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Melting processes of phase change materials in a
horizontally placed rectangular cavity
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This paper revisits the melting process of phase change materials (PCMs) enclosed
in a horizontally placed rectangular cavity, with isothermal and adiabatic conditions
subjected to the vertical and horizontal walls, respectively. First, numerical simulations
based on an improved lattice Boltzmann method are conducted to illustrate and to inform
the theoretical modelling. It is shown that, compared with the traditional two-stage
conduction–convection melting description, it is more reasonable to include a third stage
in terms of the heat transfer behaviour. During the third stage, the remnant solid PCM is
located in the corner formed by the cold and bottom walls of the cavity, and an increasing
part of the input energy will be transferred directly out of the cavity without compensating
for the melting latent heat, thus inducing a continuously decreasing melting rate until the
end of the melting process. Then theoretical predictions are derived piecewise for the
melted liquid fraction during the entire melting process, and the corresponding transitions
between two successive stages are also discussed. The results are validated successfully
via the available experimental and numerical data in the literature, and could guide the
design and operation of latent heat storage systems.

Key words: solidification/melting, convection in cavities

1. Introduction

Solid–liquid phase change and the accompanying thermal flows remain an active research
area, being ubiquitous in geophysical and industrial processes, such as the evolution of
ice crust (Z. Wang, Calzavarini & Sun 2021a; Wang et al. 2021b,d), the formation of
the Earth’s inner core (Alboussiere, Deguen & Melzani 2010), and particularly, thermal
energy storage (Wang, Faghri & Bergman 2010). The last of the listed examples has
drawn considerable attention due to the ever-growing global energy issues and the
consequent environmental problems, encouraging researchers from different fields to
explore new energy storage technologies. Thus far, thermal energy is usually stored in
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three ways: sensible heat, latent heat performed by phase change materials (PCMs), and
thermo-chemical heat. Comparatively speaking, the highest storage density is observed
in thermo-chemical heat, but its operating temperature range is generally the narrowest,
limiting its commercial viability (Nazir et al. 2019). For the two other ways, the storage
density of latent heat is generally 5–14 times higher than that of sensible heat (Garg,
Mullick & Bhargava 2012). Meanwhile, the latent heat storage technique shows the
most flexible operating temperature range because many types of PCMs are available
for selection. Each type of PCM generally presents a unique and almost constant
operating temperature (melting point), thereby resulting in nearly isothermal charging
and discharging processes (Sharma et al. 2009; Dutil et al. 2011; Zhou, Zhao & Tian
2012; Shokouhmand & Kamkari 2013; Dhaidan & Khodadadi 2015). These favourable
properties contributed to the promising applications of PCMs in various situations,
including electronics cooling (Baby & Balaji 2013; Levin, Shitzer & Hetsroni 2013),
thermal comfort in buildings (Lee et al. 2015; Ramakrishnan et al. 2016), thermal
protection of spacecraft (Swanson & Birur 2003; Kim et al. 2013) and smart textiles
(Sarier & Onder 2012). The consistently growing interest in PCMs has currently stimulated
massive investigation efforts on their melting processes, which aim mainly to predict the
melting rate, defined as the time derivative of the melted liquid fraction fl. The melting
rate is closely related to thermal flow dynamics; thus this rate is one of the most important
parameters in fundamental scientific understanding (Esfahani et al. 2018). The melting rate
also determines the energy storage efficiency, therefore being a key factor to consider in
engineering applications (Hannoun, Alexiades & Mai 2003).

The melting of PCMs is governed by conservation laws of mass, momentum and energy.
Normalising the melting system, the following four dimensionless control parameters are
generally deduced: the Rayleigh number Ra, the Prandtl number Pr, the Stefan number
Ste, and the aspect ratio of the cavity γ , which have been studied extensively (Bertrand
et al. 1999; Huang, Wu & Cheng 2013; Li, Yang & Zhang 2014; Esfahani et al. 2018;
Hasan & Saha 2021). Rayleigh number Ra weighs the relative intensity of convection over
diffusion, influencing significantly the melting interface morphology and the melting rate
(Ho & Viskanta 1984; Gau & Viskanta 1985; Wang, Amiri & Vafai 1999; Shokouhmand &
Kamkari 2013). A small Pr lengthens the conduction stage, and alleviates the convection
effect on the interface morphology and melting rate (Webb & Viskanta 1986; Wolff &
Viskanta 1988). A large Ste would delay the onset of convection, indicating that the melting
of PCMs is energetically inexpensive (Kim, Lee & Choi 2008; Esfahani et al. 2018). In
addition to the Stefan number, γ also affects the onset of convection (Gadgil & Gobin
1984; El Qarnia, Draoui & Lakhal 2013; Behbahan et al. 2019). Hamad et al. (2021)
found recently that an earlier transition from conduction to convection will be observed
during the PCM melting, when the width of a rectangular container is increased. It is
seen clearly that all these control parameters influence the melting rate. Thus developing
a prediction, including all their effects, is necessary. In addition to the four dimensionless
numbers, the melting rate also depends on the cavity shape (cylinder, sphere, rectangular,
etc.) (Bareiss & Beer 1984; Dhaidan & Khodadadi 2015), inclination angle (Baby & Balaji
2013; Sharifi et al. 2013; Kamkari, Shokouhmand & Bruno 2014; Yang et al. 2019) and
thermal boundary conditions, such as uniform or partial heating with constant heat flux or
temperature (Zhang et al. 1993; Gong, Devahastin & Mujumdar 1999; Jourabian, Farhadi
& Darzi 2013; Rui et al. 2020).

Amongst various PCM melting configurations, the most frequently employed one is a
rectangular cavity placed horizontally and heated uniformly on a vertical wall (figure 1).
A considerable amount of research has been conducted experimentally or numerically for
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Figure 1. Schematic of PCM melting in a rectangular cavity, and the boundary conditions. The origin of
coordinates O lies in the bottom left corner.

this configuration, to explore the effect of dimensionless control parameters on melting
behaviours. The investigated PCMs cover from low Pr metals (Gau & Viskanta 1986;
Webb & Viskanta 1986; Wolff & Viskanta 1988; Campbell & Koster 1994; Bertrand et al.
1999) to medium Pr water (Boger & Westwater 1967) and high Pr materials, such as
paraffins (Bareiss & Beer 1984; Ho & Viskanta 1984; Bénard, Gobin & Martinez 1985;
Bertrand et al. 1999; Kadri et al. 2015; Faden et al. 2019), fatty acids (Shokouhmand &
Kamkari 2013; Kamkari et al. 2014) and polyethylene glycol (PEG) (Wang et al. 1999;
Ahmad et al. 2006; Hamad et al. 2017, 2021). Amongst these studies, several fitting
expressions, usually termed ‘correlations’, are reported for the melted liquid fraction fl,
as summarised in table 1.

The first correlation was reported by Ho & Viskanta (1984), in which fl depends on a
combination of the dimensionless control numbers as Ra0.25 Ste Fox γ

2 for n-octadecane
(table 1, row 1). In this expression, Fox = αt/L2

x is the Fourier number, i.e. the
dimensionless time based on the thermal diffusivity α and the horizontal dimension of
the rectangular cavity Lx. A similar dependence was reported later by Bénard et al. (1985)
for the same material (table 1, row 2). However, the reported dependencies (table 1, rows
1 and 2) were found to be insufficient to achieve data regression for the experimental
measurements on gallium melting as performed by Gau & Viskanta (1986), which has been
used widely to test numerical models and other experiments (Kadri et al. 2015). Therefore,
instead of using the Ra0.25 Ste Fox γ

2 combination, Gau & Viskanta (1986) considered Ste,
Fox, Ra and γ as individual independent variables, and reported a different correlation
(table 1, row 3), where a γ 0.14 dependence was found. Meanwhile, a second correlation,
which also fits well on the experimental data, was obtained by replacing Ra with Ste
(table 1, row 3). In this correlation, a remarkably weak and opposite dependence on the
aspect ratio was γ−0.0137, which is inconsistent with the first correlation. Subsequently,
a similar experiment conducted by Wolff & Viskanta (1988) with tin indicates that Ra
plays an important role in the melting process due to its generally high value (9.0 × 104 ≤
Ra ≤ 2.1 × 105), despite the weak dependence in the correlation (table 1, row 4). This
finding indicates that the first correlation by Gau & Viskanta (1986) is more reasonable
than the second correlation, to some extent. However, the γ dependence is opposite. In the
same year, Jany & Bejan (1988) proposed numerically another correlation (table 1, row
5) in a quite different form, in which a parameter combination Ste Fox γ

2 was employed.
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No. Literature Correlations for fl Conditions

1 Ho & Viskanta (1984) fl = 0.523(Ra0.25 Ste Fox γ
2)0.68 6.3 × 107 ≤ Ra ≤ 1.4 × 108

0.063 ≤ Ste ≤ 0.132
γ = 0.3846, Pr = 56
PCM: n-octadecane

2 Bénard et al. (1985) fl =
{
(t+ + t+0 )/γ,
1 − yD(1 − 2τ0)+ (τ − τ0)I( yD),

Ra = 1.09 × 109, Ste = 0.084

with t+ = 0.33 Ra0.25 ρ+ Ste Fox γ
2, γ = 0.3876, Pr = 50.9

t+0 = Ra0.25/0.66, τ = t+/γ , PCM: n-octadecane
ρ+ the liquid–solid density ratio,
yD the interface–wall intercept,
and I( yD) the integration

3 Gau & Viskanta (1986) (1) fl = 2.71(Ste Fox)
0.84 Ra0.05 γ 0.14 3.4 × 104 ≤ Ra ≤ 6.1 × 105

(2) fl = 6.28(Ste Fox)
0.84 Ste0.04γ−0.0137 0.009 ≤ Ste ≤ 0.083

1.40 ≤ γ ≤ 3.50
Pr = 0.0216
PCM: gallium

4 Wolff & Viskanta (1988) fl = 1.23(Ste Fox)
0.56 Ra0.02 γ−0.09 9.0 × 104 ≤ Ra ≤ 2.1 × 105

0.0047 ≤ Ste ≤ 0.011
γ = 1.0, 1.33
Pr = 0.0157
PCM: tin

5 Jany & Bejan (1988) fl = [(
√

2ζ )5 + (0.27ζ Ra1/4)5]1/5, 0 ≤ Ra ≤ 108, Ste = 0.1
with ζ = Fox Ste γ 2 γ = 1.0, Pr = 50

PCM: n-octadecane
6 Wang et al. (1999) fl = 4.73 Fox

0.91 Ste1.54 Ra0.002 2.0 × 106 ≤ Ra ≤ 2.6 × 107

0.081 ≤ Ste ≤ 0.41
γ = 1.4854
804 ≤ Pr ≤ 1055
PCM: PEG900

7 Du et al. (2007) fl = 0.23(Fox γ
2)0.702 Ste0.51 Ra0.258 1.5 × 107 ≤ Ra ≤ 4.0 × 109

0.04 ≤ Ste ≤ 0.3
γ ≤ 0.179, Pr = 693
PCM: MEA–water mixture

8 Duan, Xiong & Yang (2019) fl = −0.39(X3 − X2)+ 0.92X, with 4.0 × 104 ≤ Ra ≤ 6.9 × 105

X = [((1.57ζ )0.52)3.5+(0.22ζ Ra0.25)3.5]1/3.5

γ
Ste = 0.46, 0.3 ≤ γ ≤ 2.0
Pr = 6.72
PCM: water–ice

Table 1. Summary of the reported correlations for the melted liquid fraction fl in the literature. Note that the
definitions of dimensionless numbers are already unified in this table, as given in (2.6a–d) and (2.7a,b) in § 2.

However, the reported correlation leads to a substantial overestimation (Duan et al. 2019).
More than 10 years later, Wang et al. (1999) revisited the melting experiment with high
Pr material PEG900 and reported a correlation (table 1, row 6). Compared with the first
correlation by Gau & Viskanta (1986), the authors found a similar dependence on Fox
yet a quite different one on Ste. Moreover, this correlation does not include the effect
of γ . Du et al. (2007) investigated experimentally the melting process of ethanolamine
(MEA)–water binary mixture, and reported a correlation for the melted liquid fraction fl
(table 1, row 7). In this correlation, the dependencies on Fox and γ are very close to those
in the first correlation by Gau & Viskanta (1986). However, a major discrepancy exists
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in Ra dependence. Recently, Duan et al. (2019) investigated numerically the water–ice
melting process and obtained a third-order polynomial correlation (table 1, row 8), which
is substantially different from the existing correlations. Overall, the existing correlations
obtained from different or even the same studies are incompatible, and none of these
correlations includes the effect of Pr. Thus, on the basis of the existing data, obtaining
a general solution for the melted liquid fraction fl by an experimental or numerical fit is
almost impossible. Thus theoretical explorations starting from the governing equations of
the melting process are inevitable.

When it comes to the theoretical modelling, PCM melting includes a strong nonlinear
interaction between the evolving melting interface and convection. Therefore, only the
simplest one-dimensional infinite or semi-infinite configuration can be solved analytically
(Hamdan & Elwerr 1996; Hannoun et al. 2003; Hamdan & Al-Hinti 2004; Dutil et al. 2011;
Kadri et al. 2015; Rui et al. 2020). For the two-dimensional (2-D) and three-dimensional
(3-D) geometric configurations, the melting system is analytically accessible only under
some simplifications. For the rectangle configuration emphasised in the present paper,
Hamdan & Elwerr (1996) simplified the melting interface as an inclined plane, and the
local melting layer thickness was assumed to be S( y) = S0 + y tan(φ). In the assumption,
S0 is the local thickness of the liquid PCM at the bottom wall, where the melting
is considered to be dominated by conduction. Angle φ is the inclination angle of the
interface, and is estimated by trial and error based on a nonlinear equation. Obviously,
although the melting interface is simplified and described by two parameters (S0 and φ),
its expression and that of the melted liquid fraction fl cannot be provided explicitly due
to the estimation of φ. Moreover, the predicted fl deviates from that of Webb & Viskanta
(1986) despite its agreement with the measurements of Bénard et al. (1985). This deviation
is because the interface inclination angle was calibrated by the experimental data of Bénard
et al. (1985), which, however, cannot be generalised, as previously mentioned. Thus the
analytical attempts for 2-D and 3-D PCM melting models remain to be pushed forward, in
order to develop a feasible and universal prediction for the melted liquid fraction fl, and its
melting rate.

This paper is devoted to the theoretical prediction of the melting process in a rectangle
PCM melting system. Numerical simulations based on an improved lattice Boltzmann
method are performed to illustrate and to inform the derivations, and available data in
the literature are employed to validate the prediction. The remainder of the paper is
organised as follows. Section 2 first presents the equations governing the melting process
and provides some brief information regarding the involved numerical simulations. A
comparison between pure thermal flows without phase change and melting thermal flows
is also presented to offer a deep insight into the melting processes. Section 3 derives and
verifies the theoretical predictions for the entire melting process. Section 4 introduces the
discussions on the distorted melting interface, parameter space, 3-D effect and transitions
between two successive melting stages. Section 5 concludes the paper.

2. Thermal flows

2.1. Governing equations
As shown in figure 1, the most frequently employed configuration in the PCM melting
cases is considered. In the figure, a 2-D horizontally placed rectangular cavity is filled
with a block of pure solid PCM, presenting a uniform bulk temperature Tm at its melting
point. The left wall temperature is raised to Tb > Tm at some point, but that of the right
wall is maintained at Tm; two horizontal walls are adiabatic. The solid PCM near the
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left wall then will melt into liquid, and thermal convection will be induced eventually
and driven by buoyancy. A laminar incompressible Newtonian fluid flow is assumed for
thermal convection as in previous studies, which effectively predicted the PCM melting
process (Webb & Viskanta 1986; Brent, Voller & Reid 1988; Chakraborty & Chatterjee
2007; Huang et al. 2013; Luo et al. 2015; Duan et al. 2019). In this case, the equations
governing the velocity field u and the pressure p inside the melted liquid can be written
respectively as

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= ρgβ(T − Tref )+ μ∇2u − ∇p, (2.2)

where the term ρgβ(T − Tref ) is the buoyancy estimated under the Boussinesq
approximation, implying that the effect of temperature variations is considered only on
liquid density ρ. Here, g is the gravity acceleration, β is the thermal expansion coefficient,
and μ is the dynamic viscosity of liquid PCM. Also, Tref = (Tb + Tm)/2 is the reference
temperature, and the temperature field T is described by the energy equation

∂T
∂t

+ L
Cp

∂fl
∂t

+ u · ∇T = α∇2T, (2.3)

where the viscous dissipation is neglected as usual. Here, Cp is the specific heat capacity
at constant pressure, and L is the melting latent heat of PCM. The second term on the
left-hand side denotes the contribution from the phase change latent heat, in which fl =
sLy/(LxLy) = s/Lx is the melted liquid fraction, with sLy and LxLy being volumes of the
melted liquid layer and the cavity, respectively, as shown in figure 1. The thermo-physical
properties of the solid and liquid phases are assumed to be isotropic, equal and constant.
Accordingly, the velocity and thermal boundary conditions are presented as

u|all walls = 0, (2.4)

T|left wall = Tb, T|right wall = Tm and
∂T
∂y

∣∣∣∣
horizontal walls

= 0. (2.5a–c)

The corresponding control parameters are the Rayleigh number, the Prandtl number, the
Stefan number and the aspect ratio of the cavity, which are defined respectively as

Ra = |g|βΔT L3
y

να
, Pr = ν

α
, Ste = Cp ΔT

L and γ = Lx

Ly
, (2.6a–d)

where ΔT = Tb − Tm is the temperature difference between the two vertical walls, Lx
and Ly are respectively the width and height of the cavity, and ν = μ/ρ is the kinematic
viscosity of liquid PCM. The melted liquid fraction would increase monotonically during
the melting process, driven by the heat flux injected from the left wall of the cavity. This
flux and the resultant temperature distribution both evolve with time, and are described
respectively by the averaged Nusselt number Nu and the dimensionless temperature field
θ , which are defined as

Nu =

∫ Ly

0
qx( y) dy

ρCpαΔT
and θ = T − Tm

ΔT
, (2.7a,b)

where qx( y) = uxT − ρCpα ∂T/∂x is the local horizontal heat flux, with ux being the
horizontal flow velocity, and qx( y) can be simplified to qx( y) = −ρCpα ∂T/∂x at the left
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wall due to the no-slip condition (ux = 0) there. The above definition of Nu is the same as
those employed in previous studies (Kakac, Aung & Viskanta 1985; Jany & Bejan 1988;
Huang et al. 2013; Duan et al. 2019), and Nu is denoted as the ratio of the total heat transfer
rate per unit length to the conductive heat transfer rate per unit length, as the corresponding
dimensions of both numerator and denominator are W m−1. Dividing both the numerator
and the denominator by Ly, the present definition can be converted to the standard

definition Nu = −L−1
y
∫ Ly

0 (ρCpα ∂T/∂x) dy/(ρCpαΔT/Ly) as in Shishkina (2016), where
Nu is the ratio between the average horizontal heat flux and the conductive heat flux.
Introducing X = x/Ly and Y = y/Ly, the standard definition leads to another definition,
Nu = −(Ly/ΔT)

∫ 1
0 (∂T/∂x) dY = − ∫ 1

0 (∂θ/∂X) dY , which is usually used for numerical
calculations, indicating that Nu represents the dimensionless temperature gradient (Webb
& Viskanta 1986; Jany & Bejan 1988; He et al. 2011; Rakotondrandisa, Danaila & Danaila
2019).

This system is not solvable analytically due to the mathematical difficulty; thus
numerical simulations are conducted using a custom-made code by implementing the
improved lattice Boltzmann method for the solid–liquid phase change developed by Huang
et al. (2013), in order to illustrate the following analysis. The implemented numerical
model has been well tested by the Stefan solution of the one-dimensional conduction
melting problem, and by the 2-D convection melting problem (Huang et al. 2013). In this
model, the immersed moving boundary scheme is adopted to simulate the evolution of the
melting interface. Thus no extra velocity and thermal boundary conditions are imposed at
the melting interface. In addition, the Gibbs–Thomson effect associated with the surface
energy of the melting interface, which is crucial at micro-scales, is ignored herein as in
the previous studies (Favier, Purseed & Duchemin 2019; Purseed et al. 2020; Wang et al.
2021c).

The numerical model involves the following nine parameters: the product of gravity
acceleration and thermal expansion coefficient |g|β, temperatures at the hot and cold
cavity walls (Tb and Tm), numbers of grid nodes (Nx and Ny), fluid viscosity (ν), thermal
diffusivity (α), the specific heat capacity at constant pressure (Cp), and the melting latent
heat (L). Amongst these parameters, the numbers of grid nodes (Nx and Ny) are selected
following the rule of grid independence and the cavity aspect ratio; temperatures at the
left and right walls are respectively Tb = 400 in lattice units and Tm = 300 in lattice
units, and the specific heat capacity is Cp = 1000 in lattice units for all simulations.
Then other parameters can be deduced from the Rayleigh number, the Prandtl number, the
Stefan number and the Mach number Ma = √|g|βΔT Ly/Cs, where

√|g|βΔT Ly is the
characteristic convection velocity, and Cs = 1/

√
3 is the sound speed in lattice units. In all

simulations, Ma is set to 0.1 to ensure that the melted liquid flow is fully incompressible.
The above parameters in the numerical simulations presented in this paper are summarised
in table 2.

2.2. Melting thermal flows
This subsection first discusses the thermal flow without liquid–solid phase change (termed
pure thermal flow) for comparison, to explore the thermal flow in the presence of a melting
interface (termed melting thermal flow). Pure and melting thermal flows are both described
by the conservation laws in (2.1)–(2.3), and are solved numerically by the custom-made
lattice Boltzmann method code.

In the case of the pure thermal flow, the cavity is filled with liquid PCM at the start
of the simulation, also presenting a uniform temperature at its melting point Tm, and the
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Nx Ny |g|β ν α L Dimensionless parameters

100 100 3.3 × 10−7 0.0052 0.2582 1.0 × 107 Ra = 2.5 × 104, Pr = 0.02
Ste = 0.01, γ = 1.0
Ma = 0.1 (figures 2–4)

1500 1000 3.3 × 10−8 0.0141 0.2357 1.7 × 106 Ra = 1.0 × 106, Pr = 0.06
Ste = 0.06, γ = 1.5
Ma = 0.1 (figure 4)

400 400 8.3 × 10−8 0.0103 0.5164 5.0 × 105 Ra = 1.0 × 105, Pr = 0.02
3.3 × 105 γ = 1.0, Ma = 0.1 (figure 6)
2.5 × 105 Ste = 0.2, 0.3, 0.4

Table 2. Numerical parameters in the simulations presented in the figures.

δT
Ly

0.2 0.4 0.6 0.8 1.0

Vortex coreTBL

TBL

10 20 30 40 50

Average TBL thickness

at the left wall δT
l

Average TBL thickness

at the right wall δT
r

0

0.20

0.30

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

θ θ

x/Lx Fox

y/Ly = 3/4
y/Ly = 1/2
y/Ly = 1/4

(b) (c)(a)

Figure 2. Steady pure thermal flow at Ra = 2.5 × 104, Pr = 0.02, Ste = 0.01 and γ = 1. (a) Dimensionless
temperature field θ and streamlines. (b) Local temperature profiles at three altitudes. (c) Average thicknesses
of TBLs at the left and right walls.

boundary conditions are exactly the same as shown in figure 1. The left wall temperature is
raised at some point, and the liquid PCM will start to flow under the temperature difference
ΔT between the two vertical walls, reaching a steady state after a sufficiently long time. A
series of numerical simulations is conducted, and similar flow patterns are observed. The
resultant velocity and temperature fields of one typical case are shown in figure 2(a). This
figure reveals that, in addition to the large convective vortex, whose size is comparable to
the size of the cavity, four small convective corner rolls also exist due to the confinement
of cavity walls, where the flow velocity is low. Moreover, the convective roll at the bottom
right corner presents the lowest temperature. Analogically speaking, in the case of melting
thermal flow, the solid PCM at the bottom right corner, wherein the thermal convection is
also the weakest, will be the most difficult part to be melted.

The local temperature profiles at three altitudes, y = Ly/4, Ly/2 and 3Ly/4, are shown
in figure 2(b), and a sandwich structure is observed. Two thermal boundary layers (TBLs)
are present at the left and right walls, and their local thicknesses are not equal at the
same altitude y, except at y = Ly/2. This is due to the local heat accumulation along the
flow directions near the vertical walls, as shown in figure 2(a). The local temperature
profile in the x-direction is linear within the TBL, and presents nearly a plateau in
between, corresponding to the vortex core. The temperature variation is limited within
the two TBLs. Thus the average TBL thickness δT can be estimated by extrapolating the
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temperature profile linearly to ΔT/2, i.e. θ = 0.5:

δT = −(ΔT/2)/(∂T̄/∂x), (2.8)

where T̄ = ∫ Ly
0 T dy/Ly is the average temperature over the vertical wall, or the melting

interface in the case of melting thermal flows (Belmonte, Tilgner & Libchaber 1994;
Takeshita et al. 1996; Verzicco & Camussi 1999; Zhou et al. 2010; Zhou & Xia 2010;
Scheel & Schumacher 2014; Ng et al. 2015). Then the total heat transfer rate per
unit length injected from the left wall is evaluated as

∫ Ly
0 qx dy = −ρCpα (∂T̄/∂x)Ly =

ρCpαΔT Ly/(2δT), which is indeed independent of the cavity height Ly due to the fact
that Ly/δT is invariant once the Rayleigh number and Prandtl number are given (Shishkina
2016). Introducing the definition of Nu in (2.7a,b), the average Nusselt number is obtained
as

Nu = Ly/(2δT). (2.9)

As expected, the average thicknesses of the TBLs at the left and right walls are the same
(figure 2c), because the energy conservation at the steady state requires that the input
energy from the left wall, characterised by Nul = Ly/(2δl

T), should be equal to the output
energy from the right wall, characterised by Nur = Ly/(2δr

T), where δl
T and δr

T are the
average TBL thicknesses at the left and right walls of the cavity, respectively.

Furthermore, the average Nusselt number can be related to the dimensionless control
parameters. For a laminar pure thermal flow, the scaling law for Nu has been derived
theoretically as Nu ∼ Ra1/4 Pr1/4 for Pr ≤ 0.1, and Nu ∼ Ra1/4 Pr0 for Pr > 0.1, and
validated in the range 105 ≤ Ra ≤ 1010 (Shishkina 2016). Later, Q. Wang et al. (2021)
confirmed this scaling law numerically, providing a scaling law Nu ∼ Ra0.26 for Pr > 0.1.
Combining these results, the average Nusselt number is fitted and expressed as

Nu =
{

0.53 Ra1/4 Pr1/4, if Pr ≤ 0.1,
0.24 Ra0.26 Pr0, elsewhere.

(2.10)

It is worth noticing that the theoretically predicted scaling Nu ∼ Ra1/4 at Pr > 0.1 also
fits the data reported by Shishkina (2016) and Q. Wang et al. (2021), and presents a
negligible difference from Nu ∼ Ra0.26 at high Ra. However, at low Ra, Nu ∼ Ra1/4 shows
a noticeable deviation with respect to the previous data, as observed by Q. Wang et al.
(2021). Thus we choose to employ Nu ∼ Ra0.26 at Pr > 0.1, as in (2.10).

According to (2.9), the average TBL thickness normalised by Ly is then

δT

Ly
=
{

0.94 Ra−1/4 Pr−1/4, if Pr ≤ 0.1,
2.08 Ra−0.26 Pr0, elsewhere,

(2.11)

predicting δT/Ly = 0.1988 for Ra = 2.5 × 104 andPr = 0.02, which is in good agreement
with the numerical result (figure 2c).

For the melting thermal flow, simulations are conducted under the same boundary
conditions as those for the pure thermal flow, except that the cavity is initially filled
with solid PCM, and an evolving melting interface exists. In the simulations, the melting
interface is located by connecting the mesh points with a local melting fraction 1/2, and
will overlap with the right cold wall at the end of the melting process.

The interface evolution behaviours and corresponding thermal flow dynamics are
similar in different simulations.To illustrate the melting process, the time evolution of the
melting interface for a typical case, with the accompanying flow and temperature fields
appended, is shown in figures 3(a–c). These melting processes are usually interpreted by
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the well-known two-stage melting model (Bareiss & Beer 1984; Ho & Viskanta 1984;
Gau & Viskanta 1986; Wolff & Viskanta 1988; Bertrand et al. 1999; Wang et al. 1999;
Du et al. 2007; Huang et al. 2013; Shokouhmand & Kamkari 2013; Li et al. 2014; Luo
et al. 2015; Hamad et al. 2017, 2021). In the first stage, the melted liquid layer is thin;
thus the viscosity dominates the flow. Accordingly, the heat is transferred via conduction;
therefore the melting interface remains parallel with the left wall (figure 3a). As time goes
by, the melted liquid layer thickens increasingly, and the buoyancy gradually overcomes
the viscosity to dominate the flow. Consequently, the rising hot liquid continuously scours
the upper region of the PCM, and generates a distorted melting interface (figure 3b). In
this second stage, thermal convection comes into play and eventually dominates the heat
transfer. In addition, a part of the right cold wall will be exposed directly to the hot melted
liquid during the final phase of the melting process (figure 3c), as observed in the existing
studies (Bénard et al. 1985; Duan et al. 2019; Rakotondrandisa et al. 2019; Yang et al.
2019). In these studies, this final phase of the melting process is considered to be the
last part of the second convection stage. However, their fl versus Fox curves reveal that
the melting rate ∂fl/∂Fox = ∂(s/Lx)/∂Fox will decrease significantly as in figure 3(e)
once the cold cavity wall is exposed to the melted liquid, indicating the change in heat
transfer characteristics. Thus introducing a third stage is necessary to characterise the
melting process. Meanwhile, in the bottom right corner where the remnant solid PCM is
left, the thermal convection will decay significantly as informed by the discussions on the
pure thermal flow. Thus this third stage is referred to as ‘the decaying convection stage’.
Consequently, the traditional two-stage model should be updated to a three-stage melting
model, including conduction, convection and decaying convection.

For the thermal convection, it is found that the convection intensity gathers mainly
at the upper part of the cavity due to the buoyancy in the second and third stages, and
becomes negligible close to the bottom wall (figures 3b,c). That is, the propagation of
the horizontal intersection x0 between solid PCM and the cavity bottom wall is driven
by conduction, indicating x0/Lx ∼ √

Fox as stated by Hamdan & Elwerr (1996) and
Hamdan & Al-Hinti (2004). To have a convincing validation, x0 from the presented
simulation in figures 3(a–c) and those reported in the studies of Rakotondrandisa et al.
(2019) and Bénard et al. (1985), are normalised by Lx and presented as functions of
Fox as shown in figure 3(d). Accordingly, the fitting correlations of the three data sets
are x0/Lx = 0.13 Fo0.50

x , x0/Lx = 0.25 Fo0.52
x and x0/Lx = 0.52 Fo0.53

x , where the scaling
exponents are very close to the expected value of 1/2, and increase very slightly when Ra
varies widely from 104 to 109. This finding indicates that the conduction dominance at the
bottom wall is reasonable.

The following discusses the TBLs in the melting thermal flow. In figure 3(e), the average
thickness of the TBL at the left wall (δl

T ) and that at the melting interface (δi
T ) are shown

for the melting case presented in figures 3(a–c). Meanwhile, the average thicknesses
of the melted liquid layer (s) from the present simulation and those from Huang et al.
(2013) are also appended for comparison, wherein a good agreement is achieved. For the
configuration under consideration, the first stage lasts for Fox ≤ 2.7 (figure 3e), where
the melted liquid layer is saturated with TBLs, i.e. s = δl

T + δi
T , verifying the dominance

of conduction in the heat transfer mechanism. In the second stage (2.7 < Fox ≤ 25.9),
thermal convection is sufficiently strong to separate the two TBLs; thus s > δl

T + δi
T ,

constituting a sandwich structure as well. In the third stage (Fox > 25.9), s > δl
T + δi

T
still holds, while δi

T in this stage comprises two parts: TBLs along the liquid–solid PCM
interface and the uncovered right cold wall (figure 3c). As for the relation between δl

T and
δi

T , it is found that they are approximately equal to each other, rather than the identical
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Figure 3. Melting thermal flow at Ra = 2.5 × 104, Pr = 0.02, Ste = 0.01 and γ = 1. (a–c) Dimensionless
temperature fields and streamlines. (d) Horizontal intersection between solid PCM and the bottom wall (x0)
from present simulation (circles), from Rakotondrandisa et al. (2019) (squares), and from Bénard et al. (1985)
(triangles). (e) Comparison between average thicknesses of TBLs (δl

T and δi
T ) and the average thickness of the

melted liquid layer (s). Three melting stages are in turn labelled in orange, green and grey in the background.
( f ) The average Nusselt number Nu obtained from the melting thermal flows performed by Webb & Viskanta
(1986) (circles) and Rakotondrandisa et al. (2019) (triangles). The red dashed line is Nu scaling (see (2.10))
developed in the pure thermal flow by Shishkina (2016).

equality as observed in the pure thermal flow (figure 2c). Such an approximately equal
behaviour can also be explained from the viewpoint of energy conservation. PCM melting
is an unsteady process, wherein the bulk temperature of the melted liquid varies over
time. Consequently, the input energy, characterised by Nul = Ly/(2δl

T), is divided into
two parts: one is responsible for the variation of the bulk temperature of the melted
liquid, corresponding to the sensible heat; the other is transferred to the melting interface,
characterised by Nui = Ly/(2δi

T), to compensate for the melting latent heat or the leaking
energy through the uncovered right cold wall. The sensible heat is negligible due to
the low Stefan number under consideration, resulting in Nul ≈ Nui; thus δl

T ≈ δi
T . The

approximately equal Nul ≈ Nui has also been reported by Bénard et al. (1985), wherein
Ste = 0.084.

Furthermore, it is easy to conclude that the average thickness of the TBL is δl
T =

δi
T = s/2 in the conduction-dominated first stage, after which a comparison between

figures 2(c) and 3(e) shows that the average TBL thicknesses in the melting thermal flow
are approximate to those in the corresponding pure thermal flow. In addition to the data
in the present study, the results from the existing studies are also presented in figure 3( f ).
The averaged Nusselt number in the melting thermal flows reported by Webb & Viskanta
(1986) and Rakotondrandisa et al. (2019) are approximately equal to their counterparts
in pure thermal flows, as discussed by Shishkina (2016). Considering Nu = Ly/(2δT), the
averaged TBL thicknesses in a melting thermal flow are approximately equal to those in
the pure thermal flow under the same configurations. Herein, the approximate equality
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is attributed to the energetically expensive PCM melting at low Ste; thus a time scale
separation between the thermal convection and the melting interface migration exists.
That is, thermal convection at low Ste would adapt rapidly to the melting interface
migration, being in a nearly quasi-steady state. Thus approximately equal average TBL
thicknesses are observed in melting and pure thermal flows under the same configurations.
This approximate equality has also been observed in pure and melting Rayleigh–Bénard
convections (Esfahani et al. 2018).

In summary, a comparison with the pure thermal flow deepens the understanding
of the melting thermal flow, and the following conclusive points, which will inform
the theoretical modelling in the subsequent section, are realised. (I) In addition to the
conduction–convection two-stage description, a third melting stage is suggested, wherein
the melting rate decreases continuously until the end of the melting process. (II) The
propagation of the horizontal intersection x0 between solid PCM and the cavity bottom
wall is driven by heat conduction. (III) The average thickness of the TBL at the left wall
(δl

T ) and that at the melting interface (δi
T ) are approximately equal at low Ste. (IV) In

the first stage, the average thickness of the TBL is δT = s/2, and after this stage, the
averaged TBL thickness in the melting thermal flow is approximately equal to that in the
pure thermal flow under the same configurations.

3. Predictions

Theoretical analyses on the melting problem presented in § 2.1 are performed in this
section, based on the discussions in § 2.2.

The vicinity region within the TBL is examined to describe the evolution of the melting
interface. The vertically averaged position of the melting interface (dashed line in figure 1)
is denoted by s. The velocity u is negligible when the melted liquid flow is close to the
interface, due to the no-slip condition therein. Accordingly, (2.3) in the limit of x → s
simplifies to

∂T
∂t

+ L
Cp

∂fl
∂t

= α∇2T. (3.1)

In addition to θ , the following dimensionless quantities are further introduced:

x′ = x/δT , y′ = y/Ly and t′ = t/t0, (3.2a–c)

where t0 is the characteristic time necessary to achieve a melted liquid fraction of fl.
Equation (3.1) is then normalised as follows:

∂θ

∂t′
+ 1

Ste
∂fl
∂t′

= αt0
δ2

T

(
∂2θ

∂x′2 + δ2
T

L2
y

∂2θ

∂y′2

)
. (3.3)

On the one hand, thermal energy for a PCM is stored mainly in the form of latent heat
rather than sensible heat. It thus leads to 1/Ste 	 1, indicating that the first unsteady
term on the left-hand side is negligible compared with the second one. On the other
hand, the average thickness δT of the TBL is usually substantially smaller than the cavity
length scale Ly. Thus only the temperature gradient along the x-direction is retained in the
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diffusive term. Therefore, (3.3) is further simplified to

1
Ste

∂fl
∂t′

= αt0
δ2

T

∂2θ

∂x′2 , (3.4)

and its dimensional form is

L ∂fl
∂t

= Cpα
∂2T
∂x2 . (3.5)

That is, the latent heat necessary for the PCM melting is compensated by the thermal
diffusion in the x-direction. Integrating the above equation over the cavity (0 ≤ x ≤ Lx,
0 ≤ y ≤ Ly) as in the previous studies (Esfahani et al. 2018; Favier et al. 2019), the
following can be obtained:

L ∂fl
∂t

LxLy = Cpα

∫ Ly

0

[(
∂T
∂x

)
r
−
(
∂T
∂x

)
l

]
dy, (3.6)

where the subscripts ‘r’ and ‘l’ denote the right (x = Lx) and left (x = 0) walls,
respectively, −Cpα

∫ Ly
0 (∂T/∂x)l dy > 0 is the input energy, and Cpα

∫ Ly
0 (∂T/∂x)r dy ≤ 0

is the leaking energy through the right cold wall.

3.1. Predictions for the first and second stages
Three stages are identified for the PCM melting in a rectangle cavity. This subsection
considers the first and second stages, where the right wall of the cavity is covered entirely
by the solid PCM with the same temperature Tm; thus no energy leaks out. This leads from
(3.6) to

L ∂fl
∂t

LxLy = −Cpα

(
∂T̄
∂x

)
l
Ly. (3.7)

Considering fl = s/Lx, this equation becomes

∂s
∂t

= −Cpα

L
(
∂T̄
∂x

)
l
= Cpα

L
ΔT
2δT

, (3.8)

where (2.8) is used to relate δT and the average temperature gradient. It should be noted
that (3.8) is applicable for only the first and second stages. In the third stage, a part of the
right cold wall is directly exposed to the melted liquid (figure 3c), thus inducing energy
leakage. Then (3.6) becomes L (∂fl/∂t)LxLy < −Cpα (∂T̄/∂x)l Ly, explaining the melting
rate in the third stage being smaller than that (see (3.7)) in the second stage, as observed
in figure 3(e) and existing studies (Bénard et al. 1985; Duan et al. 2019; Rakotondrandisa
et al. 2019; Yang et al. 2019).

Section 2.2 concluded that after the first stage, the average thickness of the TBL in a
melting thermal flow is approximately equal to that (see (2.11)) in the pure thermal flow
under the same configuration. Meanwhile, δT = s/2 in the first stage; thus the average
TBL thickness in melting thermal flows can be summarised as

δT = min(s/2, kLy Ram Prn), (3.9)

where k = 0.94, m = −0.25, n = −0.25 for Pr ≤ 0.1, and k = 2.08, m = −0.26, n = 0
for Pr > 0.1, as indicated in (2.11).
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Substituting (3.9) into (3.8), the average thickness of the melted liquid layer s is then
obtained by integration as

s =
⎧⎨
⎩

√
2αt Ste, if s ≤ 2kLy Ram Prn,

αt Ste
2kLy Ram Prn + kLy Ram Prn, elsewhere,

(3.10)

where we have imposed the boundary conditions that s(t = 0) = 0 and s is a continuous
function with respect to t. Consequently, the melted liquid fraction fl during the first and
second stages is derived macroscopically as

fl = s
Lx

=
{√

2 Fox Ste, if fl ≤ 2k Ram Prn/γ,

γ Fox Ste/(2k Ram Prn)+ k Ram Prn/γ, elsewhere,
(3.11)

where s/Ly = γ s/Lx = γ fl were used.

3.2. Prediction for the third stage
In the third stage, the upper part of the cavity right cold wall is exposed to the hot
liquid PCM, and the remnant solid PCM is located in the bottom right corner, which is
simplified into a rectangle with x0 ≤ x ≤ Lx and 0 ≤ y ≤ y0, as shown in figure 4(a). In
this stage, the energy reaching the melting interface is divided into two parts (figure 4a):
the part at 0 ≤ y ≤ y0 drives the PCM melting, and the other part at y0 ≤ y ≤ Ly leaks
out through the uncovered right cold wall. Thus the leaking energy can be estimated as
Cpα (∂T̄/∂x)i (Ly − y0), with the subscript ‘i’ denoting the melting interface. Substituting
this estimation into (3.6), one gets

L ∂fl
∂t

LxLy = Cpα

(
∂T̄
∂x

)
i
(Ly − y0)− Cpα

(
∂T̄
∂x

)
l
Ly = −Cpα

(
∂T̄
∂x

)
l
y0, (3.12)

where the equation on the right is obtained from that at low Ste, δl
T ≈ δi

T ; thus (∂T̄/∂x)l ≈
(∂T̄/∂x)i, as discussed in § 2.2.

Equations (3.7) and (3.12) indicate that the melting rate (∂fl/∂t) depends only on the
averaged input heat flux −Cpα (∂T̄/∂x)l = CpαΔT/(2δT), and the vertical projected
areas of the solid PCM, which are Ly and y0 in the first two stages and the third one,
respectively. This is consistent with the result of Baehr & Stephan (2011), who showed
that the thermal power, proportional to the melting rate in the present study, is determined
by the dot product between the average input heat flux (q) and the surface element (A)
as q · A = |q| |A| cosψ , thus depending on the projected area |A| cosψ rather than the
absolute area |A|. Here, ψ is the local intersection angle between q and A.

In addition, δT in the second and third stages is approximately the same (figures 3e, f ),
because in these two stages the thermal convection takes effect and the characteristic
convection velocity (

√|g|βΔT Ly) is invariant, resulting in an unchanged average TBL
thickness δT . Thus (3.12) can be divided by (3.7) to cancel out the average temperature
gradient, resulting in (

∂fl
∂t

)
3

/(
∂fl
∂t

)
2

= y0

Ly
, (3.13)

where subscripts ‘2’ and ‘3’ denote the second and third stages, respectively. This equation
indicates clearly that the melting rate in the third stage will gradually decrease compared
with that in the second one, because y0 will gradually move downwards as the melting
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Ra = 2.5 × 105, Pr = 0.02

 Ste = 0.01, γ = 1.0
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∂
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Figure 4. (a) Schematic of the PCM melting during the third stage, where the red line is the melting interface,
and its upper part (y0 ≤ y ≤ Ly) overlaps the uncovered right cold wall. (b) Melting rate of three stages
normalised by that of the second stage. In addition to the present simulations (circles and squares), the results
from Bénard et al. (1985) (triangles) and Huang et al. (2013) (stars) are also presented.

continues. Therefore, this equation attributes the continuously decreasing melting rate in
the third stage to the decrease in the vertical projected area, which, relatively speaking, is
more direct in understanding than the explanation by Shokouhmand & Kamkari (2013).
They explained that the decreasing melting rate is attributed to the depression of the
convection current, due to the increase in the bulk temperature of liquid PCM and the
stratification of temperature fields.

Close to the bottom wall, heat transfer is dominated by conduction (Hamdan &
Elwerr 1996), as discussed in § 2.2. Introducing the values of Ste in figure 3(d)
into the first branch of (3.10), the horizontal intersections are calculated as x0/Lx =
s/Lx = 0.14

√
Fox, x0/Lx = s/Lx = 0.30

√
Fox and x0/Lx = s/Lx = 0.41

√
Fox, where the

multiplicative factors (0.14, 0.30 and 0.41) are respectively close to the fitting coefficients
0.13, 0.25 and 0.52 in figure 3(d). Thus the horizontal intersection x0 = s can be calculated
from the present conduction solution, yielding

x0 = Lx
√

2Fox Ste. (3.14)

The vertical intersection y0 between solid PCM and the right wall (figure 4a) is estimated
from the definition of melted liquid fraction fl = 1 − (Lx − x0)y0/(LxLy) as

y0

Ly
= 1 − fl

1 − √
2Fox Ste

. (3.15)

During the second stage, the melting rate ∂fl/∂Fox is obtained from the second branch of
(3.11) as (

∂fl
∂Fox

)
2

= γ Ste
2k Ram Prn , (3.16)

which is obviously a constant over time. Then, according to (3.13), the melting rate in the
third stage is evaluated as(

∂fl
∂Fox

)
3

= y0

Ly

γ Ste
2k Ram Prn = 1 − fl

1 − √
2Fox Ste

γ Ste
2k Ram Prn , (3.17)
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where (3.15) and (3.16) were introduced. Assuming that the third stage starts from the
point (Foc

x, f c
l ), an integration of (3.17) then gives

fl = 1 − (1 − f c
l )

(
1 − √

2Fox Ste

1 −√
2Foc

x Ste

)γ /(2k Ram Prn)

exp

[
γ (

√
2Fox Ste −√

2Foc
x Ste)

2k Ram Prn

]
.

(3.18)

In order to predict f c
l , the melting rate of the entire melting process is divided by that of

the second stage as (∂fl/∂Fox)/(∂fl/∂Fox)2, as shown in figure 4(b). In this figure, a very
short transition from the second to the third stages is observed, where the ratio sharply
decreases from 1 to around 0.5. As denoted by (3.13), this ratio after the second stage
is equal to y0/Ly. Therefore, the sharp decrease indicates that the vertical intersection
between solid PCM and the right wall moves downwards rapidly when y0/Ly > 0.5. This
is quite reasonable because the thermal convection intensity concentrates mainly on the
upper part of the cavity due to buoyancy. Meanwhile, the transition is very short-lived;
therefore it is reasonable to assume that the starting point of the third stage is also the end
point of the second stage. Thus the transition point (Foc

x, f c
l ) satisfies the equations(

y0

Ly

)
c
= 1 − f c

l

1 −√
2Foc

x Ste
≈ 1

2
, (3.19)

f c
l = γ Foc

x Ste/(2k Ram Prn)+ k Ram Prn/γ, (3.20)

where the second equation is the second branch of (3.11). Combining the two equations
above, the following is obtained:

f c
l = 1

2 + √A + B,
A = 1

2 k Ram Prn (γ − k Ram Prn)/γ 2,

B = 1
2 k
√

2γ k Ra3m Pr3n − 3k2 Ra4m Pr4n/γ 2

⎫⎪⎬
⎪⎭ (3.21)

and

Foc
x = 2k Ram Prn ( f c

l − k Ram Prn/γ )/(γ Ste). (3.22)

The onset of the third stage, ( f c
l ,Foc

x), has now been determined. Further combining (3.11)
and (3.18), the full prediction for the melted liquid fraction at all stages is obtained as

fl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2Fox Ste, if fl ≤ 2k Ram Prn/γ,

γ Fox Ste/(2k Ram Prn)+ k Ram Prn/γ, if 2k Ram Prn/γ ≤ fl ≤ f c
l ,

1 − (1 − f c
l )

(
1 − √

2Fox Ste

1 −√
2Foc

x Ste

)γ /(2k Ram Prn)

× exp

[
γ (

√
2Fox Ste −√

2Foc
x Ste)

2k Ram Prn

]
,

elsewhere.

(3.23)

This prediction contains the effects of all dimensionless control numbers under
consideration, and is valid when Ste is sufficiently small. The upper limit of Ste will be
discussed in the next subsection.
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3.3. Validation
In this subsection, the predicted melted liquid fraction fl (see (3.23)) is validated by
comparing with the reported data, which are mainly from the previous studies listed in
table 1. Note that the numerical data obtained by Jany & Bejan (1988) cited in table 1
are not employed herein, because their correlation (and thus the numerical data) greatly
overestimates the existing experiment and numerical results, as indicated by Duan et al.
(2019). Moreover, the experimental studies by Wolff & Viskanta (1988), Wang et al. (1999)
and Du et al. (2007) used multiple group data to fit their fl correlations. However, the
authors did not provide complete information regarding dimensionless control parameters;
thus their data are not employed herein either. In order to perform a thorough validation,
the numerical results from Huang et al. (2013) and Rakotondrandisa et al. (2019) are also
supplemented.

The collected reported data cover a wide range of dimensionless control parameters
(Ho & Viskanta 1984; Bénard et al. 1985; Gau & Viskanta 1986; Brent et al. 1988;
Chakraborty & Chatterjee 2007; Huang et al. 2013; Duan et al. 2019; Faden et al. 2019;
Rakotondrandisa et al. 2019), namely 2.5 × 105 ≤ Ra ≤ 1.09 × 109, 0.02 ≤ Pr ≤ 56.2,
0.01 ≤ Ste ≤ 0.132 and 0.3876 ≤ γ ≤ 1.4. Figure 5 shows that although the reported data
resulted in a series of different fitting correlations as summarised in table 1, all these data
can be predicted by the present solution (see (3.23)). By contrast, the prediction accuracy
in the third stage is less satisfying than that in the first and second stages (figures 5d– f ).
This is probably due to the rectangular simplification of remnant solid PCM (figure 4a),
and the approximation in the derivation of f c

l (see (3.19)). Nevertheless, in the present
validation, the maximum relative error Er = {|f p

l − f t
l |/f t

l }max in the third stage is still
within 10 %, where the superscripts‘p’ and ‘t’ represent the prediction and reported results,
respectively.

The previous section indicated that the prediction (3.23) is valid only at low Stefan
numbers. We discuss now its upper limit in a numerical way due to the lack of reported
experimental measurements. In figure 6, the predicted fl is compared to the simulated data.
As expected, the relative error between the present solution and the simulation result rises
as Ste increases. It is found that Ste should not exceed 0.3, when the maximum relative
error Er is required to be less than 10 %.

4. Discussions

This section will first explain further the effect of the distorted melting interface. Parameter
space and 3-D effect will then be discussed, and transitions between the two successive
stages will be discussed as well in the end.

4.1. Effect of the distorted melting interface
During the melting process, the geometry of the melted liquid layer, characterised by
the melting interface, is evolving continuously, and its influence on melted liquid flow
and heat transfer is incorporated in the derivation implicitly, by the average input heat
flux (CpαΔT/(2δT)) and the vertical projected area of the solid PCM. The two factors
determine the melting rate uniquely, as mentioned previously.

In the first and second stages, the solid PCM occupies the entire right cold wall, and
the vertical projected area is always Ly, regardless of whether the melting interface is
distorted or not. Thus the influence of altered geometry is exerted on the melting rate by
changing the average input heat flux, which is incorporated in the model via the average

950 A34-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.751


M. Li, Z. Jiao and P. Jia

Ho & Viskanta (1984), with

Ra = 1.4 × 108, Pr = 56

Ste = 0.132, γ = 0.4

(Experiment)

0.05 0.10 0.15

0.2

0.3

0.1

fl

0.2 0.4 0.6 0.8

0.4

0.6

0.2

0 0

0.8

1.0

Prediction

Bénard et al. (1985), with 

Ra = 1.09 × 109, Pr = 50.9

Ste = 0.084, γ = 0.3876

(Experiment)

Prediction

0.5 1.0 1.5 2.0

0.2

0

0 00

0.4

0.6

Gau & Viskanta (1986)

Ra = 6.057 × 105,

Pr = 0.0216,  γ = 1.4

Ste = 0.03912 

(Experiment)

Chakraborty & Chatterjee (2007)

(2-D simulation) 

Brent et al. (1988)

(2-D simulation) 

Prediction

5 10 15

Fox

20

0.4

0.6

0.2

fl

0.8

1.0

Huang et al. (2013), with

Ra = 2.5 × 105, γ = 1.0

Pr = 0.02, Ste = 0.01 

 (2-D simulation)

Prediction

0.2 0.4 0.6 0.8

Fox

0.4

0.6

0.2

0.8

Duan et al. (2019)

(2-D simulation) 

Prediction

Faden et al. (2019), with

Ra = 8.81 × 106, Pr = 56

Ste = 0.064, γ = 1.0

 (Experiment)

1 2 3

Fox

4

0.4

0.6

0.2

0.8

1.0

Rakotondrandisa et al. (2019) 

Ra = 3.27 × 105, Pr = 56.2

Ste = 0.045, γ = 1.0

(2-D simulation)

Prediction

( f )

(a) (b)

(d ) (e)

(c)

Figure 5. The predictions are tested against the reported data available with different PCMs: (a) and (b)
n-octadecane; (c) gallium; (d) tin; (e) and ( f ) n-octadecane. In all panels, the orange, green and grey
backgrounds are used to denote the first (conduction), the second (convection) and the third (decaying
convection) stages, respectively.

fl
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Figure 6. The upper limit of Ste. Simulations and predictions are performed with Ra = 1.0 × 105, Pr = 0.02
and γ = 1.0: (a) Ste = 0.2, (b) Ste = 0.3, and (c) Ste = 0.4.

thickness of the TBL, δT = min(s/2, kLy Ram Prn) (see (3.9)). This expression indicates
that in the first stage, the heat conduction will increase the aspect ratio of the melted liquid
geometry (s/Ly), and thus thicken the TBL. In the second stage, the altered geometry will
not change the average thickness of the TBL, because during this stage, thermal convection
takes effect and the characteristic convection velocity (

√|g|βΔT Ly) is irrelevant to s,
resulting in the fact that δT is also independent of s. In the third stage, the average input
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heat flux also remains unchanged, for the same reason as in the second stage. Thus the
influence of altered geometry is realised by changing the vertical projected area, which
is y0 in this stage and has been incorporated in the prediction for fl via the melting rate
ratio (3.17).

In the derivation, the melting interface position is simplified as the average thickness
of the melted liquid layer (s). This simplification removes the effect of interface curvature
in the second and third stages, but its influence on the fl solution is negligible. This is
because the interface distortion does not change the vertical projected area of solid PCM
and influences only rather trivially the average input heat flux in the melting thermal flow,
compared with that in the pure thermal flow, as shown in figure 3( f ).

4.2. Parameter space and 3-D effect
In this study, (3.8) is the central equation in the modelling, relating the average thickness
of the melted liquid layer to the average thickness of the TBL, which is obtained by
normalising the energy equation (2.3) at a low Stefan number (the upper limit Ste ≤ 0.3
is deduced with an allowable error of Er <10 % a posteriori). Then the solutions of fl in
the first and second stages are solved directly from (3.8), with the average TBL thickness
(δT ) determined from the scaling law of Nu in a laminar flow regime, which is derived and
validated in the range 105 ≤ Ra ≤ 1010 by Shishkina (2016). In the third stage, fl cannot
be solved by (3.8) due to the leaking energy, which instead is modelled by establishing the
relation of melting rate between the second and third stages (see (3.17)), where no extra
restrictive condition is introduced. Thus the parameter space to which the predictions in
this study are applicable corresponds to a laminar melting process with Ra ≤ 1010 and
Ste ≤ 0.3. This parameter space is consistent with the existing studies (Ho & Viskanta
1984; Bénard et al. 1985; Gau & Viskanta 1986; Webb & Viskanta 1986; Brent et al.
1988; Jany & Bejan 1988; Wolff & Viskanta 1988; Wang et al. 1999; Chakraborty &
Chatterjee 2007; Huang et al. 2013; Luo et al. 2015; Duan et al. 2019), which also focus
on the laminar melting process, since the PCM container in the engineering applications
is usually small, indicating a low Rayleigh number.

In this study, the modelling is conducted in a 2-D situation, while the predictions
are also applicable to 3-D cases. In the existing numerical studies, 3-D experimental
data have been reproduced successfully by various 2-D laminar computational models
(Webb & Viskanta 1986; Brent et al. 1988; Chakraborty & Chatterjee 2007; Duan et al.
2019; Rakotondrandisa et al. 2019). For example, Brent et al. (1988) and Chakraborty
& Chatterjee (2007) both performed 2-D numerical simulations on the melting of
gallium, predicting the 3-D experimental data by Gau & Viskanta (1986). As shown in
figure 5(c), an overall agreement is achieved, and the acceptable error is attributed to the
composite result of 3-D effects, experimental uncertainties and unaccounted variations in
thermo-fluid properties (Chakraborty & Chatterjee 2007), indicating that the 3-D effects
will not affect the melting process significantly. Moreover, in the existing experimental
studies, Ho & Viskanta (1984), Bénard et al. (1985) and Wolff & Viskanta (1988)
performed a series of 2-D and laminar simulations, and obtained quite good numerical
predictions against their experimental data. Thus it is reasonable to conclude that the
difference between 3-D and 2-D melting processes is trivial in the laminar regime. This
is in line with expectations due to the absence of a 3-D turbulent vortex. Therefore,
the predictions in the present study agree with the 3-D experimental data and the 2-D
simulation results, as shown in figure 5.
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4.3. Transitions between two successive stages
As in (3.23), the transition from the first to the second stage is determined by
fl ≤ 2k Ram Prn/γ . Therefore, a decreasing γ would prolong the first stage and delay the
transition, which explains the observation of Hamad et al. (2021) that an increasing cavity
width (Lx), i.e. increasing γ , results in an early transition from first to second melting
stages. Furthermore, setting fl = 2k Ram Prn/γ = 1 leads to a critical Rayleigh number

Rac =
( γ

2k Prn

)1/m
, (4.1)

below which the melting process is always dominated by conduction, and no transition
will occur.

The transition from the second to the third stage is characterised by f c
l (see (3.21)).

It is in a complicated mathematical form, and deriving a simple and convenient critical
Rayleigh number to help avoid the third stage is difficult. However, this transition could
still provide some instructions to optimise the latent heat system. For example, for a given
operation condition with preset Ra and Pr, the aspect ratio of cavity (γ ) can be determined
numerically by imposing f c

l = 1 to shorten the third stage and thus reduce the energy
leakage.

5. Conclusions

The PCM melting problem is revisited in this paper in order to derive a full prediction
of the melted liquid fraction for the entire melting process. In contrast to the commonly
known traditional conduction–convection two-stage model, a three-stage model, where a
third ‘decaying convection’ stage is recognised in the last part of the melting process,
is more reasonable. In the third stage included in the present study, the leaking energy
is considered quantitatively, and the continuously decreasing melting rate is explained
directly. Based on this three-stage description, the melted liquid fraction fl is derived
analytically piecewise. The piecewise solution naturally includes the effects of all
dimensionless control parameters (Ra, Pr, Ste and γ ), and is able to predict reported results
available in the literature, even though these results lead to different fitting correlations as
summarised in table 1.

The prediction developed in this study applies to a laminar melting process, and the
corresponding parameter space reads Ra ≤ 1010 and Ste ≤ 0.3, covering the PCM melting
in industrial processes. However, the present solution is inapplicable to the water–ice
melting, because a density anomaly, in which the water density undergoes a maximum at
4 ◦C and cannot be regarded as a constant, exists in this process. This anomaly is unique to
water (Kamkari et al. 2014), and has been reported to affect significantly the water–ice
melting behaviour (Z. Wang et al. 2021a,b,c). Thus the influence of this anomaly on
the fl solution needs further investigation. Other research directions should include the
sub-cooling and cavity inclination effects, which are commonly encountered in practical
applications.
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