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In this article, we characterise all continuous posets that are partially metrisable in their

Scott topology. We present conditions for pmetrisability, which are both necessary and

sufficient, in terms of measurements, domain-theoretic bases and, in a more general setting,

in terms of radially convex metrics. These conditions, together with their refinements and

generalisations, set a natural hierarchy on the class of partially metrised posets. We locate

the class of countably-based continuous dcpos within this hierarchy.

1. Introduction

This article is addressed primarily to researchers working in the area of quantitative

domain theory and topologists who are interested in weakly separated spaces and

generalised distances. Our work answers the question posed in Heckmann (1999): Which

continuous posets are partially metrisable in their Scott topology? For topologists, our

paper, together with Waszkiewicz (2003a), can serve as a source of many non-trivial

examples of spaces equipped with distances generating T0 topologies.

Our research started with an observation that the self-distance of the partial metric

on the poset of formal balls BX (Edalat and Heckmann 1998; Heckmann 1999) is

a measurement in the sense of Keye Martin (Martin 2000b). Indeed, the self-distance

of every pmetric compatible with the Scott topology on a domain is a measurement

(Waszkiewicz 2003a). Some time later, Martin and the author noted that the distance

induced by a measurement on a domain (see the definitions in Section 2) captures the

underlying order, as in the partial metric case. In fact, the distance satisfies all the partial

metric axioms except the sharp triangle inequality, which fails in general. However, it can

be shown that so-called (weakly) modular measurements are precisely those for which

the induced distance is a partial metric. On the other hand, not every partial metric for

the Scott topology arises from a modular measurement, the formal ball model with its

natural pmetric being an example. Hence, if one wants to characterise partial metrics

by their self-distances, a more general construction of a distance from a measurement

is needed. Such a construction has been known in topology for a long time, and was

presented in an elegant form by Frink (Frink 1937), see Theorem 3.1. A modification

of Frink’s construction that is best suited to our purposes is due to Künzi and Vajner

(Künzi and Vajner 1994), see Theorem 3.2. Our main result, Theorem 3.3, which gives a

complete characterisation of pmetrisability of the Scott topology on continuous posets in

terms of measurement, is a combination of the ideas outlined above. It is worth pointing
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out that characterisations of pmetrisability in terms of measurement are very useful, since

a measurement on a domain is often easy to construct, understand and use.

Our second characterisation, Theorem 4.2, is a relatively straightforward observation

with surprising consequences. The result states that a pmetric for the Scott topology on

a continuous poset can be reconstructed from a distance on a basis of the poset. It tells

us much about the structure of algebraic domains, since they have a canonical basis

of compact elements. Ideal domains, which were described by Martin in Martin (2003),

are extreme examples of algebraic domains in which every element is either maximal

or compact. They are readily constructed from posets equipped with measurements. For

example, the interval order I� can be restricted in such a way that it becomes ideal

but still retains its natural measurement, the length function: see Martin (2003). Our

Theorem then makes it easy to see that there is no partial metric on this domain that

would induce the Scott topology and, at the same time, would assign the self-distance

zero precisely to the maximal elements of the domain: see Example 6.1. This result is

indeed surprising, since it shows that there is no general construction of a partial metric

p on an arbitrary ω-continuous dcpo P that induces the Scott topology and satisfies the

condition kerp = Max(P ) (which means that the pmetric reduces to a metric exactly at

the maximal elements of the domain).

Therefore, it seems more reasonable to look for a pmetric on P that is a metric when

restricted to the constructive maximal elements CMax(P ). This point of view is advocated

by Michael Smyth in Smyth (2002). He proves that every ω-continuous dcpo admits a

pmetric of this sort. Generally, as Smyth observes, such a pmetric cannot symmetrically

induce the Lawson topology. In Theorem 6.5 we show that this inconvenience disappears

if the pmetric topology is strictly weaker than the Scott topology. In order to obtain

this result, we use our third characterisation of the pmetrisability of continuous posets,

Theorem 5.5.

2. Domains, measurements and partial metrics

Our research arose at the crossroads of domain theory, Steve Matthews’ theory of partial

metrics and Keye Martin’s recent theory of measurements. In what follows we give a brief

review of basic definitions and results that are needed for our paper.

Our primary references in domain theory are Abramsky and Jung (1994) and Gierz

et al. (2003). Let P be a poset. A subset A ⊆ P of P is directed if it is non-empty and any

pair of elements of A has an upper bound in A. If a directed set A has a supremum, it

is denoted
⊔ ↑A. A poset P in which every directed set has a supremum is called a dcpo.

The subset of maximal elements of a poset P is denoted Max(P ). We say that x ∈ P

approximates (is way-below) y ∈ P , and write x � y, if for all directed subsets A of P with⊔ ↑A ∈ P , y �
⊔ ↑A implies x � a for some a ∈ A. If x � x, then x is called a compact

element. The subset of compact elements of a poset P is denoted K(P ). Now, ↓↓x is the

set of all approximants of x and ↑↑x is the set of all elements that x approximates. We

say that a subset B of a poset P is a (domain-theoretic) basis for P if for every element x

of P , the set ↓↓x ∩ B is directed with supremum x. A poset is called continuous if it has

a basis. A poset P is continuous if and only if ↓↓x is directed with supremum x, for all
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x ∈ P . A poset is called a domain (continuous domain) if it is a continuous dcpo. Note

that K(P ) ⊆ B for any basis B of P . If a poset admits a countable basis, we say that it is

ω-continuous, or countably-based. The poset [0,∞)op is a domain without a least element.

We use � to refer to its order, which is dual to the natural one, �, but we usually prefer

to work with the latter.

A subset U ⊆ P of a poset P is upper if x 
 y ∈ U implies x ∈ U. The collection

of all upper sets of P is a topology, the Alexandroff topology α(P ). A subset A of P

is inaccessible by directed suprema if for all directed sets D ⊆ P such that
⊔ ↑D ∈ P ,

whenever D ∩ A = �, we have
⊔ ↑D /∈ A. Upper sets inaccessible by directed suprema

form a topology called the Scott topology; it is usually denoted σ(P ) here (or σ for short).

A function f : P → Q between posets is Scott-continuous if and only if it preserves the

order and suprema of directed subsets that exist in P . The collection {↑↑x | x ∈ P } forms

a basis for the Scott topology on a continuous poset P . The topology satisfies only weak

separation axioms: it is always T0 on a poset but T1 only if the order is trivial. For

an introduction to T0 spaces, see Heckmann (1990). An excellent general reference on

topology is Engelking (1989). The weak topology on a poset P , ω(P ), is generated by a

subbasis {P \ ↑x | x ∈ P }, and the Lawson topology λ(P ) is the join σ(P ) ∨ ω(P ) in the

lattice of all topologies on P .

We will now give a brief summary of the main elements of Keye Martin’s theory of

measurements. Our main reference is Martin (2000a). Let P be a poset. For a monotone

mapping µ : P → [0,∞)op and A ⊆ P , we define

µ(A, ε) = {y ∈ P | (∃x ∈ A)(y � x ∧ µy < µx + ε)}.

We say that µ(A, ε) is the set of elements of P that are ε-close to A. If A = {x} for x ∈ P ,

then the set above is denoted µ(x, ε). We say that µ measures P (or µ is a measurement on

P ) if µ is Scott-continuous and

(∀U ∈ σ)(∀x ∈ U)(∃ε > 0) µ(x, ε) ⊆ U.

We define kerµ
df
= {x ∈ P | µx = 0}. The kernel is always a Gδ subset of maximal elements

of P .

A measurement µ satisfies:

— the kernel condition if kerµ = Max(P );

— the local triangle condition if for all Scott-compact subsets K ⊆ P and for all Scott-open

subsets U ⊆ P , if K ⊆ U, then there exists ε > 0 such that µ(K, ε) ⊆ U;

— weak modularity condition if for all a, b, r ∈ P and for all ε > 0, if a, b � r, then there

exists s ∈ P with s � a, b such that µr + µs � µa + µb + ε.

One can show that every weakly modular measurement satisfies the local triangle

condition. Clearly, the kernel condition is independent of the other two. Examples of

weakly modular measurements can be found in Table 1 in Section 6. All of them except

the last satisfy the kernel condition. The last example in Table 1 describes a measurement

for an arbitrary ω-continuous dcpo such that the kernel condition is not satisfied unless

the domain has a top element. Finally, for any metric space (X, d), the formal ball model

(Edalat and Heckmann 1998) defined as BX = {(x, r) | x ∈ X, r > 0} with (x, r) � (y, s)
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if and only if d(x, y) � r − s is a continuous poset with a measurement µ(x, r)
df
= r, which

satisfies the local triangle condition but is not weakly modular in general.

Any measurement µ : P → [0,∞)op on a continuous poset P with a least element induces

a distance function pµ : P × P → [0,∞) by pµ(x, y)
df
= inf{µz | z � x, y}. The map pµ,

when considered with codomain [0,∞)op, is Scott-continuous, encodes the order on the

poset P : x � y if and only if pµ(x, y) = p(x, x), and the Scott topology: the collection of

pµ-balls {Bpµ (x, ε) | x ∈ P , ε > 0}, where Bpµ(x, ε)
df
= {y ∈ P | pµ(x, y) < µx + ε}, is a basis

for the Scott topology on P .

Waszkiewicz (2001; 2003a) demonstrated a close connection between measurements

and generalised distances called partial metrics. A partial metric (pmetric) on a set X is

a map p : X × X → [0,∞) governed by the following axioms due to Steve Matthews

(Matthews 1994). For all x, y, z ∈ X:

— small self-distances

p(x, x) � p(x, y)

— symmetry

p(x, y) = p(y, x)

— T0 separation

p(x, y) = p(x, x) = p(y, y) ⇒ x = y

— the sharp triangle inequality ∆�

p(x, y) � p(x, z) + p(z, y) − p(z, z).

The kernel of p is the kernel of the induced self-distance µpx
df
= p(x, x), x ∈ P , that is,

kerp = {x ∈ X | µpx = 0}. The topology induced by p on X, denoted τp(X), is given

by the basis consisting of balls: Bp(x, ε)
df
= {y ∈ X | p(x, y) � p(x, x) + ε} for x ∈ X and

ε > 0. The balls are themselves open in τp(X). Moreover, every pmetric p on X is a

continuous mapping from the product topology of τp(P ) on X×X and the Scott topology

on [0,∞)op (note the opposite order) (Heckmann 1999). In particular, a pmetric on a

continuous poset P having τp(P ) = σ(P ) is Scott-continuous. In addition, its self-distance

µp : P → [0,∞)op is a measurement satisfying the local triangle condition (Waszkiewicz

2003b). Every partial metric p on a set X induces a quasimetric, qp : X × X → [0,∞), by

qp(x, y)
df
= p(x, y) − µpx. The topology given by qp, τqp (X), is the same as the topology of

the pmetric τp(X). (Recall that quasimetrics are distances satisfying the triangle inequality

with the self-distance zero. They are not symmetric in general.) Finally, every pmetric

induces a partial order by x �p y if and only if p(x, y) = p(x, x) if and only if qp(x, y) = 0.

The induced order is simply the specialisation order of τp. If a poset (P ,�) admits a

pmetric p : P × P → [0,∞) with �=�p, we say that p is compatible with the order on P .

3. Partial metrisability via measurements

There are two constructions of quasimetrics out of more general distances that are crucial

for our purposes. The first one is known as Frink’s Lemma.

https://doi.org/10.1017/S0960129506005196 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005196


Partial metrisability of continuous posets 363

Theorem 3.1 (Frink). Suppose d : X × X → [0,∞) satisfies the following condition:

∀x, y, z ∀ε > 0 ((d(x, y) < ε ∧ d(y, z) < ε) ⇒ d(x, z) < 2ε).

Then there is a function ρ : X × X → [0,∞) such that for all x, y, z ∈ X:

1. ρ(x, z) � ρ(x, y) + ρ(y, z)

2. d(x, y)/4 � ρ(x, y) � d(x, y).

Furthermore, ρ is symmetric if d is.

Proof. Define

ρ(a, b) = inf

{
n−1∑
i=0

d(xi, xi+1) | n ∈ ω, xi ∈ X, x0 = a, xn = b

}
.

The other construction is a suitable refinement of the method of Frink’s Lemma for

the case of partial orders. It will be referred to as the Künzi–Vajner construction and can

be found in Künzi and Vajner (1994).

Theorem 3.2 (Künzi–Vajner). A poset P admits a partial metric for its Alexandroff

topology if and only if there is a monotone function µ : P → [0, 1)op that satisfies the

following condition:

(∀x ∈ P )(∃ε > 0)(∀z ∈ ↓y \ ↑x)(µz − µy � ε). (KV)

Proof (sketch). The self-distance of a pmetric compatible with the Alexandroff topology

satisfies (KV). Conversely, let µ : P → [0,∞)op be a map that satisfies the condition. A path

W from x ∈ P to y ∈ P is a finite sequence of elements of P , W = (x0, x1, . . . , xn), such

that x0 = x and xn = y, and xi+1 ∈ ↓xi ∪ ↑xi for all i = 0, 1, . . . , n − 1. Define the length

of the path W with respect to µ to be the number lµ(W) =
∑n−1

i=0 max{0, µxi+1 −µxi}. For

arbitrary x �= y in P , define ρµ(x, y) = inf{lµ(W) | W is a path from x to y} and q(x, y) =

min{ρµ(x, y), 2 − µx}. If there is no path between x and y, set q(x, y) = 2 − µx. Finally,

for all x in P define q(x, x) = 0. Then q is a quasimetric such that p(x, y) = q(x, y) + µx

for every x, y ∈ P is a pmetric for the Alexandroff topology on P .

Theorem 3.3 (Main characterisation). Let P be a continuous poset with a least element.

The following are equivalent:

1. P admits a pmetric compatible with its Scott topology σ.

2. P admits a measurement µ : P → [0,∞)op that satisfies the following condition, which

we will call the path condition from now on:

(path) For every U ∈ σ and every x ∈ U there exists ε > 0 such that for every path

W from x to y /∈ U we have lµ(W) � ε.

Proof. (In the proof we will deal with several distance functions; by convention, the

topology induced by a distance, say f : X × X → [0,∞), will be denoted τ(f). Note that

U ⊆ X is τ(f)-open if for any x ∈ U, there exists ε > 0 such that x ∈ Bf(x, ε) ⊆ U, where

Bf(x, ε) = {y ∈ X | f(x, y) < f(x, x) + ε}.)
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Let p : P × P → [0,∞) be a pmetric with τ(p) = σ. The self-distance of p, denoted

µ : P → [0,∞)op, is a measurement by Waszkiewicz (2003a, Theorem 8). We will show

that it satisfies the path condition. Consider the following mappings:

qp(x, y)
df
= p(x, y) − µx

qµ(x, y)
df
= pµ(x, y) − µx

ρp(x, y)
df
= inf

{
n−1∑
i=0

qµ(xi, xi+1) | n ∈ ω, x0 = x, xn = y

}

ρµ(x, y)
df
= inf{lµ(W) | W is a path from x to y}.

Observe that by (the proof of) Frink’s Lemma, ρp is a quasimetric such that 1/4qp(x, y) �
1/4qµ(x, y) � ρp(x, y) for all x, y ∈ P . Moreover, ρp(x, y) � ρµ(x, y), x, y ∈ P , by definition.

Therefore σ = τ(p) = τ(qp) ⊆ τ(qµ) ⊆ τ(ρp) ⊆ τ(ρµ); the outermost inclusion, σ ⊆ τ(ρµ), is

equivalent to the path condition.

Conversely, suppose that a map µ : P → [0,∞)op measures P and satisfies the path

condition. We define maps qµ, ρµ as above, and additionally define

p′(x, y)
df
= ρµ(x, y) + µx.

The path condition is equivalent to the inclusion of topologies: σ ⊆ τ(ρµ). On the other

hand, note that

ρµ(x, y) = inf

{
n−1∑
i=0

qµ(xi, xi+1) | n ∈ ω, (x0 = x, . . . , xn = y) is a path

}
.

It is easy to see that ρµ is a quasimetric with ρµ � qµ, which implies τ(ρµ) ⊆ τ(qµ). We

conclude that σ ⊆ τ(ρµ) ⊆ τ(qµ) = σ. Hence p′ is a partial metric whose self-distance is µ

and such that τ(p′) = τ(ρµ) = σ.

The characterisation above generalises previously known partial metrisability results

from Waszkiewicz (2003a; 2003b).

Corollary 3.4. Let P be a continuous poset with a least element. Let µ : P → [0,∞)op be

a monotone mapping. The following are equivalent:

1. pµ(x, y)
df
= inf{µz | z � x, y} is a partial metric for the Scott topology on P .

2. µ is a weakly modular measurement.

Proof. For the interesting direction, we will show that weakly modular measurements

satisfy the path condition. Suppose x ∈ U for some Scott-open subset U of P . Since µ is a

measurement, choose ε > 0 such that µ(x, ε) ⊆ U. Let W be a path from x to y of length

smaller than ε. Using weak modularity, one observes that if (x, y, z) is a subsequence of

consecutive elements of W with x, z � y, then there is y′ ∈ P with y′ � x, z such that a

modified path W′ (with y replaced by y′) has lµ(W′) � lµ(W) < ε. Inductively, we can find

s � x, y and a path W′′ from x to y with lµ(W′′) = µs−µx < ε. Therefore, s ∈ µ(x, ε) ⊆ U

and, consequently, y ∈ U, since s � y. The condition (path) is now proved. Also note

that from any path V containing a subsequence (x, y, z) with x � y � z or x 
 y 
 z,
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the element y can be erased, resulting in a modified path V′ of the same length. This

means, however, that using the two methods of modification described above, any path

can be replaced by a path of smaller length containing at most three elements. In fact,

the partial metric constructed from a measurement µ (as in the proof of Theorem 3.3) is

of the form pµ.

Corollary 3.5. Let P be an algebraic poset with a least element. Then the following are

equivalent:

1. P admits a partial metric compatible with the Scott topology.

2. P admits a measurement µ : P → [0,∞)op satisfying the local triangle condition.

Proof. For (1) implies (2), consult Waszkiewicz (2003b). For the converse, let z ∈ K(P )

be arbitrary. By the local triangle condition, there exists ε > 0 such that µ(↑z, ε) = ↑z. If

W = (x0, . . . , xn) is any path from x ∈ ↑z to y /∈ ↑z, choose i ∈ {0, . . . , n − 1} to be the

least number such that xi ∈ ↑z and xi+1 /∈ ↑z. Hence, xi+1 � xi. If µxi+1 − µxi < ε, then

µxi+1 ∈ µ(↑z, ε) = ↑z, which is a contradiction. Therefore, lµ(W) � µxi+1 − µxi � ε, as

required.

4. Partial metrisability via bases

Our second characterisation gives a necessary and sufficient condition for the Scott

topology to be partially metrisable in terms of bases of continuous posets.

Recall that a T0 topology τ on a poset P is order-consistent if its specialisation order

agrees with the order on P and, moreover, τ-open sets are inaccessible by directed suprema.

Lemma 4.1. For a partial metric p : P × P → [0,∞) on a continuous poset P , which is

compatible with the order on P , the following are equivalent:

1. τ(p) is order-consistent.

2. The self-distance µ : P → [0,∞)op of p is Scott-continuous.

3. τ(p) ⊆ σ(P ).

Proof. For the equivalence of (1) and (2), use O’Neill (1995, Lemma 3.2). Since σ(P ) is

the finest order-consistent topology, (1) implies (3). Finally, assume (3). For a Scott-open

subset V of [0,∞)op, the preimage µ−1[V ] is τ(p)-open and hence Scott-open. This proves

(2), as required.

Theorem 4.2. Let P be a continuous poset with a basis B. Then B is pmetrisable in its

relative Scott topology σ|B if and only if P is pmetrisable in its Scott topology σ.

Proof. Let p be a pmetric compatible with σ|B and let I(B) denote the rounded ideal

completion of B with respect to approximation � on B. Note that the map p is continuous

with respect to the product topology on B ×B and the Scott topology on [0,∞)op. Hence,

it extends to a unique Scott-continuous function p̂ : I(B) × I(B) → [0,∞)op satisfying

p̂(a, b) = p(a, b) for all (a, b) ∈ B × B. The latter fact together with the continuity of

the functions involved, and the continuity of P , imply that all equalities and inequalities
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satisfied by p carry over to p̂. Hence p̂ is a pmetric on P , which is explicitly given by

p̂(x, y) = inf{p(a, b) | a ∈ x ∧ b ∈ y}.

We will show that x ⊆ y in I(B) if and only if p̂(x, y) = p̂(x, x). If x ⊆ y, then

{p(a, b) | a ∈ x ∧ b ∈ x} ⊆ {p(a, b) | a ∈ x ∧ b ∈ y}, hence p̂(x, y) � p̂(x, x), and

the equality of the distances follows from the small self-distances axiom. Conversely,

suppose that p̂(x, y) = p̂(x, x). Let a ∈ x and ε > 0. There are c ∈ x and d ∈ y such that

p(c, d) < p̂(x, y)+ε = p̂(x, x)+ε. Choose u ∈ x with a, c � u. Then p(a, d) � p(a, u)+p(u, c)+

p(c, d)−p(u, u)−p(c, c) = p(a, a)+p(c, d)−p(u, u). However, p(c, d) < p̂(x, x)+ε � p(u, u)+ε,

and thus p(a, d) < p(a, a) + ε for any ε > 0. Therefore p(a, d) = p(a, a), which gives a � d.

Since d ∈ y and y is lower, we have a ∈ y, and consequently, x ⊆ y.

Let µ : B → [0,∞)op be the self-distance of p. It is continuous, hence it extends

uniquely to the Scott-continuous map µ̂ : I(B) → [0,∞)op, which is the self-distance

of p̂. Therefore, by the previous paragraph and Lemma 4.1, we have τ(p̂) ⊆ σ(I(B)).

Conversely, suppose a ∈ x for a ∈ B and x ∈ I(B). Choose b ∈ x with a � b

and ε > 0 such that Bp(b, ε) ∩ B ⊆ ↑↑a ∩ B. Let z ∈ Bp̂(x, ε). Since we have already

proved that p̂-balls are Scott-open, there is c ∈ B with c � z and c ∈ Bp̂(x, ε). We have

p(b, c) = p̂(b, c) � p̂(b, x)+ p̂(x, c)− µ̂x < p̂(b, x)+ε = µ̂b+ε = µb+ε. Therefore, c ∈ Bp(b, ε)

and consequently c ∈ ↑↑a ∩ B. Hence z ∈ ↑↑a, which proves that σ(I(B)) ⊆ τ(p̂).

The proof the first part is now complete since I(B) is isomorphic to P .

For the converse, if p̂ is a pmetric for the Scott topology on P , then its restriction to B

is the desired partial metric for the subspace Scott topology on B.

5. Partial metrisability via radially convex metrics

Our last characterisation of partial metrisability of continuous posets concerns a more

general situation: we only require that the partial metric order agrees with the underlying

order. Interestingly, such a requirement alone is equivalent to the existence of a metric,

which is also tied to the order, in a slightly more elaborate way.

Definition 5.1. A metric d : P × P → [0,∞) on a poset P is exactly radially convex (erc)

provided x � y � z if and only if d(x, y) + d(y, z) = d(x, z).

Clearly, if P has a least element ⊥, then x � y if and only if d(x, y) = d(⊥, y) − d(⊥, x).

Example 5.2. Let the product of ω copies of the unit interval, �ω , be equipped with a

metric

d(x, y) =
∑
i∈ω

2−i|xi − yi|,

where x = (x0, x1, . . . ), y = (y0, y1, . . . ). The metric d is erc with respect to the coordinate-

wise order.

Proof. Note that 0 = (0, 0, . . . ) is the bottom element of �ω . Now, d(0, x) + d(x, y) =

d(0, y) if and only if
∑

i∈ω 2−i(xi − yi + |xi − yi|) = 0 if and only if xi � yi for all i ∈ ω if

and only if x � y.
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Lemma 5.3. Let P be a poset with a least element ⊥. If d : P × P → [0,∞) is an erc, the

map p : P × P → [0,∞) given by

p(x, y)
df
= d(x, y) + µx + µy

for all x, y ∈ P , where µ : P → [0,∞)op is defined as

µx
df
= sup{d(⊥, z) | z ∈ P } − d(⊥, x),

is a pmetric compatible with the order with the self-distance 2µ. Moreover:

1 If either τ(d) = λ(P ), or σ(P ) ⊆ τ(d), then µ has the measurement property: for all

x ∈ P , U ∈ σ(P ), if x ∈ U, then there exists ε > 0 with µ(x, ε) ⊆ U.

2 The inclusion τ(p) ⊆ σ(P ) is equivalent to either:

(a) µ is Scott-continuous.

(b) p is order-consistent.

Proof. The function µ is monotone: if x � y in P , then d(⊥, x) + d(x, y) = d(⊥, y).

Hence µx = µ⊥ − d(⊥, x) = µ⊥ − d(⊥, y) + d(x, y) � µ⊥ − d(⊥, y) = µy.

Symmetry, the sharp triangle inequality of p and the claim about the self-distance

are trivial. For the small self-distances, since d(⊥, x) − d(⊥, y) � d(x, y) by the triangle

inequality, we have d(x, y) � µy−µx. Adding µx+µy to both sides of the inequality gives

p(x, y) � 2µy = p(y, y). The inequality p(x, y) � p(x, x) follows by symmetry. Now, x � y

if and only if d(x, y) = d(⊥, y) − d(⊥, x) if and only if d(x, y) = µx − µy if and only if

p(x, y) = 2µx if and only if x �p y. Hence p is compatible with the order. This also proves

the T0 axiom.

The proof of (1) is elementary; part (2) follows from Lemma 4.1.

Lemma 5.4. Let P be a poset with a least element. Every pmetric p : P ×P → [0,∞) that is

compatible with the order induces an erc d : P ×P → [0,∞) that satisfies d(⊥, x) = µ⊥−µx

for every x ∈ P , where µ is the self-distance of p.

Proof. Define d(x, y)
df
= 2p(x, y) −p(x, x) −p(y, y). It is clear that d is a metric. Note that

⊥ � x if and only if p(⊥, x) = µ⊥, which is equivalent to saying that d(⊥, x) = µ⊥ − µx,

for any x ∈ P .

Now we have x � y if and only if x �p y if and only if p(x, y) = µx if and only if

d(x, y) = µx − µy. However, µx − µy = µ⊥ − d(⊥, x) + d(⊥, y) − µ⊥ = d(⊥, y) − d(⊥, x).

This yields d(⊥, x) + d(x, y) = d(⊥, y), as required.

We have proved, among other things, the following theorem.

Theorem 5.5. Let P be a continuous poset with a least element. Then the following are

equivalent:

1. P admits a partial metric compatible with the order.

2. P admits an exactly radially convex metric.
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Table 1. Domains with their measurements and partial metrics

Domain Measurement µ Pmetric pµ

Closed, non-empty intervals length pµ([a, b], [c, d]) =

of � with reverse inclusion max{b, d} − min{a, c}

The powerset of natural µx =
∑

n/∈x 2−(n+1) pµ(x, y) =
∑

n/∈x∩y 2−(n+1)

numbers with inclusion

Words over {0, 1}, prefix order length length of common prefix

Plotkin’s �ω µ(P ,N) =
∑

n/∈P∪N 2−(n+1) pµ((A,B), (C,D)) =

{(P ,N) ⊆ ω × ω | P ∩ N = �}
∑

n/∈(A∩C)∪(B∩D) 2−(n+1)

with coordinatewise inclusion

Any ω-continuous poset µx = 1 −
∑

{n|x∈Un} 2−(n+1) pµ(x, y) =

{Un | n ∈ ω} - basis of open filters 1 −
∑

{n|x,y∈Un} 2−(n+1)

6. Quantitative domains

The characterisations of partially metrised continuous posets given above set up a natural

hierarchy of domains: the largest class is formed by partial orders with exactly radially

convex metrics. These orders admit compatible partial metrics. We can form a subclass

of these by adding the requirement that the self-distance of the compatible pmetric is a

measurement. If we require that the measurement satisfies the local triangle condition,

we arrive at a third subclass. It is presently unknown if this condition is equivalent to

the path condition outside the algebraic case. The fourth sublass is then the class of all

continuous orders with measurements satisfying the path condition, which is precisely

the class of all continuous posets with pmetrisable Scott topology. Examples of these are

orders equipped with weakly modular measurements; in this case the partial metric for

the Scott topology has a simple description in terms of measurement, see Table 1.

A preferable way of looking at continuous posets, as advocated in Lawson (1997), is

to treat them as computational models of their spaces of maximal elements. This point

of view justifies a particular requirement that can be considered when searching for a

partial metric for a domain, namely, that the kernel of the pmetric is equal to the space

of maximal elements of the domain. It is known that every Scott domain admits such a

pmetric for its Scott topology (Waszkiewicz 2003a). We show below that apart from the

bounded-complete case, there are domains that cannot be partially metrised by a distance

satisfying the kernel condition. The following example is due to Achim Jung.

Example 6.1. Let P be the set of closed, non-empty intervals of the real line � ordered

by a refined version of reverse inclusion (consult Martin (2003) for a general theory of

such refinements):

x � y ⇐⇒
[
(x = y) ∨

(
(y ⊆ x) ∧ l(y) <

1

2
l(x)

)]
,

for all x, y ∈ P , where l(·) is the length function. Under this order, P is an algebraic dcpo,

where each non-maximal element is compact. We claim that there is no partial metric p

compatible with the Scott topology such that kerp = Max(P ).
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Proof. To show a contradiction, suppose that such p exists. Theorem 4.2 implies that the

basis K(P ) is partially metrisable in the relative Scott topology, which is the Alexandroff

topology, α(P ). By Theorem 3.2, the self-distance µp satisfies condition (KV), which is

easily seen to be equivalent to

[(xn →α(P ) x) ∧ (lim pµ(xn, yn) = lim µxn)] ⇒ (yn →α(P ) x) (KV′)

for all x ∈ K(P ) and all sequences (xn), (yn) ⊆ K(P ). However, for x = [0, 2] and

xn = [2−(n+1), 21−n], yn = [−2−(n+1), 2−(n+1)], where n ∈ ω, condition (KV′) is violated.

Therefore, even in the case of countably-based domains, there is no general construction

of a partial metric that would satisfy the kernel condition. Following Smyth (2002), we

have the following definition.

Definition 6.2. A point x in a continuous poset P is constructively maximal, x ∈ CMax(P ),

if every Lawson neighbourhood of x contains a Scott neighbourhood of x.

An interesting research question is how one should define a class of quantitative domains

of computation; domains that would serve as semantic models of programming languages

that are capable of interpreting quantitative aspects of computing such as the speed of

algorithms or their complexity. There are many proposals in the literature, ranging from

totally bounded quasi-uniform spaces (Smyth 1991), continuity and V-continuity spaces

(Flagg and Kopperman 1997; Flagg and Sünderhauf 2002), and the generalised metric

spaces of Bonsangue et al. (1998), to domains with partial metrics and measurements. We

would like to conclude our paper with a tentative definition of a quantitative domain, much

in the spirit of the set of axioms proposed in the concluding section of Smyth (2002). We

then prove that every countably-based continuous dcpo is quantitative (see Theorem 6.5

below). This result provides a nice application of all the characterisations of partial

metrisability that we have presented in this paper.

Definition 6.3. A poset P is a quantitative domain if:

1. P is a continuous dcpo.

2. P admits a pmetric such that:

(a) τ(p) ⊆ σ.

(b) Its self-distance is a measurement µ : P → [0,∞)op.

(c) kerµ = CMax(P ).

(d) Its induced metric gives the Lawson topology.

In Lawson (1997), Lawson observed that the maximal elements of a countably-based

poset P embed onto maximal elements of the Fell order compactification F(P ) of P

provided the Scott and Lawson topologies agree at Max(P ). It is known that the latter

condition implies that Max(P ) = CMax(P ). In the following lemma, which is in some

sense a ‘local’ version of Lawson (1997, Lemma 3.2), we sharpen Lawson’s observation

by proving that the constructive maximals of P are in one-to-one correspondence with

the maximals of the compactification.
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Lemma 6.4. Let (P ,�) be an ω-continuous dcpo. Then x ∈ CMax(P ) if and only if

i(x) ∈ Max(F(P )), where i : P ↪→ F(P ) is the Fell order compactification of P .

Proof. Poset P embeds as the coprimes into the lattice Γ of Scott-closed sets via

x �→ i(x). The Lawson-closure of the image i[P ] in Γ is a compact pospace F(P ). Assume

that x ∈ CMax(P ) and suppose that there is y ∈ F(P ) such that i(x) � y. Since Γ is

continuous, there is z � y such that z �/ i(x). Since Γ is completely distributive, there is

q ∈ P such that i(q) is coprime in Γ with i(q) � z and i(q) �/ i(x), that is, q �/ x. The subset

P \ ↑q is Lawson-open and contains x, hence there is w � x such that ↑↑w ∩ Max(P )

misses ↑q ∩ Max(P ). However, this means that i(w) � i(x) in Γ. Since ↑↑i(w) ∩ ↑↑i(q) is a

Lawson neighbourhood of y, we have s ∈ P with i(s) in this neighbourhood. Since P is

a dcpo, there is m ∈ Max(P ) with s � m. But then m ∈ ↑↑w ∩ ↑q ∩ Max(P ), which is a

contradiction. Thus we have shown that i(x) ∈ Max(F(P )).

Conversely, assume i(x) ∈ Max(F(P )) for x ∈ P . Take y �/ x. Then ↑i(y) is a compact

subset of F(P ) missing i(x). Thus ↓↑i(y) is a compact lower set and still misses i(x),

because i(x) is maximal. Therefore, the complement of ↓↑i(y) in F(P ) is an open upper

set containing i(x). Its inverse image V by i in P must be an open, upper subset,

hence Scott-open, around x. However, if z ∈ V , we have i(z) ∈ F(P ) \ ↓↑i(y), and thus

i(y) �/ i(z), yielding y �/ z. Therefore, V ⊆ P \ ↑y. We have shown that every subbasic

Lawson neighbourhood of x contains a Scott neighbourhood of x, which means that

x ∈ CMax(P ).

Theorem 6.5. Every ω-continuous dcpo with a least element is a quantitative domain.

Proof. The Fell order compactification F(P ) is a compact metrisable pospace, hence

admits an erc metric d by the Urysohn–Carruth metrisation theorem, which figures

as Gierz et al. (2003, Exercise VI-1.18), and by Example 5.2. Define µ : P → [0,∞)op

as µx = sup{d(i(x), z) | x ∈ z ∈ F(P )}, where i : P ↪→ F(P ) is in fact x �→ ↓x. By

Martin (2000a, Theorem 2.5.1), the map µ is a measurement on P . The restriction of d to

P is an erc metric on P , call it d, which is compatible with the Lawson topology of P . Note

that in the presence of the least element ⊥ of P , we have µx = sup{d(⊥, z) | z ∈ P }−d(⊥, x)

for every x ∈ P , which follows almost exclusively from Lawson (1997, Lemma 4.1). Hence,

by Lemma 5.3, the distance p(x, y) = d(x, y) + µx + µy is a pmetric with τ(P ) ⊆ σ. The

self-distance µp of p is a measurement, since µ is. Finally, using Lemma 6.4,

µpx = 0 ⇐⇒ µx = 0

⇐⇒ ∀z ∈ F(P ) (i(x) ⊆ z ⇒ d(i(x), z) = 0)

⇐⇒ i(x) ∈ Max(F(P ))

⇐⇒ x ∈ CMax(P ),

and thus kerµp = CMax(P ), as required.

It is worth poining out that the last result remains valid for countably based domains

without least element.
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