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Effects of an along-shelf current on the
generation of internal tides near the
critical latitude
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The effects of along-shelf barotropic geostrophic currents on internal wave generation
by the K1 tide interacting with a shelf at near-critical latitudes are investigated. The
horizontal shear of the background current results in a spatially varying effective Coriolis
frequency which modifies the slope criticality and potentially creates blocking regions
where freely propagating internal tides cannot exist. This paper is focused on the barotropic
to baroclinic energy conversion rate, which is affected by a combination of three factors:
slope criticality, size and location of the blocking region where the conversion rate is
extremely small and the internal tide (IT) beam patterns. All of these are sensitive to the
current parameters. In our parameter space, the current can increase the conversion rate
up to 10 times.
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1. Introduction

Studies on internal tides (ITs) have attracted considerable attention over the years, because
these waves can have a significant impact on oceanic mixing (Munk & Wunsch 1998;
Vic et al. 2019), large scale ocean circulation (Wunsch & Ferrari 2004), transport of
energy (Simmons & Alford 2012), upwelling of nutrients (Schafstall et al. 2010) and
shaping the continental shelves (Cacchione, Pratson & Ogston 2002). In situ observations
suggest that strong mixing occurs over rough bathymetry (Polzin et al. 1997), the biweekly
variation of the mixing indicating a relationship to the spring-neap barotropic tidal cycle
and thus to the conversion of barotropic to baroclinic tidal energy. The most prominent
IT generation mechanism is barotropic tidal flows incident upon bottom topography
such as the continental shelf slope, subsurface ridges and seamounts. Examples of
generation locations include the Bay of Biscay (New & Pingree 1992; Gerkema, Lam
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& Maas 2004), the Australian North West Shelf (Holloway, Chatwin & Craig 2001), the
Malin–Hebrides Shelf (Xing & Davies 1998), the Hawaiian Ridge (Martin, Rudnick &
Pinkel 2006), Mid-Atlantic Ridge (Zilberman et al. 2009), Monterey Bay (Lien & Gregg
2001) and various seamounts (Lueck & Mudge 1997; Toole et al. 1997). Global numerical
simulations (Simmons, Hallberg & Arbic 2004; Niwa & Hibiya 2011) have been conducted
to investigate the spatial distribution of the major generation sites. They found that the
generation of baroclinic tides largely occurs over prominent topographic features and the
total conversion rate increases as the model grid spacing is reduced.

There are three important dimensionless parameters relevant to internal waves (IWs)
generated by tide–topography interaction. The first one is the tidal excursion parameter ε,
which is used to measure the nonlinearity of the waves (Vlasenko, Stashchuk & Hutter
2005; Legg & Huijts 2006; Garrett & Kunze 2007). It is defined as the ratio of the
barotropic tidal advection distance to the horizontal scale of the topography. If ε is much
smaller than 1, linear ITs are generated mainly at the forcing frequency. The second
dimensionless parameter is the relative height of the topography δ = h/H, where h is the
topographic height and H is a typical water depth. The third important parameter for IT
generation is the bottom slope criticality α = s/γ , where s is the topographic slope and γ

is the slope of an IT characteristic. In the presence of a barotropic background flow V(x)
in the y-direction, which varies slowly in the x-direction so that second-order gradients are
negligible, under the hydrostatic approximation,

γ =
√

σ 2
T − f 2

eff

N2 . (1.1)

Here f 2
eff = f 2 + f Vx is the effective Coriolis frequency squared (Mooers 1975), σT is the

IT frequency and N is the buoyancy frequency. In general, N is a function of z and γ can
depend on both x and z.

The critical latitude is defined as the latitude where f = σT for each tidal constituent.
Critical latitudes are approximately 30◦ and 75◦ for the diurnal K1 and semi-diurnal
M2 tides, respectively. Note that (1.1) is not valid if feff > σT . Instead we have an
evanescent region, where no freely propagating waves are permitted and forced waves
decay quasi-exponentially away from the generation site. If the length of the evanescent
region is finite, meaning feff varies spatially, a fraction of the wave energy can tunnel
through the region and there is a radiated wave on the other side of the region. Intensive
research on tunnelling has been done with most of it focused on vertically propagating
waves in the atmospheric context (Jones 1970; Monserrat & Thorpe 1996; Sutherland &
Yewchuk 2004), though some work has discussed tunnelling in the ocean (Eckart 1961;
Rainville & Pinkel 2004).

Unlike numerical studies, the theoretical models all use linearized equations of motion
and most of them are formulated without a background current, i.e. feff = f . When α is
much less than 1, the analysis of Bell (1975) has been widely used for small amplitude
bathymetry δ � 1. Bell included the advection by the background flow and used an
infinitely deep ocean to estimate the upward energy flux for subcritical topography to
be O(1) mW m−2. Building upon Bell’s work, Khatiwala (2003) included a rigid lid,
which results in horizontal, rather than vertical, energy flux. He found good agreement
with that predicted by a nonlinear numerical model. Llewellyn Smith & Young (2002) too
present an analytical treatment of this problem by using a different mathematical approach
(WKB method) to include non-uniform N(z). While most models with small bathymetry
δ � 1 use a linearized bottom boundary condition, St. Laurent & Garrett (2002) used a
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perturbation expansion of the bottom boundary condition for small but finite amplitude
topography. However, the linear theory in general underestimates the energy flux for
supercritical cases.

Bathymetries with large amplitudes have also been considered theoretically. In this case,
the bottom boundary condition cannot be linearized. For subcritical slopes with α < 1,
the model developed by Baines (1982) is available. Craig (1987) used the method of
characteristics and described the generation of ITs of a single frequency at shelf-like
topography with a constant shelf slope. He found that energy flux varies linearly with
α and like α5 for supercritical and subcritical cases, respectively. Similar results for
subcritical cases were obtained by Vlasenko et al. (2005). Balmforth, Ierley & Young
(2002) considered an infinitely deep ocean, while a finite depth ocean was discussed
by St. Laurent et al. (2003) with a finite amplitude knife edge, step-like and top hat
bathymetry. This work was extended by Nycander (2006), where he considered periodic
knife edge bathymetry. Pétrélis, Smith & Young (2006) applied a Green’s function to
large submarine ridges assuming small tidal excursion distance ε. Their results confirm a
monotonic increase in the radiated energy flux as the slope becomes steeper, with most
of the increase happening after the slope becomes slightly supercritical. Other models
include those of Gerkema (2002), Gerkema et al. (2004) and Baines (1973). However,
none of these models on large amplitude bathymetries include advection by the barotropic
tide and they generally need to be solved numerically owing to the model complexity.
Therefore, they are restricted to small tidal excursions.

Numerical simulations using primitive equation models to study IT generation by
tide–topography interaction have become increasingly important particularly for regions
where linear theories break down or become complex. Legg & Huijts (2006) used a
Gaussian ridge to confirm that strong local mixing only occurs for narrow features
with large α, which is common in the coastal ocean. Holloway & Merrifield (1999)
and Munroe & Lamb (2005) focused on idealized seamounts and showed that large
seamounts are ineffective at generating ITs unless they are elongated in a direction normal
to the barotropic tides. The aforementioned papers all used free surface in their models,
while Lamb & Kim (2012) applied a rigid lid and concluded that the large amplitude
theory yields good results with simulations using subcritical slopes. Investigations of IT
generation using more realistic bathymetries are numerous, e.g. Powell et al. (2012), Niwa
& Hibiya (2004, 2014), Merrifield, Holloway & Johnston (2001), Holloway (1996) and
Zilberman et al. (2009). More details on the theories and numerical simulations can be
found in the review by Garrett & Kunze (2007).

Most of the aforementioned research is relatively basic in the sense that only the effect
of barotropic tides and bathymetry is considered in the IW generation process. This
paper builds on past work by investigating IT generation over a shelf in the presence
of an along-shelf geostrophic current, which is a common feature along continental
shelves. Strong oceanic currents, such as the Gulf Stream, Kuroshio, Oyasio, the Pacific
Equatorial Countercurrent and Davidson Current are a significant source of mass, heat
and nutrient transport in the world’s oceans (Hall & Bryden 1982). The presence of
the currents can significantly modify the background density, effective frequencies and
velocity field, which in turn modulates the IW field including its propagation path, energy
distribution and generation process. Incorporating geostrophic currents into studies of
IW generation is necessary and our knowledge is far from complete. One of the first
theoretical studies of IWs propagating into a geostrophic current dates back to Mooers
(1975), who investigated two-dimensional IWs normally incident on a frontal zone using
the method of characteristics. Kunze (1985) extended Mooers’ work to a three-dimensional
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setting by considering the influence of mean flow shear on wind generated near-inertial
waves (NIWs). Since then, research on the impact of currents on ITs, particularly through
variations in wave frequency, is still sparse and largely focused on linear equations/theories
and some observations (Chuang & Wang 1981; Kolomoitseva & Cherkesov 1999; Rainville
& Pinkel 2006; Chavanne et al. 2010; Whitt & Thomas 2013; Li et al. 2019). Richet, Muller
& Chomaz (2017) investigated the impacts of a weak background current on the local
dissipation of high mode IWs using fully nonlinear numerical simulations. Their currents
flowed in the same direction as the waves so the wave frequency is affected owing to the
Doppler shift. Dong et al. (2019) found that a mesoscale eddy over a seamount broadened
the range of critical latitude effects and enhanced energy transfer from diurnal frequencies
to higher frequencies and from low- to high-mode waves. The effects of horizontal density
variability on the IT wave field with no change in feff has also been investigated (Vlasenko
et al. 2005; Kurapov, Allen & Egbert 2010).

This paper contributes to the understanding of IT generation by including along-shelf
barotropic geostrophic currents. Barotropic currents are used because this is the simplest
way to study the effects of horizontal shear of the background current giving horizontally
varying feff without additional complications of horizontally varying stratification. We
restrict our attention to K1 diurnal tides and near-critical latitudes so that the impact
of varying Vx can be significant. The focus is on the barotropic to baroclinic energy
conversion rate and the IT beam pattern. The numerical model set-up and parameter space
are presented in § 2. The assumptions and calculations of conversion rates are discussed in
§ 3. Results of numerical simulations are presented in § 4. We present results for a selection
of the numerical simulations we have undertaken chosen to illustrate the variety of effects
that the along-shelf barotropic current can have on the wave generation process. In this
paper, we focused on near-critical latitudes for which σT/f is too small for parametric
subharmonic instability (PSI) to occur. The results are discussed and summarized
in § 5.

2. Numerical model

We use the Massachusetts Institute of Technology Global Circulation Model (MITgcm;
Marshall et al. 1997) in hydrostatic configuration. A rigid lid is applied at the surface
z = 0. With a rigid lid and incompressibility, the volume flux is constant throughout
the domain. With a free surface, the barotropic tide is a wave which would be partially
reflected from the shelf slope resulting in a spatially variable maximum cross-shelf volume
flux. The volume flux would also have a spatially varying phase; however, because tidal
wave lengths are very long compared with the width of the shelf slope, these variations
are not important in the present context (Stammer et al. 2014). For comparisons with
observations, it would therefore be important to choose the tidal current amplitude so that
currents at the generation site matched with the observed currents as closely as possible.
Rigid lid simulations are attractive owing to the accompanied cheap computational cost,
both because using a free surface is more computationally expensive and because the
simulations would be much longer to allow time for the tidal waves to propagate from
the boundary to the shelf slope.

The bottom is at z = h(x), which is modelled as a linear slope with smoothed corners:

h(x) = −H + s
2

(
f (x, 0, d) − f

(
x,

1800
s

, d
))

, (2.1)
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Figure 1. An example of the initial velocity fields (shaded) overlaid with density contours. (a) The initial
along-shelf velocity v(x, z, 0) = V(x) with Vmax = 1 m s−1, x0 = 50 km and xr = 60 km. The barotropic tidal
current is initially zero. (b) The initial cross-shelf current u, which is equal to the maximum on-shelf barotropic
current. Here A = 0.02 in the deep water.

where

f (x, a, s) = x − a + s
(

ln
(

cosh
(

x − a
s

)))
. (2.2)

The bottom of the shelf slope starts at approximately x = 0. Here, s is the slope of the
bathymetry except near the shelf break and the bottom, where it is smoothed out by the
parameter d = 5000 m. We use a Gaussian function to model the barotropic current,

V(x) = Vmax exp
(

−(x − x0)
2

x2
r

)
. (2.3)

Here, x0 and xr determine the location and width of the current and Vmax is the maximum
current velocity which occurs at its centre. This current is in geostrophic balance with a
cross-shelf pressure gradient and because the current is barotropic, a horizontal density
gradient is not required.

We start the simulations at peak on-shelf tidal flow and hence the barotropic tidal
current (vertical average of the cross-shelf current u) is Ubt = −AH/h(x) · cos(σT t), where
A = 0.02 m s−1 is the deep water barotropic current, σT ≈ 7.2935 × 10−5 s−1 is the K1
diurnal tidal frequency and H = 2 km is the water depth. The initial cross-shelf velocity
field is equal to the initial barotropic current. We start the simulations at the maximum
on-shelf flow because, at this time, isopycnals are close to their mean position (starting at
the beginning of on-shelf flow, for example, fluid over the shelf would be raised during
the first half of the tidal period and lowered in the second half and fluid parcels would
have a mean position above their initial location). Starting at this phase of the tide also
means that the along-shelf component of the barotropic current is zero in regions of
constant depth. Thus, we initialize the along-shelf velocity field with the geostrophic
current v(x, z, 0) = V(x). The simulations are forced by specifying the tidal currents
at the left and right boundaries. For simplicity, we consider linear stratifications with
constant buoyancy frequency N = 1 × 10−3 s−1. An example of the initial state is plotted
in figure 1.
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f (s−1) γ (no current) s Vmax (m s−1) x0 (km) xr (km)

6.7 × 10−5 0.029 0.023 [−1, 1] [−60, 180] [40, 160]
6.0 × 10−5 0.041 0.033 [−1, 1] [13, 43] [15, 60]

Table 1. Parameter space.

The parameters that can be varied under this setting are:

f : the Coriolis parameter;
s : the slope of the bathymetry;

x0 : the location of the center of the current;
Vmax : the velocity of the geostrophic current at x = x0;

xr : the width of the current.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

We consider bathymetries with slope s so that in the absence of a current, the slope
criticality α = s/γ ≈ 0.8. Our setting of the geostrophic current implies the Rossby
number Ro = O(Vx/f ) = O(0.1). The values of the relevant parameters are listed in
table 1. We choose these parameters to represent real world ocean currents. For example,
the current width is modelled by 4xr. In the Northern Hemisphere, negative Vmax can
represent western boundary currents flowing north or eastern boundary currents flowing
south. Western boundary currents are generally faster and narrower than eastern boundary
currents. The Gulf Stream has an average speed of 1.8 m s−1 and a typical width of
100 km. The mean speed of the southward flowing California current is 0.1 m s−1 and its
width is between 500 and 800 km. However, positive Vmax can represent western boundary
currents flowing south or eastern boundary currents flowing north. The southward flowing
Labrador Current has a typical speed of approximately 0.4 m s−1 and it is approximately
100 km wide. Speeds of the northward flowing Norwegian Coastal Current can vary
greatly from 0.1 m s−1 to 1 m s−1 depending on the season. These large ranges of Vmax
and xr are covered in our choice of parameters. We vary the current centre x0 to model
the different locations of the current relative to the bathymetry. In particular, because the
focus of this paper is on near-critical latitudes, a larger parameter space was done with
f = 6.7 × 10−5 s−1 (≈27.5 ◦N) than that with f = 6.0 × 10−5 s−1 (≈24.5 ◦N).

The central domain of interest has a length L = 200 km with uniform resolution dx =
25 m. The vertical grid is non-uniform with a total of nz = 400 points, in which 80 points
are in the shallow water. The finest resolution is dz = 2.5 m in the upper 200 m and it
linearly stretches to dz = 8 m in the deep water. On either side of the central domain, there
is a layer in which the grid is slowly stretched horizontally with successive grid cell lengths
increased by 0.5 %. Each simulation is run for 60 tidal periods. The total domain is long
enough so that no ITs can reach the boundaries within the simulation time. The model
time step is 6 s.

The horizontal viscosity is parametrized with a nonlinear Smagorinsky scheme
(Smagorinsky 1993) with viscC2Smag = 2. We use PP81 to model the vertical viscosity
μ and diffusivity κ (Pacanowski & Philander 1981; Stashchuk et al. 2017).
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3. Calculation of conversion rate

To calculate the barotropic to baroclinic conversion rate, the velocity, density and pressure
fields are first separated into barotropic and baroclinic fields following Kang & Fringer
(2012). The total flow field is divided into

u = (u, v, w) = (Ubt + u′, Vbt + V + v′, Wbt + w′), (3.1)

ρ = ρb(z) + ρ′(x, z, t), (3.2)

p = pb(z) + pg(x) + pbt(x, z, t) + p′(x, z, t), (3.3)

where Ubt = (Ubt, Vbt, Wbt) is the velocity field associated with the barotropic tidal
currents and u′ = (u′, v′, w′) is the perturbation velocity. Using an overbar above a
quantity φ refers to the depth integral φ̄ = ∫ 0

−h φ dz, the barotropic current is defined as

Ubt(x, t) = 1
h(x)

ū, (3.4)

Vbt(x, t) = 1
h(x)

v̄, (3.5)

Wbt(x, z, t) = −∂Ubt

∂x
z. (3.6)

Here, ρb(z) is the background density field in hydrostatic balance with pb(z). We take
pb = 0 at the surface. The pg(x), given by ∂pg/∂x = f V , is the pressure associated with
the geostrophic current V . We take pg = 0 to the left of the current. Here, ρ′(x, z, t) is
the density perturbation in hydrostatic balance with pbt + p′, where pbt and p′ are the
barotropic and baroclinic pressure, respectively. We assume p′ has zero depth average
(Kunze et al. 2002), i.e. p′ = ( p − pb) − 1/h(x)( p − pb), and ρ′ is assumed to be the
baroclinic density perturbation.

The total barotropic-to-baroclinic energy conversion is given by C = ∫∫
ρ′gW dx dz. In

particular, C is the horizontal integration of the conversion C̄ = ∫
ρ′gW dz. Here, C̄(x, t)

can be either positive or negative. Positive conversion means energy is converted from
barotropic to baroclinic tides, while negative conversion means energy is transferred from
baroclinic to barotropic tides. We denote Cp(t) = ΣC̄>0C̄ dx and Cn(t) = ΣC̄<0C̄ dx. The
summation is over all grid columns and multiplied by the horizontal spacing dx. All the
values of the conversion rate are averaged over one tidal period.

4. Simulation results

Owing to the large number of simulations done, only selected cases are presented here.
Two series of simulations, A and B, were undertaken. They are for Coriolis frequencies
f = 6.7 × 10−5 s−1 and 6.0 × 10−5 s−1, respectively. Table 2 lists the parameters used for
the two series. We define rm as the part of the slope where α > 0.99αmax and rb as the x
value of the location around which the beam is emitted. Here, αmax is the maximum value
of the criticality parameter α, and xc and xc0 are critical points. The slope is supercritical
(subcritical) to the left (right) of xc, and vice versa for xc0. A stretch of the slope with feff >

σT is called a blocking region. The slope criticality α is undefined in blocking regions. The
details on feff , γ , C and Cp(n) for each case are plotted in figure 2.
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f (s−1) case Vmax (m s−1) x0 (km) xr (km) rm (km) xc (km) xc0 (km) rb (km)

6.7 × 10−5 A0 N/A [5, 80] N/A N/A 20
A1 1 50 60 blocking 45 N/A 55
A2 1 36 60 blocking 31 N/A 41
A3 1 64 60 blocking 59 0 69
A4 1 92 60 blocking 77 7 80
A5 −1 36 60 blocking N/A 50 65

6.0 × 10−5 B0 N/A [5, 60] N/A N/A 20
B1 1 41 40 [10, 14] 30 3 35
B2 0.5 30 40 [8, 11] N/A N/A 25
B3 −1 23 40 [47, 52] 53 31 53
B4 −0.5 30 40 [42, 47] N/A N/A 45

Table 2. Parameters in A and B series. Here, Vmax, x0 and xr are maximum velocity, the centre and the width
of the current. Additionally, rm is the part of the slope where α > 0.99αmax, xc and xc0 are critical points, and
rb is the x value of the location around which the beam is emitted.

4.1. Scenario I: no current
We begin with the simplest cases A0 and B0 for which there are no background currents
(magenta solid lines in figure 2). These provide a reference for cases with currents. The
shelf slope lies between 0 and 81 (55) km for the A (B) series. We can see a large transient
behaviour in the time evolution of the conversion rate C̄ (figures 2e, f and 3a,b). At the
beginning of the simulations, the wave field needs time to adjust to the sudden onset of
the tidal forcing. It takes approximately 10 and 5 tidal periods for A0 and B0 to reach a
quasi-steady state. Here α is constant on the majority of the slope and ITs are generated
along the whole slope. The bathymetry is smoothed out near the bottom, so α is small
near the base at x = 0 and near the shelf break, and it has its maximum value at the centre
of the slope. For these cases, rm is approximately the region (5 km, shelf break − 5 km).
For both cases, IT beams are emitted from a neighbourhood of rb ≈ 20 km (figure 3g,h)
approximately 100 m above the bottom (figure 3c,d). To the left of rb ≈ 20 km is a beam
with cg propagating to the base of the slope then reflecting up to the left, and to the right
a more intense beam propagates to the upper right. The phase of the rightward beam
propagates downward (figure 3e, f ) and the energy goes upward until it hits the surface and
gets reflected (figure 3g,h). The characteristic IT beam path shown in green (figure 3c,d) is
in general calculated using a ray-tracing technique although in the absence of a background
current, they are straight lines. The beam energy continues to propagate onshore while
being reflected by the surface and bottom. The beams generated near rm are a common
feature in all of our simulations, and it is related to positive conversion Cp. Each time the
beam reflects, the sign of the conversion C̄ changes (figure 3a,b).

4.2. Scenario II: no critical point
We include a current V(x) with relatively small Vx so that α < 1 everywhere. We consider
cases B2 and B4, which only differ in the sign of Vmax (blue dashed and black dashed lines
in figure 2b,d, f ,h). Unlike the cases A0 and B0, the slope criticality α here varies along
the slope owing to the presence of the current. In B2 (positive current), α is increased
(decreased) to the left (right) of the current centre x0, with α reaching its maximum near
the bottom at rm ≈ 10 km and its minimum is at x ≈ 50 km. Two beams emanate from
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Figure 2. (a,c,e,g) A series (magenta, black, black dashed, black dotted, black dash–dotted, blue) = (A0, A1,
A2, A3, A4, A5). (b,d, f,h) B series (magenta solid, black, black dashed, blue, blue dashed) = (B0, B1, B2, B3,
B4). (a,b) Effective frequencies. Magenta dashed (solid) line is σT (f ). (c,d) Slope of IT characteristics γ . The
red line is the bathymetric slope. (e, f ) Total conversion rates C. (g,h) Cp and Cn.

rb ≈ 25 km (figure 4c,g). This difference in the x-location between beam emission and
αmax (rb and rm) is presumably owing to the strengthening of the barotropic current with
decreasing water depth. To the right of rb ≈ 25 km, the phase of the beam propagating
downwards (figure 4f ) indicates that energy propagates upwards (figure 4h). Note the slope
of the beam is curved owing to the varying feff . The beam is emitted from a location similar
to that in case B0 but the slope is closer to critical with αmax = 0.97. As a result, the total
conversion rate C in B2 is larger than in case B0 (black dashed line in figure 2f ).
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Figure 3. (a,c,e,g) Case A0. (b,d, f,h) Case B0. (a,b) Contour plot of the vertical integration of C̄ (W m−2)
varying on the spatial and time scales. (c,d) Contour of the density perturbation ρ ′ at the end of 30 tidal periods.
Green lines are the characteristics of IT beams. Green circles mark the location where the beam is emitted. (e, f )
The horizontal baroclinic velocity u′: (e) x = 40 km; ( f ) x = 30 km. (g,h) Energy flux 〈(u′, w′)p′〉.

In B4 with Vmax = −0.5 m s−1, αmax = 0.97 occurs near the shelf break (rm ≈ 45 km)
and it is smallest at x ≈ 15 km. Three beams are emitted from the left and right of rb ≈ rm
(figure 4d) Because the slope is subcritical on both sides of rb, for the left downward
propagating beam to be generated, the generation location must be above the slope. To
verify this beam pattern, an extra simulation was conducted in which the water depth was
increased by 400 m everywhere and the deep water barotropic current was increased so
that the same barotropic tidal forcing is applied in the shallow water region. This makes
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Figure 4. Same as figure 3, except for case B2, with Vmax = 0.5 m s−1 (a,c,e,g) and case B4, with Vmax =
−0.5 m s−1 (b,d, f,h). The cyan diamond marks rm where αmax occurs. Green circles mark the location where
the beam is emitted. Again, (e) x = 40 km, ( f ) x = 30 km.

the three IT beams more distinguishable. Details are omitted here. To the upper-left of rb
there is a wide beam, and to the lower-left and right of rb there are two narrow beams. They
each propagate onwards until hitting the surface/bottom, as illustrated in figure 4(d,h) for
case B4. The upward phase propagation at x = 30 km (figure 4f ) confirms the downward
cg propagation. Owing to the different beam patterns in B4, the region of positive Cp
(negative Cn) conversion (figure 4b) is different from those in cases B2 and B0. Here, Cp
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in B4 only exists for x > 30 km, which results a smaller total conversion rate C (dashed
lines in figure 2f,h).

4.3. Scenario III: No blocking + critical point
We now double the current so that α ≥ 1 for some portion of the slope. We consider
cases B1 with Vmax = 1 m s−1 and B3 with Vmax = −1 m s−1 (black and blue lines in
figure 2b,d, f ,h). There are two critical points in both cases.

In B1, one critical point xc = 30 km lies in the middle of the slope and the other xc0 =
3 km is near the bottom. Between these two critical points, the slope is supercritical. There
are two intense beams emanating from rb ≈ 35 km near xc (figure 5g) but no beams
near xc0. This is because the slope is supercritical (subcritical) to the left (right) of xc.
However, the slope is subcritical (supercritical) to the left (right) of xc0. No beams with a
positive slope can be emitted from xc0. Note the beam generation location rb is up-slope
of xc owing to the strengthening of the barotropic current in the shallower water. An
intense beam is emitted from the right of rb and propagates upwards until it hits the
surface at approximately x = 53 km (figure 5c). It gets reflected from the surface and
keeps propagating onto the shelf while being reflected between the surface and the bottom.
Analogously, the other intense beam emanates from the left of rb with phase propagating
upwards (figure 5e) and energy propagating downward (figure 5g) until it hits the bottom
at approximately x = −10 km and gets reflected. The reflection location corresponds to
the change of sign of C̄ (figure 5a). The conversion rate C̄ vanishes around x = −10 km
because the bathymetry is flat and W = 0.

In case B3, the two critical points are at xc = 53 km near the shelf break and xc0 = 31 km
in the middle of the slope. The slope is subcritical (supercritical) to the left (right) of xc0,
while it is the other way around for xc. As a result, beams can be generated at rb = xc
but not at xc0. Three beams are emitted from rb = 53 km (figure 5d). One beam emanates
from the right of rb and propagates to the upper right. Two beams emanate from the left of
rb. One of them propagates downwards until it reflects from the bathymetry at x = 13 km.
The other beam propagates upwards and reflects from the surface at x = 40 km, where the
reflected beam subsequently propagates downward until it hits the bottom at x = −5 km.
The upward phase propagation at x = 30 km (figure 5f ) confirms the downward energy
propagation. Similar to case B4, a separate simulation with water depth increased by 400 m
everywhere has been conducted to verify this beam pattern. Details are omitted here. The
three beams emitted directly from rb contribute to the positive conversion Cp, while their
reflected beams contribute to the negative conversion Cn. The resulting conversion rate
pattern C̄ (figure 5b) is a combination of Cp and Cn.

Because strong generation occurs near the critical point xc, B1 and B3 have the largest
total conversion rate C in the B series (black and blue in figure 2f ). However, owing to the
different beam patterns, B3 has a much larger region of negative Cn than B1 (figure 5a,b).
As a result, B3 has a smaller C than B1 (black and blue lines in figure 2f,h).

4.4. Scenario IV: blocking near the bottom/shelf break
We now consider a strong current such that feff > σT along a stretch of the slope which
we call a blocking region. Freely propagating internal waves do not exist in this region
but tunnelling may occur. We analyse results from the A series with a focus on cases A1
(Vmax = 1 m s−1) and A5 (Vmax = −1 m s−1). For this series, the slope lies between x = 0
and 81 km.
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Figure 5. Same as figure 3, except for case B1 (a,c,e,g) and case B3 (b,d, f,h). The cyan diamonds mark the
critical points xc and xc0. Green circles mark the location where the beam is emitted. Here, (e) x = 20 km,
( f ) x = 30 km.

In A1, there is a blocking region, x ∈ [−5, 26] km, near the bottom of the slope (black
line in figure 2c). There is a critical point at xc = 45 km. To the left (right) of the critical
point, the slope is supercritical (subcritical). Two strong narrow IT beams are emitted
from rb ≈ 55 km near xc (figure 6c,g). This pattern is similar to case B1. The difference
is, here, the amplitude of the beams with tidal frequency σT decays quasi-exponentially to
the left in the region −5 km ≤ x ≤ 26 km, where feff > σT . IT beams cannot be generated
in this blocking region either. As a result, the conversion C in the blocking region is very
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Figure 6. Same as figure 3, except for case A1 (a,c,e,g) and case A5 (b,d, f,h). The cyan diamonds mark the
critical points xc and xc0. Green circles mark the location where the beam is emitted. The red lines mark the
edges of the blocking region. Here, (e) x = 60 km, ( f ) x = 40 km.

weak (figure 6a). For x > 26 km, the change of sign in C follows the IT beam reflection
location.

Relative to A1, the centre of the current x0 in cases A2, A3 and A4 is shifted up or
down slope (figure 2a). There is a critical point xc and a blocking region in each of these
four cases. In general, the conversion rate C increases as xc moves closer to the shelf break,
because the barotropic tidal forcing reaches its maximum in the shallow water. In this case,
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Figure 7. (a) Positive currents with Vmax = 1 m s−1. Current width xr in (black solid, black dashed, blue solid,
blue dashed) = (60 km, 75 km, 105 km, 160 km). (b) Negative currents. Here, Vmax in (black solid, black dashed,
blue) = (−1 m s−1, −1 m s−1, −0.5 m s−1). xr in (black solid, black dashed, blue) = (60 km, 75 km, 60 km). For
both panels (a,b), f = 6.7 × 10−5 s−1. Shelf break is at 80 km. Magenta line is C without a current (case a0).
Empty circles represent the numerical simulations.

we have C(A3) > C(A1) > C(A2) (figure 2c). However, as the blocking region gets closer
to the shelf break, C decreases explaining C(A3) > C(A4).

In case A5, the current is negative and the blocking region, x ∈ [65, 100] km, is near the
shelf break (blue line in figure 2c). There is a critical point xc0 = 50 km, but no beams with
positive slope can be emitted there because the slope is subcritical (supercritical) to the left
(right) of xc0. Because beams with tidal frequency cannot propagate upward owing to the
blocking region and the slope is supercritical to the right of xc0, two leftward propagating
beams are generated approximately 300 m above the slope at rb ≈ 65 km, which is near
the edge of the blocking region (figure 6d,h). One beam propagates downward and hits
the slope at x = 10 km. The other beam propagates upwards and gets reflected at the
surface x = 50 km. The upward phase propagation at x = 40 km (figure 6f ) confirms the
downward energy propagation. A separate simulation with water depth increased by 400 m
everywhere has been conducted to confirm this beam pattern. Details are omitted here.
The reflected (pre-reflected) beam contributes to the negative (positive) conversion Cn
(Cp). The resulting conversion pattern is a combination of these two (figure 6b). This puts
C(A5) as the smallest among the five cases with currents in the A series.

5. Discussion and summary

How the current parameters influence the total conversion C is a complex problem. We
illustrate it by conducting extra simulations and plotting the relation between C and the
location of the current centre x0 for different current widths (figure 7). When Vmax is
positive, feff > f to the left of x0 (deeper water) and feff < f to the right of x0 (shallower
water) in the Northern Hemisphere where f > 0, which we have assumed throughout. As a
consequence, IT characteristic slopes γ are reduced and the slope criticality α is increased
to the left of x0 while the opposite happens to the right of x0. Here, C peaks when x0 is
placed in a position such that the portion of the slope that is near critical is maximized.
In particular, the upper slope including the shelf break plays a dominant role because the
tidal forcing there is the strongest. We can see this pattern in figure 7(a) with a small
exception in the case of the narrowest current (black solid line): there are two local peaks
when (Vmax, xr) = (1 m s−1, 60 km). A blocking region exists to the left of x0 for this case
but not in the cases with wider currents because the velocity gradients are reduced as xr
increases. Note cases A1 to A4 are included in this line and we can refer to figure 2(c) for
feff for these cases. When x0 increases from 25 km near the bottom of the slope, C increases
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Figure 8. Conversion rate C as a function of Vmax. Here, f = 6.7 × 10−5 s−1, (x0, xr) = (50 km, 60 km).

because the critical point xc is shifted closer to the shelf break with stronger tidal forcing.
However as x0 increases further, C decreases because the blocking region is moving to
the shelf break where most of the generation occurs. This creates a first local peak at
x0 = 75 km with the blocking region extending between 22 and 54 km. Subsequently, C
increases again as the blocking region moves onto the shelf creating a second local peak at
x0 = 123 km. This second peak has a much larger C than the first peak because the slope
criticality α is larger to the left of x0. With x0 on the shelf, only the left part of the current
affects the value of α. If we increase the current width xr, there is no blocking region and
the maximum C occurs at a location with x0 on the shelf. Cases with xr = 105 km (blue
solid line) produce the largest C among the four lines. This is because the conversion rate
C is determined by the two aspects of the slope criticality α, its magnitude and the portion
of the slope where α is large. With a wider current, α is reduced but the region of the shelf
slope with increased slope criticality increases.

Results for negative currents are shown in figure 7(b). As Vmax changes sign, the
behaviour of feff and α reverses too. The slope is closer to being critical to the right of x0,
meaning the peak of C occurs when the centre of the current is in deeper water (smaller
x0) than in the case of positive currents. Currents in the black solid line are stronger
(Vmax = −1 m s−1) than those in the blue solid line (Vmax = −0.5 m s−1). However, the
stronger currents have a generally smaller C owing to the presence of a blocking region
(located to the right of x0). Apart from these general statements, the exact magnitude of C
is also affected by the contribution of Cp and Cn, which is predicted by the beam pattern.
As a result, there is a sharp decrease in C as x0 approaches 40 km.

The positive currents can increase the conversion rate C by up to 10 times (blue solid
line in figure 7a) compared with case A0 (no current). The negative currents can also
increase C but generally not so much as the positive currents do. This asymmetry can be
seen using an example of how C varies with different Vmax plotted in figure 8. The current
width xr and centre x0 are the same as those of case A1. By reversing the sign of Vmax, the
variation of feff to the left and right of x0 is reversed leading to different beam patterns.
The two local peaks near Vmax = 0.6 m s−1 and −1 m s−1 are a result of a blocking region
from increasing |Vmax|. As |Vmax| increases from 0, C first increases as a result of the rising
slope criticality α. Then C decreases owing to the increasing size of the blocking region.

We summarize how the presence of a geostrophic barotropic current V(x) affects the
conversion rate.
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(i) The V(x) changes the effective frequency from f 2
eff = f 2 to f 2

eff = f 2 + f Vx. This
has a direct impact on the slope of the IT characteristics γ and the slope criticality
α = s/γ . It has been shown previously that α is a crucial factor in determining the
total conversion C (e.g. Bell 1975; Baines 1982; Balmforth et al. 2002).

(ii) Because Vx is not a constant value, feff varies along the slope. This has a significant
effect on IT beam generation location rb and their propagation paths. When feff <

σT , internal waves are generated everywhere along the slope. The intensity of the IT
beams depends on the current, which also determines the beam generation location
rb. Here, rm is defined as the part of the slope where α > 0.99αmax and rb is usually
equivalent to or slightly larger than the upper bound of rm because tidal forcing
increases as the water depth decreases. With a slightly stronger current such that
part of the slope is critical/supercritical, IT beams can be emitted near a critical
point xc if the slope is of the same sign as the slope of the beam and it is subcritical
(supercritical) to the left (right) of xc but not the other way around. With a strong
current such that part of the slope acts as a blocking region where feff > σT , IT
beams are emitted near a critical point and the conversion rate C becomes extremely
small in the blocking region.

(iii) The change of sign in C̄ corresponds to the IT beam reflection location. As a result,
the total conversion rate C = Cp + Cn is also strongly affected by the IT beam
pattern, which depends on Vx.

In conclusion, the total conversion rate C is affected by a combination of three factors:
slope criticality α, the size and location of the blocking region where ITs cannot be
generated, and the IT beam pattern including where the beams are emitted and reflected, all
of which can be varied by the geostrophic current V . In this paper, we assumed f > 0, i.e.
the Northern Hemisphere, and K1 diurnal tides as the forcing. Our work can be extended
to the Southern Hemisphere by simply reversing the signs of f and Vmax. It can also be
applied to any other tidal constituents as long as f is close to the tidal frequency so that
σ 2

T − f 2
eff = σ 2

T − f 2 − f Vx in (1.1) can vary significantly by varying Vx. This is easiest if
σ 2

T − f 2 is small. What matters is the dimensionless parameter f̃ = f /σT . In our paper,
f̃ ≥ 0.82. At latitudes far from critical, i.e. f � σT and f̃ � 1, the slope criticality will be
modified by Vx but the effects are expected to be reduced. As a result, the conversion rate
is modified but not as much as that of the near-critical latitudes.

Although we considered idealized cases that use a linear stratification and a symmetric
barotropic current, the key point of this work is that the current changes feff which changes
the conversion. This is unlikely to change in a more realistic setting. For example, with a
varying N(z) in the absence of a current, the IT beams will bend instead of following a
straight line. However, the presence of a current would affect how the beam bends and the
slope criticality in the same way that we have described in this paper. Including baroclinic
currents is an important future problem of this research, because it introduces horizontal
density gradients. Other important future avenues of this research are to incorporate
asymmetric currents and more realistic bathymetry. The effects of background currents
on PSI, which can occur at lower latitudes where 2feff ≈ σT is the subject of ongoing
work.
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