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ABSTRACT

In recent decades, there has been significant growth in the capital market for
mortality- and longevity-linked bonds. Therefore, modeling and forecasting
the mortality indexes underlying these bonds have crucial implications for risk
management in life insurance companies. In this paper, we propose a hierarchi-
cal reconciliation approach to constructing probabilistic forecasts for mortality
bond indexes. We apply this approach to analyzing the Swiss Re Kortis bond,
which is the first “longevity trend bond” introduced in the market. We express
the longevity divergence index associated with the bond’s principal reduction
factor (PRF) in a hierarchical setting. We first adopt time-series models to
obtain forecasts on each hierarchical level, and then apply a minimum trace
reconciliation approach to ensure coherence of forecasts across all levels. Based
on the reconciled probabilistic forecasts of the longevity divergence index, we
estimate the probability distribution of the PRF of the Kortis bond, and com-
pare our results with those stated in Standard and Poor’s report on pre-sale
information. We also illustrate the strong performance of the approach by
comparing the reconciled forecasts with unreconciled forecasts as well as those
from the bottom-up approach and the optimal combination approach. Finally,
we provide first insights on the interest spread of the Kortis bond throughout
its risk period 2010–2016.

KEYWORDS

Forecast reconciliation, probabilistic forecast, time-series models, mortality
modeling, the Kortis bond.

1. INTRODUCTION

Securitization, often used in the context of general insurance and loans or
mortgage products, has also become an important risk mitigation tool for
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the life insurance industry in recent decades (Cox et al., 2000; Cowley and
Cummins, 2005; MacMinn et al., 2006; Cummins and Trainar, 2009). For
example, mortality catastrophe bonds have been used by a number of insurance
and reinsurance companies to transfer extreme mortality risks to the capital
market. Most of the current mortality bonds have a principal reduction fac-
tor (PRF) calculated from a single mortality index. As the mortality index is
often constructed in a complex manner, which involves age-specific mortality
rates across multiple populations, accurate modeling and forecasting of the
PRF become a main challenge to the pricing of such bonds. Since the PRF is
generally a known function of age-country-specific mortality rates, combining
the information from forecasts of these disaggregate series with forecasts of the
PRF itself could lead to more accurate pricing of the mortality bond. In this
paper, we propose a forecast reconciliation approach to achieve this.

In the literature, there have been a number of works on the design and
pricing of mortality bonds (see, e.g., Cairns et al., 2005, 2006; Lin and Cox,
2008; Chen and Cox, 2009; Bauer et al., 2010; Deng et al., 2012; Biagini et al.,
2013; Lin et al., 2013; Bauer and Kramer, 2016; Braun, 2016; Chulia et al.,
2016; Chen et al., 2017; Stupfler and Yang, 2018). These led to a rapid devel-
opment in mortality modeling. In particular, contributions have been made in
the areas of continuous-time stochastic models, multivariate time-series mod-
els, and copula models. However, to the best of our knowledge, most existing
works look at either the bottom-level data series (i.e., age-country-specific mor-
tality rates), or the top-level data series (i.e., the mortality bond index itself)
alone when assessing the underlying risk.

In some other applications, it has been shown that forecast accuracy can be
improved by taking into account available data at all levels (Athanasopoulos
et al., 2009; Hyndman et al., 2014). Motivated by this, we utilize and com-
bine information from both aggregate and disaggregate mortality rate series
throughout the construction of the bond index. Note that if forecasts are pro-
duced for individual series independently, it is very unlikely that they will
add up in the same hierarchical structure as the original data since aggrega-
tion constraints are not incorporated into the forecasting process. To address
this issue, we adopt an optimal forecast reconciliation approach proposed by
Wickramasuriya et al. (2018). Forecast reconciliation is a methodology by
which forecasts on different levels are adjusted to ensure that certain aggre-
gation constraints are fulfilled (Hyndman and Athanasopoulos, 2014). As the
estimation of the PRF requires full probabilistic mortality forecasts, we extend
the approach developed by Wickramasuriya et al. (2018) from point forecasts
to interval forecasts based on the sampling algorithm proposed by Jeon et al.
(2019).

In this paper, we conduct an empirical case study on the Swiss Re Kortis
bond, and apply the proposed forecast reconciliation approach to modeling the
“Longevity Divergence Index.” According to Standard and Poor’s (2010), the
PRF of the Kortis bond depends on the divergence in mortality improvements
between the UK population (England & Wales only) and the US population.
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It has attracted attention from both practitioners and academics. Hunt and
Blake (2015) analyzed the design of the bond and proposed a co-integration
time-series approach to modeling the mortality dynamics. Chen et al. (2017)
proposed a two-factor copula model with a generalized autoregressive score
structure to capture the mortality dependence of the two populations. In both
papers, the authors conducted research only based on bottom-level age-specific
mortality rates from the two countries. Our method can be easily distinguished
from theirs by utilizing information on all levels to produce coherent forecasts
for the longevity divergence index.

We contribute to the existing literature in threefold. First, we introduce
a new approach to the modeling and forecasting of the mortality bond index,
which utilizes all available information and guarantees coherence. As we do not
attempt to jointly model age-specific mortality rates across different countries,
our method is less affected by the “curse of dimensionality” compared to other
approaches. Second, we are among the first to incorporate state-of-the-art
forecast reconciliation techniques into the analysis of mortality-/longevity-
linked securities, after Shang and Hyndman (2017) and Shang and Haberman
(2017) who reconciled point forecasts of the regional mortality rates in Japan.
In contrast to these studies, we are the first to perform probabilistic fore-
cast reconciliation in mortality modeling to the best of our knowledge. The
empirical results show that our method provides reliable probabilistic forecasts
for the Kortis bond divergence index. Finally, our study offers first insights
into changes in the distribution of the Kortis bond PRF over the risk period
2010–2016.

The rest of the paper is organized as follows. In Section 2, we provide a
review of the Kortis longevity trend bond and describe the data and models
used. Section 3 introduces the minimum trace forecast reconciliation approach
and applies this approach to the hierarchical time series constructed in Section
2. In Section 4, we comment on the interest spread of the bond and discuss the
changes in the distribution of PRF over time. Section 5 concludes.

2. SWISS RE KORTIS BOND

2.1. Background

Launched by Swiss Re Kortis Capital Ltd. in December 2010, the Kortis
bond is promoted as the first “Longevity Trend Bond” in the market (for
detailed information, see Standard and Poor’s, 2010). The risk period is from
1st January 2009 to 31st December 2016 and the bond received a rating of
“BB+” from Standard and Poor’s.

The PRF of the Kortis bond is linked to a longevity divergence index mea-
sured based on the difference between the 8-year mortality improvement rate
of the UK male population aged 75–85, and that of the US male population
aged 55–65. During the risk period, the bond will be “triggered” if the longevity
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TABLE 1

CUMULATIVE AND 6-YEAR ANNUALIZED LOSS PROBABILITIES ESTIMATED BY THE RMS.

Cumulative (%) 6-year annualized (%)

Attachment probability 5.31 0.88
Exhaustion probability 1.81 0.30
Expected loss 3.27 0.55

divergence index reaches 3.4%. Bondholders will lose their entire initial invest-
ments if the index reaches 3.9%. In exchange for the risk that the investors’
principal might be reduced, the bond pays quarterly coupons at a rate of 5%
above the 3-month London interbank offered rate (LIBOR).1

On behalf of Standard and Poor’s, the Risk Management Solutions (RMS)
performed the risk modeling and initial pricing of the Kortis bond. RMS
applied an epidemiological modeling approach that incorporates information
on causes of death mortality improvements, medical advancements, and likely
future mortality drivers (Standard and Poor’s, 2010). The modeling approach
is quite different from traditional statistical mortality models (see more details
in Blake et al., 2013). Based on this approach, RMS calculated the distribu-
tion of the PRF. Table 1 shows the cumulative and 6-year annualized loss
probabilities published in Standard and Poor’s pre-sale report, page 12.2

2.2. The structure of the Kortis bond

Consider the UK male population aged 75–85 and the US male population
aged 55–65. Let mj

t(x) denote male mortality rate at age x and time t for popu-
lation j. According to Standard and Poor’s (2010), the “Longevity Divergence
Index” is constructed in the following steps:
• First, we calculate the average mortality improvement rate at time t over the

last 8 years, for age x and population j:

�mj
t(x)= 1−

(
mj
t(x)

mj
t−8(x)

)1/8

. (2.1)

• Second, we average the mortality improvement rates obtained in Equation
(2.1) across ages x1 to x2 for each time t and population j:

�mj
t(x1, x2)= 1

x2 − x1 + 1

x2∑
x=x1

�mj
t(x). (2.2)

• Third, we construct the Longevity Divergence Index Value (LDIV) at time
t as

LDIVt = �mUK
t (75, 85)− �mUS

t (55, 65). (2.3)
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FIGURE 1: Historical annualized age-specific mortality improvement rates.

The PRF is then calculated as

PRF= [LDIVt − 3.4%]+ − [LDIVt − 3.9%]+
3.9%− 3.4%

, (2.4)

where 3.4% is referred to as the “point of attachment,” and 3.9% is referred to
as the “point of exhaustion.”

2.3. Data

We collect historical mortality data from 1933 to 2009 for the UK males
aged 75–85 and the US males aged 55–65. The deaths and exposures data are
obtained from the Human Mortality Database (HMD).3

In Figure 1, we plot the historical annualized age-specific mortality
improvement rates of the two populations. For both countries, the shape of
mortality improvement is quite homogeneous within the selected age range.
However, among the UK age groups, the mortality improvement rates for the
“younger olds” (mid-to-late 70s) had a more substantial increase in the last
two to three decades. In contrast, among the US age groups, even though the
“younger olds”(mid-to late 50s) had higher mortality improvement rates in the
1950s and early 1960s, the improvement rates of these age groups seem to have
experienced a significant decline since early 2000s.

In Figure 2, we then plot the historical annualized average mortality
improvement rates �mUK

t (75, 85) and �mUS
t (55, 65) for the UK and the US,

respectively. We can see that for the UK, apart from the sudden drop around
the early 1950s, the mortality improvement rate has kept rising for the last cou-
ple of decades. On the other hand, the upward trend in mortality improvement
rate for the US seems to be less apparent.

Figure 3 shows the historical LDIV constructed based on the mortality
improvement rates plotted in Figure 2. It shows no obvious overall upward
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FIGURE 2: Historical annualized average mortality improvement rates.
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FIGURE 3: Historical LDIV up to year 2009.

or downward trend in the historical index value, besides the seemingly grad-
ual increase in the index value after the mid-1970s. More importantly, it is
shown in Figure 3 that historically the LDIV has always stayed below the
point of attachment. In fact, the maximum value of the index is only 3.07%.
Therefore, the Kortis bond is designed to protect the issuer from extreme
mortality experience.

2.4. The ARIMA–GARCH framework

As mentioned earlier, two main references on quantitative analysis of the
Kortis bond are Hunt and Blake (2015) and Chen et al. (2017). In Hunt and
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Blake (2015), mortality rates were fitted by age-period-cohort models. The
dynamics between the two countries’ mortality experience was then captured
by co-integration time-series models. Chen et al. (2017) adopted a fairly dif-
ferent approach. They first fitted the mortality improvement rate for each
age using independent ARIMA–GARCH models, and then applied a factor
copula model to capture the mortality dependence.

Different from the abovementioned references, we directly model the 8-
year annualized age-country-specific mortality improvement rate calculated
as �mj

t(x) in Section 2.2, which is precisely as is specified in the construction
of the LDIV (Standard and Poor’s, 2010). There are similarities between our
approach and that of Chen et al. (2017) since both involve time-series models.4

However, we note that Chen et al. (2017) chose to model the 1-year log mor-
tality improvement rates instead. A GARCH component is considered here as
the heteroskedasticity in mortality dynamics is well recognized in the literature
(see discussions in Lee and Miller, 2001). We conduct the Ljung–Box test on
the residuals from ARIMAmodels first and only include the GARCH compo-
nent when the null hypothesis is rejected at 5% level of significance. The Akaike
Information Criteria (AIC) is used to select the optimal ARIMA–GARCH
model for each age group included in this work (Akaike, 1974).

Besides analyzing the age-specific mortality improvement rates used to cal-
culate the LDIV, it is also important to consider the mortality improvement at
aggregated levels. As bottom-level data (in our case, the age-country-specific
improvement rates) are more volatile and noisy, they are generally more dif-
ficult to model, especially with limited sample sizes (Shlifer and Wolff, 1979;
Schwarzkopf et al., 1988; Athanasopoulos et al., 2009). On the other hand, top-
level data, despite the fact that they may exhibit a loss of information due to
the aggregation process, are often less noisy and thus provide a clearer picture
of any underlying trends. Therefore, modeling average mortality improvement
rates of the two countries and their longevity divergence index will provide
us with additional information on the pricing of the Kortis bond. We apply
the same modeling approach to �mUK

t (75, 85), �mUS
t (55, 65), and LDIVt. The

model selection results are shown in Table 2, where p is the order of the
AR model, d is the order of differencing, q is the order of the MA model,
m is the order of the ARCH model, and n is the order of the GARCH
model.5

3. A FORECAST RECONCILIATION APPROACH

As described in Section 2.2, the construction of the LDIV is achieved via a
hierarchical structure. We plot this three-level hierarchical tree of the longevity
divergence index in Figure 4. At the bottom of the hierarchy, we have age-
specific mortality improvement rates for the UK and US male populations. At
the middle level, we have average mortality improvement rates calculated from
the bottom level. At the top of the hierarchy, we have the LDIV, which is the
difference between the UK and US average mortality improvement rates.
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TABLE 2

SELECTED ARIMA–GARCH MODELS BASED ON THE AIC.

Series ARIMA GARCH Series ARIMA GARCH

p d q m n p d q m n
LDIVt 1 0 0 1 2
�mUK

t (75, 85) 0 1 1 1 1 �mUS
t (55, 65) 0 1 0 1 1

�mUK
t (75) 0 1 2 1 2 �mUS

t (55) 1 1 0 0 0
�mUK

t (76) 2 1 1 2 2 �mUS
t (56) 0 1 0 0 0

�mUK
t (77) 0 1 1 1 2 �mUS

t (57) 0 1 0 1 1
�mUK

t (78) 0 1 1 1 2 �mUS
t (58) 1 1 0 1 1

�mUK
t (79) 0 1 1 1 1 �mUS

t (59) 0 1 1 1 1
�mUK

t (80) 0 1 1 0 0 �mUS
t (60) 1 1 0 1 1

�mUK
t (81) 0 1 1 1 1 �mUS

t (61) 0 1 3 1 1
�mUK

t (82) 0 1 1 1 1 �mUS
t (62) 0 1 1 1 3

�mUK
t (83) 0 1 1 1 1 �mUS

t (63) 0 1 1 2 2
�mUK

t (84) 0 1 2 3 1 �mUS
t (64) 0 1 0 0 0

�mUK
t (85) 0 1 1 1 1 �mUS

t (65) 0 1 1 0 0

FIGURE 4: Hierarchical tree of the longevity divergence index.

When modeling and forecasting the LDIV, it is important to consider infor-
mation on all levels. It is expected that the combination of all such information
will provide a more accurate projection of the future LDIV. Based on the
selected optimal ARIMA–GARCH models in Section 2.3, it is easy for us to
produce forecasts for each time series shown in Figure 4. We refer to these
as “base” forecasts. Ideally, we want the forecasts to add up in a way that is
consistent with the underlying hierarchical structure. However, in reality it is
very unlikely that base forecasts will add up in the same manner as the origi-
nal data (Hyndman and Athanasopoulos, 2014). Therefore, we need to adjust
these base forecasts to ensure that they become coherent and follow the aggre-
gation constraints. To do this, we need to reconcile the forecasts at each level
taking into account information at other levels.

For the hierarchical structure of the LDIV, we have the following aggrega-
tion constraints for all values of t:

1
11

85∑
a=75

�mUK
t (a)= �mUK

t (75, 85), (3.1)
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1
11

65∑
b=55

�mUS
t (b)= �mUS

t (55, 65), (3.2)

�mUK
t (75, 85)− �mUS

t (55, 65)=LDIVt. (3.3)

3.1. The minimum trace reconciliation method

There has been a rich literature on forecast reconciliation (see, e.g., Stone
et al., 1942; Shlifer and Wolff, 1979; Schwarzkopf et al., 1988; Weale,
1988; Dangerfield and Morris, 1992; Kahn, 1998; Zellner and Tobias, 2000;
Athanasopoulos et al., 2009; Hyndman et al., 2011; Van Erven and Cugliari,
2015; Wickramasuriya et al., 2018). Traditionally, the most common tech-
niques to forecast hierarchical time series are the “bottom-up” and “top-down”
methods.6 The “bottom-up” method simply aggregates all bottom-level base
forecasts to produce forecasts at higher levels in the hierarchy. In doing so, no
information at the bottom level is lost. However, the major disadvantage of this
method is that since the bottom-level series are generally more noisy, they are
more difficult to model and forecast (Hyndman and Athanasopoulos, 2014).
Moreover, the method does not take into account the correlation structure of
the errors among disaggregated series.

The appropriateness of forecast reconciliation was formally established in
Van Erven and Cugliari (2015) for the first time. Along this direction, an opti-
mal combination method has been proposed to reconcile hierarchical time
series (Hyndman et al., 2011). The method aims to combine the base forecasts
at all levels to achieve better forecasting results. A regression model is adopted
to combine and reconcile base forecasts. The method has shown superior fore-
casting performance to traditional reconciliationmethods and has been applied
to various disciplines (see, e.g., Athanasopoulos et al., 2009; Capistrán et al.,
2010; Borges et al., 2013; Syntetos et al., 2016; Shang and Hyndman, 2017).

Wickramasuriya et al. (2018) extended the work of Hyndman et al.
(2011) and introduced a minimum trace (MinT) reconciliation approach. The
approach aims to minimize the sum of variances of the reconciled forecast
errors and thus to find the minimum variance unbiased estimates of the fore-
casts. Moreover, Wickramasuriya et al. (2018) provided a theoretical proof
to justify the use of variances and covariances of base forecast errors in their
approach, which is missing in the previous literature. As such, although depen-
dence is often ignored in producing base forecasts, it is taken into account in the
reconciliation process. In addition, Wickramasuriya et al. (2018) have shown
that the reconciled forecasts will be at least as good as the base forecasts, which
guarantees the effectiveness of the approach.

In our analysis, we adopt the MinT approach to reconciling forecasts of
the LDIV and mortality improvement rates. Before looking into details of the
MinT approach, we first introduce some notation and terminologies to be used
in this section.
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For t ∈ [1,T ],

• let yt = (LDIVt, �mUK
t (75, 85), −�mUS

t (55, 65), 1
11�mUK

t (75), . . . ,
1
11�mUK

t (85), − 1
11�mUS

t (55), . . . , − 1
11�mUS

t (65))′ be a vector that contains
observations of all series

in the hierarchy;
• let bt = ( 1

11�mUK
t (75), . . . , 1

11�mUK
t (85), − 1

11�mUS
t (55), . . . ,− 1

11�mUS
t (65))′

be a vector that contains observations at the bottom level only.

We can then link these two vectors by the equation

yt = Sbt, (3.4)

where S is a “summing matrix” of dimension 25× 22, which aggregates age-
country-specific mortality rates to construct the LDIV. It is given by

S=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . . . . 1 1 1

1 1 . . . 1 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1

I22

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where I22 denotes a 22× 22 identity matrix. The aggregation constraints
(3.1)–(3.3) are reflected by the first three rows of the matrix S.

Let ŷT+h be a vector of h-step-ahead base forecasts of all series in the hierar-
chy, and b̂T+h be a vector of h-step-ahead base forecasts of bottom-level series
only. We produce these base forecasts based on the ARIMA–GARCH mod-
els selected in Table 2. According to Wickramasuriya et al. (2018), all linear
reconciliation methods can be expressed as

ỹT+h = SPŷT+h, (3.5)

for some selected matrixP of dimension 22× 25, where ỹT+h represents a vector
of reconciled forecasts for all levels and satisfies the aggregation constraints.
The choice of P is not unique. For example, for the bottom-up reconciliation
approach, P is chosen as

P= (022×3, I22), (3.6)

where 022×3 is a zero matrix of dimension 22× 3. Therefore, the method simply
extracts the bottom-level base forecasts and sums them up to form forecasts
for higher levels.

Hyndman et al. (2011) proposed an optimal combination approach in
which they expressed the base forecasts as

ŷT+h = SβT+h + εT+h, (3.7)
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where βT+h =E [bT+h|y1, y2, . . . , yT ] is the unknown mean of bottom-level base
forecasts, and εT+h is the error term which has a mean vector zero and a covari-
ance matrix �h. As shown by Hyndman et al. (2011), if �h is known, we can
find the generalized least squares (GLS) estimator of βT+h as

β̂T+h = (S′�†
hS)

−1S′�†
hŷT+h, (3.8)

where �
†
h is the Moore–Penrose generalized inverse of �h as �h is likely to be

singular.
We then obtain the reconciled forecasts by

ỹT+h = Sβ̂T+h = S(S′�†
hS)

−1S′�†
hŷT+h. (3.9)

This implies that P= (S′�†
hS)

−1S′�†
h. Since SPS= S, the reconciled forecasts

are shown to be unbiased given that base forecasts are also unbiased (Hyndman
et al., 2011).

However, as discussed and proven by Wickramasuriya et al. (2018), �h

is generally not known nor identifiable. Wickramasuriya et al. (2018) pro-
vided an alternative estimation of P by minimizing the trace of VAR[yt+h −
ỹt+h|y1, y2, . . . , yt], which is the covariance matrix of the in-sample reconciled
forecast errors. This method is referred to as theMinT reconciliation approach.

Let Wh be a positive definite covariance matrix of the h-step-ahead in-
sample base forecast errors, that is,

Wh =E[êt+hê
′
t+h|y1, y2, . . . , yt], (3.10)

where êt+h = yt+h − ŷt+h.7 One can verify that8

VAR[yt+h − ỹt+h|y1, y2, . . . , yt]= SPWhP′S. (3.11)

The optimal reconciliation matrix is then given by

P= (S′W−1
h S)−1S′W−1

h . (3.12)

Thus, the only difference between the GLS solution given by Hyndman et al.
(2011) and the MinT solution given by Wickramasuriya et al. (2018) is the
covariance matrix used in the estimation of P. However, in the GLS solu-
tion, �h is generally not identifiable. This issue of the unidentifiable covariance
matrix was ultimately resolved by Wickramasuriya et al. (2018). The contribu-
tion of Wickramasuriya et al. (2018) was to recognize that this unidentifiable
matrix was not required at all to minimize the trace of the reconciliation error
covariance matrix. The MinT reconciliation approach therefore gives a more
practically feasible solution, and we choose to adopt the MinT approach to
reconcile forecasts of the LDIV for the Kortis bond.9
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3.2. Reconciling probabilistic forecasts of the LDIV

As described in the previous section, the MinT approach provides an effective
solution for reconciling point forecasts. However, in order to price the Kortis
bond, it is required to estimate the entire distribution of the PRF. Therefore, we
need to reconcile not only the point forecasts but also the probabilistic forecasts
of the LDIV.

In the existing literature, there are very few attempts to reconcile proba-
bilistic forecasts and construct reconciled prediction intervals. To the best of
our knowledge, only papers tackling this issue are Ben Taieb et al. (2017) and
Jeon et al. (2019). Both works aim to adjust probabilistic forecasts to ensure
that the aggregation constraints are met. In particular, Jeon et al. (2019) are
the first to utilize information on full probabilistic distributions of all levels
to produce the reconciled probabilistic forecasts. Moreover, Jeon et al. (2019)
provided a generalization of the MinT approach.

Following Jeon et al. (2019), we first define the following terms:

• Let f(yT+h|y1, y2, . . . , yT ) be the probabilistic distribution of h-step-ahead
forecasts;

• Let ŷiT+h denote the ith sample of base forecasts generated from
f(yT+h|y1, y2, . . . , yT );

• A sample of size N generated from f(yT+h|y1, y2, . . . , yT ) is denoted by Ŷ,
where Ŷ= (ŷ1T+h, ŷ

2
T+h, . . . , ŷ

N
T+h).

Clearly, there is no guarantee (in fact, it is highly unlikely) that each column of
Ŷ will satisfy the aggregation constraints required by the hierarchical structure.
Therefore, a reconciliation process is needed as follows:

Ỹ= SPŶ, (3.13)

where S and P are the same as defined in Section 3.1,10 and Ỹ, a matrix of
dimension 25×N, is the reconciled forecasts for N sample paths.

We can construct the predictive probabilistic distribution and thus predic-
tion intervals from the reconciled samplesỸ. The problem is then down to how
to construct unreconciled forecasts Ŷ. To this end, Jeon et al. (2019) introduced
three schemes, namely the “stacked sample”, “permuted sample,” and “ranked
sample.” The empirical results in Jeon et al. (2019) show that the “ranked
sample” method has the best performance among the three schemes, in par-
ticular when there is a positive correlation between the underlying series. In
this work, we adopt the “ranked sample” method and construct our sample in
the following steps:

• Define Ẑm to be an N × 1 column matrix, which contains base forecasts of
size N for the mth series in yT+h. For example, Ẑ1 represents N samples
generated from the distribution f(LDIVT+h|LDIV1, LDIV2, . . . , LDIVT ).
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FIGURE 5: Density of the LDIV in 2016.

• Arrange the elements in Ẑm in ascending order to form Ẑ
R

m.

• Let Ŷ
R =

(
Ẑ
R

1 ,Ẑ
R

2 , . . . ,Ẑ
R

25

)′
be the ranked sample of size N for all series.

In this way, we obtain reconciled forecasts for N sample paths as

Ỹ= SPŶ
R
. (3.14)

For each age-specific mortality improvement rate, average mortality improve-
ment rate, and LDIV, we generate 10,000 ranked samples to build base
probabilistic forecasts. Based on these samples, we reconcile the probabilis-
tic forecasts of the LDIV and then estimate the distribution of the PRF. In
Figure 5, we plot the forecast density of the LDIV in 2016. To clearly illustrate
the implication of the results, we present selected estimated quantiles of the
PRF in Table 3.11 For comparison, we also include the results from the RMS,
the base forecasts, the bottom-up approach, and the optimal combination GLS
approach.

It can be seen that our estimates from theMinT reconciliation approach are
highly consistent with the RMS estimates. The expected loss based on theMinT
approach is only 0.14% higher than the figure published in the RMS report.
The fact that the expected loss and the conditional expected loss resulting from
the MinT approach are so close to the RMS estimates will also lead to similar
results for pricing. Even though our approach to projecting the LDIV is quite
different from the approach used by RMS, these results in Table 3 still to a cer-
tain extent ensure the reliability of our reconciliation approach. However, until
more information on themodeling details from the RMS becomes available, we
are not able to make further comments on the accuracy of LDIV forecasts.
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TABLE 3

ESTIMATED QUANTILES OF THE PRF OF THE KORTIS BOND.

Estimated probability

LDIV≥ PRF≥ Bottom up Base GLS MinT RMS

3.40% 0% 29.32% 0.33% 2.11% 5.61% 5.31%
3.50% 20% 27.51% 0.25% 1.65% 4.51% 4.32%
3.60% 40% 25.76% 0.19% 1.29% 3.63% 3.48%
3.70% 60% 24.09% 0.14% 1.01% 2.92% 2.82%
3.80% 80% 22.51% 0.10% 0.78% 2.34% 2.28%
3.90% 100% 20.98% 0.07% 0.60% 1.89% 1.81%

Expected loss 25.00% 0.18% 1.21% 3.41% 3.27%
Conditional expected loss 85% 53% 57% 61% 62%

On the other hand, we can clearly see that the bottom-up method poten-
tially overestimates the quantiles of the PRF. As a result, the estimated
expected loss and the conditional expected loss based on the bottom-upmethod
are much higher than the MinT and RMS estimates. Indeed, we observe that
the expected loss from the bottom-up method is almost 8 times as large as the
MinT and RMS estimates. On the contrary, we find that the estimates from
the base forecasts are substantially lower than the MinT and RMS estimates.
This may be because aggregation has led to a loss of information from lower
levels, and as a result the base forecasts on the top level do not fully reflect the
future volatility of the index. Consequently, the expected loss and the condi-
tional expected loss calculated from the base forecasts appear to be too low
given the market spread of the bond. The GLS quantile estimates are between
the bottom-up estimates and the base forecast estimates. However, they are still
well below the RMS figures, such that the resulting expected loss is less than
half of published expected loss (3.27%) by the RMS. These results well bring
out the effectiveness of the MinT reconciliation method.

We conclude that the reconciliation approach gives much more reliable
probabilistic forecasts of the LDIV than the other methods included in our
analysis, and at the same time ensures that all aggregation constraints in the
hierarchy are met. In Figures 6, 7, 8, and 9, we plot the 90%, 95%, and
99% prediction intervals of the LDIV over the period 2010–2016, based on
the bottom-up forecasts, base forecasts, GLS forecasts, and MinT forecasts,
respectively. These plots are consistent with our findings from Table 3.

4. DISCUSSIONS ON THE INTEREST SPREAD OF THE KORTIS BOND

As mentioned in Section 2.1, the interest spread of the Kortis bond at issue
was 5%. Although it is unclear whether a secondary market existed for the
Kortis bond between 2011 and 2016, Lane and Beckwith (2011, 2012, 2013,
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FIGURE 6: The 90%, 95%, and 99% prediction intervals of LDIV from the bottom-up method.
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FIGURE 7: The 90%, 95%, and 99% prediction intervals of LDIV from the base forecasts.

2014, 2015, 2016, 2017) published “Average Market Indications” for the inter-
est spread of the bond at the end of each quarter since March 2011. We plot
these published figures in Figure 10. It can be seen that the market-indicated
spread of the bond has a decreasing trend over time, which is in line with
many other catastrophe bonds.12 However, it is worth noting that the payment
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FIGURE 8: The 90%, 95%, and 99% prediction intervals of LDIV from the GLS reconciliation.
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FIGURE 9: The 90%, 95%, and 99% prediction intervals of LDIV from the MinT reconciliation.

structure of the Kortis bond is different from traditional catastrophe bonds as
the bondholders’ principal payment can only be reduced at the end of the risk
period.

Assuming that a secondary market for mortality bonds will emerge and
develop in the future, it is important for us to keep track of the movements of
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FIGURE 10: Indicated spread of the Koris bond.

mortality indexes and update the forecasts of the PRF regularly. The Kortis
bond reached its maturity on the 31st of December 2016, and information on
mortality improvement rates up to 2016 has now become available. Therefore,
in this work, we provide first evidence on changes in the distribution of the PRF
since its issue date. We repeat the reconciliation process described in Section 3
with additional mortality data from 2010 to 2015. The results for estimated
quantiles of the PRF are shown in Table 4.13

We can see that the expected loss based on our approach shows a decreas-
ing trend, which is consistent with the trend we discovered in the average
market indications earlier on in this section. On the other hand, there is no
clear trend found in the conditional expected loss during the same period. In
summary, as time goes by, the LDIV becomes less likely to hit the point of
attachment/exhaustion.

To obtain more insights on the changes in the distribution of the PRF over
time, we plot the historical LDIV with additional data from 2010 to 2016. The
crosses in Figure 11 represent “new information” which came in since the issue
of the Kortis bond. We can see that the LDIV reached its maximum in 2011.
After that, there was a slight decrease in the value of the index. The observed
value of the LDIV in 2016 is 2.09%, which is still far below 3.4%, the point
of attachment of the bond. Even though the added observations of the LDIV
only illustrate changes in the most aggregated level during 2010–2016, they still
validate the estimation results in Table 4 to a certain degree. For example, there
was a jump in the LDIV in 2011, and according to Table 4 the bondholders’
principal is more likely to be reduced (thus the expected loss tends to be higher)
compared to the previous year.
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TABLE 4

ESTIMATED QUANTILES OF THE PRF WITH ADDITIONAL MORTALITY INFORMATION.

Estimated probability

LDIV≥ PRF≥ 2010 2011 2012 2013 2014 2015

3.40% 0% 4.34% 4.98% 1.86% 1.29% 2.12% 2.70%
3.50% 20% 3.58% 3.76% 1.41% 1.15% 1.82% 1.97%
3.60% 40% 2.77% 2.98% 1.02% 1.02% 1.56% 1.46%
3.70% 60% 2.14% 2.36% 0.74% 0.92% 1.32% 1.00%
3.80% 80% 1.63% 1.71% 0.55% 0.81% 1.12% 0.71%
3.90% 100% 1.25% 1.24% 0.40% 0.72% 0.93% 0.56%

Expected loss 2.59% 2.78% 1.00% 0.98% 1.47% 1.35%
Conditional expected loss 60% 56% 54% 76% 69% 50%
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FIGURE 11: Historical LDIV up to year 2016.

In addition, to illustrate the out-of-sample point forecast performance of
the MinT approach during 2010–2016, for each individual series and level in
the hierarchy, we calculate the root mean squared forecast error (RMSFE)
based on the bottom-up method, the base forecasts, the GLS approach, and
the MinT approach. We find that the MinT reconciliation approach provides
the most accurate point forecasts compared to other methods for a majority
of individual series, and improves the overall forecast accuracy at all lev-
els in the hierarchy. These results are reported in Tables A1 and A2 in the
Appendix, with bold figures highlighting the method that provides the best
forecast performance.

https://doi.org/10.1017/asb.2019.19 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.19


MODELING AND FORECASTING THE MORTALITY BOND INDEXES 841

5. CONCLUSIONS

The desire to transfer and hedge mortality and longevity risk has led to the
emergence and growth of the longevity capital market in recent decades.
Therefore, accurate projections of mortality bond indexes are of fundamen-
tal importance for the pricing of mortality bonds. In this paper, we propose a
hierarchical forecast reconciliation approach to constructing the probabilistic
forecasts of mortality bond indexes and demonstrate the strong performance
of our method.

A MinT reconciliation method (Wickramasuriya et al., 2018) is applied
together with the probabilistic forecast sampling algorithm proposed by Jeon
et al. (2019) to estimate the distribution of the PRF for the Kortis bond. The
estimated quantiles of the PRF based on our approach are very close to the
figures published in Standard and Poor’s (2010). We also compare our results
with the bottom-up and base forecasts. It is shown that in the case of Kortis
bond, forecast reconciliation is an effective tool to utilize all available informa-
tion and provide more accurate forecasts. In addition, we apply the proposed
method with the most recent mortality data and provide first insights on the
changes in distribution of PRF throughout the risk period of the bond.
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NOTES

1. LIBOR is a key global benchmark interest rate at which banks offer to lend funds to each
other.

2. As Kortis bond is the first longevity trend bond introduced in the market, there are no
other benchmark estimates other than the RMS estimates for its loss distribution (see discussions
in Hunt and Blake, 2015; Chen et al., 2017). The quantile estimates and the expected loss of the
Kortis bond published by RMS have been frequently used by other financial service companies
(see, e.g., Lane and Beckwith, 2011).

3. The HMD mortality database can be found at http://www.mortality.org/
4. For other examples that apply time-series models to mortality modeling, see Engle (2001),

Gao and Hu (2009), Giacometti et al. (2012), Sarpong (2013), Wang et al. (2013), Lin et al. (2015),
and Chen et al. (2015).

5. R packages forecast (Hyndman and Khandakar, 2008) and rugarch (Ghalanos, 2019)
are used to select optimal models and generate forecasts.

6. Since in the case of the Kortis bond we primarily focus on the forecasts of LDIV, we do
not further discuss the top-down method. For more details of each method, see Hyndman and
Athanasopoulos (2014).

7. In our analysis, although the individual series themselves are mostly nonstationary, the in-
sample forecast errors we used to compute the Wh matrix are in fact stationary. Consequently,
the MinT approach is valid in our study.
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8. For a detailed proof, see Wickramasuriya et al. (2018), Appendix A.1.
9. There are several choices of the estimator ofWh proposed in Wickramasuriya et al. (2018),

Section 2.4. In this work, we have used the “shrinkage” estimator as described there.
10. Note that for the bottom-up reconciliation, P= (022×3, I22), which is the same as in

Section 3.1.
11. The MinT reconciliation method is implemented by R package hts (Hyndman et al.,

2018).
12. We do not attempt to comment further on the values of the market-indicated spreads of

the Kortis bond since it is beyond the scope of the paper; for further details, please refer to Lane
and Beckwith (2011, 2012, 2013, 2014, 2015, 2016, 2017).

13. Note that in Table 4, “2010” indicates that the reconciled forecasts are based on
information up to 2010. The same rule applies to the other years.
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APPENDIX A

For each individual series, the RMSFE is defined as follows:

RMSFE=
√√√√1
h

h∑
k=1

(
mT+k − m̂T+k

)2, (A.1)

where h represents the length of the forecast horizon, mT+k represents the kth actual
observation in the holdout sample, and m̂T+k represents the corresponding point forecast.

For each hierarchical level, we compute the average RMSFE by calculating the mean
of RMSFE across all individual series within each level. Therefore, the average RMSFE is
defined as

Average RMSFE= 1
nj

nj∑
i=1

RMSFEi, (A.2)

where nj represents the number of individual series at level j in the hierarchy, and RMSFEi
represents the RMSFE of individual series i at level j.

TABLE A1

RMSFE (×100) OF OUT-OF-SAMPLE FORECASTS DURING 2010–2016.

Series Bottom up Base GLS MinT Series Bottom up Base GLS MinT

LDIVt 0.38 0.81 0.53 0.34
�mUK

t (75, 85) 1.08 0.92 0.86 0.86 �mUS
t (55, 65) 0.95 0.96 1.20 0.97

�mUK
t (75) NA 1.76 1.57 1.73 �mUS

t (55) NA 0.89 0.53 0.69
�mUK

t (76) NA 1.29 1.11 1.13 �mUS
t (56) NA 0.60 0.66 0.45

�mUK
t (77) NA 1.28 1.11 0.97 �mUS

t (57) NA 0.56 0.78 0.58
�mUK

t (78) NA 1.13 0.95 0.92 �mUS
t (58) NA 1.80 1.81 1.63

�mUK
t (79) NA 0.88 0.73 0.77 �mUS

t (59) NA 1.59 1.57 1.26
�mUK

t (80) NA 0.78 0.68 0.67 �mUS
t (60) NA 1.10 1.33 1.17

�mUK
t (81) NA 1.40 1.21 1.18 �mUS

t (61) NA 2.54 1.77 1.77
�mUK

t (82) NA 0.82 0.80 0.79 �mUS
t (62) NA 2.31 1.64 1.05

�mUK
t (83) NA 1.13 0.99 0.96 �mUS

t (63) NA 2.01 1.91 1.90
�mUK

t (84) NA 0.74 0.62 0.66 �mUS
t (64) NA 0.77 1.01 0.81

�mUK
t (85) NA 1.17 1.00 1.00 �mUS

t (65) NA 1.06 1.26 1.08
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TABLE A2

AVERAGE RMSFE (×100) OF OUT-OF-SAMPLE FORECASTS DURING 2010–2016.

Level Bottom up Base GLS MinT

Top 0.38 0.81 0.53 0.34
Middle 1.02 0.94 1.03 0.92
Bottom NA 1.26 1.14 1.05
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