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Cochlear implant patients’ speech understanding in
background noise: effect of mismatch between electrode
assigned frequencies and perceived pitch

W Di NarDO, A ScorpPEccl, S GIANNANTONIO, F CIANFRONE, C PARRILLA, G PALUDETTI

Abstract

Objective: To assess the electrode pitch function in a series of adults with postlingually implanted cochlear
implants and with contralateral residual hearing, in order to investigate the correlation between the degree
of frequency map mismatch and the subjects’ speech understanding in quiet and noisy conditions.

Design: Case series.

Subjects: Seven postlingually deafened adults with cochlear implants, all with detectable contralateral
residual hearing. Subjects’ electrode pitch function was assessed by means of a pitch-matching test, in
which they were asked to match an acoustic pitch (pure tones delivered to the non-implanted ear by an
audiometer) to a perceived ‘pitch’ elicited by stimulation of the cochlear implant electrodes. A
mismatch score was calculated for each subject. Speech recognition was tested using lists of sentences
presented in quiet conditions and at +10, 0 and 5 dB HL signal-to-noise ratio levels (i.e. noise 10 dB
HL lower than signal, noise as loud as signal and noise 5dB HL higher than signal, respectively).
Correlations were assessed using a linear regression model, with significance set at p < 0.05.

Results: All patients presented some degree of mismatch between the acoustic frequencies assigned to
their implant electrodes and the pitch elicited by stimulation of the same electrode, with high
between-individual variability. A significant correlation (p < 0.005) was found between mismatch and
speech recognition scores at +10 and 0dB HL signal-to-noise ratio levels (+*=0.91 and 0.89,
respectively).

Conclusion: The mismatch between frequencies allocated to electrodes and the pitch perceived on
stimulation of the same electrodes could partially account for our subjects’ difficulties with speech
understanding in noisy conditions. We suggest that these subjects could benefit from mismatch
correction, through a procedure allowing individualised reallocation of frequency bands to electrodes.

Key words: Implants And Prostheses; Cochlea; Sensorineural Hearing Loss; Speech Discrimination

Introduction

Improving speech understanding in different settings
of everyday life is a major goal of current cochlear
implant research. Nowadays, patients with cochlear
implants hear quite well in quiet settings, but gener-
ally report difficulties comprehending speech infor-
mation in noisy environments.

Over the past few years, researchers have
attempted to optimise signal quality in implanted
patients. A number of strategies have been inten-
sively investigated, including increasing the number
of spectral channels (both real' and virtual),” and
the introduction of new processing®™* and pre-
processing strategies;”® however, they have yielded
unsatisfactory and discordant results, probably
because the causes of implanted patients’ difficulties
in these conditions are still unclear. Nonetheless, it is
quite well established that the patient’s ability to

extract spectral information from the signal is a
central element affecting everyday performance,’’
and that this ability is strongly dependent on the
way frequency bands are allocated to the different
intracochlear electrodes of an implant array.'?~?
There is a considerable amount of literature demon-
strating that experimental manipulation of the stan-
dard, software-predefined, frequency-to-electrode
mapping severely affects implanted patients’ speech
recognition.’*~'> However, most of these cited studies
have not suggested a more appropriate frequency
band assignment and distribution across electrodes
that might improve processor fitting. More importantly,
they appear to accept unquestioningly that the standard
frequenc1y mapping system, based on the Greenwood
formula,’®!” is the most appropriate arrangement,
and therefore show very little concern as to whether a
certain degree of frequency-place misalignment may
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already exist in the frequency maps fitted for everyday
use in implanted subjects.

In fact, recent work has shown that this is indeed
the case: a mismatch is frequently found in most
patient’s everyday maps, with a high degree of varia-
bility across patients; the software-predefined pattern
of frequency distribution across electrodes means
that the pitch elicited by stimulation of a certain elec-
trode bears a poor correspondence to the allocated
frequency band for that electrode."® *° Proposed
explanations for this include the considerable
amount of variability of electrode placement within
the cochlea, the irregular pattern of nerve fibre
stimulation by electrodes and the uneven patterns
of individual nerve survival.'®

Studying this mismatch is not an easy task, since it
can only be done in the small number of implanted
patients having good ipsilateral or contralateral
residual hearing; only these patients can reliably
match acoustically delivered pitch sensations to
pitch sensations elicited by stimulation of electrodes.
However, the effort is worth undertaking, and is
more interesting if we consider that very little is
known about the impact that spontaneously occur-
ring frequency band misalignment may have on
implantees’ speech understanding. This in turn
could provide an important basis for future
mapping strategies that might improve implanted
patients” word and sentence recognition.

In the present study, we used a psychophysical test
to measure the degree of mismatch between the fre-
quency bands allocated to electrodes and the pitch
elicited by stimulation of the same electrodes, in a
group of adult, postlingually implanted subjects
with preserved residual hearing and similar electrode
insertion depth. We also investigated possible corre-
lations between the implanted subjects’ mismatch
and their speech understanding in the presence of
different levels of background noise.

Methods

The research described below was reviewed and
approved by the local review board at the Catholic
University of the Sacred Heart, and was conducted
according to principles expressed in the Declaration
of Helsinki.

Participants

From among the postlingually deafened patients
undergoing cochlear implantation in the ENT clinic
of the Catholic University of the Sacred Heart, we
selected seven subjects, aged between 36 and 66
years and implanted with Nucleus-24 devices.
Intra-operative X-ray assessment, using Stenver’s
modified projection, showed that the implant elec-
trode was inserted completely into the cochlea
(>400°) in all seven subjects. At the time of study,
all subjects had been using their implant for at least
six months. Their processors were fitted with the
Advanced Combinational Encoder (ACE) speech
strategy and the Autosensitivity Smart Sound™
(Cochlear, Itd. Sydney, Australia) function, and
their map frequency bands were automatically
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TABLE 1
SUBJECTS’ AGE, CAUSE OF HEARING LOSS, IMPLANT SIDE AND IMPLANT
MODEL
Sno Age(y) Cause of HL Implant
Side Model
1 66 Sudden HL L CI 24RE CA
2 47 Idiopathic R CI 24RE CA
3 42 Idiopathic R CI 24RE CA
4 52 Idiopathic L CI 24R CS
5 36 Usher syndrome R CI 24RE CA
6 42 Idiopathic L CI 24RE CA
7 36 Idiopathic R Cl24 M

S no = subject number; y = years; HL = hearing loss; L = left;
R = right

assigned to electrodes by the Custom Sound 1.4™
(Cochlear, Itd. Sydney, Australia) software package
(frequency table number 22; (Cochlear, Itd.
Sydney, Australia)). All of the subjects were native
Italian speakers, and were ‘good users’ of their
implant, achieving very high scores (>80 per cent)
in sentence recognition tests administered in a quiet
setting. The subjects’ ages, causes of hearing loss,
implantation side and implant models are shown in
Table 1. All seven subjects had residual hearing
thresholds detectable in the contralateral ear for all
frequencies from 125 to 8000 Hz (Table II). All elec-
trodes were active in all subjects.

Before each pitch-matching procedure, the Neural
Response Telemetry (NRT) threshold was measured
in all electrodes with the AutoNRT function in
Custom Sound 1.4™ (Cochlear Itd, Sydney, Austra-
lia), and processor regulation was carefully per-
formed before each test session.

Pitch assessment procedure

Before starting the procedure, we made sure that the
selected subjects could reliably use their residual
hearing without any warping phenomena due to the
hearing loss and to the loudness of the acoustic
stimulus, using a pitch-ranking test: we presented
couplets of pure tones to the contralateral ear and
asked the subject to pitch-rank stimuli in each
couplet as ‘higher in pitch’ or ‘lower in pitch’. We
also ensured that our subjects could identify all elec-
trical stimuli as different from one another, by

TABLE II

SUBJECTS’ CONTRALATERAL RESIDUAL HEARING
S no Frequency (kHz)

0.25 0.5 0.75 1 1.5 2 4
1 35 40 40 45 55 60 65
2 80 85 90 95 90 85 75
3 65 80 85 85 90 90 100
4 85 80 80 75 75 75 70
5 75 95 95 100 110 115 110
6 65 105 110 115 115 115 125
7 100 105 110 110 110 115 115

Data represent pure tone audiometry air conduction hearing
thresholds (dB). S no = subject number
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sequential stimulation of the implant electrodes from
an apical to a basal position.

Acoustic stimulation consisted of 500-ms, pulsed,
pure tones generated by an Amplaid 319 type 1-
IEC 645 audiometer (Amplifon, Milan, Italy) and
delivered through earphones calibrated according
to ISO 389 and American National Standards Insti-
tute criteria.

Electrical stimulation was delivered by means of
Custom Sound 1.4 software installed on an IBM®
personal computer (IBM, Armonk, USA) with an
Intel® Centrino (Santa Clara, California, USA)
mother board and a Cochlear® (Sydney, Australia)
implant-computer connection system (programming
POD). Electric signals were supplied as 500-ms
pulse trains at a stimulation rate of 900 pulses per
second, which is considered to be sufﬁcientl}l high
to avoid temporal effects on pitch perception.'®

Before stimulation began, the loudness for all elec-
trodes was adjusted to a comfortable level for each
subject. Subjects were administered two practice
runs before data collection began.

Patients were asked to find the best match between
the acoustic pitch elicited by residual pure tones and
the pitch elicited by electrode stimulation. While the
patient listened to each single pure tone, the elec-
trode sweep function was run at a comfortably
audible level from apical to basal electrodes (i.e.
E22 to E1), then all the way back to the apical elec-
trodes. We proceeded with a back-and-forth stimu-
lation modality, and according to the patient’s
instructions we restricted the testing field following
a ‘bracketing’ technique. When the choice was nar-
rowed to three or four electrodes, a two-by-two elec-
trode stimulation was performed, in order to prevent
any confusion between the pitch elicited by adjacent
electrodes, until the patient found the one best-
matching electrode. The subjects were sat in front
of the computer screen while the electrode sweep
proceeded, and were instructed to point at the best-
matching electrode, which further reduced the possi-
bility of confusion. We repeated the procedure for
the seven residuals (i.e. 0.25, 0.5, 0.75, 1, 1.5, 2 and
4 kHz). Each residual frequency was tested twice
consecutively, to ensure that the subject did not
match by chance.

For all seven subjects, the test session was repeated
one month later to ensure data reliability.

Speech recognition assessment

Cochlear implant performance was evaluated in
quiet and in noise on the day of the pitch assessment
procedure, using digitally recorded lists of Burdo and
Orsi sentences.?! Each list comprised 10 sentences of
bisyllabic words, which were presented in a sound-
proof cabin at 65 dB via a loudspeaker set 1 m in
front of the patient. Sentences were spoken by a
female voice and drawn from commonly used
Italian vocabulary. For ‘in noise’ assessment, ‘cock-
tail party’ type background noise was delivered via
a second loudspeaker set 1 m behind the patient.
Patients were tested at +10, 0 and 5dB HL
signal-to-noise ratio levels. Subjects were told to
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use their usual everyday microphone volume. Ear-
phones were used to occlude the non-implanted
ear, to ensure hearing performance was not influ-
enced by the subject’s contralateral residual
hearing. Subjects were asked to repeat back any
words they understood, and the test score was calcu-
lated as the percentage of correctly repeated words.

Data analysis and representation

The electrode number (y axis) was plotted against
the acoustic pure tones (x axis) to obtain a simple
representation of both the standard pattern of fre-
quency band allocation to electrodes (performed
by the Custom Sound 1.4 mapping software) and
the frequency-to-electrode matching reported by
the subjects. For each subject, a total mismatch

7
score (M) was calculated as follows: M = > "|Eg; — Epjl,
i=1
where Eg was the electrode that corresponded to
the tested frequency according to standard software
assignation, and Ep was the electrode chosen by the
patient as the best match for the same tested fre-
quency. This calculation allowed us to derive a quan-
titative estimate of the overall mismatch, measured
as a difference in electrodes.

Spearman’s rank correlation coefficient (%) for mis-
match scores and sentence recognition scores was cal-
culated in all of the tested settings, after which data
were analysed according to a univariate linear
regression model. Significance was set at p < 0.05.

Results

Figure 1 shows the standard frequency band assign-
ment performed by the software, and the matching
of pure tones to electrodes, for the seven subjects.
All of the subjects presented some degree of mis-
match, although they performed very differently
from one another in the pitch-matching task. At
first glance, a distinction can be made between sub-
jects one to three, in whom the overall mismatch
was smaller (mismatch scores 5-6), and subjects
four to seven, who had greater overall mismatch
(mismatch scores 17-38). Remarkably, the latter
subjects performed very poorly in the matching
task, when asked to associate the electrical pitch to
the acoustic pitch for pure tones at 2000 and 4000 Hz.

The seven subjects’ speech recognition scores in
+10, 0 and —5dB HL signal-to-noise ratio and
quiet conditions, together with their total mismatch
scores, are summarised in Table I11. Figure 2 presents
the same data.

Spearman’s correlation coefficient for mismatch
score versus speech recognition score was r* = 0.91
for +10 dB HL signal-to-noise ratio and r* = 0.890
for 0dB signal-to-noise ratio. Linear regression
analysis showed that the correlations between mis-
match and speech recognition score for +10 and
0 dB HL signal-to-noise ratio levels were both stat-
istically significant (p < 0.005).

Spearman’s correlation coefficient for mismatch
score versus speech recognition score in quiet con-
ditions was r*=0.71; linear regression analysis
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TABLE 111
SUBJECTS’ SPEECH RECOGNITION AND MISMATCH SCORES

S no Speech recognition scores (%) Mismatch score
In noise (dB SNR) In quiet
+10 0 =5
1 97.0 423 140 95 5
2 920 552 0.0 95 5
3 88.0 318 3.5 88 6
4 68.7 373 7.5 88 17
5 49.3 0.0 0.0 84 31
6 47.8 14.7 0.0 80 26
7 38.8 0.0 0.0 86 38
S no = subject number; SNR = signal-to-noise ratio
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Fi1G. 2

Correlation between mismatch scores and speech recognition
scores for the seven subjects. SNR = signal-to-noise ratio

showed this, too, to be a statistically significant
correlation (p < 0.05).

The correlation between mismatch score and
speech recognition score for the —5 dB HL signal-to-
noise ratio setting was weaker (Spearman’s correlation
coefficient 7* = 0.3), and was not statistically significant
(p > 0.05).

Discussion

Our results confirmed that subjects with cochlear
implants did not perform appropriate matching of
the acoustic pitch to the electrical pitch, using the
standard frequency band assignment made by the
mapping software. Most of the electrodes, in fact,
seemed to elicit pitch sensations that did not corre-
spond to the pitch sensations expected from the stan-
dard frequency assignment established by the
Custom Sound 1.4 mapping software. This is consist-
ent with the previous literature on the subject,'®~°
indicating that implanted patients with usable
residual hearing match acoustic and electrical
pitches in a pattern that differs greatly between indi-
viduals, and that does not seem to reflect the expo-
nential frequency-place function of the normal
cochlea as proposed by Greenwood.'*!”
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Thus, the current software-predefined frequency
band allocation to electrodes, derived from Green-
wood’s function,** appears to be inappropriate, as it
neither reproduces the way Cochlear implant electro-
des stimulate nerve fibres, nor reflects the acoustic
nerve intramodiolar route.

Recent work on human cadaveric cochleae has
shown that cochlear implant electrodes stimulate
near the modiolus, directly targeting the spiral
ganglion cells within Rosenthal’s canal, thereby sup-
porting our hypothesis.”

Electrode insertion depth could be one of the
factors causing the observed mismatch: generally, the
ganglion cells in the modiolus extend around 1875
turns, more than the array lengths used in our
study.” In particular, this could explain the pitch
shift towards higher frequencies observed when some
of the apical electrodes are stimulated (seen in our
fifth subject and also reported by other authors).'8-%°

However, the array insertion depth cannot account
for the mismatch observed for middle and high fre-
quencies, which patients allocate to electrodes
according to a highly irregular pattern, with remark-
able inter-individual variation. Instead, a similar
finding could be explained by the fact that cochlear
implant electrodes do not activate hair cells, but
neural fibres. Thus, an electrode may not activate
neurons in the tonotopic location of the nerve
which matches the analysis band for that electrode.
Furthermore, a single electrode could activate differ-
ent sites of the modiolar portion of the acoustic nerve
at the same time, according to its specific location
and to the way current spreads from it. Conversely,
distinct electrodes, variably distanced along the
array, could simultaneously send stimuli to the
same group of nerve fibres, owing to non-uniform
patterns of current spread.

Therefore, based on our findings and on these con-
siderations, we hypothesise that several electrodes
can elicit highly similar pitch sensations, which
would explain our subjects’ electro-acoustic pitch-
matching results. From these speculations, we can
deduce that the standard, software-predefined fre-
quency band allocation to electrodes and the pitch
sensations reported by implanted subjects do not
coincide, because the former is based upon the
cochlea’s proposed tonotopicity, whereas the latter
are based upon the acoustic nerve tonotopic distri-
bution. More simply, modern analysis band filters
do not take into account the fact that a natural mis-
match exists between the Greenwood frequency
map of the hair cells in the cochlea and the frequency
map of the spiral ganglion cells.

The effect of poor pitch discrimination on speech
comprehension in noise has been investigated in a
number of studies.”*~2® As stated in the Introduc-
tion,"! 1> over the past decade a number of studies
have investigated the effects of frequency band shift-
ing across electrodes upon implantees’ phoneme,
word and sentence recognition skills. However, this
body of literature has not defined the impact of the
existing mismatched allocation of frequency bands
to electrodes upon implanted subjects’ hearing per-
formance in quiet and in noisy background
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conditions. Although our sample was small and other
factors may have contributed to our subjects’ speech
recognition, our results seem to indicate that the
poor correspondence between the software-allocated
electrode frequencies and the pitch sensations eli-
cited by electrode stimulation affects implanted sub-
jects’ speech recognition in quiet settings, and to an
even greater extent in +10 and 0dB HL
signal-to-noise ratio conditions. The correlation was
slightly weaker in quiet conditions than in 410 and
0 dB HL signal-to-noise ratio conditions, probably
because we selected a study population that had
good speech recognition scores in quiet conditions
(this is commonly referred to as a ‘ceiling effect’).
However, in all of these settings it is evident that
patients with low pitch mismatch scores perform
quite well, whereas patients with a high degree of
mismatch experience a deterioration in speech recog-
nition skills, which is dramatic at +10 and 0 dB
signal-to-noise ratio levels.

If (according to our hypothesis) more electrodes,
variably distanced along the array, can elicit similar
pitch sensations, then an overlapping of pitch sen-
sations is possible. As a consequence, in a quiet
environment an overlapping of spectral information
in the signal may take place, with subsequent impair-
ment of phoneme recognition, and in a noisy
environment the background noise could overlap
with the signal. In support of this hypothesis, our
poor-performing subjects generally had a mismatch
for the 2000 and 4000 Hz frequencies, which are
crucial to speech understanding.

e Improving speech understanding in the
different settings of everyday life is a major
goal of current cochlear implant research

e Implanted patients perform quite well in quiet
settings, but generally have difficulties
extracting speech information in noisy
environments

e The mismatch between frequencies allocated
to electrodes and the pitch perceived on
stimulation of the same electrodes can
partially account for implanted subjects’
difficulties in understanding speech in noisy
environments

o Implanted patients may benefit from mismatch
correction through a function allowing
individualised reallocation of frequency bands
to electrodes

The weaker correlation between mismatch and
speech recognition scores at —5 dB HL signal-to-noise
ratio (#* = 0.3) makes it more difficult to estimate
how much the poor correspondence between elec-
trode allocated frequencies and pitch might influence
speech understanding, even if patients with the best
pitch-matching results still tended to perform better
than poor pitch-matching patients at this signal-to-
noise ratio setting (see Table III and Figure 2).
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On the whole, these data seem to indicate that mis-
match severely affects speech performance in quiet
conditions and in noisy conditions with a +10 or
0 dB signal-to-noise ratio, whereas the role of mis-
match remains unclear in —5dB signal-to-noise
ratio conditions. At —5 dB signal-to-noise ratio, it
is still possible that pitch mismatch could influence
hearing performance; however, to verify this we
would need a larger subject population and the facil-
ity to correct the mismatch.

These results lead us to believe that the current
system of frequency band assignment to cochlear
implant electrodes in everyday use frequency tables
is unfit for purpose in most implanted subjects, and
consequently has a dramatic impact on speech recog-
nition abilities in the presence of background noise.
Therefore, frequency band assignment should be
integrated by a more flexible allocation system, no
longer based on rigid and automatic application of
the Greenwood formula for normal cochlear tonoto-
pic distribution, but allowing a personalised distri-
bution of frequency bands based on the pitch
sensations reported by patients upon stimulation of
electrodes. Once standardised, the application of
this strategy could be useful in the growing number
of implanted patients who still maintain usable
residual hearing: they could first be administered a
pitch-matching test, and could then undergo fre-
quency range redistribution to correct any mismatch
between electrical and acoustic pitch. We believe
that such a procedure could improve implanted
patients’ speech recognition both in quiet and noisy
conditions, with a consequent overall improvement
in their quality of life.

Conclusion

The present study suggests that in cochlear implant
recipients there is a mismatch between the frequency
bands assigned to electrodes by the mapping soft-
ware and the pitch sensations elicited by the stimu-
lation of the same electrodes. Such a mismatch is
highly variable between patients, and seems to sig-
nificantly affect speech recognition scores in quiet
and in noisy conditions. In the light of these findings,
we hypothesize that a function in the software allow-
ing manual reallocation of frequency bands to elec-
trodes for misalignment correction could improve
cochlear implant patients’ speech understanding.
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