlying director field.

The tendency of the director to take on a particular spatial distribution can be under-

stood in terms of the elastic continuum theory first proposed by Oseen and Zöcher and

popularised and developed by Frank [11]. In this theory elastic forces arising from the

molecular structure of the material, resist any distortion to the director field from its equi-

librium state. These distortions can arise for a number of reasons including: interaction

with external fields (typically magnetic or electric), coupling with the material flow of the

liquid, and from interactions with confining surfaces. When subjected to competing influ-

ences the director will adjust throughout the sample and must be treated as space-time

dependent, n(r, t).

In the simplest electro-optic devices a thin layer of liquid crystal is sandwiched between

two plates which are each treated in a way which leads to the surface interaction imposing

a specified orientation on the liquid crystal. The optical properties of the device can be

altered by applying a field whose distorting influence on the liquid crystal opposes that

of the surfaces. In all practical cases an electric field is used and it is often found that a

critical field exists below which no distortion occurs. The bifurcation defined by this lowest

critical field is usually called a Freedericksz transition in the liquid crystal literature. The

simplest operating regime for such a device is to switch between two states by the sudden

application or removal of an electric field. Hence there are two fundamental questions.

First, what is the distortion in each state, and secondly how does the device switch between

these?

Determining the behaviour of the director in a liquid crystal device is complicated due

to the nature of the material. Liquid crystals are anisotropic and require a large number of

material parameters to characterise them. For instance there are at least three coefficients

of elasticity, five viscosities and two electric permittivities. In addition there is significant

coupling between the material flow and the director distortion, commonly referred to as

back-flow, particularly during a short transition period.

The static and dynamic behaviour of a simple device is still not fully resolved theoret-
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ically even for the well established and simple Twisted Nematic (TN) and SuperTwisted

Nematic (STN) devices.

For the static director behaviour the Freedericksz threshold is easy to compute ana-

lytically; however, the director structure beyond the threshold is not. At this point it is

usual to resort to simulation software [4, 20, 13]. However, analytic solutions would be

extremely useful in guiding device development. The bulk behaviour is characterised by

the various material constants and practical materials result in a large range of possible

values which gives rise to numerous possible different behaviours. As a first step in the

systematic investigation of the possible behaviour we consider a case where the elastic

constants are nearly equal and where deformations may be modelled in one dimension

which means the bifurcation structure is straightforward. More complicated behaviours,

involving ‘out of plane’ distortions [22], crossed electric and magnetic fields [8, 2], etc.

remain to be considered in detail.

The dynamics of liquid crystal transitions is also important from a practical point

of view as this determines switching times of electro-optic devices. Here the analysis is

complicated by the need to account for backflow coupling between the director field and

the flow of the liquid. There are many aspects of the dynamics of liquid crystal related to

the stable operation of devices, for example bifurcations can be induced by an oscillatory

shear [24].

Dynamically, liquid crystal materials can support travelling wave solutions and such

solutions are possible in a number of cases as can be seen for example in Lam & Prost

[15]. Recently the authors have reported a novel form of travelling wave solution which

depends on surface interaction [28]. In addition because of the large number of parameters

and spatial variables there are various transient pattern formations possible [14]. Some of

these phenomena create areas of analysis that are not primarily motivated by the specific

aim of devices improvement but are interesting in their own right.

There are recent devices that utilise more subtle effects in nematic materials, such as

the interaction of the nematic with the surface through weak anchoring, but these remain

relatively untouched theoretically. There are also new nematic devices which operate in

a significantly different manner from the conventional devices. Examples are the use of

composites such as Polymer Dispersed Liquid Crystals (PDLC) [5] where small droplets

of liquid crystal are held in a solid polymer matrix, and gel systems where a polymer is

uniformly dispersed in a much larger fraction of liquid crystal.

In this paper we consider the situation of an initially uniform textured nematic confined

between parallel plates and subject to an electric field. The bifurcation structure is easy to

understand and we concentrate on obtaining approximate static super-critical solutions

using asymptotic techniques. This approach allows approximate descriptions of the static

director field to be obtained in a larger variety of situations than previous work. Some

extensions to the results are also discussed.

In the next section we describe the continuum theory of nematics and cholesterics. This

is followed by a clear statement of the specific problem considered in the rest of the paper.

The governing equations are non-dimensionalised and we find that there are three non-

dimensional parameters which define the solution. By considering the various physically

relevant distinguished limiting cases of these parameters approximate solutions are derived

systematically using asymptotic methods. The solutions are presented in both analytic and
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numerical form. Hence, we show that methods of modern applied mathematics afford

considerable insight into the structure of the solutions of the equations governing liquid

crystal device behaviour which have hitherto been regarded as inaccessible to analysis.

2 Continuum theory of nematic liquid crystals

A general account of the theory of liquid crystals can be found in the book by de Gennes

& Prost ([6]), and reviews of the continuum theory for nematics and cholesterics in the

papers by Ericksen [10] and Leslie [17, 18] and it is inappropriate to give an exhaustive

account here. Rather, the aim is to present sufficient theory, amenable to a reader familiar

with the continuum theories of Newtonian fluids and linear elastic solids, which will allow

for a straightforward physical interpretation.

The main difference between liquid crystal theory and the theory of isotropic liquids

arises from the need to include the director field. This results in liquid crystals having a

non-symmetric stress tensor and consequently not only the linear momentum equation

but also the angular momentum equation is non-trivial. To obtain a mechanical formalism

the concept of a couple stress tensor is introduced. This tensor represents torque couplings

within the material that are not necessarily produced as the moments of body forces. The

equations expressing conservation of momentum and angular momentum can then be

written as:

ρv̇i = Fi + tij,j + t̃ij,j , (2.1)

σn̈i = Ki + lij,j + εijktkj + l̃ij,k + εijk t̃kj . (2.2)

Here tij represents the stress tensor and lij the couple stress tensor and each has been

written as the sum of non-dissipative and dissipative parts with the latter being represented

by a superposed tilde, .̃ Other terms are: Fi representing a body force; Ki, representing

torque acting on the director due to external fields; and vi the flow velocity. A superposed

dot denotes a material time derivative, ρ is the density and σ the director inertia.

Subscripted commas denote differentiation with respect to the corresponding spatial

variable, εijk is the alternating tensor and the summation convention is used.

It is usual, and appropriate, to assume incompressibility and we also note the director

ni is a unit vector. Because of this there are two constraints:

vi,i = 0, nini = 1, (2.3)

which must be satisfied identically. It is also usual to assume that the director inertia is

negligible, σ = 0, and what remains is to exhibit the form of the body couple Ki and the

constitutive equations for the stress and couple-stress tensors used in equations (2.1, 2.2).

In the presence of an electric field the couple Ki arises from interaction of the induced

dielectric polarisation with the local electric field and has the form

Ki = −εijknj ∂We

∂nk
, (2.4)

where We is the electric free energy density given by

We = −1

2
D · E = −1

2
ε0ε⊥E · E− 1

2
ε0εa(E · n)2. (2.5)
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The electric displacement vector D is related to the local field E by Di = εijEj and

in obtaining (2.5) use has been made of the fact that, for nematics and cholesterics,

the permittivity tensor εij has only two distinct eigenvalues ε|| and ε⊥ representing the

permittivity parallel and perpendicular to the director. The difference of these two,

εa = ε|| − ε⊥, is called the electric anisotropy.

The constitutive forms of tij and lij are expressed in terms of a distortion free energy

density, Wd. The form usually taken for this [11] is

Wd =
1

2

(
k1(∇ · n)2 + k2(τ+ n · (∇ × n))2 + k3(n× (∇ × n))2

−k24∇ · (n(∇ · n) + n× ∇× n
))
, (2.6)

where the k’s are the Frank elastic constants (typically of the order 10−12 N). (We follow

the notation used by Allender et al. [1] for defining the constant k24 but note that other

authors replace k24 by k2 + k24.) The parameter τ is the cholesteric wave number. This

expression is the most general scalar function Wd = Wd (n ,∇n) which is quadratic in the

scalar components of its arguments (essentially an equivalent of Hooke’s law), satisfies

frame indifference and which is even in the director. (This is required because of the

physical equivalence of n and −n.) For a nematic τ = 0, a reflection of the fact that the

pseudo-scalar term must vanish when symmetry is demanded under improper, as well as

proper, orthogonal transformations. The four terms in equation (2.6) are each associated

with an elementary deformation of the director field and this gives rise to k1, k2 and k3

being known as the splay, twist and bend elastic moduli respectively, while k24 is called

the saddle-splay modulus (see, for example, Virga [31]).

Whatever constitutive form for Wd is chosen, Ericksen [9] has shown that

tij = −pδij − ∂Wd

∂nk,j
nk,i, (2.7)

and

lij = εipqnp
∂Wd

∂nq,j
. (2.8)

The constitutive equations for the dissipative parts of the stress and couple stress tensors

t̃ij and l̃ij were obtained by Leslie [16]. Assuming that they are functions only of ni, ṅi and

the rate of displacement tensor vi,j and that they satisfy the same invariance conditions

as their static counterparts, together with certain linearity assumptions, he concludes that

the dissipative couple stress is identically zero: l̃ij ≡ 0, and that

t̃ij = +α1dpqnpnqninj + α2Ninj + α3Njni + α4dij + α5diknknj + α6djknkni. (2.9)

In these equations dij is the symmetric rate of strain tensor and Ni is the covariant director

time derivative defined by

Ni = ṅi − ωijnj , (2.10)

where ωij = (vi,j − vj,i)/2 is the antisymmetric spin tensor. The αi are material constants

known as Leslie coefficients and have the dimensions of viscosity. Although six in number,

only five are independent since a thermodynamic argument by Parodi [23] shows that

α6 − α5 = α3 + α2. (2.11)
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Defining W = Wd +We and

gk = −γ1Nk − γ2dkpnp, (2.12)

where

γ1 = α3 − α2, γ2 = α6 − α5, (2.13)

equations (2.1), (2.2) can, after some manipulation, be written as

ρv̇i = tij,j + t̃ij,j , (2.14)

and (
∂W

∂ni,j

)
,j

− ∂W

∂ni
+ gi + λni = 0. (2.15)

Here λ is an unknown constant (essentially a Lagrange multiplier) arising from the

constraint given in the second of equations (2.3). Although it is sometimes helpful to

consider the director in terms of its three components n = (nX, nY , nZ ) for most practical

problems it is easier to write it as a function of Euler angles θα (α = 1, 2) chosen in such a

way that ni = ni(θ
α) satisfies the constraint nini = 1 identically. In this case, the Lagrange

multiplier is eliminated and there are only two angular momentum equations.

Having exhibited the dynamic equations in generic form we now consider the boundary

equations relevant at solid surfaces and the governing equation for the electric field. The

boundary conditions on the velocity will be the usual no-slip conditions. For the director

surface conditions are found by equating surface terms arising from divergences in the

bulk with variations of a surface energy density, Ws, and of a surface dissipation function,

Ds. Making the assumption that neither Ws or Ds depend explicitly spatial derivatives of

the director the boundary conditions take the form

∂W

∂θi,k
νk =

∂Ws

∂θi
− ∂Ds

∂θ̇i
, i = 1, 2. (2.16)

where νk is the outward unit normal to the surface and we have written the director

in terms of Euler angles. The different forms that can be taken for Ws are discussed

in Yokoyama [32] In the literature the limit Ws → ∞ is often taken and this is known

as strong anchoring (equivalent to imposing Dirichlet conditions). However, there is

increasing interest in weakly anchored systems where finite Ws is assumed. Forms for

Ds are considered in Stelzer et al. [30] and Sonnet et al. [29]. More often than not it is

assumed that reorientation at a surface occurs without dissipation, i.e. that Ds is identically

zero.

Finally, it is necessary to specify equations determining the electric field. Since we

assume no free charge density in the liquid crystal these will be obtained from the

Maxwell equations for the electric displacement field

∇ ·D = 0, (2.17)

where D is related to the local field, E = −∇Ψ , as discussed above. Boundary conditions

are then imposed on the potential Ψ for conducting surfaces and on its normal derivative

for insulating surfaces.
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Figure 1. Schematic of a simple nematic cell showing the orientation of the director before and

after an electric field is applied.

3 A simple nematic cell

We now describe the problem considered in detail in the rest of this paper. We consider

a nematic liquid crystal confined between parallel plates at Z = 0 and Z = d and

subject to strong planar anchoring at these surfaces. An electric potential Vapp is applied

between the plates giving rise to an electric field parallel to the Z-axis, given by an

electric potential Ψ . At this point there are several different types of material that could

be considered. The most general governing equations of liquid crystal theory are very

lengthy and we therefore consider a straightforward case. We will take the liquid crystal

as one with positive electric anisotropy, εa > 0, so the director tends to align parallel to

the local electric field and hence is in competition with the direction of the strong planar

anchoring. In addition we will assume the deformation occurs in a plane in which case it

is possible to describe the director by one Euler angle alone: n = (cos θ, 0, sin θ) where θ

is the angle between the director n and the Z-axis and we assume the distortion depends

only on one dimension with θ = θ(Z). This situation describes a simple nematic cell,

Figure 1. Although this is one of the most straightforward problems which we could have

posed it still shows the essentials of more complicated problems and is readily extended

to more complicated situations involving weak anchoring, flow coupling, etc. which will

be considered elsewhere.

The equations governing the static behaviour of the liquid crystal are obtained from

(2.14), (2.15) by suppressing time derivatives. The force equations simply integrate to give

an expression for the pressure, while the elastic ‘balance of torque’ equation is

(k1 cos2 θ+k3 sin2 θ)
dθ2

dZ2
+(k3−k1) sin θ cos θ

(
dθ

dZ

)2

+ε0εa cos θ sin θ

(
dΨ

dZ

)2

= 0. (3.1)

The Maxwell equation (2.17) written in terms of the electric potential Ψ is

d

dZ

(
(ε‖ sin2 θ + ε⊥ cos2 θ)

dΨ

dZ

)
= 0, (3.2)

and the boundary conditions for the problem are

θ(0) = θ(d) = 0, Ψ (0) = 0, Ψ (d) = Vapp. (3.3)
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The first of these boundary conditions reflects our assumption of strong planar anchoring

while the second simply says that the voltage drop across the cell is equal to the applied

voltage, Vapp.

To non-dimensionalise these equations define the scaled variables

z = Z/d, ψ = Ψ/Vapp, (3.4)

so that the problem can be written

(1 + α sin2 θ)θzz + α sin θ cos θ θ2
z + cos θ sin θV 2ψ2

z = 0, (3.5)(
(1− η cos2 θ)ψz

)
z

= 0, (3.6)

θ(0) = θ(1) = 0, ψ(0) = 0, ψ(1) = 1. (3.7)

The solution depends upon three non-dimensional parameters defined as

α =
k3

k1
− 1, η = 1− ε⊥

ε‖
, V =

√
ε0εa

k1
Vapp. (3.8)

These are respectively: the non-dimensional elastic anisotropy, the non-dimensional elec-

tric anisotropy and the non-dimensional applied voltage.

We shall consider |α| as small. In theory α can take any real value but for many liquid

crystals the splay and bend elastic constants have similar values so this assumption is not

unreasonable and it is also known that when |α| is large, ‘out of plane’ distortions can

occur. Our assumption of positive anisotropy (which is required to create competition

between the applied field and the surface anchoring, restricts η to the range 0 6 η < 1.

The problem always has the trivial solution θ = 0, ψ = z and a simple linear stability

analysis shows that this is the only stable solution if V < Vcrit = π. Above this critical

voltage non-trivial solutions are possible and we must consider non-dimensional voltages

in the range π 6 V < ∞. Since we consider α as small there are two parameters that

define the various regimes of behaviour and for convenience we take these as 1/V and η.

If both the non-dimensional parameters are O(1) then we have the full problem and no

simplification of the equations can be made and in this case no simple explicit analytic

solution exists. However, there are a number of other distinguished limiting cases where

approximate analytic solutions can be sought and the six of these that are analysed in

this paper are indicated in Figure 2. In Figure 2 the right of the rectangle corresponds to

a low applied voltages and will be referred to as the low-field regime. Similarly, the left

hand side with 1/V → 0 is a high-field regime. As we move up the rectangle from η = 0

to η = 1 we move from a low electric anisotropy to a high electric anisotropy regime.

4 Solutions

We consider approximate solutions to the governing equations in the various regimes

outlined above. It is worth pointing out that a formal solution by quadrature can always

be obtained to the full equations. Such formal solutions (e.g. those by Deuling [7] and

Barrat & Fraser [3]) are often used as the starting point for numerical work but do not

allow the physical insight which is afforded by an analytic solution. Furthermore, a series

solution as an expansion in an appropriate small parameter can more easily be adapted to
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Figure 2. Regions of the (1/V , η) plane where solutions are sought.

consider the dynamics of the situation. In this paper we obtain such explicit approximate

solutions. A fuller account, which also considers some of the possible generalisations, is

given in Self [27].

4.1 Low-field regime and small electric anisotropy regime

These cases correspond to Regions 1 and 2 of Figure 2 and we consider them together

because their solutions are known elsewhere.

We begin with region 1 where the applied field is low in the sense that (1/V )→ (1/π)−
(i.e. just above the Freedericksz transition). Define a small parameter, δ, by writing

(1/V ) = (1/π) − δ2 and consider δ → 0. Using standard techniques (e.g. see Logan [21])

the solution can now be found in the form of a regular expansion in δ and we obtain:

θ = δ
2
√
π(1− η)√

1 + α(1− η)
sin πz + O(δ3), (4.1)

ψ = z + δ2 η

(1 + α(1− η))
sin 2πz + O(δ4). (4.2)

These solutions are illustrated in Figure 3. Notice how the electric field tends to be

excluded from the region of maximum distortion. Solutions to the low-field problem have

been obtained by Schiller [26].

Region 2 in Figure 2 is characterised by the limit η → 0 and is the least amenable

limit to analyse. In fact there is no truly simplifying approximate solution and a result is

obtained in the form of elliptic integrals, i.e. a formal solution by quadrature. In practical

terms more progress is made by breaking this region into two – a region 1/V → 1/π which

is covered by the low field regime presented in the last section, and a region 1/V → 0

(corresponding to a high applied field) discussed in the next section below. However, the

regime considered here is required for completeness since it is the distinguished limit and

hence matches the other two. We therefore present the formal solution to leading order.

From the second equation of (3.8) it is evident that the limit η → 0 is equivalent to

εa → 0 and this implies that the internal electric field is very nearly equal to the applied

field. Such a characteristic is more common in the physical properties associated with
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Figure 3. Solutions in the low field regime. (a) the distortion angle θ, (b) the electric potential ψ.

Parameter values used are: V = 1.2π, η = 0.75, α = 0.

liquid crystal’s response to a magnetic field and we therefore refer to this limit as the

magnetic approximation. Putting η = 0 in the Maxwell equation (3.6) we obtain the

leading order potential ψ0 = z. Substituting into equation (3.5) and assuming a symmetric

solution we formally integrate to obtain θ implicitly from:

z =
1

V

∫ θ

0

(1 + α sin2 w sin2 θm)
1
2 (1− sin2 θm sin2 w)−

1
2 sin θm dw, (4.3)

with the maximum distortion angle, θm, being given by the elliptic integral:

V =

∫ π
2

0

(1 + α sin2 w sin2 θm)
1
2 (1− sin2 θm sin2 w)−

1
2 sin θm dw. (4.4)

This solution has been given by Deuling [7].

4.2 High-field low electric anisotropy regime

In this and the next section, we consider cases where a high field is applied. This is

a common situation encountered in practice since high fields are employed to decrease

switching times. In this section we consider a parameter range corresponding to region 3

of Figure 2, that is, a high field applied to a liquid crystal with a small electric anisotropy.
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The new solution given in this section is in the form of a matched asymptotic expansion

and we demonstrate its robustness when parameter values are changed. From the point

of view of applicability this is the most important result of the paper.

Because the applied field is high we introduce a parameter ε defined by

ε = 1/V (4.5)

and consider the limit ε → 0. Region 3 is also characterised by small η and we also

assume α is small. The distinguished limit in this case corresponds to the scalings

η = εη , α = εα, (4.6)

where η and α are both O(1). The governing equations (3.5) and (3.6) are now

ε2
(
εα sin2 θ + 1

)
θzz + ε3α sin θ cos θ θ2

z + sin θ cos θ ψ2
z = 0, (4.7)(

(1− εη cos2 θ)ψz
)
z

= 0, (4.8)

with the boundary conditions (3.7). This is a singular limit of the problem and we expect

an outer solution in most of the interior together with thin inner solutions being boundary

layers adjacent to the confining surfaces. We obtain these in the series form and are also

able to obtain an overall composite solution.

4.2.1 Outer problem

In the outer region with z = O(1) we expand

θ = θ0 + εθ1 + ε2θ2 + . . . ψ = ψ0 + εψ1 + ε2ψ2 + . . . . (4.9)

Substituting these expansions into (4.7) and (4.8) we find that any integer multiple of π/2

satisfies the outer problem. We take the physically relevant outer solution:

θ0 = π/2 , θn = 0 n > 1, (4.10)

and

ψ0 = C0z + B0, ψ1 = C1z + B1, ψ2 = . . . etc. (4.11)

The constants Cn, Bn will be determined by matching the inner and outer solutions.

4.2.2 Inner problems

It is apparent that the outer solution for θ cannot satisfy the boundary conditions

θ(0) = θ(1) = 0 and we therefore expect boundary layers close to z = 0 and z = 1. In

these regions, θ changes rapidly and we seek a new balance in equation (4.7) by re-scaling

z. To make the second derivative term O(1) the correct re-scalings to use are z = εz for

the left region and z = 1− εz for the right region. In each case, z = O(1). The governing

equations become

ε2(εα sin2 θ + 1)θzz + ε3α sin θ cos θ θ
2

z + sin θ cos θ ψ2
z = 0, (4.12)(

1− εη cos2 θ)ψz
)
z

= 0. (4.13)
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Overbars on θ and ψ denote that they are functions of the inner variable z. We expand

as before and substitute into (4.12) and (4.13). Working to O(ε2) the equations for ψ in

the left inner region are:

ψ0z = C0, (4.14)

ψ1z = C1, (4.15)

ψ2z = C2+ η C1 cos2 θ0; (4.16)

while for θ we have at O(1) and at O(ε):

θ0zz + C
2
1 cos θ0 sin θ0 = 0, (4.17)

θ1zz + C
2
1 cos 2θ0 θ1 = 2η cos2 θ0 θ0zz − 2C1C2 cos θ0 sin θ0

−α(sin2 θ0 θ0zz + sin θ0 cos θ0 θ
2

0z). (4.18)

Equations (4.14) and (4.15) together with the appropriate boundary conditions give

ψ0 = 0, and ψ1 = C1z. (4.19)

The leading order equation (4.17) clearly integrates once and by demanding that the

derivative θz match with that of the outer solution, so z →∞ implies θ0 → π/2, θ0z → 0+,

we conclude the integration constant is zero. A further integration gives the solution for

θ satisfying the boundary condition θ(0) = 0 as

θ0 = 2 tan−1(eC1z)− π

2
. (4.20)

Next, the second order equation, (4.16), together with the boundary condition ψ2(0) = 0

gives

ψ2 = +C2z + η tanh(C1z). (4.21)

Collecting together the above results we have expressions for the electric potential ψ in

the left inner region to O(ε2). This solution must smoothly match with the outer solution

(4.11). We use Van Dyke’s matching rule, as quoted in standard texts on asymptotics (e.g.

Hinch [12]) to determine the constants involved and find:

ψl = εz + ε2η tanh z + O(ε3), (4.22)

ψo = z − ε2η(2z − 1) + O(ε3), (4.23)

ψr = 1− εz − ε2η tanh z) + O(ε3). (4.24)

Finally, we are now able to solve for the director field in the inner region at O(ε) by

integrating equation (4.18). We obtain

θ1 =
1

2
α (tanh z − z) sechz +

1

2
η tanh zsechz. (4.25)

It is straightforward to find analogous solutions for θ in the right inner region since the

solution is symmetric in z. To complete the solution we obtain composite expansions for

θ and ψ using the standard procedure (again, see Hinch [12]), and obtain

ψc = z + ε2η tanh
z

ε
− ε2η tanh

1− z
ε
− ε2(2z − 1)η + O(ε3), (4.26)
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Figure 4. Composite solutions for the distortion angle θ, in the high-field low-anisotropy regime.

Parameter values used are: α = 0.1, η = 0.2, and in (a) V = 3π, while in (b) V = 2π. Solid curves

are the analytic expressions and dashed curves are the numerical solutions.

θc ∼ 2 tan−1(ez/ε) + 2 tan−1(e(1−z)/ε)− 3π/2

+
1

2
εα
(

tanh
z

ε
− z

ε

)
sech

z

ε
+

1

2
εη tanh

z

ε
sech

z

ε

+
1

2
εα

(
tanh

1− z
ε
− 1− z

ε

)
sech

1− z
ε

+
1

2
εη tanh

1− z
ε

sech
1− z
ε

. (4.27)

In Figures 4 and 5 these analytic expressions are compared with the numerical solutions

of equations (4.7) and (4.8) for various values of the parameters. In Figure 4 the composite

distortion is shown at two and three times the critical voltage. The potential is not shown

since, under these conditions, the composite analytic solution is almost indistinguishable

from the numerical solution. The robustness of the approximate analytic solutions in this

limit can be seen in Figure 5 where the applied voltage is only three times the critical

voltage and the parameters used are those of liquid crystal E7 (see, for example, Preist

et al. [25]). In this case both the electric and elastic anisotropies are high (η = 0.73 and

α = 0.62), but despite this there is still good agreement between the analytic and numerical

solutions.
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Figure 5. Composite solutions for the distortion angle θ, and electric potential ψ, in the high-field

low-anisotropy regime. Parameter values used are: α = 0.62, η = 0.73, V = 3π. Solid curves are the

analytic expressions and dashed curves are the numerical solutions.

4.2.3 Discussion

Having considered the case of high-field and low electric anisotropy the natural situation

to consider next is that of larger anisotropy, that is moving up in Figure 2 from the

bottom left corner. As the magnitude of the anisotropy increases the solution retains the

same boundary layer structure as above. However, when η = O(1) the full problem arises

in the boundary layer and we do not present any results for this case. In Figure 2 we

have left this region shaded to indicate the lack of a simplifying solution and we have

also indicated that the results of region 3 appear to give very reasonable predictions for

a significant range of η. As η is further increased a new balance in the equations occurs

allowing progress to be made analytically and this is discussed in the next section.

4.3 High-field, large electric anisotropy regime

In this and the next two subsections we consider cases where the electric anisotropy is

large and the applied field is taken as being respectively, high, intermediate, and low.

These correspond to regions 4, 5 and 6 in Figure 2. In each case we present the solution

to leading order and we find that, for the case where α is small, this parameter does not

appear in the solution to lowest order. Consequently, α is not included in the following
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analysis. The high anisotropy of the electric permittivity implies we are assuming that

η ∼ 1 so define

γ = 1− η =
ε⊥
ε||

(4.28)

and consider the limit γ → 0.

We begin in this section with the high-field regime of Region 4 in figure 2 and we again

define a small parameter ε as the reciprocal applied voltage (4.5). In terms of ε and γ and

with α = 0 equations (3.5) and (3.6) become

ε2θzz +
C2 sin θ cos θ(

sin2 θ + γ cos2 θ
)2

= 0, ψz =
C

sin2 θ + γ cos2 θ
. (4.29)

We have integrated the Maxwell equation once so C is a constant and the boundary

conditions are again given by (3.7). We wish to solve in the limit ε→ 0. The distinguished

limit we are considering is defined by the relative order of magnitude of γ compared to ε.

This appears naturally during the analysis and is discussed below. To solve this problem

to arbitrary order we would expand C in powers of ε but to the order we will solve here

we need only consider the leading term. For a physically sensible analysis, we must take

this as being non-zero and we therefore assume C = O(1).

4.3.1 Outer problem

The leading order outer problem clearly has solutions

θ =
π

2
, and ψ = Cz + B. (4.30)

4.3.2 Inner problems

As before define the inner regions by rescaling z = εz and z = 1− εz in the left and right

boundary layers respectively. In this case, it is convenient to rescale the potential in the

inner regions by defining

ψl = εψl, ψr = 1− εψr. (4.31)

and this gives the inner equations

θzz = − C2 sin θ cos θ(
sin2 θ + γ cos2 θ

)2
, ψz =

C

sin2 θ + γ cos2 θ
, (4.32)

where the superscripts l and r have been dropped because the equations are identical in

the two inner regions. Putting γ = 0 in the first of (4.32) gives the leading order solution

θ = cos−1
(
be−Cz

)
. (4.33)

Clearly, this matches correctly with the outer solution, and the boundary condition

θ(0) = 0 appears to imply that b = 1. However, note that from (4.33) θz → ∞ as z → 0.

Thus the problem is again singular and an inner-inner region exists. When discussing

this new region below it will be shown that b = 1 is in fact correct. Anticipating this we
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therefore take b = 1 in equation (4.33) and obtain the leading order solution for ψ as

ψ =
1

2
log(e2Cz − 1) + E. (4.34)

4.3.3 Inner-inner problems

There is a need to find a new balance as z → 0 in order to avoid an infinite derivative. In

the denominators of equations (4.32) we have γ cos2 θ ∼ sin2 θ when θ = O(
√
γ). To find

where this occurs expand (4.33) for small θ, z:

1− θ
2

2
∼ b− bCz. (4.35)

To balance at O(1) we must clearly put b = 1 as anticipated above. Balancing at first order

in small quantities it is seen that θ = O(
√
γ) when z = O

(
γ/2C

)
. Thus the appropriate

scalings to use in the inner-inner regions (denoted by a circumflex) are

z =
γ

2C
ẑ and θ =

√
γθ̂. (4.36)

In terms of these variables the leading order inner-inner equations are

θ̂ẑẑ =
−θ̂

4
(

1 + θ̂2
)2

and ψ̂ẑ =
1

2
(

1 + θ̂2
) . (4.37)

The first of these can be integrated once and smooth matching of the derivative θz as we

move from inner-inner to inner regions determines the integration constant. Integrating

again and applying the boundary conditions θ̂(0) = 0 gives

ẑ = θ̂

√
θ̂2 + 1 + sinh−1 θ̂. (4.38)

It will be useful to introduce some notation for this implicit function and hence we call

the left side of (4.38) P−1
(
θ̂
)

and we then have the formal solution

θ̂ = P (ẑ) . (4.39)

To determine the potential, ψ̂, to leading order we note that

ψ̂ẑ =
∂ψ̂

∂θ̂

dθ̂

dẑ
, (4.40)

and hence obtain the solution in each inner boundary layer as

ψ̂ = sinh−1 θ̂. (4.41)

4.3.4 Matching the solutions

The scalings used and the solutions found above are summarized in Table 1. The constants

in these solutions are found by matching ψ using the asymptotic behaviour in the

appropriate limits for the various regions. We obtain:

B ∼ ε log 2− 1
2
ε log γ, (4.42)
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Table 1. Summary of scalings and solutions in the different regions

Left inner-inner Left inner Outer Right inner Right inner-inner

z = γ

2C
ẑ z = εz z z = 1− εz z = γ

2C
ẑ

θ =
√
γθ̂ θ = θ θ θ = θ θ =

√
γθ̂

ψ̂ = ψ ψ = εψ ψ ψ = 1− εψ ψ̂ = ψ

θ̂ ∼ P(ẑ) θ ∼ cos−1(e−Cz) θ ∼ π
2

θ ∼ cos−1(e−Cz) θ̂ ∼ P(ẑ)

ψ̂ ∼ sinh−1 θ̂ ψ ∼ Cz + B ψ̂ ∼ sinh−1 θ̂

ψ ∼ 1
2

log(e2Cz − 1) + E ψ ∼ 1
2

log(e2Cz − 1) + F
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Figure 6. The potential, ψ, in the high-field large-anisotropy regime showing outer, inner and

inner-inner solutions. Parameter values used are: α = 0.0, γ = 0.1, V = 4π.

C ∼ 1− 2ε+ ε log γ, (4.43)

E ∼ log 2− 1
2

log γ, (4.44)

F ∼ log 2− 1
2

log γ. (4.45)

The constants as written here are in fact expanded in terms of the parameters ε and γ. This

has arisen because of the need to rescale the dependent, as well as independent, variables

in the various regions. We also note that E and F occur in the expressions for ψ which,

in each case, is scaled with ε. Thus the parameter γ appears in the unscaled variables only

in the combination ε log γ. Recalling that C = O(1) we see that the distinguished limit is

defined by

ε| log γ| � 1, (4.46)

and this defines what is meant by a high-field in the high-anisotropy regime. As γ → 0 an

increasingly high (non-dimensional) field is required to cause saturation. This is discussed

further in the following section.

Because of the implicit nature of the inner-inner solutions, it is not possible to write

down the composite solution explicitly. An illustration of the boundary layer structure

for the potential in this regime is shown in Figure 6.
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4.4 Intermediate-field large electric anisotropy regime

This regime corresponds to region 5 of Figure 2 and, as in the previous section, we

consider the limit γ → 0. We do not, however, take the applied voltage as being high. We

shall find that the structure of the solution requires boundary layers but that, in addition,

the solution in each layer interacts with the solutions in all other regions indicating a

delicate balance between the various physical processes in the problem. We view this

regime as the most mathematically interesting of all those considered in this paper.

The previous section describes a limiting case of the present regime where the applied

field is sufficiently high to cause saturation of the director field, i.e. an outer solution

θ = π/2 exists. In the present case, V is not sufficiently large and the outer solution

attains a maximum distortion θm < π/2. The structure of the outer solution is similar to

that of the inner regions of the previous section and, similarly, the boundary layers here

have a structure similar to the inner-inner solutions. In the last section, it was shown that

for saturation to occur the applied voltage must satisfy V � | log γ|. We may, therefore,

naively suppose that the present regime corresponds to V = O(| log γ|) and this is indeed

the case as will be shown below. As before when α is small it does not affect the lowest

order solution so again we will not consider it in the analysis. The governing equations

can then be written as

θzz +
C2V 2 sin θ cos θ(
sin2 θ + γ cos2 θ

)2
= 0, ψz =

C

sin2 θ + γ cos2 θ
. (4.47)

By putting γ = 0 and assuming symmetric solutions with θ = θm and ψ = 1/2 at z = 1/2,

(where θm is unknown), gives the leading order outer solutions

cos θ = cos θm cosh

{
(z − 1

2
)
CV

sin θm

}
, (4.48)

ψ =
1

2V
log

(
sin θm + tanh

{
(z − 1

2
)
CV

sin θm

})
+

1

2
− 1

2V
log

(
sin θm − tanh

{
(z − 1

2
)
CV

sin θm

})
. (4.49)

4.4.1 Inner problems

Examining equations (4.47) the outer region approximation breaks down when θ ∼ √γ.
Thus we scale θ =

√
γθ and determine the value of z where this first occurs by expanding

equation (4.48) for small θ =
√
γθ and z. Demanding the resulting expansions balance at

each order requires:

1 = cos θm cosh

{
CV

2 sin θm

}
, (4.50)

and

γθ
2

2
∼ zCV cos θm

sin θm
sinh

{
CV

2 sin θm

}
. (4.51)

The first of these gives an expression for C in terms of the applied voltage V and the

maximum distortion θm. (Strictly, equality only holds in the limit γ → 0.) On substituting
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(4.50) and manipulating (4.51) the correct scaling to use for the inner variable is

z =
γ

2CV
z, (4.52)

and the inner equations can be written to leading order as

θzz =
−θ

4(1 + θ
2
)2
, ψz =

1

2V (1 + θ
2
)
. (4.53)

Analogously to the the previous section we find

θ = P(z), ψ =
1

V
sinh−1 θ, (4.54)

where the function P is again defined by (4.38) and (4.39). An analogous argument for

the limit z → 1 shows that in the right boundary layer we must rescale z = 1− γ

2CV
z.

We then obtain the first of (4.54) as the solution for θ and for the potential we obtain

ψ = 1− (1/V ) sinh−1 θ.

4.4.2 Matching the solutions

We note θ is already matched by the relationship (4.50). To match the potential begin by

rearranging (4.50) as:

tanh
CV

2 sin θm
= sin θm. (4.55)

(Given this result it is easier to see the singular character of the outer solution for ψ given

by equation (4.49) at the two end points z = 0 and z = 1.) Substituting (4.55) in (4.49)

for ψ we obtain the expansion of the outer solution as z → 0:

ψ ∼ 1

2V
log

(
CV

2
cot2 θm

)
+

1

2
+

1

2V
log z. (4.56)

We must also determine the behaviour of the inner solution for the potential (4.54) as

z →∞. This solution is of the form ψ = ψ(θ) and from (4.54) and the definition of P we

obtain

θ ∼ √z − log z

2
√
z
− 1

4
√
z

(1 + 2 log 2) + . . . as z →∞. (4.57)

Substituting this into (4.54) for ψ we obtain:

ψ ∼ 1

V
log 2
√
z as z →∞. (4.58)

Comparing this with (4.56) and using (4.50) we obtain

tan θm =

√
γ

4
eV/2, (4.59)

and this constitutes the final matching condition. The inner and outer solutions are

compared with the numerical solutions in Figure 7.

As in the last subsection it is not possible to obtain an analytic expression for the

composite solution although this is easy to obtain numerically (Figure 8).
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Figure 7. Solutions for the distortion angle θ, and electric potential ψ, in the intermediate-field

high-anisotropy regime. Parameter values used are: γ = 0.1, V = 2π. Dashed curves are the inner

and outer analytic expressions and solid curves are the numerical solutions.
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Figure 8. Solutions for the electric potential ψ, in the intermediate-field high-anisotropy regime.

Parameter values used are: γ = 0.1, V = 2π. The solid curve is the composite solution and symbols

are the numerical solution.
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4.4.3 Discussion

The constants θm and C which appear in the inner and outer solutions which were

obtained from the matching conditions determine not just the limiting behaviour in the

overlap region but also the overall shape of the solutions. It is evident from (4.59) that

for significant distortion to occur, i.e. θm = O(1), the applied voltage must satisfy

V = O(1)− log γ. (4.60)

This is consistent with the analysis of the previous section where it was shown that, for

saturation to occur, the voltage must be so high that V � − log γ. We also note that, as

γ → 0, even O(1) voltages can be considered small. However, equation (4.59) predicts a

finite distortion for V → 0 which is indicative of asymptotic breakdown. Thus for ‘low’

voltages we must seek a new balance in the equations.

4.5 Low-field, large electric anisotropy regime

The final large electric anisotropy regime is region 6 of Figure 2 and lies between the

intermediate-field regime of the last subsection and and the low-field limit considered in

§ 5.1. There is little of practical interest in the solution presented other than it allows

proper matching of these two other solutions. It is characterised by γ → 0 and V → π.

The governing equations are identical to those used in the previous section, (4.47), but

a different solution is obtained since we scale the equations at the outset. It was shown

above that relatively high fields are required to obtain an appreciable distortion because

the limit γ → 0 defines a regime where large polarisation changes can be induced by even

a relatively small distortion of the director field. Consequently, for relatively low fields

any distortion of the director must be assumed small. The correct distinguished limit is

therefore obtained by rescaling

θ =
√
γθ, and C = γC, (4.61)

and this gives the following equations to leading order:

θzz + C
2
V 2 θ

(1 + θ
2
)2

= 0, ψz =
C

1 + θ
2
. (4.62)

Assuming a symmetric solution these are integrable in terms of elliptic functions:

1

VC
(1 + θ

2

m)
{

E( π
2
, k)− E(φ, k)

}
=

{
z, z < 1/2;

1− z, z > 1/2,
(4.63)

ψ =

{
1
V

(
F( π

2
, k)− F(φ, k)

)
, z < 1/2

1− 1
V

(
F( π

2
, k)− F(φ, k)

)
. z > 1/2

(4.64)

In these equations F(φ, k) and E(φ, k) are elliptic integrals of the first and second kind

respectively and

k2 =
θ

2

m

1 + θ
2

m

, φ = cos−1

(
θ

θm

)
and

1

VC
(1 + θ

2

m)E( π
2
, k) = 1

2
. (4.65)

https://doi.org/10.1017/S0956792501004740 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792501004740


22 R. H. Self et al.

The constants in the problem are determined by exploiting the symmetry of the solution.

Substituting z = 1/2, θ = θmand ψ = 1/2 into (4.64) we obtain the algebraic equation:

V

2
= F( π

2
, k) = K(k), (4.66)

where K(k) is the complete elliptic integral of the second kind. These equations give a

complete solution to the problem at leading order and equation (4.66) on its own gives a

relationship between the applied voltage and the maximum distortion of the director.

5 Discussion and future work

We have used the Leslie–Ericksen equations to model the static properties of a simple

liquid crystal device consisting of a nematic material between two parallel plates whose

texture is distorted by the application of an electric field. This serves as an archetype for

more complex but realistic liquid crystal devices of practical importance. A systematic

asymptotic analysis has been applied and solution derived for the practical range of three

nondimensional parameters describing the liquid crystal properties. In particular we have

included the interaction between the electric field and the nematic distortion in the model.

The solutions give new insight into the behaviour of practical devices where such effects

are important. Of particular interest are the solutions (4.26) and (4.27) derived for liquid

crystals with low anisotropies subjected to a high applied field. As pointed out these

solutions are very robust and are applicable to a wide range of liquid crystal materials of

practical interest.

The analysis presented here demonstrates that there is significant benefit to industry

to be gained from application of similar methods to models of liquid crystals in more

general settings. Although accurate predictions of the liquid crystal distortions and the

optical properties of devices can be made using computational methods, the asymptotic

methods used in this paper give the device designer a more powerful overview of the

type of behaviour that can occur as parameters are changed. There has been some work

done in this area, nevertheless there remains a rich vein of analysis to be explored from

Leslie-Ericksen theory applied to practical devices. In this paper we have considered a very

simple geometry and static solutions. Extensions to twisted nematics and weak anchoring

have been considered and will be presented elsewhere. However, extensions to consider

the bifurcation properties, the dynamical switching, and more complex geometries remain

relatively open questions.
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