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Abstract

Objectives: Adaptive interaction with the environment requires the ability to predict both human and non-biological
motion trajectories. Prior accounts of the neurocognitive basis for prediction of these two motion classes may generally be
divided into those that posit that non-biological motion trajectories are predicted using the same motor planning and/or
simulation mechanisms used for human actions, and those that posit distinct mechanisms for each. Using brain lesion
patients and healthy controls, this study examined critical neural substrates and behavioral correlates of human and
non-biological motion prediction. Methods: Twenty-seven left hemisphere stroke patients and 13 neurologically intact
controls performed a visual occlusion task requiring prediction of pantomimed tool use, real tool use, and non-biological
motion videos. Patients were also assessed with measures of motor strength and speed, praxis, and action recognition.
Results: Prediction impairment for both human and non-biological motion was associated with limb apraxia and, weakly,
with the severity of motor production deficits, but not with action recognition ability. Furthermore, impairment for human
and non-biological motion prediction was equivalently associated with lesions in the left inferior parietal cortex, left
dorsal frontal cortex, and the left insula. Conclusions: These data suggest that motor planning mechanisms associated
with specific loci in the sensorimotor network are critical for prediction of spatiotemporal trajectory information
characteristic of both human and non-biological motions. (JINS, 2017, 23, 171–184)
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specific, Domain-general, Biological motion

INTRODUCTION

Imagine going for a walk in the park on a sunny Saturday
morning. As you stroll along, you notice many other people
who are likewise strolling about. However, you are not just
passively observing them; instead, you are continuously
trying to anticipate or predict what they are about to do, so as
to avoid any awkward collisions. As you exit the park and
cross the street busy with cars, you are again engaged in
prediction, this time to avoid more serious collision. As this
scenario makes clear, adaptive interaction with the environ-
ment requires prediction of both human actions and
non-biological motion, and implementing these tasks is,
therefore, a central function of the human brain (Bubic, von
Cramon, & Schubotz, 2010; Clark, 2015; see also Fuster &
Bressler, 2015).

According to one influential account, action prediction is
instantiated by internal forward models that are used to
predict the proprioceptive and exteroceptive sensory
consequences of one’s own motor commands. This predic-
tion is compared with the actual movement as it unfolds, and
any discrepancy between the two is used for online correction
and learning of movements (Wolpert, Ghahramani, & Jordan,
1995). It has been argued that the same forward models can
also be deployed to simulate others’ actions so as to predict
how they will unfold (Wolpert, Doya, & Kawato, 2003; see
also Friston, Mattout, & Kilner, 2011). By contrast, the
prominent account of Pickering and Garrod (2013) suggests
that prediction may not always use forward models, but may
under some circumstances (such as during prediction of
non-biological motion) rest upon a perceptual associative
process. In the latter case, observers compare the current
trajectory with past perceived trajectories and in this way
come to predict how it will unfold (see also Stadler, Springer,
Parkinson, & Prinz, 2012).
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There is extensive behavioral evidence supporting the close
link between action production and prediction (e.g., Aglioti,
Cesari, Romani, & Urgesi, 2008; Balser et al., 2014; Brattan,
Baker, & Tipper, 2015; Calvo-Merino, Glaser, Grèzes,
Passingham, &Haggard, 2005; Colling, Thompson, & Sutton,
2014; Knoblich & Flach, 2001; Makris & Urgesi, 2013). For
example, superior prediction performance has been reported
for videos of self compared to other-generated actions,
possibly because the used forwardmodels are more accurate in
the former case (Colling et al., 2014; Knoblich& Flach, 2001).
On the other hand, there is evidence that subjects may use a
visual matching strategy to predict actions, suggesting the
possibility that the task does not necessarily require involve-
ment of the motor system (Springer, Brandstädter, & Prinz,
2013; see also Springer & Prinz, 2010).
Several brain imaging studies suggest the existence of

a fronto-parietal network that supports human action predic-
tion. Typical activations include premotor cortex (PM), sup-
plementary motor area (SMA), inferior frontal gyrus (IFG),
supramarginal gyrus (SMG), superior parietal lobule (SPL),
and the cerebellum, with increasing left-lateralization for
cortical regions as a function of motor expertise and/or visual
familiarity (see Yang, 2014 for a meta analysis). Whether
prediction of non-biological motion trajectories is subserved by
overlapping neural mechanisms is an issue of contention.
According to Schubotz (2007), while forward models in

PM cortex may be ideally suited to produce and predict human
actions, they are nevertheless also the best available neural
resource for predicting many other events beyond (visually
perceived) human actions. In line with this proposal, Coull,
Vidal, Goulon, Nazarian, and Craig (2008) found activations
in left pars opercularis (a portion of IFG), ventral PM, and
SMG during collision judgments of inanimate objects.
At variance with these data are studies that report differences
between prediction of human and non-biological motion
trajectories, with shared activity in left supplementary motor
area (SMA) but additional activations in right extrastriate body
area (EBA) in the former, and left lateral occipital cortex (LOC)
in the latter case (Cross, Stadler, Parkinson, Schütz-Bosbach, &
Prinz, 2013; see also Stadler, Springer, et al., 2012).
One important limitation of brain imaging studies is that

they cannot provide information about the necessity of
activated brain regions for a given task (cf. Caramazza,
Anzellotti, Strnad, & Lingnau, 2014; Fellows et al., 2005). In
this regard, the study of brain lesion patients is highly infor-
mative. In one of the few available patient studies addressing
the neural substrate of prediction, Schubotz, Sakreida, Tittge-
meyer, and von Cramon (2004) instructed right or left parietal-
or premotor-lesioned patients, as well as right, left, and
bilateral prefrontal-lesioned patients to predict sequences of
geometrical shapes and spatial locations. They found impaired
performance in both the parietal and premotor patients,
whereas the prefrontal-lesioned patients performed normally,
despite having larger lesion volumes. These data suggest that
prediction of sequential information critically depends on
parietal and premotor (but not prefrontal) cortices. Roth,
Synofzik, and Lindner (2013) extended these findings to

include an additional critical role for the cerebellum. Neither
study assessed prediction of human action stimuli.
Patient studies are also useful for informing the question of

whether the proposed relationship between action production
and prediction is contingent on spatiomotor planning abili-
ties, motor production abilities, or both. While these ques-
tions have not been addressed in patient populations, related
research has focused on the ability of apraxic patients (known
to have deficient spatiomotor planning) and hemiparetic
patients (who exhibit impaired motor production) to simulate
actions, which many theorists consider a precursor to or
component of prediction (Barsalou, 2009; Mulligan, Lohse,
& Hodges, 2015; Stapel, Hunnius, Meyer, & Bekkering,
2016; but see Vannuscorps & Caramazza, 2015).
For example, we (Buxbaum, Johnson-Frey, & Bartlett-

Williams, 2005; Dawson, Buxbaum, & Duff, 2010; see also
Coslett, Buxbaum, & Schwoebel, 2008) showed that patients
with left parietal stroke and limb apraxia, a disorder of skilled
action associated with prominent bimanual deficits in tool
pantomime (but better performance with tools in hand), were
unable to reliably indicate how they would grasp a dowel if
they were to reach out and perform the action, whereas they
performed normally in actual grasping. These data suggest
that patients with limb apraxia may have deficient predictive
models of action in the face of relatively intact feedback-
driven motor control.
The evidence with regard to hemiparesis is inconclusive,

with reports of intact simulation in hemiplegic stroke patients
(Johnson, Sprehn, & Saykin, 2002; see also Sirigu et al.,
1995), and conversely, of impairment in hemiparetic indivi-
duals born with cerebral palsy, especially for simulated
actions of the affected hand (van Elk et al., 2010). In at least
some circumstances, then, motor planning and production
abilities may be associated with the ability to simulate one’s
own actions. However, to our knowledge, the relationship
between motor planning or production deficits and the ability
to predict either the observed actions of others or non-
biological motion trajectories has not been directly assessed.
An additional question of interest concerns the relationship

between action recognition and understanding and prediction
of others’ actions. On the one hand, if action perception relies
upon direct matching through simulation processes in the
motor system, as has been suggested (e.g., Rizzolatti,
Fogassi, & Gallese, 2001), and simulation is, in turn,
a component of prediction, then a strong relationship may be
expected (Urgesi, Candidi, & Avenanti, 2014). That is, on
such accounts, one should be impaired at recognizing actions
that one cannot simulate/predict. However, according to
Csibra (2008), action recognition and understanding is
instantiated through top–down processing in temporal and
inferior frontal association cortices resulting in a bias toward
expecting certain outcomes, with the output feeding into the
motor system to enhance its efficiency in simulating and
hence predicting actions. Given that this account argues that
action recognition is not dependent on simulation (but rather
that simulation is influenced by recognition), it may assume a
weaker relationship between recognition and prediction.
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The aims of the present study were to identify critical neural
substrates of prediction of observed human and non-biological
motion trajectories and to assess the behavioral correlates of
this ability. We used a video occlusion paradigm (e.g., Stadler
et al., 2011) to examine motion prediction ability in chronic
left-hemisphere stroke patients as well as in a matched sample
of neurologically intact controls. Patients exhibited a full range
of hemiparesis and limb apraxia.1 We also included our
laboratory’s measure of patients’ action recognition impair-
ment (Kalénine, Buxbaum, & Coslett, 2010; Tarhan, Watson,
& Buxbaum, 2015). Video stimuli in the prediction task con-
sisted of pantomimed and actual tool use actions, and non-
biological motions of comparable complexity.
Based on prior neuroimaging studies that found activation

of left SMA, PM, IFG, IPS, and SMG during prediction of
either human or non-biological motion (Cross et al., 2013;
Schubotz & von Cramon, 2002; Stadler et al., 2011; Wiener,
Turkeltaub, & Coslett, 2010; Yang, 2014), we hypothesized
that lesions in these regions would be associated
with impairments in prediction of all three motion types. In
terms of the behavioral correlates of action prediction ability,
accounts that invoke forward models (Friston et al., 2011;
Wolpert et al., 2003) predict an association between action
planning and action prediction. Thus, given that apraxia
is thought to be, in part, a disorder of action planning
(Buxbaum, Johnson-Frey, et al., 2005; Eidenmuller, Rander-
ath, Goldenberg, Li, & Hermsdorfer, 2014; Jax, Buxbaum, &
Moll, 2006; Mutha, Sainburg, & Haaland, 2010; Ochipa et al.,
1997; Wheaton, Fridman, Bohlhalter, Vorbach, & Hallett,
2009), such accounts would expect an association between
praxis ability and motion prediction ability.
Under the assumption that forward models underlying action

planning are used not only to predict human but also non-
biological motions (Schubotz, 2007), this association should
hold for all three movement types. By contrast, the perceptual
associative account of prediction of Pickering and Garrod
(2013) argues that forward models are unlikely to be used for
non-biological motions, and thus would presumably expect
praxis ability to be associated with human but not non-
biological motion prediction ability. Finally, based on evidence
that hemiplegic stroke patients may display intact action
simulation abilities (Johnson et al., 2002), we hypothesized that
there would not be an association between motor production
ability (i.e., hemiparesis severity) and prediction ability for
either human or non-biological motion trajectories.

METHODS

Participants

Forty chronic left-hemisphere stroke patients were recruited
through a dedicated stroke patient research registry (Schwartz,

Brecher, Whyte, & Klein, 2005). All patients were pre-
morbidly right-handed according to self-report and at least
6 months post-stroke at the time of testing. To increase the
likelihood of task instruction comprehension, patients with
scores≤4/10 (“severe” or “very severe” impairment) on the
language comprehension subtest of the Western Aphasia
Battery (WAB; Kertesz, 1982) were excluded pre-data
acquisition, as is customary in our lab (e.g., Watson &
Buxbaum, 2015). Data collection for two patients was aborted
because it was discovered that their vision was insufficient to
perform the tasks, while two other patients were excluded for
demonstrably not following task instructions.
For nine patients, prediction performance was at chance for

all three conditions (i.e., tool use, pantomimed tool use, non-
biological motion) according to binomial tests (α = .05).
Because it is unclear whether this was due to inability to
understand the task instructions or inability to perform the
task, these patients were also excluded. The final sample
comprised 27 patients. Table 1 shows the patients’ demo-
graphic, neuropsychological, and lesion information.
In addition, 16 neurologically intact control participants

were recruited from a control subject research registry. All
control participants were right-handed according to self-report
and had a score of≥27 of 30 on the Mini-Mental State Exam
(Folstein, Folstein, &McHugh, 1975). One control participant
was excluded because her prediction performance was at
chance in all three conditions. Two control participants were
excluded for having an average score in one or more condi-
tions of the prediction taskmore than two SDs below the group
mean. There was no significant difference in age or years of
education between the patients (41% female; mean age 58.7
years, range 35–76 years; mean education 14.7 years, range
11–27 years) and controls (38% female; mean age 60.2 years,
range 38–80 years; mean education 15.9 years, range 12–22
years) included in the final sample (ps> .30).
Patient and control participants with a history of co-morbid

or pre-morbid neurological disorders, alcohol or drug
abuse, or psychosis were excluded from participating in
the study. All participants gave informed consent for the
behavioral portion of the experiment and were paid for
participation and reimbursed for travel expenses. Thirty-eight
patients additionally consented to participate in a structural
magnetic resonance imaging (MRI) or computed tomography
(CT) scanning protocol; brain scans of two patients
were obtained from clinical records. The behavioral study was
approved by the Institutional Review Board (IRB) of Einstein
Healthcare Network and the scanning protocol was approved
by the IRB of the Hospital of the University of Pennsylania.

Stimuli and Apparatus

Nine videos were constructed in which an actor at a desk
performed left-handed everyday actions with a tool and its
recipient object. In addition, nine videos were constructed
showing the same actor performing pantomimed versions of
the tool use actions. By flipping the videos 180° across the

1 Due to the dominance of the left hemisphere (in right-handers) for
bimanual control of skilled actions, apraxia occurs bilaterally after left
hemisphere lesions. Based on the limited reliability of testing for apraxia in
patients who may have right hemiparesis, apraxia is typically tested only in
the left hand, as we have done here.
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vertical axis, nine videos were created in which the same
actions appeared to be performed with the right hand.2

Furthermore, six non-biological motion sequences were
constructed using wind-up toys (Kikkerland Design Inc.,
New York, NY) and six using a programmable robotic ball
(Sphero, Boulder, CO). The non-biological motion
sequences were filmed on the same desk and were also
flipped across the vertical axis to create 12 additional videos.

For the human action sequences, the camera was angled at
an approximately 45° angle relative to the actor’s body
midline which ensured the maximal amount of visible
movement during each action. Non-biological videos were
filmed using the same camera angle. Videos were presented
in color on an Acer G215H monitor at a resolution of
640 × 480 pixels and a frame rate of 30 frames per second (see
Figure 1 for static images taken from the tool use, panto-
mimed tool use, and non-biological motion videos).
To select videos for the experimental protocol that were of

appropriate difficulty, preliminary data on the tool use,
pantomimed tool use, and non-biological motion prediction
tasks were collected from 10 young neurologically intact
participants (age range: 21–26 years) who were recruited in
accordance with guidelines of the IRB of Einstein Healthcare
Network (for task procedure, see Section Motion Prediction
Task below). Based on these data, four tool use videos and

Table 1. Demographic, neuropsychological, and lesion information

Patient Age (years) Gender Education (years)
Pantomime

production (0-1)
Grip strength

(rh/lh)
Finger tapping freq

(rh/lh)

Pantomime
recognition

(0-1)
WAB (comp)

(0–10)
Lesion vol

(cm3)

1846 54 F 14 .98 .76 .98 .96 9.80 31.43
1687 76 M 27 .92 1.10 1.06 .88 8.85 40.95
0286* 69 M 13 .83 .39 .37 .96 9.85 95.66
2464 64 M 20 .98 .95 .98 .83 9.60 51.40
1743 55 M 14 .98 .77 1.15 .86 9.80 82.96
1857 76 F 12 .83 1.36 .81 .65 9.80 17.86
2350 51 M 14 .80 .78 1.10 .81 8.60 55.69
1371* 76 F 12 .63 1.02 .82 .86 9.25 21.50
2172 64 F 16 .78 .00 .00 .83 9.15 73.10
2221 35 F 19 .86 1.24 1.39 .96 8.85 63.92
2180* 70 M 14 .78 1.25 1.12 .85 4.65 67.16
2079 58 M 12 .88 .83 .90 .82 8.90 57.64
0281 54 F 16 .85 1.03 1.08 1.00 9.35 151.31
0865 63 M 12 .78 .00 .00 .91 8.50 71.75
0419 46 F 12 .93 .89 1.34 .77 9.30 51.86
0206 61 M 13 .73 .00 .00 .83 8.55 103.94
2232 49 F 12 .97 1.22 .83 .77 6.25 153.99
1088* 51 F 16 .90 .89 2.08 .84 9.70 89.07
2289* 75 F 11 .70 1.13 n/a .74 8.05 62.06
2481 69 M 19 .65 .86 .67 .81 7.90 73.68
2091 62 M 15 .88 .00 .00 .78 9.00 195.29
1238 57 M 13 .95 .94 .30 .91 9.95 172.21
2548 50 M 12 .97 .49 1.05 .87 9.00 95.68
1392 71 M 17 .88 .67 1.09 1.00 8.70 72.42
2551* 71 F 19 .78 .00 .00 .59 9.35 184.74
0583 68 M 19 .88 .00 .00 .86 7.65 356.21
2027 69 M 16 .50 .00 .00 .68 6.95 271.98
2328 50 F 13 .83 .00 .00 .65 9.50 140.55
2604* 42 F 12 .75 .33 .00 .67 6.90 121.24
0083 54 M 11 1.00 .00 .55 .96 10.00 50.98
1862 56 M 12 1.00 .88 1.42 .92 10.00 19.47
2508* 68 F 12 .35 .00 .00 .74 6.45 51.90
2415* 33 F 12 .61 .00 .00 .47 6.60 147.24
0042* 61 F 16 n/a n/a n/a n/a n/a 224.41
1839* 64 M 11 n/a n/a n/a n/a n/a 172.55
1591* 56 F 12 n/a n/a n/a n/a n/a 173.60
2011 51 F 13 .90 .00 .00 .91 7.95 80.02
2667 64 F 13 .73 1.00 1.11 .76 8.85 34.16
2538* 53 M 16 .78 .62 1.02 .82 8.50 140.43
2378 57 F 12 .88 1.22 1.18 .83 10.00 128.90

Note. Patients excluded from the final sample are flaggedwith asterisks. Scores of .00 in the grip strength and finger tapping frequency columns indicate patients’
inability to perform the task with the right hand.
rh/lh = right hand divided by left hand; n/a = datapoint not available; freq = frequency; comp = comprehension; vol = volume.

2 Given a prior suggestion that simulation processes might be selectively
affected for the paretic hand (van Elk et al., 2010), we initially assessed
whether patients were selectively impaired at prediction of others’ actions
performed with the hand corresponding to the contralesional (right) hand by
comparing statistical models with and without an interaction that included
both video orientation (i.e., flipped, non-flipped) and group. Inclusion of the
video orientation factor did not improve model fit for either of our dependent
variables (d’ and RT; ps> .339); consequently, the factor was excluded from
the remaining analyses and will not be further discussed. See Section
Multilevel Regression Analysis for details of our statistical approach.
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matching pantomimed tool use videos (i.e., using an iron,
fork, razor, wrench) as well as four non-biological videos that
featured the robotic ball were selected for which performance
was on average 81.5% correct and did not differ significantly
between the three motion types (p = .75). Given that per-
formance on many cognitive tasks decreases with age, videos
were selected with high but not ceiling performance in young
controls to increase the likelihood that prediction perfor-
mance for patients and matched older controls would be
above floor but below ceiling.
Each video was preceded by a 1500ms fixation cross,

followed by the beginning of the motion sequence. After
a mean duration of 4167ms (range: 2300–5100ms), the
videos were fully covered by a black occluder for a duration
of 800ms. Occlusion onset always occurred during a large
amplitude phase of the movement (e.g., during the fork lifting
phase rather than while picking up the food; during a rolling
phase, rather than while the ball made a slow turn) and,
therefore, varied between videos. At occlusion offset, the
videos continued to play in a way that was either congruent
with the motion sequence pre-occlusion (i.e., the videos
continued to play normally during occlusion) or incongruent
(i.e., the videos were shifted 800ms into the future; see Graf
et al., 2007; Stadler et al., 2011, for similar paradigms).
Tool use, pantomimed tool use, and non-biological videos

lasted ~ 6500ms (range: 4600–8500ms) and did not differ
significantly in terms of total length, time from start of video
until occlusion onset, and time from occlusion offset until
end of video (all ps> .25). Each combination of stimulus
factors, motion type, video orientation, and congruence, was
presented three times, leading to a total of 12 (4 tool use,
4 pantomimed tool use, 4 non-biological) × 2 (flipped, non-
flipped) × 2 (congruent, incongruent) × 3 repetitions = 144
experimental trials. The human (tool use and pantomimed
tool use) and non-biological motion sequences were pre-
sented separately within two counterbalanced blocks of
96 and 48 randomly presented stimuli, respectively.
E-Prime 2.0 stimulus presentation software (Psychology

Software Tools, Pittsburgh, PA) was used to control stimulus
presentation and a yellow and a blue colored response key on
an E-Prime serial response box were used to collect responses
and associated reaction times (RT). A lever attached to

a mechanical counter (Veeder-Root, Hartford, CT) was used
to collect finger tapping frequency data, and a Jamar
dynamometer (Sammons Preston Rolyan, Bolingbrook, IL)
to collect grip strength data. Ten three-dimensional familiar
tools (fork, razor, scissors, watch, toothbrush, comb, bottle
opener, cigarette lighter, eraser, and nail clippers) were used to
collect data on pantomimed tool use production impairment.

Procedure

Motion prediction task

Participants first learned which response key to press for
stimuli that they perceived as congruent (“in time”) and which
key to press for stimuli that they perceived as incongruent (“not
in time”). Stimuli in this practice block consisted of the printed
word “in time,” in response to which participants were required
to press the key associated with congruent stimuli, or the
printed word “not in time,” in response to which participants
were required to press the key associated with incongruent
stimuli. Stimulus-response mappings were counterbalanced
between participants. This preliminary key-mapping practice
was repeated if necessary until participants reached a criterion
of≥13 of 16 trials correct. All participants used their left hand
to provide the responses, since the right hand is potentially
paretic following left-hemisphere stroke.
In the second practice task, participants were presented

with video stimuli, first in unoccluded form to familiarize
participants with the appearance of the motion trajectories,
followed by (occluded) congruent and incongruent versions
of the same stimuli. Participants then performed a 32 trial
video practice block in which they were randomly presented
with the congruent and incongruent video stimuli and were
instructed to indicate whether they perceived the stimulus to
be “in time” (i.e., congruent) or “not in time” (i.e., incon-
gruent). Participants were instructed to respond as quickly
and accurately as possible and received performance feed-
back after each response. Trials timed out 5 s after video
offset, at which time a prompt would appear asking the par-
ticipant to attempt to respond faster.
Participants were encouraged to ask questions about the

task requirements at any time during practice, in which case

Fig. 1. Frames from tool use (A), pantomimed tool use (B), and non-biological (C) motion videos. The human actions in panels A and B
consist of (pantomiming) the use of a fork.
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the trial was paused manually and the experimenter provided
additional instruction. The stimuli used in the practice block
were not used in the experimental block. At the end of prac-
tice, the experimental stimuli were played once in unoc-
cluded form. Next, the first experimental block was
administered. The task was the same as during video practice,
except that performance feedback was not provided. Partici-
pants received a ~2 minute break after every 48 trials.

Additional Behavioral Tasks

Pantomimed tool use production task

Pantomime production was used as a measure of praxis
ability. Participants were presented with one tool at a time.
The instruction was to show how to correctly use the tool,
without actually holding it, using the non-paretic left hand.
Participants completed one practice trial with feedback from
the experimenter. The 10 experimental trials were video
recorded and scored offline for accuracy according to a
detailed error taxonomy by a trained coder who obtained at
least 85% agreement with previous coders (Buxbaum, Kyle,
& Menon, 2005). Based on normative performance,
scores<.895 are abnormal (Buxbaum, Kyle, et al., 2005;
see Table 1).

Grip strength and finger tapping tasks

To obtain an index of motor production ability, grip strength
and finger tapping frequency were measured in both hands.
Three grip strength trials were performed for each hand and
the ratio of mean grip force (kg) for the left versus right hand
was obtained. For finger tapping frequency measurements,
patients were instructed to tap as fast as they could on the
counter’s lever for 10 s using their index finger. Two trials
were performed for each index finger, and the ratio of mean
tapping speed for the left versus right hand was obtained
(see Table 1).

Pantomimed tool use recognition task

To assess participants’ ability to correctly identify panto-
mimed tool use actions, a 24-item pantomimed tool use
recognition task was administered (Buxbaum, Kyle, et al.,
2005; Kalénine et al., 2010). Participants heard an action
verb-derived noun in the gerund form repeated twice, and
simultaneously viewed the written noun (e.g., sawing). Next,
they were presented with two videos of an actor performing
pantomimed tool use actions. In one video, the action
matched the noun (e.g., sawing), while the other did not
because of a spatially incorrect hand posture, arm posture, or
incorrect amplitude and timing. The task was to select the
action that matched the noun. (A pre-test ensured that parti-
cipants comprehended the verbs, see Buxbaum, Kyle, et al.,
2005.) The order of the target and foil action within a trial was
randomized. There were no time constraints for responding.
Based on normative data, scores<.87 are abnormal
(Buxbaum, Kyle, et al., 2005; see Table 1).

Imaging Methods

For 20 patients, research quality high-resolution whole-brain
T1-weighted magnetic resonance (MR) images were collected
on a 3T scanner (Siemens Trio, repetition time = 1620ms,
echo time = 3.87ms, field of view = 192× 256mm, 1 × 1 ×
1mm voxels) or a 1.5 T scanner (Siemens Sonata, repetition
time = 3000ms, echo time = 3.54ms, field of view = 24 cm,
1.25 × 1.25 × 1.2mm voxels) using a Siemens eight-channel
head coil. Seven patients were contraindicated for MR
imaging and underwent whole-brain research quality com-
puted tomography (CT) scans without contrast (60 axial slices,
3–5mm slice thickness) on a 64-slice Siemens SOMATOM
Sensation scanner.
For patients with research quality MR scans, lesions were

segmented manually by trained research assistants on the
patients’ T1-weighted MR images. Images were then regis-
tered to standardized space [the Montreal Neurological
Institute (MNI) “Colin27” template brain; Holmes et al.,
2015] using a symmetric diffeomorphic registration algo-
rithm (Avants, Schoenemann, & Gee, 2006; http://www.
picsl.upenn.edu/ANTS). Subsequently, each lesion map was
binarized so that lesioned voxels had a value of 1, and pre-
served voxels had a value of 0. To ensure that no errors had
occurred during this process, lesion maps were inspected by
the team neurologist who was naive to the behavioral data.
For patients with CT scans, the team neurologist drew the
lesions directly onto the Colin27 template brain using MRI-
cron (http://www.mccauslandcenter.sc.edu/mricro/mricron/
index.html) after rotating its pitch to match the pitch of the
patient’s scan. Schnur et al. (2009) have previously shown
high intra and inter-rater reliability for this method.

Lesion Proportion Difference Analysis

To identify brain regions that are critically involved in
motion prediction, a lesion proportion difference analysis
was performed to identify voxels that are significantly more
likely to be lesioned in low performing as compared to high
performing patients. The 27 patients were divided into three
groups of nine patients on the basis of their d’ score (a mea-
sure of participants’ sensitivity to stimuli that is unaffected by
response bias) averaged across the three motion types (tool
use, pantomimed tool use, non-biological). The nine lowest
and nine highest scoring patients were included. Following
Mirman and Graziano (2013), we excluded the middle third
of patients to contrast severely impaired patients with mildly
impaired/unimpaired patients, eliminating patients whose
scores were ambiguous.3

We included voxels lesioned in at least 10% of these
18 patients (2 or more). Setting a lower limit for the inclusion
of voxels in the analysis is a common procedure in lesion

3 To exclude the possibility that patients’membership to the low and high
scoring groups was due to general effects of stroke severity, total lesion
volume (TLV) in cm3 of patients included in the two groups was submitted to
a Mann-Whitney test. TLV was equivalent in low and high scoring patients
(median = 103.94 cm3 vs. median = 73.68 cm3; p = .49).
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analysis, used to ensure the stability of results (Kemmerer,
Rudrauf, Manzel, & Tranel, 2012). Figure 2 shows an over-
lap map on the Colin27 template of the lesions of the
18 patients included in the analysis. There is good coverage
of the parietal and frontal lobes, the regions of greatest
interest in this study.
For each of the included voxels, the proportion of patients

with low prediction performance and a lesion in the voxel and
the proportion of patients with high prediction performance
and a lesion in the voxel was determined, and the observed
distributions were compared to the expected distributions
under the null hypothesis, resulting in a χ2 value for each
voxel. The voxel-wise χ2 value map was then thresholded to
6.6349, which is the value corresponding to a significant
χ2 test result at α = .01 and 1 degree of freedom (see
Kemmerer et al., 2012; Mirman & Graziano, 2013 for more
details of this approach). The Automated Anatomical Label-
ing (AAL; Tzourio-Mazoyer et al., 2002) map in MRIcron
was used to determine the neuroanatomic loci of voxels that
surpassed the threshold. Significant clusters≥ 100 voxels
were subsequently used as predictors of behavioral perfor-
mance in regression analyses (see below).

Multilevel Regression Analysis

Participants’ ability to distinguish between congruent and
incongruent stimuli on the prediction task was indexed by d’.
RT data for correct responses were also collected. Trials in
which button presses occurred before occlusion offset or less
than 250ms after occlusion offset were removed from the
analysis, as were trials with RTs> 2 SDs from the mean RT
for that participant and condition. This led to elimination of
approximately 5% of RTs of all correct responses for both
patients and controls.
RT and d’ were analyzed using a multilevel regression

approach in which prediction performance was modeled as a
function of fixed behavioral and neuroanatomical factors of
interest (to be described below), random intercepts for parti-
cipants, and random slopes where possible. That is, because
there is only one d’ value per cell of the design (one d’ per
subject per condition), adding random slopes would in this
case result in oversaturated models, precluding or leading to
unreliable estimation of model parameters (e.g., Bates,

Kliegl, Vasishth, & Baayen, 2015). Hence, we only included
random slopes in the analysis of RTs, which was performed
over unaggregated data.
The regressions were conducted with the “lme4” package

in the R software environment (version 2.15.3; R Core Team,
2015). To detect and remove cases with undue influence on
the multilevel model parameter estimates, the “influence.
ME” package was used (Nieuwenhuis, te Grotenhuis, &
Pelzer, 2012). Cases were regarded as too influential if their
associated values of Cook’s distance were larger than 4/n,
where n = number of participants. Model results presented
below are based on data excluding any influential cases. To
assess whether fixed factors significantly contributed to
model fit, they were added individually and comparisons of
models with and without the fixed factor were performed
with likelihood ratio tests in which the statistic is −2 times the
change in model log-likelihood, distributed as χ2 with
degrees of freedom equal to the change in number of
estimated parameters.
The p-values for the parameter estimates of the fixed

factors were calculated using Satterthwaite’s approximation
for degrees of freedom. We also report 95% confidence
intervals (CI) around the parameter estimates. Marginal R2

(R2
LMM(m)), which denotes the proportion of variance

explained by the fixed factor(s) of a multilevel regression
model (see Johnson, 2014; Nakagawa & Schielzeth, 2013), is
reported as a measure of effect size.
In the first analysis, patients’ behavior was compared to

controls with model comparisons that assessed the fixed
factors Group (patient, control), Motion Type (tool use,
pantomimed tool use, non-biological), and their interaction.
A second analysis focused on the behavioral predictors of
patient performance. Thus, we assessed the continuous
behavioral predictors described in the Section Additional
Behavioral Tasks (i.e., Praxis Ability, Grip Strength, Finger
Tapping Frequency, and Pantomime Recognition) in separate
model comparisons for each predictor. We also entered
interaction terms for the behavioral predictors and the factor
Motion Type to assess whether the strength of the behavioral
predictors was conditioned by motion type.
A third regression analysis followed up on the results of the

lesion proportion difference analysis performed on patients’
average d’ scores. First, we computed for each patient the %
damage to each of the significant voxel clusters identified in

Fig. 2. Overlap map of lesions included in the lesion proportion difference analysis (n = 18, i.e., the 9 highest and 9 lowest scoring
patients on the prediction task). The map is displayed on the Colin27 template with z-coordinates of horizontal slices corresponding to
MNI standardized space. The color bar represents the number of patients with lesions in a particular voxel (min = 2; max = 18).
The cortical surface rendering is displayed at a search depth of 8 voxels.
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that analysis. Subsequently, we performed separate model
comparisons for each neuroanatomical cluster predictor to
assess main effects of % Damage to Cluster and interactions
with the factor Motion Type.
The fourth and final analysis assessed the behavioral and

neuroanatomical cluster predictors simultaneously to deter-
mine whether behavior, lesion, or both influenced prediction
performance when they were considered together. We first
tested for the presence of a Pearson correlation between each
of the behavioral and neuroanatomical cluster predictors.
In case of a significant correlation, we assessed the predictive
strength of the correlated predictors together in one multi-
level regression model. All of the regressions in the second,
third, and fourth analysis included the covariate TLV (see
Table 1) to control for general effects of stroke severity on
performance. The levels “control” and “non-biological” of
the categorical fixed factors were treated as the baseline
(reference) and model parameters were estimated for the
levels “patient”, “tool use”, and “pantomimed tool use.”

RESULTS

Behavioral Results

Patients versus controls

In the model comparing d’ of patients and controls, including
the predictor Group (patient, control) improved model fit
relative to a reduced model that included only a random
intercept for each participant. Patients were overall less
accurate than controls. Adding the interaction term Group ×
Motion Type (tool use, pantomimed tool use, non-biological)
relative to a reduced model that included only main effects
for Group and Motion Type and random intercepts also
improved model fit. Figure 3 shows the observed mean d’
scores for patients and controls separately for tool use, pan-
tomimed tool use and non-biological motions. Table 2 shows
the χ2 test results for each of the model comparisons, the
marginal R2 of the full models, as well as the β estimates with
associated SE, 95% CI and p value of each pairwise com-
parison of interest. The pairwise comparisons indicate that
the interaction is driven by the fact that the difference
between predicting non-biological motions versus panto-
mimed actions as well as between tool use versus panto-
mimed actions was significantly different between controls
and patients, while the difference between non-biological
motions versus tool use actions was not.
We also tested models with the same predictors, but with

RT as the dependent variable. Adding the predictor Group
improved model fit relative to a reduced model that included
only random intercepts and random slopes for participants
[χ2(1) = 11.07; p< .001]. Patients were slower overall than
controls. Inclusion of the interaction Group ×Motion Type
did not significantly improve model fit relative to the reduced
model without the interaction term (p = .707). Given the lack
of effects on RT beyond the expected main effect of Group,
the remaining analyses focus on d’.

Analysis of behavioral predictors

Using the data from patients only, we next examined the
behavioral predictors Praxis Ability, Grip Strength, Finger
Tapping Frequency, and Pantomime Recognition to evaluate
their association with patients’ prediction d’ scores. A strong
positive Pearson correlation was observed between grip
strength and finger tapping frequency (r = .82; p< .001). We,
therefore, used the average of these measures as a composite
index of Motor Production Ability. As shown in Table 3,
including the predictors Motor Production Ability and Praxis
Ability (in separate models) significantly improved the fit of
these models relative to reduced models that included TLV
and random intercepts. This indicates that motion prediction
performance is positively associated with both motor pro-
duction ability and praxis ability, even when controlling for
general non-specific effects of stroke severity (as indexed by
TLV). By contrast, including the predictor Pantomime
Recognition did not significantly improve model fit relative to
a reduced model that included TLV and random intercepts.
We next assessed (separately for each of the three beha-

vioral predictors) whether adding the interaction term beha-
vioral predictor ×Motion Type improved model fit relative to
reduced models that included only main effects for the
behavioral predictor, Motion Type, TLV, and random inter-
cepts. None of these model comparisons approached sig-
nificance (all ps> .486). This indicates that reduced motor
production ability and praxis ability were equivalently asso-
ciated with deficits in all three prediction conditions.

0.0

0.5

1.0

1.5

2.0

Control Patient
Group

d’

Action Type

Non−Biological
Pantomime
Tool Use

Fig. 3. Observed mean prediction performance as indexed by d’
for Patients (right panel) and Controls (left panel) plotted
separately for each level of Motion Type (tool use, pantomimed
tool use, non-biological; see legend). Error bars represent ±1 SE.
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Neuroanatomical Results

Lesion proportion difference analysis

As shown in Figure 4, the lesion proportion difference analysis
identified three neuronatomical clusters≥100 voxels that, when
damaged, are associated with low mean d’ scores collapsed
across tool use, pantomimed tool use and non-biological
motion types. A dorsal cluster in frontal cortex included voxels
in the precentral gyrus and middle frontal gyrus, extending
slightly into the postcentral gyrus (81 voxels). A second cluster
included voxels in the insula. Finally, a region in the parietal
cortex included voxels in the inferior parietal lobe, superior
parietal lobe and the postcentral gyrus. Table 4 lists the coor-
dinates of the peak value of each of the three clusters.

Analysis of neuroanatomical predictors

We next assessed (in separate models) whether damage to
these clusters selectively affected the ability to predict the
three motion types. For each cluster, the comparison between
a reduced model that only included random intercepts and
TLV and a full model that additionally included a main effect
of % Damage to Cluster was significant, corroborating (not
surprisingly) the results of the lesion proportion difference
analysis. Of greater interest, follow-up model comparisons
assessed, for each cluster, whether damage was differentially
associated with deficits in prediction of the different motion
types by comparing reduced models that included only main
effects of % Damage to Cluster, Motion Type, random
intercepts and TLV to models that additionally included the
interaction % Damage to Cluster ×Motion Type. The inter-
action term did not approach significance for any of the
clusters (all ps> .375). Thus, for each cluster, an increase in
% damage was equivalently associated with deficits in the
three prediction conditions.

Analysis of neuroanatomical and behavioral predictors

It is possible that behavioral predictors, rather than having a
primary association with d’ scores, are merely subserved by
brain regions having neuroanatomic proximity to or overlap
with the regions critical for prediction. This hypothesis would
predict that when neuroanatomic and behavioral predictors
are included in the same model of prediction ability, only the
former (or possibly neither) will remain significant. The final
models we assessed included both neuroanatomic and beha-
vioral predictors of d’ scores.
Given that we can assume independence of un-correlated

predictors, we first tested for a correlation between % damage
to each of our three neuroanatomic clusters and the beha-
vioral predictors. Motor Production Ability correlated
significantly with all of the neuroanatomical predictors
(r ranging from −.54 to −.66; ps< .01). Praxis Ability corre-
lated significantly only with % Damage to IPL Cluster
(r = −.41; p = .034; other ps> .183).
Given these correlations, we performed model

comparisons to assess changes in model fit when adding %
Damage to Cluster to a reduced model that included random
intercepts, TLV and Motor Production Ability, separately for
each cluster. The addition of % Damage to Cluster resulted
in a significant improvement in model fit for all clusters
(ps< .05). Conversely, however, adding the predictor Motor
Production Ability to a reduced model that included random
intercepts, TLV and one of the cluster predictors (separately
for each cluster) did not lead to a significant improvement in
model fit for any of the clusters (ps> .166).
The same approach was followed for Praxis Ability and %

Damage to IPL Cluster. Adding % Damage to Cluster to a
reduced model that included random intercepts, TLV and
Praxis Ability led to a significant improvement in model fit
(p = .012) while adding Praxis Ability to a reduced model
that included random intercepts, TLV and % Damage to IPL

Table 2. χ2 test results for the analyses comparing patients’ prediction performance with that of controls (see body text for description of
reduced models)

Predictor Pairwise comparisons β SE 95% CI pt R2
LMM(m) χ2 df pχ2

Group Patients vs. controls −.582 .198 [− .980, − .183] .006 .092 7.76 1 .005
Group ×Motion Type Slope: pantomime vs. non-biological −.571 .227 [− 1.019, − .123] .013 .106 10.88 2 .004

Slope: tool use vs. non-biological .150 .227 [− .298, .598] .511
Slope: pantomime vs. tool use −.721 .227 [− 1.169, − .273] .002

Note. The marginal R2 of the full models, as well as β estimates with associated SE, 95% CI, and p value for the pairwise comparison(s) of interest are also
displayed.

Table 3. χ2 test results for model comparisons assessing main effects of the behavioral predictors of patients’ prediction performance
(see body text for description of reduced models)

Predictors β SE 95% CI pt R2
LMM(m) χ2 df pχ2

Motor production ability .557 .222 [.103, 1.010] .019 .087 5.59 1 .018
Praxis ability 2.924 1.054 [.777, 5.071] .010 .103 6.72 1 .010
Pantomime recognition 1.876 1.215 [− .601, 4.352] .135 .040 2.28 1 .131

Note. The marginal R2 of the full model, as well as β estimates with associated SE, 95% CI, and p value of the behavioral predictors are also displayed.
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Cluster led to an improvement in model fit that just missed
the significance threshold (p = .05). These analyses suggest
that motor production ability is predictive of d’ only when
damage to insula, IPL, or dorsal frontal cortex is not
considered. Praxis ability, however, remains a significant
predictor even when considering IPL damage.

DISCUSSION

This study identified neural substrates and behavioral
correlates associated with the prediction of human and
non-biological motion trajectories in patients with left-
hemisphere stroke. Relative to the prediction performance
of controls, patients’ performance was impaired. This
impairment was associated with two distinct measures of
action ability, limb apraxia and hemiparesis, but not with a
measure of action recognition. Moreover, action impairment

negatively affected prediction of not only human, but also
non-biological motion. Furthermore, impaired prediction of
both motion types was equivalently associated with voxel
clusters in the left inferior parietal and dorsal frontal cortices
as well as the left insula; motor production ability only pre-
dicted performance when lesions in these regions were not
also taken into account. By contrast, praxis ability remained a
significant predictor of performance even when IPL damage
was considered. In all cases, these predictors remained sig-
nificant even when we controlled for total lesion volume, a
proxy for stroke severity.
The importance of the integrity of sensorimotor regions in

left parietal and dorsal frontal cortex for motion prediction is
consistent with previously observed neuroimaging activations
in these regions in neurologically intact individuals engaged in
prediction tasks (Balser et al., 2014; Cross et al., 2013;
Schubotz & von Cramon, 2002; Stadler et al., 2011; van Elk,
2014; Wiener et al., 2010; Yang, 2014). Although bilateral
activations are commonly reported, meta-analyses indicate
that left hemisphere activations are most reliable (Wiener
et al., 2010; Yang, 2014). Van Elk (2014), for example, found
activations in left PM and IPL when participants observed an
actor holding a tool (e.g., a wine opener), a target (wine bottle),
and a distractor object (soda bottle) and were asked to predict
the direction in which the tool would be moved.
Importantly, our lesion data strongly suggest that these

regions in the left hemisphere play a critical (and not merely
supportive or incidental) role in these tasks (see also
Schubotz et al., 2004; Stadler, Ott, et al., 2012). We,

Fig. 4. Lesion proportion difference map for mean prediction performance (d’) displaying voxels associated with χ2 values surpassing
a statistical threshold for significance (α = .01). Voxels are displayed on the Colin27 template; z-coordinates of horizontal slices correspond
to MNI standardized space. The cortical surface rendering is displayed at a search depth of 8 voxels. Color bars represent χ2 value ranges.

Table 4. Significant (α = .01) clusters from the lesion proportion
difference analysis

Cluster No. of voxels x y z Location of peak value

1 3942 − 25 − 3 37 Left dorsal frontal cortex
2 234 − 38 11 − 5 Left insula
3 140 − 49 − 40 53 Left inferior parietal lobe

Note. X, Y, and Z coordinates represent the location of the peak value within
each cluster in MNI standardized space. Only clusters containing≥100
voxels are reported.
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furthermore, observed critical involvement of a cluster loca-
ted in the insula. Although the left insula has not been
implicated in prediction of perceptual stimuli, several recent
neuroimaging studies have reported activations in the insula
during motor planning (Bernardi et al., 2013; Di Russo et al.,
2016) which, we will suggest below, is closely associated
with prediction. The critical role of the insula cluster may also
be related to the proximity of this cortical region to the
superior longitudinal fasciculus, a prominent white matter
pathway connecting frontal and parietal cortices (Makris
et al., 2005; Schmahmann et al., 2007).
The present finding that motor production ability is asso-

ciated with prediction task performance only when fronto-
parietal lesions are not considered is consistent with previous
work focusing on the relationship between hemiparesis and
the ability to simulate one’s own actions. Johnson (2000)
asked hemiplegic patients to indicate how they would grasp
a dowel if they were to reach out and perform the action.
Patients were able to perform the simulation task unless their
lesions involved frontoparietal cortex (see also Johnson,
2002). Given these reports, the present association between
motor production ability and prediction ability may be
explained by the co-occurrence of hemiparesis and lesions in
the left premotor and parietal cortices in our sample. That is,
motor production ability and prediction ability, rather than
being directly causally related, may simply share similar or
adjacent neuroanatomic substrates.
Unlike hemiparesis, the effect of limb apraxia (as indexed

by performance on the pantomime production task) remained
significant even when considering left IPL damage, sug-
gesting a robust association between praxis ability and
motion prediction ability. Apraxic patients have previously
been shown to be impaired at planning and simulating their
own actions, whereas motor tasks that can be performed
adequately by relying on visual feedback (such as reaching to
targets under visual guidance) are relatively intact (e.g.,
Buxbaum, Johnson-Frey, et al., 2005; Coslett et al., 2008;
Dawson et al., 2010; Eidenmuller et al., 2014; Jax et al.,
2006; Mutha et al., 2010; Ochipa et al., 1997; Sirigu et al.,
1996; Wheaton et al., 2009).
For example, Buxbaum, Johnson-Frey et al. (2005) found

that apraxics performed abnormally on Johnson’s (2000) grip
simulation task, but executed the same grasps successfully.
Similarly, Sirigu et al. (1996; see also Jeannerod, 1986)
found that apraxics were impaired at simulating finger
opposition sequences, with performance on the actual finger
opposition task within the control range. Lastly, Dawson
et al. (2010) and Eidenmuller et al. (2014) observed relatively
impaired anticipatory grip force scaling in apraxics when
asked to lift everyday objects (but see Li, Randerath,
Goldenberg, & Hermsdörfer, 2011). Given that the antici-
patory planning component of action production appears to
be affected in apraxia, the present results are consistent with
the proposal that action prediction relies on mechanisms
that are shared with motor planning, which may include
use of the same forward models (Friston et al., 2011;
Wolpert et al., 2003).

Importantly, however, praxis ability was associated with
deficits in prediction of both human action and non-
biological motion, and there was no indication that these
relationships were of different strengths. These data are
broadly supportive of the prediction account of Schubotz
(2007) in which forward models may be ideally suited to
predict human actions, but also deployed to predict
non-biological motion. By contrast, the observed robust
association between praxis ability and the ability to predict
non-biological motion is not well explained by the perceptual
associative account of prediction by Pickering and Garrod
(2013) in which forward models are used only to predict
actions performed by agents that are “similar enough” to the
observer, while trajectories lacking human characteristics are
predicted based on past perceptual experience (see
also Springer et al., 2013; Stadler, Springer, et al., 2012). This
account would seem to suggest that non-biological motion
should be predicted normally in at least some patients with
apraxia.
Notably, we observed that neurologically intact controls

were better at predicting pantomimed tool use actions than
both actual tool use actions and non-biological motion. At
present, we can only speculate about the cause of this pattern.
One possibility is that controls paid closer attention to the
pantomimed actions than to the other two motion types,
perhaps because the former were more novel. However, this
account predicts that patients, too, should benefit from the
combination of novelty and increased attention, unless one
posits an additional deficit in patients’ ability to allocate
additional attention to the task. Further research is required to
explain this aspect of the findings.
Finally, the absence of a significant association between

action recognition and prediction enables us to hypothesize
that prediction may rely on processes further “downstream”

in the motor planning process than those tapped in action
recognition tasks. Additionally, the weak association
between action recognition and prediction is inconsistent
with accounts suggesting that action recognition is critically
dependent upon action simulation (Rizzolatti et al., 2001;
Urgesi et al., 2014). Consistent with recent prior findings
from our laboratory (Kalénine et al., 2010; Tarhan et al.,
2015) and others (e.g., Negri et al., 2007) showing that brain
regions beyond the human “mirror system” are critical for
action recognition, the present data suggest that action
recognition is not reducible to action simulation.

CONCLUSION

It has been argued that action production and prediction rely
upon shared underlying mechanisms (e.g., Aglioti et al., 2008;
Colling et al., 2014; Stapel et al., 2016). We report data from
left-hemisphere stroke patients that enables us to refine this
account. Consistent with the hypothesis that forward models
are used both for action planning and prediction (Friston et al.,
2011; Wolpert et al., 2003), our data suggest that the feed-
forward components of action trajectory planning are critical
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for prediction of human as well as non-biological motion tra-
jectories. Moreover, our results suggest that the left insula,
inferior parietal, and dorsal frontal cortices are critical to the
ability to predict both motion types. On first inspection, these
data may appear to be inconsistent with widely cited prior
findings that action expertise has a specific effect on the ability
to predict the relevant action, but not other related skills
(Aglioti et al., 2008). However, action planning capacities are
presumably not all-or-none. Motor planning mechanisms may
be used for prediction of all types of events that contain spa-
tiotemporal trajectory information, with high levels of motor
expertise serving to “tune” the precision with which exqui-
sitely timed events can be predicted.
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